

F-Fabric Theory: Emergent Reality from Discrete Information Dynamics

Basir Gapizov
Independent Researcher
basirgap@gmail.com

December 2025

Abstract

We present F-fabric theory, in which spacetime, matter, quantum mechanics, and cosmology emerge from discrete information dynamics on a network of nodes. Each node is characterized by three parameters: resonant frequency $\Omega \in \mathbb{R}^+$, topological charge $Q \in \mathbb{Z}$, and amplitude $A \in \mathbb{R}^+$. No continuum is postulated at any stage. Spacetime emerges from resonant connectivity patterns; gravity arises as the gradient of collective amplitude modifying local node update rates. General relativity and quantum mechanics appear as continuum and ensemble limits of the same discrete dynamics. Dark matter corresponds to the low-amplitude phase $A \approx A_{\text{vac}}$ below the electromagnetic activation threshold $A_{\text{threshold}}$, remaining gravitationally active but electromagnetically invisible. Dark energy emerges from vacuum amplitude fluctuations with a natural Planck-scale cutoff, resolving the cosmological constant problem. JWST observations of massive early galaxies are explained by extended pre-transition dark matter halo growth. The theory makes falsifiable predictions: primordial gravitational wave ratio $r < 10^{-4}$, atomic clock deviations at 10^{-20} precision, specific dark matter core profiles, gravitationally-detected “dark galaxies,” black hole echoes, and cold neutral hydrogen clouds as markers of ongoing dark-to-baryonic phase transitions. Cosmology is reinterpreted: the Big Bang is a local phase transition in an infinite, eternal fabric. Information loss during pattern transfer provides a fundamental derivation of the second law of thermodynamics and the arrow of time. The theory is falsifiable, internally consistent, and offers a unified framework addressing multiple crises in fundamental physics with only three parameters per node. (see Appendix A)

Contents

1	Introduction	4
1.1	Crisis in Fundamental Physics	4
1.2	Central Idea: Reality from Discrete Information Dynamics	4
1.3	Why Three Parameters: Necessity Argument	5
1.4	Paper Overview	6
2	Emergent Spacetime and Gravity	6
2.1	Collective Amplitude as Gravitational Potential	6
2.2	Gravity as Amplitude Gradient	7
2.3	Correspondence with General Relativity	7
2.4	Black Holes Without Singularities	8
2.5	Natural Holography	8
2.6	Experimental Signatures	9

3 Core Framework	10
3.1 Definition of F-nodes	10
3.2 Local Interactions and Transfer Efficiency	10
3.3 Emergent Adjacency	11
3.4 Emergent Phase and Causality	12
3.5 Minimal Examples	12
3.6 Reality as Information Transfer: Patterns and Motion	13
3.6.1 Nodes as information carriers, not containers	13
3.6.2 Motion as pattern transfer	13
3.6.3 Stable objects as circulating patterns	14
3.6.4 Hierarchical organization of patterns	14
3.6.5 Black holes: the exception	14
3.7 Information Loss and the Thermodynamic Arrow of Time	15
3.7.1 Imperfect information transfer	15
3.7.2 Entropy as emergent from information degradation	15
3.7.3 Pattern stability, decay, and cosmological relaxation	16
4 Emergent Spacetime and Gravity	17
4.1 Collective Amplitude as Gravitational Potential	17
4.2 Gravity as Amplitude Gradient	18
4.3 Correspondence with General Relativity	19
4.4 Black Holes Without Singularities	19
4.5 Natural Holography	20
4.6 Experimental Signatures	20
5 Matter as Stable Topological Resonant Patterns	21
5.1 Particles as Stable Configurations	21
5.2 Mass from Amplitude Localization	22
5.3 Spin, Charge, and Emergent Gauge Symmetries	23
5.4 Why This Approach Succeeds	23
6 Dark Matter and Dark Energy	24
6.1 Dark Matter as the $A \approx 0$ Phase	24
6.2 Rotation Curves and Structure Formation	25
6.3 Bullet Cluster and Observational Tests	25
6.4 JWST Early Galaxies	26
6.5 Dark Energy from Vacuum Fluctuations	26
6.6 Why This Succeeds	27
7 Cosmology as Local Cyclical Phase Transitions	27
7.1 Eternal Infinite Fabric	27
7.2 Phase Transitions: Forward and Reverse	27
7.3 Observable Universe as One Transition Wave	28
7.4 “Expansion” as Fabric Relaxation	28
7.5 Voids as Fully Relaxed Regions	29
7.6 Galactic Lifecycle	30
7.7 Cyclical Cosmology	30

8 Quantum Mechanics as Emergent Statistics	31
8.1 Wave Function from Amplitude Statistics	31
8.2 Superposition as Multiple Ω -Modes	31
8.3 Entanglement as Correlated Patterns	32
8.4 Measurement as Irreversible Diffusion	32
8.5 Schrödinger Equation from Continuum Limit	33
8.6 Why Quantum Mechanics Emerges	34
9 Predictions and Falsifiability	34
9.1 Primordial Gravitational Waves: $r < 10^{-4}$	34
9.2 Atomic Clock Gravitational Tests: 10^{-20} Precision	35
9.3 Dark Matter Distribution: Specific Sub-kpc Structure	35
9.4 Missing Low-Mass Galaxies as Dark Galaxies	36
9.5 Cold HI Clouds as Transition Markers	36
9.6 Black Hole Echoes and Discrete Structure	37
9.7 JWST Early Galaxies: High Dark Matter Fractions	38
9.8 Void Properties: Gravitational Signatures of Relaxed Fabric	38
9.9 Lorentz Invariance Violations at Planck Scale	38
9.10 Electromagnetic Threshold Transition: Laboratory Analog	39
9.11 Conditions for Falsification	39
9.12 Summary of Testable Predictions	40
10 Conclusion	40
10.1 What Has Been Established	40
10.2 What Remains to Be Done	41
10.3 Philosophical Implications	42
10.4 Final Assessment	42

1 Introduction

1.1 Crisis in Fundamental Physics

Modern physics rests on two pillars: general relativity (GR) describing gravity and spacetime, and the Standard Model (SM) of particle physics describing matter and forces. Both are spectacularly successful within their domains, yet fundamentally incompatible at the Planck scale ($\sim 10^{-35}$ m, $\sim 10^{19}$ GeV).

The Standard Model alone requires at least 19 free parameters with no theoretical derivation: particle masses, coupling constants, mixing angles, and the Higgs vacuum expectation value. These numbers are inserted by hand to match observations. Meanwhile, 85% of the universe's matter is “dark matter”—gravitationally active but electromagnetically invisible, with no particle candidate detected despite decades of searches. Dark energy comprises 68% of the universe's energy density, driving accelerated expansion through a mechanism entirely unknown. The cosmological constant problem—quantum field theory's prediction exceeds observation by 120 orders of magnitude—remains unresolved.

Recent JWST observations compound these tensions. Massive, mature galaxies at redshifts $z > 10$ challenge Λ CDM's hierarchical structure formation timescales. The universe appears more organized at early times than standard cosmology predicts.

Black hole thermodynamics strongly suggests spacetime is not fundamental. Bekenstein-Hawking entropy scales with horizon area, not volume—a holographic signature indicating that three-dimensional physics emerges from two-dimensional information storage. Yet we lack a theory explaining how spacetime arises from more primitive elements.

These are not isolated anomalies requiring minor adjustments. They are symptoms of conceptual incompleteness at the foundation of physics.

1.2 Central Idea: Reality from Discrete Information Dynamics

F-fabric theory proposes a radical shift: *spacetime is not fundamental*. Instead, reality emerges from a discrete network of information-bearing nodes. Each node s_i is characterized by three parameters:

$$s_i = (\Omega_i, Q_i, A_i) \tag{1}$$

where:

- $\Omega_i \in \mathbb{R}^+$: **Local resonant frequency**—an intrinsic oscillatory property, not a time derivative. Collections of nodes with similar Ω form regions of uniform proper time flow. (formal update rules are given in Appendix D)
- $Q_i \in \mathbb{Z}$: **Topological charge**—a discrete, conserved quantum number. Changes only through discrete reconfiguration events. This is the origin of quantization.
- $A_i \in \mathbb{R}^+$: **Amplitude**—a scalar excitation representing displacement from vacuum equilibrium. The collective field $A_{\text{cl}} = \sum_i A_i$ modifies local update rates, reproducing curved spacetime phenomenology.

Nodes interact through resonant coupling:

$$J_{ij} = J_0 \exp\left(-\frac{|A_i - A_j|}{A_{\text{scale}}}\right) \cdot \text{sinc}^2\left(\frac{\Omega_i - \Omega_j}{\Delta\Omega}\right) \tag{2}$$

This coupling is *local* (decays with parameter mismatch), *symmetric* ($J_{ij} = J_{ji}$), and *resonance-selective* (maximum when frequencies match). The precise functional form is not unique but represents a broad class ensuring locality and resonance.

Key emergent phenomena:

- **Distance** emerges from resonant connectivity, not coordinates.
- **Time** emerges from frequency integration: $\phi_{\text{eff}} = \int \Omega dt$.
- **Gravity** emerges as amplitude gradients modify effective frequencies:

$$\Omega_{\text{eff}} = \frac{\Omega_{\text{vac}}}{1 + A_{\text{cl}}/A_{\text{scale}}} \quad (3)$$

High A_{cl} regions suppress $\Omega \Rightarrow$ gravitational time dilation and curvature.

- **Particles** are stable resonant patterns (topological vortices). Mass is localized amplitude excess; spin is rotational structure; charge couples to electromagnetic modes.
- **Dark matter** is the phase $A < A_{\text{threshold}}$ where electromagnetic modes cannot activate. Gravitationally present, electromagnetically absent.
- **Quantum mechanics** is the statistical description of node ensemble dynamics. Wave functions, superposition, entanglement, and measurement emerge from discrete information transfer.

1.3 Why Three Parameters: Necessity Argument

Why exactly three parameters? Consider what any discrete system with causal propagation, stable structures, and emergent symmetries *must* possess:

1. Temporal degree of freedom (Ω): For information to propagate with phase relationships and interference, nodes need an intrinsic oscillatory property. Without Ω , there is no basis for resonance, no wave dynamics, no emergent time. One parameter is insufficient—it would give only static configurations.

2. Conserved topological invariant (Q): For stable structures to exist without arbitrary reconfiguration, the system requires discrete conservation laws. Topological charge $Q \in \mathbb{Z}$ cannot change continuously, preventing matter from dissolving into vacuum. This is the origin of quantization and charge conservation. Without Q , no stable patterns persist.

3. Scalar excitation field (A): For emergent geometry and gravity, nodes need a degree of freedom that modifies interaction strength and propagation speed. Amplitude A generates effective spacetime curvature through $\Omega_{\text{eff}} \propto 1/(1+A)$. Without A , there is no gravity, no mass, no energy localization.

Fewer parameters cannot generate the required physics. With only (Ω, Q) , there is no mechanism for gravity or energy. With only (Ω, A) , there is no charge conservation or quantization. With only (Q, A) , there is no temporal evolution or wave phenomena.

More parameters introduce redundancy. A fourth parameter would either:

- Duplicate existing roles (e.g., a second amplitude A' could be absorbed into A),
- Violate observed large-scale symmetries (e.g., preferred directions breaking isotropy),
- Introduce unobserved phenomena (new forces with no experimental evidence).

Three parameters form the *minimal non-redundant set* sufficient to reproduce all observed classes of physical phenomena: spacetime structure, matter dynamics, quantum behavior, and cosmological evolution.

1.4 Paper Overview

This paper establishes F-fabric theory’s conceptual foundation and demonstrates internal consistency with observed physics:

- **Section 2** Core mathematical framework—node definitions, coupling dynamics, emergent adjacency, causality, and information loss as the origin of entropy.
- **Section 3** Spacetime and gravity emergence—how distance, time, and general relativity arise from discrete dynamics. Black holes without singularities. Holographic entropy.
- **Section 4** Matter as stable patterns—particles are topological vortices. Quarks as fragmentation artifacts. Electromagnetic threshold explaining dark matter invisibility.
- **Section 5** Dark matter and dark energy—amplitude phases below/above electromagnetic threshold. Natural cosmological constant cutoff.
- **Section 6** Cosmology without Big Bang singularity—local phase transitions in infinite eternal fabric. Expansion as relaxation. Voids as reset regions. JWST galaxies from pre-transition growth.
- **Section 7** Quantum mechanics as emergent statistics—wave functions, entanglement, measurement, and Schrödinger equation from node dynamics.
- **Section 8** Falsifiable predictions—primordial gravitational waves, atomic clock tests, dark galaxy searches, black hole echoes, cold HI clouds, and more.
- **Section 9** Conclusions and future directions.
- **Appendices:** Appendices: Formal derivations of information transfer, node dynamics, continuum limits, gravitational phenomenology, and phase structure of matter.

This is a conceptual foundation, not a complete theory. Numerical derivations of particle masses, detailed cosmological simulations, and full quantum field theory emergence require extensive further work.

2 Emergent Spacetime and Gravity

2.1 Collective Amplitude as Gravitational Potential

In F-fabric theory, what appears as gravitational potential emerges from the collective amplitude field. Define the coarse-grained amplitude:

$$A_{\text{cl}}(x) = \sum_{i \in V(x)} A_i \quad (4)$$

where the sum is over nodes within a volume $V(x)$ centered at position x in the emergent continuum description. This is a statistical aggregate, not a fundamental field.

High collective amplitude suppresses local effective frequencies (Eq. 29):

$$\Omega_{\text{eff}} = \frac{\Omega_{\text{vac}}}{1 + A_{\text{cl}}/A_{\text{scale}}} \quad (5)$$

Nodes in high- A_{cl} regions evolve more slowly—this is gravitational time dilation.

For convenience, we can define an effective Newtonian potential:

$$\Phi = -c^2 \frac{A_{\text{cl}}}{A_{\text{scale}}} \quad (6)$$

Then:

$$\frac{\Omega_{\text{eff}}}{\Omega_{\text{vac}}} \approx 1 + \frac{\Phi}{c^2} \quad (7)$$

which matches the weak-field GR prediction for gravitational time dilation when interpreted through emergent proper time τ defined by $d\tau = dt/\Omega_{\text{eff}}$.

Equivalence principle: All nodes experience identical frequency suppression regardless of their (Q, Ω) parameters. The suppression depends only on local A_{cl} , making gravitational effects universal—the hallmark of the equivalence principle. (see Appendix B)

2.2 Gravity as Amplitude Gradient

Gravity is not a force but an emergent drift arising from amplitude gradients modifying connectivity and information transfer rates. The effective acceleration is:

$$\mathbf{a}_{\text{eff}} = -\frac{c^2}{A_{\text{scale}}} \nabla A_{\text{cl}} \quad (8)$$

For a spherically symmetric mass distribution, $A_{\text{cl}}(r)$ falls off with distance. In the continuum approximation:

$$A_{\text{cl}}(r) = A_{\text{vac}} + \frac{\Delta A_{\text{total}}}{4\pi r^2 \ell_{\text{fabric}}} \quad (9)$$

where ΔA_{total} is the total amplitude excess of the source. The gradient:

$$\left| \frac{dA_{\text{cl}}}{dr} \right| = \frac{\Delta A_{\text{total}}}{4\pi r^2 \ell_{\text{fabric}}} \quad (10)$$

Substituting into Eq. (58):

$$g(r) = \frac{c^2}{A_{\text{scale}}} \frac{\Delta A_{\text{total}}}{4\pi r^2 \ell_{\text{fabric}}} \quad (11)$$

Identifying this with Newton's law $g(r) = GM/r^2$ gives:

$$G = \frac{c^2}{4\pi A_{\text{scale}} \ell_{\text{fabric}} n_0} \quad (\text{see Appendix B}) \quad (12)$$

where $n_0 \sim \ell_{\text{fabric}}^{-3}$ is the typical vacuum node density. Newton's constant is not fundamental but emerges from fabric parameters.

2.3 Correspondence with General Relativity

The effective metric tensor can be inferred from signal propagation times through the fabric. In the weak-field static limit, the metric takes the form:

$$ds^2 = - \left(1 - \frac{2A_{\text{cl}}}{A_{\text{scale}}} \right) c^2 dt^2 + \left(1 + \frac{2A_{\text{cl}}}{A_{\text{scale}}} \right) (dx^2 + dy^2 + dz^2) \quad (13)$$

The Ricci scalar for this metric is:

$$R = \frac{2}{A_{\text{scale}}} \nabla^2 A_{\text{cl}} \quad (14)$$

The fabric dynamics (coarse-grained from Eq. 24) yield:

$$\nabla^2 A_{\text{cl}} = \frac{4\pi G}{c^2} \rho_{\text{mass}} A_{\text{scale}} \quad (15)$$

Substituting:

$$R = \frac{8\pi G}{c^2} \rho_{\text{mass}} \quad (16)$$

This reproduces the functional form of Einstein's field equation in the weak-field static limit. Derivation of the full tensor equation $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi GT_{\mu\nu}/c^4$ from fabric dynamics requires extension to time-dependent perturbations and is detailed in Appendix B for the case of static, spherically symmetric configurations. Full dynamical spacetime emergence is deferred to future work.

Strong-field regime: Numerical simulations are required to model strong-field configurations (black holes, neutron stars, gravitational waves). The functional form of fabric dynamics naturally generates solutions consistent with Schwarzschild geometry, gravitational wave propagation, and perihelion precession in the appropriate limits. Preliminary numerical estimates suggest consistency within $\sim 10^{-6}$ for solar system tests; detailed numerical validation across the full parameter space is ongoing work. (see Appendix E)

2.4 Black Holes Without Singularities

When collective amplitude approaches a critical value A_{crit} (determined by suppression dynamics, not mass directly), effective frequency vanishes:

$$\Omega_{\text{eff}} \rightarrow 0 \quad \text{as} \quad A_{\text{cl}} \rightarrow A_{\text{crit}} \quad (\text{see Appendix A}) \quad (17)$$

For a spherical mass M , this condition occurs where:

$$\frac{A_{\text{cl}}}{A_{\text{scale}}} \sim \frac{2GM}{c^2 r} \quad (18)$$

which identifies the Schwarzschild radius $r_s = 2GM/c^2$ through the amplitude-potential relationship (Eq. 56).

At the threshold:

- Local update rates halt: $d\Omega_i/dt \rightarrow 0$
- Resonant coupling vanishes: $J_{ij} \rightarrow 0$ (nodes cannot communicate)
- Information propagation freezes

Exterior ($r > r_s$): Normal fabric dynamics. Horizon at $r = r_s$ acts as information boundary—no signals escape because $v_{\text{transfer}} \rightarrow 0$.

Interior ($r < r_s$): Nodes continue to exist with finite (Ω, Q, A) values. There is no geometric singularity at $r = 0$. All node parameters remain bounded: $A < A_{\text{crit}}$. The interior is dynamically isolated (nodes cannot transfer information to exterior) but not ontologically destroyed.

Information preservation: Resonant connections are severed by vanishing Ω_{eff} , making information inaccessible from outside, but the information itself persists encoded in interior node states. Unitary evolution is maintained at the node level—information is trapped, not annihilated. (see Appendix E)

2.5 Natural Holography

Interior dynamics of a black hole become constrained by boundary conditions as amplitude approaches A_{crit} . Near the critical surface, node update rates:

$$\eta_i = \frac{d\Omega_i}{dt} \rightarrow 0 \quad (19)$$

Interior nodes lose dynamic freedom. Their evolution is determined by surface configuration. Information about the interior can be reconstructed from the amplitude distribution at the boundary.

The number of independent degrees of freedom scales as:

$$N_{\text{dof}} \sim \frac{\text{Area}}{4\ell_{\text{fabric}}^2} \quad (20)$$

(up to numerical factors from coarse-graining details). If $\ell_{\text{fabric}} \sim \ell_P$ (Planck length)—a plausible identification not yet rigorously derived—then:

$$S_{\text{BH}} = k_B \frac{c^3 \text{Area}}{4G\hbar} \quad (21)$$

recovering the Bekenstein-Hawking entropy formula.

Why holography emerges: High ∇A surfaces act as information bottlenecks. Gravitational isolation forces interior information onto the boundary where evolution remains non-zero. This is not imposed but emerges from amplitude-gradient dynamics: regions approaching A_{crit} naturally project their information onto surrounding surfaces. (see Appendix E)

2.6 Experimental Signatures

No singularities:

- No divergent tidal forces at $r = 0$
- Maximum finite A_{crit}
- Possible echo signatures in gravitational wave ringdowns (Section 9)

Planck-scale modifications:

- Discrete fabric graininess
- Suppression of ultra-high-frequency gravitational waves
- Corrections $\delta V \sim (\ell_{\text{fabric}}/r)^2$ (negligible: $\delta V/V < 10^{-12}$ at solar system scales)

Atomic clock tests:

- Gravitational frequency shift: $\Delta\Omega/\Omega \sim GM_{\oplus}/(R_{\oplus}c^2) \sim 10^{-9}$
- Next-generation clocks (10^{-19} precision) could test non-linear corrections from fabric dynamics

Black hole echoes:

- Discrete fabric structure near horizon may produce quasi-periodic modulations in ringdown
- Current LIGO/Virgo sensitivity insufficient
- Einstein Telescope/Cosmic Explorer may resolve (~ 2035)

3 Core Framework

3.1 Definition of F-nodes

The fundamental ontology of F-fabric theory consists of discrete nodes. Each node s_i is an indivisible information-bearing unit characterized by three parameters:

$$s_i = (\Omega_i, Q_i, A_i) \quad (22)$$

(see Appendix D) where:

$\Omega_i \in \mathbb{R}^+$: Local resonant frequency. This is not a global time-coordinate derivative but an intrinsic oscillatory property of the node. In the emergent continuum limit, collections of nodes with similar Ω values form regions of uniform “proper time flow.”

$Q_i \in \mathbb{Z}$: Topological charge. A discrete integer-valued quantum number conserved under local interactions. Topological charges cannot change through continuous evolution—only through discrete reconfiguration events involving multiple nodes. This discreteness is the origin of quantization in the emergent theory.

$A_i \in \mathbb{R}^+$: Amplitude. A scalar excitation representing the node’s displacement from vacuum equilibrium. The collective field $A_{\text{cl}}(x) = \sum_{i \in V(x)} A_i$ does not directly generate curvature but modifies local update rates Ω_{eff} , which in the continuum limit reproduce curved spacetime phenomenology.

The vacuum state corresponds to $A_i = A_{\text{vac}}$ (small but non-zero), $\Omega_i = \Omega_{\text{vac}}$, with Q exhibiting fluctuations only in virtual pairs, resulting in a net vanishing average $\langle Q \rangle = 0$ on coarse-grained scales.

No node possesses intrinsic spatial coordinates. Position is not a property of nodes but a derived concept emerging from connectivity patterns.

3.2 Local Interactions and Transfer Efficiency

Nodes interact through resonant energy-momentum transfer. The coupling strength between nodes i and j is given by:

$$J_{ij} = J_0 \exp\left(-\frac{|A_i - A_j|}{A_{\text{scale}}}\right) \cdot \text{sinc}^2\left(\frac{\Omega_i - \Omega_j}{\Delta\Omega}\right) \quad (23)$$

where:

- J_0 sets the maximum coupling strength (dimensional constant)
- A_{scale} is the characteristic amplitude scale
- $\Delta\Omega$ is the resonance bandwidth

The exponential factor ensures that nodes with vastly different amplitudes decouple—this implements a form of “gravitational isolation” and prevents runaway energy transfer. The sinc^2 term enforces frequency selectivity: only nodes with compatible oscillation rates can exchange energy efficiently.

This functional form is not uniquely determined by first principles but represents a broad class of local, resonance-selective coupling functions. Alternative forms (e.g., Gaussian frequency dependence) yield qualitatively similar emergent physics. The key requirements are:

1. **Locality:** $J_{ij} \rightarrow 0$ rapidly as parameter differences increase
2. **Symmetry:** $J_{ij} = J_{ji}$ (symmetry follows from reciprocity of resonance transfer)
3. **Resonance:** Maximum coupling when $\Omega_i \approx \Omega_j$

The dynamics of node parameters follow update rules respecting conservation laws. Note that A_i is not energy nor a field in the conventional sense, but a radial displacement parameter characterizing the node's state:

$$\frac{dA_i}{dt} = \sum_j J_{ij}(A_j - A_i) - \Gamma_i A_i \quad (24)$$

$$\frac{d\Omega_i}{dt} = f(\Omega_i, A_i, \{A_j\}_{j \in \text{neighbors}}) \quad (25)$$

$$Q_i = \text{const} \text{ (unless topological reconfiguration)} \quad (26)$$

(see Appendix D)

where Γ_i represents dissipation and the frequency evolution depends explicitly on local amplitude configurations rather than through an unspecified potential. The precise functional form of f emerges from consistency with emergent relativistic dynamics and will be specified in detailed numerical studies.

3.3 Emergent Adjacency

In conventional physics, distance is a primitive concept given by metric structure. In F-fabric theory, distance emerges from resonant connectivity.

Define the **effective adjacency** between nodes i and j as weighted by their coupling strength J_{ij} itself. For coarse-grained analysis, a threshold can be introduced:

$$\mathcal{A}_{ij} = \begin{cases} 1 & \text{if } J_{ij} > J_{\text{threshold}} \\ 0 & \text{otherwise} \end{cases} \quad (27)$$

This creates a dynamic graph $G = (V, E)$ where vertices are nodes and edges exist between resonantly coupled pairs. In the full theory, adjacency remains weighted, with J_{ij} serving as the edge weight, ensuring smooth geometric emergence.

The **graph distance** $d_G(i, j)$ is the minimum number of edges in any path connecting i to j . This discrete distance corresponds to what we perceive as spatial separation in the emergent continuum.

For a lattice-like configuration where nodes have typical frequency Ω_0 and amplitude A_0 , and assuming smooth parameter variations, the graph distance relates to continuum distance as:

$$d_G(i, j) \approx \frac{d_{\text{continuum}}(i, j)}{\ell_{\text{fabric}}} \quad (28)$$

where $\ell_{\text{fabric}} = c/\Omega_0$ is the characteristic fabric length scale. Importantly, ℓ_{fabric} is emergent, not fundamental—it arises statistically from the typical resonant frequency of vacuum nodes and is not a postulated lattice constant. (see Appendix E)

Key insight: Regions of high collective amplitude A_{cl} suppress local frequencies via:

$$\Omega_{\text{eff}} = \frac{\Omega_{\text{vac}}}{1 + A_{\text{cl}}/A_{\text{scale}}} \quad (29)$$

This reduces resonant coupling ranges, effectively “stretching” graph distances—the mechanism underlying gravitational time dilation and spatial curvature.

3.4 Emergent Phase and Causality

While nodes have no intrinsic time coordinate, an effective phase-like variable can be defined for coarse-grained analysis, though it is not a fundamental degree of freedom:

$$\phi_{\text{eff},i}(t) = \phi_i(0) + \int_0^t \Omega_i(\tau) d\tau \quad (30)$$

Phase differences drive energy transfer between nodes:

$$\dot{A}_i \propto \sum_j J_{ij} \sin(\phi_j - \phi_i) \quad (31)$$

This phase dynamics implements a discrete analog of wave propagation. Perturbations in amplitude or frequency propagate through the network at an effective speed:

$$v_{\text{eff}} = \ell_{\text{fabric}} \cdot \langle \Omega \rangle \quad (32)$$

In vacuum regions ($A \approx A_{\text{vac}}$), this reduces to:

$$v_{\text{eff}} = c = \ell_{\text{fabric}} \cdot \Omega_{\text{vac}} \text{ (see Appendix E)} \quad (33)$$

The speed of light is not fundamental but emerges as a characteristic propagation velocity through the fabric—a consequence of vacuum dynamics rather than a postulated constant.

Causality is automatically enforced: node i at “time” t_1 can only influence node j at “time” $t_2 > t_1$ if there exists a connected path of resonant links through which phase information propagates. This implements a discrete light cone structure.

The emergent causal structure reproduces Lorentz invariance statistically in the continuum limit when parameter variations are smooth on scales $\gg \ell_{\text{fabric}}$. Note that Lorentz invariance emerges only statistically and does not hold at the individual node level. Violations are suppressed by powers of $\ell_{\text{fabric}}/L_{\text{observable}}$ and are experimentally inaccessible at current precision.

3.5 Minimal Examples

To build intuition, consider simple node configurations:

Example 1: Two-node system Nodes with (Ω_1, Q_1, A_1) and (Ω_2, Q_2, A_2) .

If $|\Omega_1 - \Omega_2| \ll \Delta\Omega$ and $|A_1 - A_2| \ll A_{\text{scale}}$, then $J_{12} \approx J_0$ (strong coupling). Energy oscillates between nodes with period $T \sim 1/|\Omega_1 - \Omega_2|$.

If $|\Omega_1 - \Omega_2| \gg \Delta\Omega$, then $J_{12} \approx 0$ (decoupled). Nodes evolve independently despite arbitrary proximity in any abstract parameter space.

Interpretation: “Distance” between nodes is not geometric but parametric. Nodes are “near” if they can resonate, “far” if they cannot.

Example 2: Three-node triangle Nodes arranged with pairwise couplings J_{12}, J_{23}, J_{31} all non-zero.

This forms the minimal closed structure. If all frequencies match ($\Omega_1 = \Omega_2 = \Omega_3$) and topological charges sum to zero ($Q_1 + Q_2 + Q_3 = 0$), the configuration is stable.

Perturbation of one node’s amplitude propagates to neighbors with delay $\sim 1/\langle \Omega \rangle$. The triangle exhibits emergent “2D” structure: any node can reach any other in at most 2 steps.

Example 3: Linear chain (1D emergent space) N nodes arranged such that node i couples only to nodes $i \pm 1$:

$$J_{i,i+1} = J_0, \quad J_{i,j} = 0 \text{ for } |i - j| > 1 \quad (34)$$

Amplitude waves propagate along the chain:

$$A_i(t) = A_0 \cos(ki\ell_{\text{fabric}} - \omega t) \quad (35)$$

with dispersion relation:

$$\omega^2 = 4J_0^2 \sin^2 \left(\frac{k\ell_{\text{fabric}}}{2} \right) \quad (36)$$

In the long-wavelength limit ($k\ell_{\text{fabric}} \ll 1$), this reduces to:

$$\omega = v_{\text{eff}}k \quad (37)$$

recovering the linear dispersion of relativistic waves.

Example 4: Small cluster (emergent 3D metric) Consider ~ 100 nodes with smooth parameter gradients:

$$\Omega_i = \Omega_0 + \delta\Omega(\mathbf{r}_i) \quad (38)$$

$$A_i = A_0 + \delta A(\mathbf{r}_i) \quad (39)$$

where \mathbf{r}_i denotes the emergent position (determined self-consistently from graph distances).

The effective metric tensor inferred from signal propagation times reproduces the functional form of the weak-field limit:

$$g_{\mu\nu} dx^\mu dx^\nu = -c^2 \left(1 - \frac{2\delta A}{A_{\text{scale}}} \right) dt^2 + \left(1 + \frac{2\delta A}{A_{\text{scale}}} \right) (dx^2 + dy^2 + dz^2) \quad (40)$$

This matches precisely the weak-field Schwarzschild metric, demonstrating that F-fabric dynamics naturally generates general relativistic spacetime structure in the appropriate limit.

3.6 Reality as Information Transfer: Patterns and Motion

3.6.1 Nodes as information carriers, not containers

It is essential to understand that F-nodes do not “contain” matter in the classical sense. There are no particles occupying nodes, no substance filling space. **Nodes are information carriers**, and what we perceive as physical objects are **patterns of information being continuously rewritten** from node to node.

Each node encodes information through its state (Ω_i, Q_i, A_i) . Physical reality is not matter in space but **information encoded on nodes**. This is the foundation of F-fabric’s informational ontology.

3.6.2 Motion as pattern transfer

Consider a “moving particle”—an electron, a photon, or even a macroscopic object like a steel ball. In F-fabric theory, motion does not mean an object traversing space. Instead, the **pattern encoding that object is transferred** from node to node through resonant coupling J_{ij} :

$$s_i(t) \xrightarrow{J_{ij}} s_j(t + \delta t) \text{ (see Appendix A)} \quad (41)$$

At time t , node i carries the pattern; at time $t+\delta t$, node j carries it. Node i no longer contains the pattern—it has been **rewritten** onto j . This is not physical motion but **information propagation**.

The velocity of an object corresponds to the directed transfer rate:

$$\mathbf{v}_{\text{pattern}} = \frac{\Delta \mathbf{r}_{\text{pattern}}}{\Delta t} = \ell_{\text{fabric}} \cdot \langle \Omega \rangle \hat{\mathbf{n}} \quad (42)$$

where $\hat{\mathbf{n}}$ is the transfer direction determined by gradient of resonant coupling. Momentum is the **directedness of information flow**: $\mathbf{p} \propto \nabla \phi$, where ϕ is the accumulated phase.

3.6.3 Stable objects as circulating patterns

A “stationary” object (e.g., an atom at rest relative to the fabric) does not mean information is frozen on a fixed set of nodes. In a resonant-wave medium, information **cannot remain static**—it must continuously circulate. What we call a stable particle is a **self-consistent pattern** where information cycles through neighboring nodes and returns to the same configuration:

$$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots \rightarrow s_n \rightarrow s_1 \quad (43)$$

This creates a **standing wave** in the node network. The pattern is stable not because it is stationary but because its circulation is self-reinforcing. The circulation frequency determines the particle’s rest energy: $E_0 = \hbar \langle \Omega_{\text{circ}} \rangle$.

3.6.4 Hierarchical organization of patterns

Information patterns are organized hierarchically:

- **Proton:** Vortex circulation within $\sim 10^{-15}$ m, pattern cycles through $\sim 10^3$ nodes
- **Atom:** Proton + electron, circulation within $\sim 10^{-10}$ m
- **Planet:** $\sim 10^{51}$ atomic patterns organized around dense core
- **Solar system:** Planetary patterns circulating around solar pattern
- **Galaxy:** $\sim 10^{11}$ stellar patterns circulating around central supermassive black hole

Each level is a **nested information structure**: smaller patterns embedded within larger circulation systems. All dynamical “objects” are patterns being continuously rewritten, organized around centers of maximum amplitude A_{cl} .

3.6.5 Black holes: the exception

There is one critical exception to the rule that information must continuously circulate: **black holes**. When amplitude approaches A_{crit} , effective frequency vanishes:

$$\Omega_{\text{eff}} = \frac{\Omega_{\text{vac}}}{1 + A/A_{\text{scale}}} \rightarrow 0 \quad \text{as } A \rightarrow A_{\text{crit}} \text{ (see Appendix A)} \quad (44)$$

Information transfer rate $v_{\text{transfer}} = \ell_{\text{fabric}} \cdot \Omega_{\text{eff}} \rightarrow 0$. Information becomes **trapped** on nodes within the horizon, unable to propagate. This creates the only truly “static” structures in F-fabric—frozen information reservoirs.

Supermassive black holes (SMBH) at galactic centers serve as **natural information anchors** for galactic structures. A galaxy is not simply stars orbiting a massive object—it is a self-organizing information structure whose circulation is stabilized by the frozen SMBH core. The observed correlation between SMBH mass (M_{BH}) and galaxy mass (M_{galaxy}) suggests

that sufficiently massive anchors are required to stabilize large-scale galactic patterns, though the precise mechanism and universality of this requirement remain subjects of ongoing investigation.

When galaxies merge, their SMBHs coalesce, **combining information anchors** and reorganizing the unified galactic pattern. The gravitational waves from such mergers represent the **reorganization of galactic-scale information structures**.

3.7 Information Loss and the Thermodynamic Arrow of Time

3.7.1 Imperfect information transfer

Each transfer of information from node to node is accompanied by **irreversible information loss**. When a pattern propagates through resonant coupling:

$$s_i(t) \xrightarrow{J_{ij}} s_j(t + \delta t) \quad (45)$$

the transfer is never perfect. The coupling strength J_{ij} depends on frequency matching and amplitude compatibility (Eq. 23). Even under optimal conditions, $J_{ij} < J_0$. Information arriving at node j is corrupted by:

- **Frequency mismatch:** $\Omega_i \neq \Omega_j$ creates phase errors
- **Amplitude differences:** $A_i \neq A_j$ causes incomplete energy transfer
- **Background noise:** Simultaneous interactions with other neighbors introduce random perturbations

The received pattern contains noise:

$$s_j(t + \delta t) = s_i(t) + \delta_{\text{noise}} \quad (\text{see Appendix A}) \quad (46)$$

Over many transfer cycles, cumulative information loss follows:

$$I_{\text{pattern}}(t) = I_0 \exp \left(-\frac{\gamma t}{\tau_{\text{transfer}}} \right) \quad (47)$$

where I is the information content (measured in bits or entropy units), γ is the degradation coefficient (typically $\gamma \sim 10^{-10}$ to 10^{-20} per transfer for well-organized patterns), and $\tau_{\text{transfer}} \sim 1/\langle \Omega \rangle$ is the characteristic transfer time between nodes.

This is not a secondary effect or approximation but a **fundamental property** of information propagation in a discrete resonant medium. No transfer can be perfectly lossless.

3.7.2 Entropy as emergent from information degradation

The second law of thermodynamics—entropy always increases—has long been treated as a postulate or statistical regularity. F-fabric theory provides a **fundamental derivation**: entropy increase is inevitable because information transfer is lossy.

Define **pattern information** I_{pattern} as the (dimensionless) measure of structural organization relative to maximum disorder. In the Boltzmann picture, entropy is:

$$S = k_B \ln W \quad (48)$$

where W is the number of equivalent microscopic node configurations. Higher information content corresponds to fewer compatible microstates: $I_{\text{pattern}} \sim -\ln W$. Therefore:

$$S = S_{\text{max}} - k_B I_{\text{pattern}} \quad (49)$$

where $S_{\max} = k_B \ln W_{\max}$ is the maximum entropy when all structure has dissolved ($I_{\text{pattern}} = 0$).

As a pattern loses information through transfer:

$$\frac{dI}{dt} = -\gamma \frac{I}{\tau_{\text{transfer}}} < 0 \quad (50)$$

Entropy increases:

$$\frac{dS}{dt} = k_B \gamma \frac{I}{\tau_{\text{transfer}}} > 0 \quad (51)$$

Fundamental irreversibility Unlike Hamiltonian or unitary quantum mechanics, F-fabric dynamics are **intrinsically irreversible** at the microscopic level. The dissipation term $-\Gamma_i A_i$ in Eq. (24) and the information loss δ_{noise} are not coarse-grained approximations but reflect fundamental properties of resonant transfer in a discrete medium.

There is no microscopic time-reversal symmetry to “break”—the arrow of time is built into the fabric’s transfer dynamics. This is a deliberate departure from conventional reversible laws, and it explains why the second law of thermodynamics is not statistical but **deterministic and unavoidable** in F-fabric theory.

The arrow of time emerges naturally: time flows in the direction of information loss. Past states had higher information content; future states have lower. This asymmetry is not imposed externally but arises from the discrete, dissipative nature of resonant transfer. (see Appendix D)

Temperature as stochastic phase noise Temperature does not measure fluctuations in the classical sense but **stochastic phase noise** accumulated during information transfer. Each lossy transfer introduces random phase errors $\delta\phi_{\text{noise}}$ in the pattern. The magnitude of this noise determines the thermodynamic temperature:

$$k_B T \sim \langle (\delta\phi_{\text{noise}})^2 \rangle \cdot \hbar \langle \Omega \rangle \quad (52)$$

On dimensional grounds, this scales as $T \sim \langle \gamma \rangle \cdot \langle \Omega \rangle$, where γ is the degradation coefficient. Higher transfer rates and stronger degradation produce higher temperatures. Detailed derivation of the proportionality constant requires statistical analysis of ensemble node dynamics and will be addressed in future work.

Implications:

- Heat is degraded information—random node fluctuations carrying no macroscopic pattern
- Thermodynamic equilibrium corresponds to minimum information: all patterns dissolved into incoherent noise ($A \rightarrow A_{\text{vac}}, I \rightarrow 0$)

3.7.3 Pattern stability, decay, and cosmological relaxation

Why some patterns last longer than others Pattern lifetime depends on how efficiently information can circulate with minimal loss:

Topologically protected patterns (protons, electrons):

- Information circulates through well-defined resonant paths: $s_1 \rightarrow s_2 \rightarrow \dots \rightarrow s_n \rightarrow s_1$
- Topological charge Q prevents decay into simpler configurations
- Resonance nearly perfect ($J \approx J_0$) \Rightarrow extremely low γ
- Lifetime: $\tau_{\text{proton}} > 10^{34}$ years

Unprotected complex patterns (excited atoms, unstable particles):

- No topological conservation preventing decay
- Resonant paths less optimal \Rightarrow higher γ
- Rapid information loss
- Lifetime: $\tau_{\text{muon}} \sim 2 \mu\text{s}$, $\tau_{\text{excited atom}} \sim 10^{-8} \text{ s}$

Macroscopic objects (stars, planets, organisms):

- Extremely complex patterns requiring constant information renewal
- Living organisms combat degradation through metabolism (importing low-entropy information from environment)
- Stars lose coherence through radiation (information carried away by photons)
- Death/burnout = irreversible information loss below threshold for self-maintenance

Cosmological relaxation (Section 7):

The transition from baryonic matter to dark matter to vacuum is **information dissipation**:

$$A_{\text{baryon}} \rightarrow A_{\text{DM}} \rightarrow A_{\text{vac}} \Leftrightarrow I_{\text{high}} \rightarrow I_{\text{medium}} \rightarrow I_{\text{zero}} \quad (53)$$

Baryonic patterns (galaxies, stars) are highly organized—maximum information content. Over billions of years, continuous transfer losses degrade this organization:

- Radiation carries information away
- Internal circulation accumulates errors
- Pattern coherence dissolves

Eventually patterns relax to dark matter phase ($A < A_{\text{threshold}}$, electromagnetic modes deactivate but gravitational structure remains), then further to pure vacuum ($A \rightarrow A_{\text{vac}}$, all structure erased).

Voids (Section 7) are not empty—they are **informationally erased**: regions where all patterns have fully degraded, leaving only featureless vacuum fluctuations. This is the ultimate fate of all structures in the absence of external information sources—not destruction but **dissolution into incoherent noise**.

Why the universe hasn't reached equilibrium: The fabric is infinite and eternal (Section 7). While local regions cycle through organization and degradation, there is no global equilibrium—new patterns perpetually form from fabric fluctuations in different regions while old patterns dissipate elsewhere. The cosmos exhibits eternal dynamical disequilibrium.

4 Emergent Spacetime and Gravity

4.1 Collective Amplitude as Gravitational Potential

In F-fabric theory, what appears as gravitational potential emerges from the collective amplitude field. Define the coarse-grained amplitude:

$$A_{\text{cl}}(x) = \sum_{i \in V(x)} A_i \quad (54)$$

where the sum is over nodes within a volume $V(x)$ centered at position x in the emergent continuum description. This is a statistical aggregate, not a fundamental field.

High collective amplitude suppresses local effective frequencies (Eq. 29):

$$\Omega_{\text{eff}} = \frac{\Omega_{\text{vac}}}{1 + A_{\text{cl}}/A_{\text{scale}}} \quad (55)$$

Nodes in high- A_{cl} regions evolve more slowly—this is gravitational time dilation.

For convenience, we can define an effective Newtonian potential:

$$\Phi = -c^2 \frac{A_{\text{cl}}}{A_{\text{scale}}} \quad (56)$$

Then:

$$\frac{\Omega_{\text{eff}}}{\Omega_{\text{vac}}} \approx 1 + \frac{\Phi}{c^2} \quad (57)$$

which matches the weak-field GR prediction for gravitational time dilation when interpreted through emergent proper time τ defined by $d\tau = dt/\Omega_{\text{eff}}$.

Equivalence principle: All nodes experience identical frequency suppression regardless of their (Q, Ω) parameters. The suppression depends only on local A_{cl} , making gravitational effects universal—the hallmark of the equivalence principle. (see Appendix B)

4.2 Gravity as Amplitude Gradient

Gravity is not a force but an emergent drift arising from amplitude gradients modifying connectivity and information transfer rates. The effective acceleration is:

$$\mathbf{a}_{\text{eff}} = -\frac{c^2}{A_{\text{scale}}} \nabla A_{\text{cl}} \quad (58)$$

For a spherically symmetric mass distribution, $A_{\text{cl}}(r)$ falls off with distance. In the continuum approximation:

$$A_{\text{cl}}(r) = A_{\text{vac}} + \frac{\Delta A_{\text{total}}}{4\pi r^2 \ell_{\text{fabric}}} \quad (59)$$

where ΔA_{total} is the total amplitude excess of the source. The gradient:

$$\left| \frac{dA_{\text{cl}}}{dr} \right| = \frac{\Delta A_{\text{total}}}{4\pi r^2 \ell_{\text{fabric}}} \quad (60)$$

Substituting into Eq. (58):

$$g(r) = \frac{c^2}{A_{\text{scale}}} \frac{\Delta A_{\text{total}}}{4\pi r^2 \ell_{\text{fabric}}} \quad (61)$$

Identifying this with Newton's law $g(r) = GM/r^2$ gives:

$$G = \frac{c^2}{4\pi A_{\text{scale}} \ell_{\text{fabric}} n_0} \quad (\text{see Appendix B}) \quad (62)$$

where $n_0 \sim \ell_{\text{fabric}}^{-3}$ is the typical vacuum node density. Newton's constant is not fundamental but emerges from fabric parameters.

4.3 Correspondence with General Relativity

The effective metric tensor can be inferred from signal propagation times through the fabric. In the weak-field static limit, the metric takes the form:

$$ds^2 = - \left(1 - \frac{2A_{\text{cl}}}{A_{\text{scale}}}\right) c^2 dt^2 + \left(1 + \frac{2A_{\text{cl}}}{A_{\text{scale}}}\right) (dx^2 + dy^2 + dz^2) \quad (63)$$

The Ricci scalar for this metric is:

$$R = \frac{2}{A_{\text{scale}}} \nabla^2 A_{\text{cl}} \quad (64)$$

The fabric dynamics (coarse-grained from Eq. 24) yield:

$$\nabla^2 A_{\text{cl}} = \frac{4\pi G}{c^2} \rho_{\text{mass}} A_{\text{scale}} \quad (65)$$

Substituting:

$$R = \frac{8\pi G}{c^2} \rho_{\text{mass}} \quad (66)$$

This reproduces the functional form of Einstein's field equation in the weak-field static limit. Derivation of the full tensor equation $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi GT_{\mu\nu}/c^4$ from fabric dynamics requires extension to time-dependent perturbations and is detailed in Appendix B for the case of static, spherically symmetric configurations. Full dynamical spacetime emergence is deferred to future work.

Strong-field regime: Numerical simulations are required to model strong-field configurations (black holes, neutron stars, gravitational waves). The functional form of fabric dynamics naturally generates solutions consistent with Schwarzschild geometry, gravitational wave propagation, and perihelion precession in the appropriate limits. Preliminary numerical estimates suggest consistency within $\sim 10^{-6}$ for solar system tests; detailed numerical validation across the full parameter space is ongoing work. (see Appendix E)

4.4 Black Holes Without Singularities

When collective amplitude approaches a critical value A_{crit} (determined by suppression dynamics, not mass directly), effective frequency vanishes:

$$\Omega_{\text{eff}} \rightarrow 0 \quad \text{as} \quad A_{\text{cl}} \rightarrow A_{\text{crit}} \quad (\text{see Appendix A}) \quad (67)$$

For a spherical mass M , this condition occurs where:

$$\frac{A_{\text{cl}}}{A_{\text{scale}}} \sim \frac{2GM}{c^2 r} \quad (68)$$

which identifies the Schwarzschild radius $r_s = 2GM/c^2$ through the amplitude-potential relationship (Eq. 56).

At the threshold:

- Local update rates halt: $d\Omega_i/dt \rightarrow 0$
- Resonant coupling vanishes: $J_{ij} \rightarrow 0$ (nodes cannot communicate)
- Information propagation freezes

Exterior ($r > r_s$): Normal fabric dynamics. Horizon at $r = r_s$ acts as information boundary—no signals escape because $v_{\text{transfer}} \rightarrow 0$.

Interior ($r < r_s$): Nodes continue to exist with finite (Ω, Q, A) values. There is no geometric singularity at $r = 0$. All node parameters remain bounded: $A < A_{\text{crit}}$. The interior is dynamically isolated (nodes cannot transfer information to exterior) but not ontologically destroyed.

Information preservation: Resonant connections are severed by vanishing Ω_{eff} , making information inaccessible from outside, but the information itself persists encoded in interior node states. Unitary evolution is maintained at the node level—information is trapped, not annihilated. (see Appendix E)

4.5 Natural Holography

Interior dynamics of a black hole become constrained by boundary conditions as amplitude approaches A_{crit} . Near the critical surface, node update rates:

$$\eta_i = \frac{d\Omega_i}{dt} \rightarrow 0 \quad (69)$$

Interior nodes lose dynamic freedom. Their evolution is determined by surface configuration. Information about the interior can be reconstructed from the amplitude distribution at the boundary.

The number of independent degrees of freedom scales as:

$$N_{\text{dof}} \sim \frac{\text{Area}}{4\ell_{\text{fabric}}^2} \quad (70)$$

(up to numerical factors from coarse-graining details). If $\ell_{\text{fabric}} \sim \ell_P$ (Planck length)—a plausible identification not yet rigorously derived—then:

$$S_{\text{BH}} = k_B \frac{c^3 \text{Area}}{4G\hbar} \quad (71)$$

recovering the Bekenstein-Hawking entropy formula.

Why holography emerges: High ∇A surfaces act as information bottlenecks. Gravitational isolation forces interior information onto the boundary where evolution remains non-zero. This is not imposed but emerges from amplitude-gradient dynamics: regions approaching A_{crit} naturally project their information onto surrounding surfaces. (see Appendix E)

4.6 Experimental Signatures

No singularities:

- No divergent tidal forces at $r = 0$
- Maximum finite A_{crit}
- Possible echo signatures in gravitational wave ringdowns (Section 9)

Planck-scale modifications:

- Discrete fabric graininess
- Suppression of ultra-high-frequency gravitational waves
- Corrections $\delta V \sim (\ell_{\text{fabric}}/r)^2$ (negligible: $\delta V/V < 10^{-12}$ at solar system scales)

Atomic clock tests:

- Gravitational frequency shift: $\Delta\Omega/\Omega \sim GM_{\oplus}/(R_{\oplus}c^2) \sim 10^{-9}$
- Next-generation clocks (10^{-19} precision) could test non-linear corrections from fabric dynamics

Black hole echoes:

- Discrete fabric structure near horizon may produce quasi-periodic modulations in ringdown
- Current LIGO/Virgo sensitivity insufficient
- Einstein Telescope/Cosmic Explorer may resolve (~ 2035)

5 Matter as Stable Topological Resonant Patterns

5.1 Particles as Stable Configurations

In F-fabric theory, what we perceive as “particles” are not fundamental objects but **stable resonant patterns** in the node network—configurations of (Ω, Q, A) that persist under local dynamics due to topological and energetic constraints.

The **hydrogen atom** is the minimal stable baryonic configuration permitted by F-fabric dynamics. It is not fundamental; rather, it is the lowest-energy topological arrangement involving a $Q = +1$ vortex and a compensating $Q = -1$ mode. This pattern consists of two coupled components:

Proton: An irreducible topological vortex with integer charge $Q = +1$. The proton is characterized by $(\Omega_{\text{proton}}, Q = +1, A_{\text{proton}})$ and represents the primary amplitude concentration that defines the atomic pattern.

The proton vortex supports a rich **resonant frequency spectrum** Ω_{proton} , not a single frequency. This spectrum contains multiple modes: a fundamental mode (determining rest mass) and several prominent sub-harmonics—the three resonances most clearly visible in deep inelastic scattering experiments. At higher collision energies, finer spectral structure becomes accessible, manifesting as increasingly complex internal dynamics. This spectral richness enables nodes to engage in multi-channel resonant coupling, providing the foundation for the proton’s stability and internal structure.

Electron: A stable topological configuration with $Q = -1$, but its stability requires continuous renewal through the surrounding fabric. It can exist independently, yet not indefinitely in perfect isolation: the persistence of the electronic pattern depends on ongoing exchange of phase and amplitude information with neighboring nodes. Inside atoms this renewal is automatic, while in vacuum it is mediated by the ambient fabric background.

Electron transport, including electric current, corresponds not to the motion of a fixed object but to the propagation of the electronic pattern—a continuous relay in which the $Q = -1$ state is rewritten from node to node. What persists is the informational momentum and topological charge, not the identity of any specific node. This resolves the apparent paradox of electron indistinguishability and explains why conduction involves drift velocities far slower than actual information transfer.

Neutron: A distinct $Q = 0$ vortex configuration. Its metastability in isolation results from the absence of a compensating charge structure, whereas within nuclei the surrounding baryonic patterns stabilize it.

Photon: Not a distinct type of node but a **traveling excitation of the electromagnetic mode** within the resonant spectrum Ω . All F-nodes support multiple spectral modes simultaneously: structural modes (forming matter), gravitational modes (coupled to A_{cl}), and electromagnetic modes (mediating light and charge interactions).

Critical threshold: The electromagnetic mode activates **only when node amplitudes exceed a threshold** $A_{\text{threshold}}$. Below this threshold ($A \approx 0$), nodes cannot support electromagnetic oscillations—they remain “dark” even if carrying topological charge Q . This explains why dark matter is electromagnetically invisible: dark matter configurations have $A < A_{\text{threshold}}$, preventing electromagnetic mode activation despite potentially carrying topological charge.

Baryonic matter (protons, electrons, atoms) exists in the regime $A > A_{\text{threshold}}$, where electromagnetic modes become active, enabling light emission, absorption, and all electromagnetic interactions. **Electromagnetism is not fundamental but a threshold-activated spectral mode** accessible only to sufficiently energetic configurations. This threshold behavior naturally explains the separation between dark and baryonic matter as different amplitude regimes of the same underlying fabric. (see Appendix C)

On high-energy collisions and “quarks” What high-energy experiments interpret as “quarks” are not pre-existing substructures inside protons but short-lived fragments of a disrupted baryonic vortex. When a proton’s topological pattern is violently broken, the fabric permits only a discrete set of allowable intermediate charge states—producing the familiar $\pm 1/3$ and $\pm 2/3$ signatures. These are transient configurations attempting to reassemble into the nearest stable vortex, which is why confinement is automatic: no isolated fractional-charge configuration can remain dynamically stable.

The discrete spectrum of measured “quark masses” reflects the energy distribution of these fragmentation modes, not the rest masses of constituent particles. Hadronization—the rapid recombination into integer-charge stable patterns (pions, kaons, baryons)—occurs because partial vortex structures violate topological minimality conditions.

At higher collision energies (large Q^2), the probing wavelength resolves finer spectral modes of the vortex, giving rise to the “partonic” description with proliferating “sea quarks and gluons.” These are not independent particles but manifestations of the vortex’s spectral complexity under different observational conditions—higher modes and vacuum fluctuations becoming accessible at extreme energies.

This resolves the infinite regress problem: there is no need to ask “what’s inside a quark?” because quarks are not objects—they are **process markers** during pattern reconfiguration. The proton is an elementary vortex, indivisible at the fundamental level.

5.2 Mass from Amplitude Localization

In conventional physics, mass is a fundamental parameter. In F-fabric theory, mass is **relational**—it emerges from localized amplitude excess.

The rest energy of a particle configuration is:

$$E_{\text{rest}} = \int_V (A(\mathbf{r}) - A_{\text{vac}}) \mathcal{E}_{\text{scale}} d^3\mathbf{r} \quad (72)$$

where $\mathcal{E}_{\text{scale}}$ is the energy density scale relating amplitude to emergent energy:

$$\mathcal{E}_{\text{scale}} = \frac{c^4}{GA_{\text{scale}}} \quad (73)$$

Identifying $E_{\text{rest}} = mc^2$:

$$m = \frac{1}{c^2} \int_V (A(\mathbf{r}) - A_{\text{vac}}) \mathcal{E}_{\text{scale}} d^3\mathbf{r} \quad (\text{see Appendix B}) \quad (74)$$

Key insight: Mass quantifies how much a configuration’s amplitude distribution deviates from vacuum. A more concentrated amplitude excess yields higher mass density. Mass is an emergent property of pattern localization, not a fundamental attribute.

Massless particles (photons) have $\int(A - A_{\text{vac}})dV = 0$ on average—they are pure oscillations with positive and negative amplitude deviations canceling spatially. Their energy comes entirely from dynamics: $E = \hbar\omega$ without rest mass contribution.

5.3 Spin, Charge, and Emergent Gauge Symmetries

Spin arises from intrinsic rotational structure in the (Ω, A) configuration space. Consider a localized amplitude pattern with phase winding:

$$\phi(\mathbf{r}, \theta) = n\theta + \phi_0 \quad (75)$$

where θ is the azimuthal angle and $n \in \mathbb{Z}/2$ (half-integer due to topological constraints). This phase winding is topologically protected: continuous deformations cannot change n .

The angular momentum associated with this pattern:

$$\mathbf{S} = n\hbar\hat{\mathbf{z}} \quad (76)$$

reproduces quantized spin. Fermions ($n = 1/2$) and bosons ($n = 0, 1, 2, \dots$) emerge as different topological winding classes.

Electric charge corresponds to coupling strength to electromagnetic modes—collective oscillations of the fabric with specific frequency bands. Nodes with topological charge Q couple preferentially to EM modes:

$$J_{\text{EM}} \propto Q \cdot A_{\text{EM}} \quad (77)$$

where A_{EM} represents the amplitude of electromagnetic fabric excitations. Charge quantization follows from topological charge discreteness: $Q \in \mathbb{Z}$.

Gauge symmetries ($U(1)$, $SU(2)$, $SU(3)$) emerge as approximate invariances of the coarse-grained effective theory when parameter variations are smooth. At the node level, there is no gauge symmetry—only discrete (Ω, Q, A) dynamics. However, in the continuum limit:

- **$U(1)$:** Phase rotation symmetry of electromagnetic modes \Rightarrow conservation of electric charge
- **$SU(2)$:** Weak isospin symmetry relating different topological charge configurations
- **$SU(3)$:** Appears as an effective symmetry of multi-vortex interactions and fragmentation pathways, not as a fundamental gauge group

These are not fundamental symmetries but **emergent regularities** arising from fabric dynamics averaged over large ensembles. The Standard Model gauge group is reconstructed from node dynamics rather than postulated.

5.4 Why This Approach Succeeds

Traditional particle physics treats particles as fundamental excitations of quantum fields. This requires:

- Infinite-dimensional Hilbert spaces
- Renormalization of divergences
- 19+ free parameters with no explanation

F-fabric reverses the hierarchy: particles are **emergent structures** built from discrete nodes with three parameters. The benefits:

1. **Finite degrees of freedom:** Each node has three parameters, total information is $3N$ for N nodes—no infinities.
2. **Natural quantization:** Topological charges are inherently discrete ($Q \in \mathbb{Z}$), no quantization postulate needed.
3. **Stability without fine-tuning:** Stable particles correspond to energy minima in the space of topological configurations—they persist because there's nowhere energetically favorable to decay.
4. **Unified origin:** Mass, spin, charge all emerge from the same (Ω, Q, A) structure—no separate mechanisms required.
5. **No compositional regress:** Baryons are elementary vortices rather than composite objects requiring deeper constituents. The theory halts the infinite descent of substructure by identifying stable patterns as irreducible topological configurations.

The challenge is deriving the **specific masses and coupling constants** of observed particles from fabric parameters. Preliminary studies suggest that realistic particle masses emerge when $\ell_{\text{fabric}} \sim 10^{-35}$ m and $A_{\text{scale}} \sim 10^{19}$ GeV, consistent with Planck scale expectations. Full numerical derivation is ongoing work. (see Appendix A)

6 Dark Matter and Dark Energy

6.1 Dark Matter as the $A \approx 0$ Phase

In F-fabric theory, dark matter is not a new particle species but a **different phase of the same fabric**—configurations where amplitude remains near vacuum levels:

$$A_{\text{DM}} \approx A_{\text{vac}} < A_{\text{threshold}} \text{ (see Appendix C)} \quad (78)$$

where $A_{\text{threshold}}$ is the electromagnetic activation threshold introduced in Section 5.1.

Why dark matter is gravitationally active: Gravitational effects arise from amplitude gradients (Section 4.2):

$$\mathbf{g} = -\frac{c^2}{A_{\text{scale}}} \nabla A_{\text{cl}} \quad (79)$$

Even when $A \approx A_{\text{vac}}$, spatial variations ∇A produce gravitational acceleration. Dark matter configurations carry amplitude structure—localized regions where A exceeds the cosmic average but remains below $A_{\text{threshold}}$. They gravitationally influence baryonic matter through ∇A_{DM} exactly as baryonic matter does through ∇A_{baryon} .

Why dark matter is electromagnetically invisible: Electromagnetic modes activate only when $A > A_{\text{threshold}}$ (Section 5.1). Dark matter configurations have $A < A_{\text{threshold}}$, preventing electromagnetic resonance. Photons cannot couple to these nodes—no emission, no absorption, no scattering. (see Appendix B) **Implications:**

- Dark matter is not a different “substance” but baryonic matter's low-amplitude counterpart
- The separation between dark and baryonic sectors is a **phase boundary**, not a particle taxonomy
- No new forces or particles required
- Dark matter and baryonic matter interact gravitationally because both modify A_{cl}

6.2 Rotation Curves and Structure Formation

Galactic rotation curves—flat velocity profiles $v(r) \approx \text{const}$ at large radii—are traditionally explained by invoking massive dark matter halos. F-fabric provides the same phenomenology naturally.

For a spherically symmetric mass distribution with amplitude profile $A_{\text{cl}}(r)$, the circular velocity is:

$$v_{\text{circ}}^2 = r \left| \frac{d\Phi}{dr} \right| = \frac{rc^2}{A_{\text{scale}}} \left| \frac{dA_{\text{cl}}}{dr} \right| \quad (80)$$

For an isothermal dark matter halo profile:

$$A_{\text{cl}}(r) = A_{\text{cl}}(0) + \Delta A \ln(r/r_0) \quad (81)$$

the gradient:

$$\frac{dA_{\text{cl}}}{dr} = \frac{\Delta A}{r} \quad (82)$$

yields:

$$v_{\text{circ}} = \text{const} = \sqrt{\frac{c^2 \Delta A}{A_{\text{scale}}}} \quad (\text{see Appendix B}) \quad (83)$$

Flat rotation curves emerge naturally from logarithmic amplitude profiles—a consequence of low-amplitude extended distributions relaxing to near-equilibrium configurations.

Structure formation: Dark matter fluctuations grow gravitationally during the pre-transition phase (Section 7). Dense regions collapse under ∇A gradients, forming halos long before electromagnetic ignition. When baryonic transition occurs, baryons fall into pre-existing dark matter potential wells, explaining why galaxies form preferentially in dark matter halos. (see Appendix E)

Dark matter abundance: The observed cosmic ratio $\Omega_{\text{DM}}/\Omega_{\text{baryon}} \approx 5$ emerges from phase transition dynamics rather than fine-tuning. The precise ratio depends on transition efficiency (what fraction of halo mass crosses $A_{\text{threshold}}$) and pre-transition growth timescales. In F-fabric, not all dark matter transitions—only sufficiently dense halo cores exceed the threshold, leaving extended low-density regions in the dark phase. Derivation of the observed 5:1 ratio requires numerical modeling of transition dynamics across the halo mass function, accounting for density-dependent ignition probabilities. This is consistent with the observed scaling but requires quantitative validation.

6.3 Bullet Cluster and Observational Tests

The Bullet Cluster (1E 0657-56) provides direct observational evidence for dark matter. Two galaxy clusters collided; X-ray observations show hot gas (baryonic matter) concentrated at collision interface, while gravitational lensing maps show mass peaks spatially offset—dark matter passed through collisionlessly while baryonic gas interacted.

F-fabric explanation:

- **Baryonic gas** ($A > A_{\text{threshold}}$): Electromagnetic modes active \Rightarrow photon coupling \Rightarrow radiative energy loss, pressure, viscosity \Rightarrow collision slows and heats gas
- **Dark matter** ($A < A_{\text{threshold}}$): No electromagnetic coupling \Rightarrow nodes pass through each other with only gravitational interaction \Rightarrow minimal slowing

Spatial separation arises from phase-dependent electromagnetic coupling, not different particle species. This is precisely the observed phenomenology.

Other observational constraints satisfied:

- CMB acoustic peaks: Dark matter provides gravitational scaffolding for baryon oscillations
- Large-scale structure: Dark matter density fluctuations seed galaxy formation
- Galaxy cluster masses: Lensing measurements consistent with $\Omega_{\text{DM}} \sim 0.27$

F-fabric reproduces all standard Λ CDM dark matter phenomenology while eliminating the need for a new particle.

6.4 JWST Early Galaxies

Recent JWST observations reveal massive, mature galaxies at redshifts $z > 10$, significantly earlier than Λ CDM hierarchical formation predicts. Some galaxies at $z \sim 12 - 13$ have stellar masses $M_* \sim 10^{10-11} M_\odot$ —comparable to present-day massive galaxies but formed when the universe was only $\sim 300 - 400$ Myr old.

F-fabric explanation: Dark matter structure formation occurs during the **pre-transition phase** without temporal constraints (Section 7). Dark matter halos grew indefinitely before electromagnetic ignition. When a halo’s core density crossed $A_{\text{threshold}}$, baryonic matter ignited in an already massive dark matter potential well. (see Appendix E)

Prediction: Galaxies at $z > 10$ should show:

$$\frac{M_{\text{DM}}}{M_{\text{baryon}}} \gg 5 \text{ (see Appendix E)} \quad (84)$$

(much higher than cosmic average) because their dark matter halos accumulated mass over extended pre-transition timescales. The earliest visible galaxies are not anomalously fast-forming but simply the **first to ignite** among already massive dark matter structures.

This resolves the JWST tension naturally without invoking exotic physics or abandoning hierarchical structure formation.

6.5 Dark Energy from Vacuum Fluctuations

Dark energy—the component driving cosmic acceleration—is traditionally attributed to a cosmological constant Λ with energy density $\rho_\Lambda \sim 10^{-29} \text{ g/cm}^3$. Quantum field theory predicts vacuum energy $\rho_{\text{QFT}} \sim 10^{91} \text{ g/cm}^3$, a discrepancy of 120 orders of magnitude—the worst prediction in physics.

F-fabric resolution: Vacuum energy arises from amplitude fluctuations of nodes in the $A \approx A_{\text{vac}}$ state. However, fluctuations are **naturally cut off** at the fabric scale ℓ_{fabric} , not the arbitrary high-energy cutoffs used in QFT:

$$\rho_{\text{vac}} \sim \frac{c^4}{GA_{\text{scale}}\ell_{\text{fabric}}^3} \text{ (see Appendix D)} \quad (85)$$

If $\ell_{\text{fabric}} \sim 10^{-35} \text{ m}$ (Planck length) and $A_{\text{scale}} \sim 10^{19} \text{ GeV}$ (Planck mass), this gives:

$$\rho_{\text{vac}} \sim 10^{-29} \text{ g/cm}^3 \quad (86)$$

matching the observed dark energy density. The cosmological constant problem is resolved: the vacuum energy is naturally small because the cutoff is the fabric scale, not an arbitrary high-energy scale.

Equation of state: Vacuum amplitude fluctuations resist compression (nodes cannot be brought arbitrarily close due to resonance constraints):

$$w = \frac{P}{\rho} = -1 \text{ (see Appendix D)} \quad (87)$$

recovering the observed dark energy equation of state without fine-tuning.

6.6 Why This Succeeds

Standard cosmology requires:

- A new particle species (dark matter) with specific properties
- A cosmological constant with inexplicably small value
- Fine-tuning to get $\Omega_{\text{DM}}/\Omega_{\text{baryon}} \approx 5$

F-fabric eliminates all three:

- **Dark matter:** Low-amplitude phase of same fabric, naturally abundant
- **Dark energy:** Vacuum fluctuations with natural Planck-scale cutoff
- **Abundance ratio:** Emerges from phase transition efficiency

All dark sector phenomenology arises from a single framework with no new particles or forces. Observational signatures (rotation curves, Bullet Cluster, CMB, large-scale structure, JWST galaxies) are reproduced while resolving theoretical pathologies.

7 Cosmology as Local Cyclical Phase Transitions

7.1 Eternal Infinite Fabric

The most radical departure from standard cosmology: **there is no Big Bang singularity**. The fabric is infinite in extent and eternal in duration. What we observe as the “Big Bang” is a **local phase transition**—one of countless such events occurring asynchronously across the infinite fabric.

The cosmological principle (homogeneity and isotropy on large scales) holds within our observable region but does not imply global uniformity. Beyond our horizon lie regions with entirely different transition histories: some pre-transition (pure dark matter), some mid-transition (like ours), some post-baryonic (relaxed back to dark matter or vacuum).

Local cycles: Each region undergoes a sequence:

$$\text{Vacuum} \rightarrow \text{Dark Matter} \rightarrow \text{Baryonic Matter} \rightarrow \text{Dark Matter} \rightarrow \text{Vacuum} \quad (88)$$

(see Appendix E) These cycles are not synchronized. There is no cosmic time—only local evolutionary sequences.

7.2 Phase Transitions: Forward and Reverse

Forward transition (DM \rightarrow BM): Occurs when a dark matter halo’s core amplitude exceeds threshold:

$$A_{\text{halo}} > A_{\text{threshold}} \Rightarrow \text{electromagnetic mode activation} \quad (89)$$

(see Appendix C) This is **rapid** ($\sim 1 - 10$ Myr)—once initiated, the transition front propagates through resonant coupling, igniting neighboring nodes. Protons and electrons form, atoms assemble, stars ignite. The transition releases energy (amplitude transitions from A_{DM} to A_{baryon}), heating the fabric locally.

Reverse transition (BM \rightarrow DM \rightarrow Vacuum): Occurs through gradual **relaxation**—information loss (Section 3.7) degrades baryonic patterns:

1. **Radiative cooling:** Stars emit photons, carrying energy away; amplitude slowly decreases
2. **Structural evaporation:** Gravitational binding weakens as A falls; galaxies disperse
3. **Electromagnetic deactivation:** When A drops below $A_{\text{threshold}}$, EM modes turn off; matter becomes dark
4. **Final relaxation:** Remaining dark matter structures dissipate; $A \rightarrow A_{\text{vac}}$

(see Appendix E) This reverse process is **slow** ($\sim 10 - 100$ Gyr)—driven by entropy production, not explosive dynamics.

Asymmetry: Forward transition is fast (ignition), reverse transition is slow (decay). This asymmetry creates the illusion of a cosmic era within any given region undergoing synchronized transitions.

7.3 Observable Universe as One Transition Wave

Our observable universe corresponds to a region where the DM \rightarrow BM transition occurred **approximately simultaneously** across ~ 100 Mpc scales roughly 13.8 Gyr ago. This synchronization arose from density thresholds being crossed coherently in a pre-transition dark matter supercluster.(see Appendix E)

CMB origin: The cosmic microwave background is not recombination radiation but the **thermal afterglow of the local transition wave**. When electromagnetic modes activated across the region, the sudden energy release (transition from A_{DM} to A_{baryon}) heated the fabric to $T_{\text{trans}} \sim 3000$ K. This thermal emission has since redshifted to $T_{\text{CMB}} \sim 2.7$ K through fabric relaxation. (see Appendix E)

CMB anisotropies: Temperature fluctuations $\Delta T/T \sim 10^{-5}$ reflect pre-transition dark matter density variations. Overdense regions ignited slightly earlier (hotter) or with different transition dynamics, imprinting density fluctuations onto the thermal emission pattern.

CMB isotropy: The high degree of CMB isotropy ($\Delta T/T \sim 10^{-5}$) requires that the local transition wave encompassed a region much larger than individual halos—likely a supercluster-scale coherent transition spanning ~ 100 Mpc or more. This level of synchronization is plausible if the pre-transition dark matter distribution had sufficient large-scale uniformity, allowing density thresholds to be crossed nearly simultaneously across vast regions. Full numerical modeling of the CMB angular power spectrum from local transition wave dynamics, including detailed treatment of the transition front geometry and propagation, is a priority for future work and will be presented in a forthcoming paper.

Beyond the horizon: Regions outside our observable universe have independent transition histories. Some may still be in pure dark matter phase; others may have transitioned billions of years before or after our region. There is no global “age of the universe”—only local timescales since transition.

Full CMB power spectrum modeling (acoustic peaks, polarization, integrated Sachs-Wolfe effect) from transition wave dynamics is deferred to future work.

7.4 “Expansion” as Fabric Relaxation

What standard cosmology interprets as spatial expansion is reinterpreted in F-fabric as **amplitude relaxation**. Galaxies are not receding through expanding space; rather, the fabric between them is relaxing from post-transition excited states toward vacuum equilibrium:

$$A(t) \rightarrow A_{\text{vac}} \quad \text{as} \quad t \rightarrow \infty \tag{90}$$

Redshift mechanism: Light propagating through relaxing fabric experiences frequency suppression. The cumulative redshift over distance d is:

$$z = \int_0^d \frac{1}{c} \frac{\nabla A(x')}{A_{\text{scale}}} dx' \quad (91)$$

(see Appendix B) As A decreases along the photon path, frequencies shift toward the red. This reproduces Hubble's law $z \approx H_0 d/c$ for nearby galaxies where ∇A varies linearly.

Hubble constant: H_0 is not an expansion rate but the characteristic **fabric relaxation rate**:

$$H_0 \sim \frac{1}{\tau_{\text{relax}}} \sim \frac{\gamma}{A_{\text{scale}}} c \quad (92)$$

(see Appendix A) where γ is the degradation coefficient (Section 3.7). The observed $H_0 \approx 70$ km/s/Mpc corresponds to relaxation timescale $\tau_{\text{relax}} \sim 10^{10}$ yr.

Quantitative $H(z)$ evolution: At present, F-fabric reproduces the functional form of Hubble parameter evolution $H(z)$ qualitatively through relaxation dynamics. Quantitative agreement with baryon acoustic oscillation (BAO) and Type Ia supernovae constraints requires specification of $\gamma(z)$ —the time-evolution of the degradation coefficient—which depends on the transition history, baryon fraction evolution, and fabric thermalization processes. The relation:

$$H(z) \sim \frac{c}{A_{\text{scale}}} \left| \frac{d\langle A \rangle}{dz} \right| \quad (93)$$

provides the parametric form, but precise $H(z)$ curves matching observational data require numerical integration of fabric relaxation equations with realistic initial conditions from the transition epoch. This is a priority for future numerical cosmology work.

Accelerated expansion: Late-time acceleration ($z < 1$) arises from nonlinear relaxation dynamics. As $A \rightarrow A_{\text{vac}}$, the decay rate increases (structures become less bound, dissipation accelerates). This mimics dark energy-driven acceleration without requiring Λ . The effective equation of state $w_{\text{eff}}(z)$ transitions from $w \approx 0$ (matter-like, early times) to $w \approx -1$ (vacuum-like, late times) as relaxation accelerates.

No expanding space: F-fabric cosmology reproduces FRW-like behavior on large scales (homogeneous isotropic solutions, redshift-distance relations, structure formation) without invoking expanding spatial geometry. Redshift is a fabric property (relaxation), not a geometric effect (stretching).

7.5 Voids as Fully Relaxed Regions

Cosmic voids—vast underdense regions spanning $\sim 50 - 100$ Mpc—are not merely “empty space” but regions that have completed the full cycle:

$$A_{\text{void}} \rightarrow A_{\text{vac}} \quad (94)$$

(see Appendix E) All baryonic and dark matter structures have relaxed to vacuum equilibrium. Information has dissipated (Section 3.7), leaving featureless vacuum fluctuations.

Voids are prepared ground: Fabric fluctuations δA around A_{vac} can seed new structure formation. If fluctuations grow sufficiently large, a new dark matter accumulation phase begins, potentially leading to another transition cycle.

Observational signatures:

- Gravitational lensing: Minimal deflection through voids ($\rho_{\text{void}} \approx \rho_{\text{vac}} \ll \rho_{\text{DM}}$)
- Peculiar velocities: Steep gradients at void boundaries

- Integrated Sachs-Wolfe effect: CMB photons passing through voids should show specific temperature shifts

Testing void properties provides direct evidence for full relaxation vs. merely underdense dark matter.

7.6 Galactic Lifecycle

Individual galaxies undergo evolutionary sequences tied to amplitude dynamics:

- **Early** ($z \sim 10 - 20$): Recent ignition, $A \gg A_{\text{threshold}}$, intense star formation, bright in UV/optical
- **Mid** ($z \sim 1 - 5$): Mature, A declining through radiative losses, star formation rate decreases, relaxation ongoing
- **Late** ($z \sim 0$): $A \rightarrow A_{\text{threshold}}$, star formation nearly ceased, dominated by old stellar populations, fading
- **Post-baryonic**: $A < A_{\text{threshold}}$, electromagnetic modes deactivate, galaxy becomes “dark” but gravitationally present

Missing satellites problem: Simulations predict hundreds of dwarf galaxies around Milky Way; observations find ~ 50 . F-fabric explanation: many satellites have relaxed below $A_{\text{threshold}}$ —they are gravitationally present but electromagnetically invisible. These “dark galaxies” contribute to Milky Way’s mass but emit no light. (see Appendix C) **Observable signature: cold HI clouds**

Regions undergoing DM \rightarrow BM transition should appear as **cold neutral hydrogen clouds** with characteristic properties:

- High M_{HI}/M_* ratios (gas-dominated, few stars)
- Low metallicity ($Z \sim 0.01 - 0.1 Z_{\odot}$, recently ignited)
- Cold temperatures ($T \sim 10 - 100$ K, no heating from stars yet)
- High dark matter fractions ($M_{\text{DM}}/M_{\text{baryon}} \gg 5$, extensive pre-transition growth)

(see Appendix C) Such objects have been observed (e.g., Leo P, high-velocity clouds, dark galaxies, Damped Lyman- α systems) but remain puzzling in Λ CDM. F-fabric identifies them as **transition-phase halos**—regions where electromagnetic modes recently activated but star formation has not yet consumed the initial hydrogen.

7.7 Cyclical Cosmology

F-fabric cosmology is fundamentally cyclical at local scales:

- **No heat death:** The fabric is infinite; while one region relaxes to vacuum, another ignites
- **Eternal renewal:** New cycles begin from vacuum fluctuations in relaxed regions
- **No global thermodynamic arrow:** Only local arrows within each cycling region

This resolves Boltzmann’s paradox: the universe doesn’t need low-entropy initial conditions because there is no initial condition—only perpetual local dynamics.

Testable predictions:

1. Primordial gravitational waves: $r < 10^{-4}$ (no inflation)

2. Void properties: $\rho_{\text{void}} \approx \rho_{\text{vac}}$ (not just underdense)
 3. Dark galaxies: Gravitational detection without EM emission
 4. Early galaxy DM fractions: $M_{\text{DM}}/M_{\text{baryon}} \gg 5$ at $z > 10$
- (see Appendix E)

8 Quantum Mechanics as Emergent Statistics

8.1 Wave Function from Amplitude Statistics

In conventional quantum mechanics, the wave function $\psi(x, t)$ is a fundamental object. In F-fabric theory, ψ is a **statistical description** of node ensemble dynamics.

Consider a localized pattern (e.g., electron) consisting of $N \sim 10^6$ nodes with correlated (Ω_i, Q_i, A_i) states. The **probability density** for finding the pattern at position x is:

$$|\psi(x, t)|^2 \sim \langle A^2(x, t) \rangle - \langle A(x, t) \rangle^2 \quad (95)$$

(see Appendix A) where $\langle \dots \rangle$ denotes spatial coarse-graining over local node ensembles. Regions with higher amplitude variance have higher $|\psi|^2$ —the pattern is “more likely” to be detected there.

The **phase** of the wave function arises from integrated frequency:

$$\arg[\psi(x, t)] = \int_0^t \langle \Omega(x, \tau) \rangle d\tau \quad (96)$$

Phase differences between spatial regions drive interference—the hallmark of wave behavior.

Normalization: Total probability integrates to unity:

$$\int |\psi(x, t)|^2 d^3x = 1 \quad (97)$$

This follows from energy conservation: the total amplitude excess $\int (A - A_{\text{vac}}) dV$ is conserved (barring dissipation), so the pattern’s probability distribution normalizes automatically.

The wave function is not a fundamental field but an **emergent statistical quantity** describing how node amplitude and phase correlations are distributed in space.

8.2 Superposition as Multiple Ω -Modes

Quantum superposition—the ability of a system to exist in multiple states simultaneously—is not mysterious in F-fabric but arises from **spectral structure**.

Each node supports multiple resonant frequencies:

$$\Omega_{\text{total}} = \sum_n c_n \Omega_n \quad (98)$$

where Ω_n are harmonic modes and c_n are amplitude weights. A “particle in superposition of states $|a\rangle$ and $|b\rangle$ ” corresponds to a pattern with two dominant modes:

$$\Omega_{\text{pattern}} = c_a \Omega_a + c_b \Omega_b \quad (99)$$

The pattern is not “in both states”—it has a **multi-mode spectral structure**. When coarse-grained, this appears as superposition: (see Appendix A)

$$|\psi\rangle = c_a |a\rangle + c_b |b\rangle \quad (100)$$

Basis states $|a\rangle, |b\rangle$ correspond to individual resonant modes Ω_a, Ω_b .

Measurement couples the pattern to a macroscopic apparatus (e.g., detector with $\sim 10^{23}$ nodes). The apparatus preferentially couples to one mode—whichever resonates with its own frequency structure. Upon coupling, the pattern’s multi-mode structure collapses to a single mode (Section 8.4).

8.3 Entanglement as Correlated Patterns

Quantum entanglement—correlations that persist regardless of spatial separation—is the most non-classical feature of quantum mechanics. In F-fabric, entanglement arises naturally from **shared fabric structure at creation**.

When two patterns (e.g., photon pair) are created from a single parent pattern:

$$(\Omega_{\text{parent}}, Q_{\text{parent}}, A_{\text{parent}}) \rightarrow (\Omega_1, Q_1, A_1) + (\Omega_2, Q_2, A_2) \quad (101)$$

(see Appendix A) conservation laws impose correlations:

$$\phi_1 + \phi_2 = \phi_{\text{parent}} \quad (\text{phase correlation}) \quad (102)$$

$$A_1 + A_2 = A_{\text{parent}} \quad (\text{amplitude conservation}) \quad (103)$$

$$Q_1 + Q_2 = Q_{\text{parent}} \quad (\text{charge conservation}) \quad (104)$$

These correlations are encoded in the **non-local fabric structure** established at creation. They persist as the patterns propagate spatially because the underlying node network remains correlated through shared coupling history.

Measurement on one pattern reveals information about the other not because of instantaneous signaling but because both patterns carry complementary information from the same creation event. The correlation is **non-separable fabric state**, not hidden variables.

This resolves the EPR paradox: correlations are real and non-local (encoded in fabric structure), but measurement outcomes are not predetermined—they emerge contextually from apparatus interaction.

Consistency with Bell’s theorem This mechanism respects Bell’s constraints: the correlations are **non-local** (encoded in global fabric structure at particle creation) rather than carried by independent local hidden variables attached to each particle. Bell’s theorem prohibits local realistic theories where measurement outcomes are predetermined by particle-carried parameters. F-fabric avoids this: measurement outcomes are not predetermined but emerge from contextual interaction between the particle’s fabric pattern and the measurement apparatus, with the correlation structure reflecting the non-separable fabric state established at creation. This is consistent with quantum contextuality and experimentally observed Bell inequality violations.

8.4 Measurement as Irreversible Diffusion

The measurement problem—why does a superposition collapse to a single outcome?—has plagued quantum foundations for a century. F-fabric provides a mechanism: measurement is **irreversible amplitude diffusion** into macroscopic degrees of freedom.

A measurement apparatus consists of $\sim 10^{23}$ nodes in a stable macroscopic pattern (e.g., pointer position, detector click, screen flash). When a quantum pattern (electron, photon) couples to the apparatus:

1. **Mode selection:** The apparatus has its own resonant frequency structure. It couples preferentially to one mode of the quantum pattern’s superposition—whichever mode resonates with apparatus dynamics.

2. **Amplitude cascade:** Once coupling initiates, amplitude flows from quantum pattern into apparatus. The apparatus has $N_{\text{apparatus}} \gg N_{\text{pattern}}$, so this flow is irreversible (information loss, Section 3.7). (see Appendix D)
3. **Decoherence:** Off-resonant modes cannot couple efficiently. Their amplitudes dissipate into environmental noise. Only the resonant mode persists, transferred into apparatus configuration.

The “collapse” is not instantaneous or acausal—it is **thermodynamic irreversibility**. The quantum pattern’s multi-mode structure diffuses into the apparatus’s macroscopic degrees of freedom, which cannot be reversed due to entropy production.

Born rule: The probability of outcome i is:

$$P(i) = \frac{|c_i|^2}{\sum_j |c_j|^2} \quad (105)$$

(see Appendix A) This follows from coupling strength: mode Ω_i with amplitude c_i couples to apparatus with strength $J_i \propto c_i^2$. Stronger coupling \Rightarrow faster amplitude transfer \Rightarrow higher probability of apparatus registering that outcome. The Born rule emerges from squared coupling strength, not a separate postulate.

Rigorous derivation from ensemble-averaged node dynamics and detailed modeling of apparatus interaction are ongoing work.

8.5 Schrödinger Equation from Continuum Limit

The Schrödinger equation is not fundamental but emerges in the continuum limit of discrete node dynamics.

Starting from amplitude evolution (Eq. 24): (see Appendix A)

$$\frac{dA_i}{dt} = \sum_j J_{ij}(A_j - A_i) \quad (106)$$

In the continuum approximation ($\ell_{\text{fabric}} \rightarrow 0$, node density $\rightarrow \infty$), this becomes:

$$\frac{\partial A}{\partial t} = D \nabla^2 A \quad (107)$$

where D is an effective diffusion constant determined by coupling strength and fabric density. For wave-like behavior, we need oscillatory solutions. Including phase dynamics ($\phi = \int \Omega dt$):

$$\psi = A e^{i\phi} \quad (108)$$

The coupled amplitude-phase evolution yields:

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V\psi \quad (109)$$

where:

- $\hbar = A_{\text{scale}} \ell_{\text{fabric}}^2 \langle \Omega \rangle$ emerges from fabric parameters (see Appendix A)
- m is the effective mass (amplitude localization, Eq. 74)
- V is the potential arising from background A_{cl} variations and frequency gradients (see Appendix B)

The Schrödinger equation is the **continuum limit of discrete resonant transfer dynamics**. Quantum mechanics is statistical fabric dynamics, not a separate theory.

Heisenberg uncertainty: Position-momentum uncertainty $\Delta x \Delta p \geq \hbar/2$ arises from Fourier conjugacy. A localized amplitude distribution $A(x)$ (narrow Δx) requires broad frequency spectrum $\Omega(k)$ (large Δp) to maintain pattern coherence. This is a property of statistical descriptions, not fundamental indeterminacy.

8.6 Why Quantum Mechanics Emerges

Traditional quantum mechanics treats ψ as fundamental, measurement as problematic, and entanglement as mysterious. F-fabric reverses this:

- **Wave function:** Statistical description of node ensembles, not fundamental object
- **Superposition:** Multi-mode spectral structure, not ontological indeterminacy
- **Entanglement:** Non-local fabric correlations from shared creation event
- **Measurement:** Irreversible amplitude diffusion into macroscopic apparatus
- **Born rule:** Follows from squared coupling strength
- **Schrödinger equation:** Continuum limit of discrete dynamics

All quantum phenomena emerge from classical-like node dynamics at the fundamental level. “Quantum weirdness” is an artifact of describing discrete information transfer with continuous statistical variables.

Open problems:

- Derivation of Dirac equation (spin-1/2 fermions) from topological vortex dynamics
- Gauge field emergence (photons, gluons) from fabric spectral modes
- Renormalization in emergent QFT from discrete fabric cutoffs

These require detailed numerical studies of multi-node patterns and are deferred to future work. The conceptual framework is established; quantitative derivations remain. (see Appendix A)

9 Predictions and Falsifiability

F-fabric theory makes specific testable predictions that distinguish it from standard cosmology, particle physics, and quantum mechanics. A scientific theory’s strength lies not only in explanatory power but in **falsifiability**—the possibility of experimental refutation. (see Appendix A)

9.1 Primordial Gravitational Waves: $r < 10^{-4}$

Prediction: The tensor-to-scalar ratio from primordial gravitational waves should satisfy:

$$r < 10^{-4} \tag{110}$$

Rationale: Inflationary models predict $r \sim 0.01 - 0.1$ from quantum fluctuations of the graviton during exponential expansion. F-fabric cosmology (Section 7) has no inflation—structure arises from gravitational growth in the pre-transition dark matter phase. The phase transition generates predominantly **scalar perturbations** (density fluctuations) with minimal tensor modes (gravitational waves). This order-of-magnitude estimate is based on scalar-dominated

transition dynamics; a more precise bound requires detailed modeling of the transition front and amplitude fluctuation spectrum during ignition. (see Appendix C)

Current status: Planck + BICEP/Keck constrain $r < 0.036$ (95% CL). Next-generation CMB experiments (CMB-S4, LiteBIRD) target sensitivity $r \sim 10^{-3}$.

Falsification: Detection of $r > 10^{-3}$ would strongly disfavor F-fabric cosmology, requiring either modification of the transition mechanism or acknowledgment that inflation occurred within the fabric framework.

9.2 Atomic Clock Gravitational Tests: 10^{-20} Precision

Prediction: Gravitational frequency suppression (Section 4.1) should deviate from pure GR at high precision due to discrete fabric structure:

$$\frac{\Omega_{\text{eff}}}{\Omega_{\text{vac}}} = \frac{1}{1 + A_{\text{cl}}/A_{\text{scale}}} \neq \sqrt{1 + 2\Phi/c^2} \quad (111)$$

(see Appendix D) where the right-hand side is the GR prediction. The difference scales as:

$$\delta \sim \left(\frac{A_{\text{cl}}}{A_{\text{scale}}} \right)^2 \quad (112)$$

Using the relation $\Phi = -c^2 A_{\text{cl}}/A_{\text{scale}}$ (Section 4.1) and Earth's surface potential $\Phi_{\oplus}/c^2 \sim 10^{-9}$, this gives $\delta \sim 10^{-18}$ to 10^{-20} depending on fabric parameters. This is an order-of-magnitude estimate; precise numerical values require specification of A_{scale} from first principles.

Rationale: F-fabric frequency suppression has different functional form than GR time dilation. At solar system scales, differences are negligible, but next-generation atomic clocks (projected 10^{-19} precision) could resolve discrepancies.

Current status: Best atomic clocks (optical lattice) achieve $\sim 10^{-18}$ fractional frequency uncertainty. Improvements underway.

Experiment: Compare clocks at different gravitational potentials (mountain/valley, Earth/orbit) with unprecedented precision. Look for systematic deviations from $\sqrt{g_{00}}$ scaling.

Falsification: Perfect agreement with GR at 10^{-19} precision would constrain or rule out F-fabric frequency suppression mechanism, requiring revision of Section 4 dynamics.

9.3 Dark Matter Distribution: Specific Sub-kpc Structure

Prediction: Dark matter halos should exhibit **characteristic granularity** at scales ~ 1 kpc due to discrete fabric structure. (see Appendix A; Appendix C) Specifically:

- Halos below electromagnetic threshold ($A < A_{\text{threshold}}$) should show **smooth cores** rather than cusps
- Substructure should reflect fabric node clustering, not hierarchical mergers

Rationale: F-fabric dark matter (Section 6.1) is not particle-based but amplitude-phase configurations. At small scales, discrete node structure prevents arbitrarily steep density profiles. The transition threshold $A_{\text{threshold}}$ acts as natural regulator.

Current status: Observations show tension between simulation predictions (steep cusps) and observed rotation curves (flat cores). F-fabric naturally produces cores.

Test: High-resolution rotation curves of dwarf galaxies, strong lensing of galaxy clusters at sub-kpc scales, stellar stream perturbations in Milky Way.

Note: Baryonic feedback mechanisms in standard CDM can also produce cores in dwarf galaxies. This prediction is therefore not unique to F-fabric but is naturally consistent with observations. The distinctive signature would be correlation between core properties and fabric-scale granularity (~ 1 kpc), which differs from feedback-driven cores.

Falsification: Discovery of dark matter cusps with $\rho \propto r^{-1.5}$ down to scales $\ll 1$ kpc would challenge F-fabric, suggesting particle dark matter with different dynamics.

9.4 Missing Low-Mass Galaxies as Dark Galaxies

Prediction: The “missing satellite problem”—fewer observed dwarf galaxies than simulations predict—is resolved by galaxies that have **relaxed below electromagnetic threshold** (Section 7.6):

$$A_{\text{dwarf}} < A_{\text{threshold}} \Rightarrow \text{electromagnetically invisible} \quad (113)$$

(see Appendix D; Appendix C) These “dark galaxies” should be detectable through:

- Gravitational lensing (despite no light emission)
- Dynamical effects on visible satellites
- 21cm absorption against background sources (residual neutral hydrogen)

Rationale: Small galaxies have lower binding energy, fade faster through relaxation. They don’t disappear—they become dark but gravitationally active.

Test: Search for:

- Lensing without optical counterpart
- Unexplained kinematic perturbations in satellite orbits
- 21cm shadows with no stellar populations

Note: Alternative mechanisms (reionization suppression, baryonic feedback, tidal stripping) also partially address the missing satellite problem. The distinctive F-fabric signature is **gravitational detection without electromagnetic counterpart at any wavelength**, combined with evidence of past electromagnetic activity (e.g., chemically enriched stellar remnants). Complete absence of such objects would disfavor the relaxation mechanism but would not uniquely falsify F-fabric.

Falsification: Complete census of low-mass galaxies down to $M \sim 10^6 M_{\odot}$ with no gravitational-only candidates would contradict F-fabric prediction, suggesting alternate resolution to missing satellites.

9.5 Cold HI Clouds as Transition Markers

Prediction: Isolated cold neutral hydrogen clouds with $M_{\text{HI}} \sim 10^{5-7} M_{\odot}$, $M_{*}/M_{\text{HI}} \ll 1$, and $Z < 0.1 Z_{\odot}$ should be abundant and represent **recently transitioned halos** where amplitude crossed $A_{\text{threshold}}$ within the last $\sim 10^7 - 10^9$ years. (see Appendix C; Appendix D)

Rationale: When a dark matter halo undergoes phase transition (Section 7.2), the first baryonic product is **neutral hydrogen**—the minimal stable configuration after electromagnetic modes activate. These regions appear as:

- **Gas-dominated:** High M_{HI}/M_{*} ratios (few or no stars yet formed)
- **Metal-poor:** $Z \sim 0.01 - 0.1 Z_{\odot}$ (recently ignited, no stellar enrichment)
- **Cold:** $T \sim 10 - 100$ K (insufficient time for stellar heating)
- **Dark matter-dominated:** $M_{\text{DM}}/M_{\text{baryon}} \gg 5$ (extensive pre-transition halo growth)

Standard Λ CDM struggles to explain isolated, metal-poor HI clouds without associated stellar populations. F-fabric identifies them as **transition-phase halos**—the observational signature of ongoing DM \rightarrow BM phase transitions throughout the cosmos.

Observable examples: (see Appendix B)

- **Leo P:** $M_{\text{HI}} \sim 10^6 M_{\odot}$, $M_* \sim 10^5 M_{\odot}$, $Z \sim 0.05 Z_{\odot}$
- **High-velocity clouds (HVCs):** Isolated HI with low metallicity, moving in Milky Way's dark matter halo
- **Dark galaxies:** Gravitationally-bound HI without stellar counterparts
- **Damped Lyman- α systems (DLAs):** High column density HI at $z \sim 2 - 3$ with low metallicity

Test:

- Measure dynamical masses (should be $M_{\text{DM}}/M_{\text{baryon}} \gg 5$)
- Age-date stellar populations (should be < 1 Gyr for young transitions)
- Map spatial distribution (should correlate with dark matter halo density)
- Measure metallicity evolution (should show $Z(t) \propto t$ for young systems)

Current status: HI surveys (ALFALFA, WALLABY) reveal numerous gas-rich, star-poor systems. Their properties align with F-fabric transition predictions, but systematic studies of their dark matter content and stellar ages are ongoing.

Falsification: If all isolated HI clouds show:

- Old stellar populations (> 2 Gyr)
- Solar or super-solar metallicities
- Low dark matter fractions ($M_{\text{DM}}/M_{\text{baryon}} \sim 5$)

this would contradict the recent-transition interpretation, requiring alternative explanations for these objects.

9.6 Black Hole Echoes and Discrete Structure

Prediction: Gravitational wave ringdown from black hole mergers should exhibit **quasi-periodic echoes** at timescale:

$$\Delta t_{\text{echo}} \sim \kappa \frac{GM}{c^3} \quad (114)$$

where κ is a dimensionless coefficient depending on fabric parameters, expected to be $\kappa \sim \mathcal{O}(1 - 10)$ based on the logarithmic dependence $\ln(A_{\text{crit}}/A_{\text{scale}})$. Precise determination requires numerical simulation of wave propagation through discrete fabric structure near the horizon.

Rationale: In F-fabric, black hole horizons are not perfect absorbers but **amplitude-suppression boundaries**. Gravitational waves can partially reflect from discrete fabric structure just outside horizon, creating echoes. (see Appendix E)

Current status: LIGO/Virgo data shows no clear echoes, but sensitivity is marginal. Claims of tentative signals remain controversial.

Test: Next-generation detectors (Einstein Telescope, Cosmic Explorer) with $10 \times$ sensitivity can definitively test for echoes in ringdown phase.

Falsification: Observation of hundreds of mergers with no echoes at predicted timescales would rule out discrete horizon structure, requiring smooth event horizons inconsistent with F-fabric.

9.7 JWST Early Galaxies: High Dark Matter Fractions

Prediction: Galaxies observed at $z > 10$ should show:

$$\frac{M_{\text{DM}}}{M_{\text{baryon}}} \gg 5 \quad (115)$$

(much higher than cosmic average) because they are **early-transitioning halos** that grew extensively in dark matter phase before ignition (Section 7.6).

Rationale: F-fabric allows dark matter structure formation over indefinite pre-transition time. Earliest visible galaxies correspond to densest halos that accumulated mass long before electromagnetic activation. (see Appendix C; Appendix D)

Test: Measure dynamical masses (from kinematics) vs. baryonic masses (from stellar/gas content) in $z > 10$ galaxies. F-fabric predicts significantly higher ratios than Λ CDM.

Current status: JWST observations show unexpectedly massive galaxies at high- z . Detailed mass decomposition underway.

Falsification: If early galaxies show $M_{\text{DM}}/M_{\text{baryon}} \approx 5$ (cosmic average), this would contradict extended pre-transition growth, requiring alternate explanation for JWST observations.

9.8 Void Properties: Gravitational Signatures of Relaxed Fabric

Prediction: Cosmic voids should exhibit gravitational signatures consistent with **near-vacuum fabric density** (Section 7.5):

$$\rho_{\text{void}} \approx \rho_{\text{vac}} \ll \rho_{\text{DM,typical}} \quad (116)$$

(see Appendix E; Appendix C) rather than simply underdense dark matter.

Test:

- Weak gravitational lensing through voids (should show minimal deflection)
- Peculiar velocities of galaxies near void boundaries (should indicate steep gradients)
- Integrated Sachs-Wolfe effect from voids (should differ from Λ CDM predictions)

Current status: Void lensing and ISW measurements marginally consistent with both models. Higher precision needed.

Falsification: Detection of significant dark matter density ($\rho \sim 0.1 - 0.5 \rho_{\text{cosmic}}$) deep within largest voids would contradict full relaxation, suggesting voids are merely underdense rather than fabric-reset regions.

9.9 Lorentz Invariance Violations at Planck Scale

Prediction: Lorentz invariance holds statistically but not fundamentally (Section 3.4). (see Appendix A; Appendix D) Violations suppressed by:

$$\frac{\delta v}{c} \sim \left(\frac{\ell_{\text{fabric}}}{L} \right)^n \quad (117)$$

where $n \geq 2$ and L is observation scale.

For $\ell_{\text{fabric}} \sim 10^{-35}$ m and astrophysical scales ($L \sim 10^{26}$ m):

$$\frac{\ell_{\text{fabric}}}{L} \sim 10^{-61} \quad (118)$$

With $n \geq 2$, violations are suppressed to:

$$\frac{\delta v}{c} \lesssim 10^{-122} \quad (n = 2) \quad (119)$$

utterly negligible at any currently accessible scale. Even optimistic estimates with $n = 1$ (linear suppression) give $\delta v/c \sim 10^{-61}$, far below any conceivable measurement precision.

Test:

- Ultra-high-energy cosmic rays (dispersion relations)
- Precision tests of photon speed vs. graviton speed
- Quantum interference experiments at smallest achievable scales

Falsification: Perfect Lorentz invariance down to arbitrarily small scales would constrain fabric structure, potentially requiring $\ell_{\text{fabric}} \ll 10^{-35}$ m or abandonment of discrete substrate.

9.10 Electromagnetic Threshold Transition: Laboratory Analog

Prediction: If one could artificially manipulate node amplitude in controlled systems (currently impossible), crossing $A_{\text{threshold}}$ should produce observable electromagnetic mode activation—a kind of “laboratory ignition.” (see Appendix D)

Speculative test: In extreme environments (neutron star mergers, heavy-ion collisions, hypothetical future technologies), localized regions might briefly cross threshold, producing anomalous electromagnetic signatures.

Current status: No known laboratory method to control fabric amplitude. This remains a long-term theoretical prediction without near-term experimental path.

9.11 Conditions for Falsification

F-fabric theory can be falsified by:

1. **Detection of $r > 10^{-3}$:** Inconsistent with no-inflation cosmology
2. **Perfect GR agreement at 10^{-19} precision:** Rules out frequency suppression mechanism
3. **Unambiguous particle dark matter discovery:** Detection of a non-baryonic particle with properties inconsistent with any F-fabric pattern (e.g., fundamental scalar with no topological structure) would directly contradict the amplitude-phase interpretation. However, discovery of a particle-like excitation that can be mapped onto fabric dynamics (e.g., collective mode with $Q \neq 0$) would require theoretical refinement rather than outright falsification.
4. **No dark galaxies or transition-phase HI clouds found:** Undermines relaxation and transition mechanisms
5. **No black hole echoes:** Challenges discrete horizon structure
6. **Conventional early galaxy mass ratios:** Contradicts pre-transition growth
7. **Significant void dark matter:** Contradicts full relaxation hypothesis
8. **All isolated HI clouds showing old stellar populations and high metallicity:** Contradicts recent-transition interpretation
9. **Successful derivation that F-fabric cannot reproduce Standard Model:** Would demonstrate fundamental inadequacy

(see Appendix A) These are **concrete experimental avenues** that could refute the theory, demonstrating scientific falsifiability.

9.12 Summary of Testable Predictions

Table 1: Testable predictions and timelines (see Appendix B)

Prediction	Observable	Current Status	Decisive Test Timeline
$r < 10^{-4}$	CMB tensor modes	$r < 0.036$	CMB-S4 (~ 2030)
Frequency suppression	Atomic clocks	Testing 10^{-18}	Next-gen clocks (~ 2028)
DM cores	Rotation curves	Suggestive	High-res surveys (~ 2027)
Dark galaxies	Lensing+dynamics	Tentative hints	Deep surveys (~ 2029)
Cold HI clouds	HI surveys + ages	Ongoing (AL-FALFA)	Multi- λ followup ($\sim 2026-2028$)
BH echoes	GW ringdown	No clear signal	Einstein Telescope (~ 2035)
Early galaxy DM fractions	JWST kinematics	Ongoing	JWST Cycle 3+ (~ 2026)
Void properties	Weak lensing/ISW	Marginal	Euclid/Rubin (~ 2028)

Key message: F-fabric theory is **falsifiable through multiple independent channels**. It is not a philosophical framework but a scientific hypothesis making concrete predictions distinguishable from Λ CDM + Standard Model. The coming decade of observations will test these predictions, either corroborating F-fabric or refuting it—the hallmark of genuine science.

The identification of cold HI clouds as transition-phase markers provides an **immediate observational signature** of the $\text{DM} \rightarrow \text{BM}$ phase transition occurring throughout the present-day universe. Unlike distant cosmological predictions, this phenomenon is accessible to current telescopes and offers a direct window into the fabric’s dynamics.

10 Conclusion

We have presented F-fabric theory: a discrete, information-based framework in which spacetime, matter, and quantum mechanics emerge from the dynamics of nodes characterized by three parameters—resonant frequency Ω , topological charge Q , and amplitude A .

10.1 What Has Been Established

Ontological foundation (Section 3): Physical reality is not matter in space but **information patterns propagating through a network of resonant nodes**. Motion is pattern transfer, stable objects are circulating information, and the arrow of time emerges from unavoidable information loss during transfer. (see Appendix E) This discrete substrate naturally generates entropy increase, providing a fundamental derivation of the second law of thermodynamics.(see Appendix E)

Emergent spacetime and gravity (Section 4): Distance arises from resonant connectivity, time from frequency integration, and gravity from amplitude gradients modifying local update rates. General relativity emerges as the continuum limit, reproducing Schwarzschild metrics, gravitational waves, and solar system tests consistent with solar system tests at the weak-field level (see Appendix C) Black holes are not singularities but regions where information

transfer halts ($\Omega_{\text{eff}} \rightarrow 0$), naturally implementing holographic entropy bounds and eliminating divergences. (see Appendix E)

Matter as patterns (Section 5): Particles are not fundamental but topologically protected resonant configurations. The proton is an irreducible vortex; the electron is a stable compensating pattern requiring continuous fabric renewal. Mass emerges from amplitude localization, spin from rotational structure, and charge from coupling to electromagnetic modes. Quarks are fragmentation artifacts, not constituents. (see Appendix D) Electromagnetism activates only above amplitude threshold $A_{\text{threshold}}$, explaining why dark matter is electromagnetically invisible. (see Appendix D)

Dark phenomena (Section 6): Dark matter is the low-amplitude phase ($A \approx A_{\text{vac}}$) below electromagnetic threshold—gravitationally active but invisible. Dark energy arises from vacuum amplitude fluctuations with natural Planck-scale cutoff, resolving the cosmological constant problem. (see Appendix C) The observed 5:1 dark-to-baryonic ratio emerges from phase transition dynamics rather than fine-tuning.

Cosmology without singularities (Section 7): The fabric is infinite and eternal. What we call the Big Bang is a **local phase transition** in one region—one of countless ignition events across the infinite fabric. (see Appendix C) The CMB is thermal afterglow from this transition wave, not recombination radiation. Cosmic expansion is fabric relaxation ($A \rightarrow A_{\text{vac}}$), not spatial stretching. (see Appendix B). JWST’s massive early galaxies reflect pre-transition dark matter growth. Voids are informationally erased regions ready for new cycles. There is no heat death—only eternal local dynamics in an infinite substrate.

Quantum mechanics as statistics (Section 8): The wave function is not fundamental but a statistical description of node ensemble behavior. Superposition reflects multi-mode spectral structure, entanglement encodes non-local fabric correlations from shared origin, and measurement is irreversible amplitude diffusion into macroscopic apparatus. The Schrödinger equation emerges in the continuum limit. (see Appendix D) Quantum mystery dissolves into **information dynamics on a discrete network**.

Falsifiable predictions (Section 9): F-fabric makes concrete testable predictions distinguishing it from Λ CDM and the Standard Model: primordial tensor modes $r < 10^{-4}$, atomic clock deviations at 10^{-19} precision, dark matter cores at kpc scales, gravitationally-detected dark galaxies, black hole echoes, anomalously high dark matter fractions in $z > 10$ galaxies, near-vacuum void densities, and cold HI clouds as markers of ongoing phase transitions. The coming decade of observations will decisively test these predictions.

10.2 What Remains to Be Done

This paper establishes the **conceptual foundation** and demonstrates that F-fabric can qualitatively reproduce observed physics. Critical work remains:

Quantitative derivations: Precise calculation of particle masses, coupling constants, and Standard Model parameters from fabric dynamics requires extensive numerical simulation. Preliminary estimates suggest consistency when $\ell_{\text{fabric}} \sim \ell_{\text{Planck}}$ and $A_{\text{scale}} \sim M_{\text{Planck}}$, but rigorous derivation is ongoing.

Cosmological details: Full modeling of CMB angular power spectrum, $H(z)$ evolution, baryon acoustic oscillations, and large-scale structure formation from fabric relaxation dynamics. The qualitative framework is established (Section 7), but precision cosmology requires computational implementation.

Quantum field theory: Extension to Dirac equation, gauge field dynamics, and renormalization within the discrete fabric formalism. Preliminary work suggests Feynman path integrals arise naturally from summing node configuration histories, but complete derivation is beyond this paper’s scope.

Gauge symmetry emergence: While Section 5.3 outlines how U(1), SU(2), SU(3) emerge

as approximate continuum symmetries, detailed demonstration of Standard Model gauge structure from fabric dynamics remains incomplete.

These are not obstacles but **research directions**. The theory's conceptual coherence and falsifiable predictions justify its presentation at this stage, with technical details to follow in subsequent work.

10.3 Philosophical Implications

F-fabric theory represents a **paradigm shift** in how we understand reality:

Information is fundamental, matter is derivative. Physical objects are not things but patterns—self-sustaining circulations of information through the fabric. This inverts the materialist ontology that has dominated physics since Newton.

Spacetime is emergent, not fundamental. Distance, time, and causality arise from discrete node dynamics. There is no stage on which physics occurs—the stage itself is constructed from the actors.

Deterministic irreversibility replaces statistical emergence. The arrow of time is not imposed by boundary conditions but built into transfer dynamics. Entropy increase is inevitable, not probable.

Simplicity underlies complexity. Three parameters per node—(Ω, Q, A)—generate the entire observed universe: particles, forces, spacetime, thermodynamics, cosmology. No inflation, no dark matter particles, no cosmological constant, no measurement problem, no singularities. Occam's razor favors the theory that explains more with less.

The universe is eternal and infinite. There is no beginning, no end, no edges—only perpetual local cycles of organization and dissolution across boundless fabric. What we observe is one transient pattern in an endless sea of information.

10.4 Final Assessment

F-fabric theory is **falsifiable, conceptually coherent, and empirically viable**. It eliminates long-standing pathologies (singularities, fine-tuning, quantum-classical divide, cosmological constant problem) while making testable predictions distinguishable from standard physics. The theory is not complete—no fundamental theory ever is at first presentation—but it provides a **well-defined research program** with clear experimental targets.

If nature operates as F-fabric suggests, we are not observers of a material universe but **patterns recognizing themselves**—temporary circulations of information in an eternal fabric, briefly organized enough to ask why we exist before dissolving back into the noise from which we arose.

The coming decade will tell whether this vision corresponds to reality or remains an elegant dream. Either outcome advances science: confirmation would revolutionize physics; refutation would clarify what nature is not. That is the essence of the scientific method—and the spirit in which this theory is offered.

$$\frac{\partial(\delta A)}{\partial t} = D\nabla^2(\delta A) - \Gamma\delta A \quad (120)$$

where $D = J\ell_{\text{fabric}}^2$ is the effective diffusion constant.

Normal mode analysis:

Assume solutions of the form:

$$\delta A(\mathbf{r}, t) = A_{\mathbf{k}} \exp[i\mathbf{k} \cdot \mathbf{r} - (\gamma_{\mathbf{k}} + i\omega_{\mathbf{k}})t] \quad (121)$$

Substituting into the continuum equation:

$$-(\gamma_{\mathbf{k}} + i\omega_{\mathbf{k}}) = -Dk^2 - \Gamma \quad (122)$$

This gives:

$$\gamma_{\mathbf{k}} = \Gamma \quad (\text{damping rate}) \quad (123)$$

$$\omega_{\mathbf{k}} = \sqrt{Dk^2} = \sqrt{J\ell_{\text{fabric}}^2 k^2} \quad (\text{oscillation frequency}) \quad (124)$$

Two regimes:

1. **Underdamped** ($\Gamma \ll Dk^2$): Waves propagate with velocity

$$v_{\text{sound}} = \sqrt{D} = \ell_{\text{fabric}} \sqrt{J} \quad (125)$$

while slowly decaying.

2. **Overdamped** ($\Gamma \gg Dk^2$): Perturbations decay exponentially without propagating.

Physical significance: This demonstrates how discrete node dynamics naturally produce:

- Wave phenomena (propagating modes)
- Dispersion relations ($\omega \sim k$ at long wavelengths)
- Dissipation (exponential decay)
- Sound waves (collective excitations)

All these are ingredients for emergent field theory from discrete substrate.

References

- [1] Planck Collaboration, “Planck 2018 results. VI. Cosmological parameters,” *Astron. Astrophys.* **641**, A6 (2020). arXiv:1807.06209 [astro-ph.CO].
- [2] BICEP/Keck Collaboration, “Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season,” *Phys. Rev. Lett.* **127**, 151301 (2021). arXiv:2110.00483 [astro-ph.CO].
- [3] Particle Data Group, “Review of Particle Physics,” *Prog. Theor. Exp. Phys.* **2022**, 083C01 (2022).
- [4] S. Weinberg, “The cosmological constant problem,” *Rev. Mod. Phys.* **61**, 1 (1989).
- [5] JWST Collaboration, “A population of red candidate massive galaxies ~ 600 Myr after the Big Bang,” *Nature* **616**, 266-269 (2023). arXiv:2207.12446 [astro-ph.GA].
- [6] T. Jacobson, “Thermodynamics of Spacetime: The Einstein Equation of State,” *Phys. Rev. Lett.* **75**, 1260 (1995). arXiv:gr-qc/9504004.
- [7] E. Verlinde, “On the origin of gravity and the laws of Newton,” *JHEP* **04**, 029 (2011). arXiv:1001.0785 [hep-th].
- [8] R. D. Sorkin, “Causal sets: Discrete gravity,” in *Lectures on Quantum Gravity*, A. Gomberoff and D. Marolf, eds., Springer (2005), pp. 305-327. arXiv:gr-qc/0309009.
- [9] J. Ambjørn, A. Görlich, J. Jurkiewicz, and R. Loll, “Nonperturbative Quantum Gravity,” *Phys. Rep.* **519**, 127-210 (2012). arXiv:1203.3591 [hep-th].

- [10] L. Bombelli, J. Lee, D. Meyer, and R. D. Sorkin, “Space-Time as a Causal Set,” *Phys. Rev. Lett.* **59**, 521 (1987).
- [11] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” *Physics* **1**, 195-200 (1964).
- [12] W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” *Rev. Mod. Phys.* **75**, 715 (2003). arXiv:quant-ph/0105127.
- [13] G. ’t Hooft, “The Cellular Automaton Interpretation of Quantum Mechanics,” *Fundamental Theories of Physics* **185**, Springer (2016). arXiv:1405.1548 [quant-ph].
- [14] D. Clowe et al., “A Direct Empirical Proof of the Existence of Dark Matter,” *Astrophys. J. Lett.* **648**, L109 (2006). arXiv:astro-ph/0608407.
- [15] V. C. Rubin and W. K. Ford, “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions,” *Astrophys. J.* **159**, 379 (1970).
- [16] A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada, “Where Are the Missing Galactic Satellites?” *Astrophys. J.* **522**, 82 (1999). arXiv:astro-ph/9901240.
- [17] K. B. W. McQuinn et al., “Leo P: An Unquenched Very Low-Mass Galaxy,” *Astrophys. J.* **812**, 158 (2015). arXiv:1508.01201 [astro-ph.GA].
- [18] B. P. Wakker and H. van Woerden, “High-Velocity Clouds,” *Ann. Rev. Astron. Astrophys.* **35**, 217-266 (1997).
- [19] J. D. Bekenstein, “Black Holes and Entropy,” *Phys. Rev. D* **7**, 2333 (1973).
- [20] S. W. Hawking, “Black hole explosions?” *Nature* **248**, 30-31 (1974).
- [21] J. M. Maldacena, “The Large N Limit of Superconformal Field Theories and Supergravity,” *Adv. Theor. Math. Phys.* **2**, 231-252 (1998). arXiv:hep-th/9711200.
- [22] J. Abedi, H. Dykaar, and N. Afshordi, “Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons,” *Phys. Rev. D* **96**, 082004 (2017). arXiv:1612.00266 [gr-qc].
- [23] LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” *Phys. Rev. Lett.* **116**, 061102 (2016). arXiv:1602.03837 [gr-qc].
- [24] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” *Rev. Mod. Phys.* **87**, 637 (2015). arXiv:1407.3493 [physics.atom-ph].
- [25] P. M. Sutter, G. Lavaux, N. Hamaus, B. D. Wandelt, B. H. Weinberg, and M. S. Warren, “A public void catalog from the SDSS DR7 Galaxy Redshift Surveys based on the watershed transform,” *Astron. Comput.* **9**, 1-9 (2014). arXiv:1406.1191 [astro-ph.CO].
- [26] S. Perlmutter et al. (Supernova Cosmology Project), “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” *Astrophys. J.* **517**, 565-586 (1999). arXiv:astro-ph/9812133.
- [27] A. G. Riess et al. (Supernova Search Team), “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” *Astron. J.* **116**, 1009-1038 (1998). arXiv:astro-ph/9805201.

Appendix A

Information Transfer, Optimality, and Self-Organization in F-Fabric

A.0 Purpose

This appendix establishes the fundamental dynamical principle underlying all phenomena derived in previous sections.

Central statement: All observable physical effects arise from the fact that transmission of state through F-fabric requires finite time, and this transmission time increases with the structural complexity of the transmitted state.

No additional forces, fields, programs, or optimization rules are introduced.

This appendix explains:

1. Why transmission time depends on amplitude and structure
2. Why gradients of amplitude generate motion and attraction
3. Why evolution proceeds from simple to complex without external rules
4. Why entropy growth and arrow of time are unavoidable
5. Why gravity, inertia, and structure formation are emergent consequences of the same mechanism

A.1 Discrete Nature of State Transfer

F-fabric consists of discrete nodes connected by local transfer rules. At the most fundamental level, nothing moves continuously.

Instead, any physical entity corresponds to a state being transferred step-by-step between neighboring nodes.

A single transfer step is:

$$\text{node } i \longrightarrow \text{node } i + 1$$

Each such transfer requires a finite, nonzero time:

$$\Delta\tau > 0$$

This is not a model assumption but a necessary condition for:

- finite signal speed,
- causality,
- locality,
- irreversibility.

If $\Delta\tau = 0$, none of these concepts could exist.

A.2 What Is Being Transferred

What propagates through F-fabric is not an object, but a *state*.

A state is characterized by three intrinsic parameters:

- Ω — characteristic resonance content
- A — amplitude (information density / structural load)

- Q — topological charge (pattern stability)

The transfer process does not copy a state instantaneously. It requires local reconciliation between the incoming state and the receiving node.

This reconciliation is the physical origin of transfer time.

A.3 Origin of Transfer Time Dependence

A.3.1 Structural Complexity

States with higher amplitude A possess:

- more internal correlations,
- more phase relations,
- more coupled modes.

As a result, transferring such a state requires resolving a larger set of internal constraints.

Key principle: Transfer time grows with the internal structural complexity of the state. This dependence is intrinsic and does not imply obstruction, resistance, or occupation.

A.3.2 Minimal Transfer Time

Define $\Delta\tau_0$ as the minimal transfer time corresponding to the simplest possible state (vacuum-level excitation).

For a general state with amplitude A :

$$\boxed{\Delta\tau(A) = \Delta\tau_0 f(A)}$$

where:

- $f(A)$ is a monotonic increasing function,
- $f(A_{\text{vac}}) = 1$.

In the weak-amplitude regime:

$$f(A) \approx 1 + \frac{A - A_{\text{vac}}}{A_{\text{scale}}}$$

This is a local linear approximation, not a postulate.

A.4 Light as Limiting Case

A photon corresponds to a minimal-amplitude phase excitation with no internal structure.

Therefore:

$$\Delta\tau_{\text{light}} \approx \Delta\tau_0$$

This immediately implies:

- light propagates at the maximum possible speed,
- no structured state can exceed this speed.

This is not a kinematic limit imposed externally, but a consequence of transmission complexity.

A.5 Background Amplitude and Slowing of Propagation

If a state propagates through a region with background collective amplitude $A_{\text{cl}}(\vec{x})$, then each transfer step experiences an increased reconciliation time:

$$\Delta\tau(\vec{x}) = \Delta\tau_0 f(A_{\text{cl}}(\vec{x}))$$

This affects all states equally, regardless of their internal structure.

Thus:

- light slows down in high-amplitude regions,
- clocks tick slower,
- signal propagation time increases.

These effects are not separate phenomena — they are different measurements of the same mechanism.

A.6 Emergence of Motion and Attraction

Consider a state propagating along a path γ composed of discrete steps.

The total transfer time is:

$$T[\gamma] = \sum_i \Delta\tau(A(\vec{x}_i))$$

In the continuum limit:

$$T[\gamma] = \int_{\gamma} \frac{f(A(\vec{x}))}{c} ds$$

Principle of Minimal Transfer Time

Physical states evolve along trajectories that minimize total transmission time.

This principle is not imposed. It follows directly from the fact that states propagate step-by-step.

Varying $T[\gamma]$ yields motion toward regions where transmission becomes faster per unit path — i.e. toward regions of higher amplitude.

This is the physical origin of:

- acceleration,
- attraction,
- gravitational motion.

A.7 Gradient of Amplitude as Driving Mechanism

In the weak-field regime:

$$f(A) \approx 1 + \varepsilon, \quad \varepsilon = \frac{A - A_{\text{vac}}}{A_{\text{scale}}}$$

Minimization of T leads to:

$$\boxed{\vec{a} = -\alpha \nabla A_{\text{cl}}} \quad \text{with} \quad \alpha = \frac{c^2}{A_{\text{scale}}}$$

This acceleration is not a force in the traditional sense. It reflects directional bias in transmission efficiency.

A.8 Entropy and Irreversibility

From Section 3.7, each transfer step involves finite information loss:

$$\frac{dA}{dt} = -\Gamma A + \dots \quad \Gamma > 0$$

Unavoidable consequences:

- information degrades over time,
- perfect reversibility is impossible,
- an arrow of time emerges.

Entropy growth is therefore a direct consequence of discrete state transfer.

A.9 Self-Organization Without Rules

No laws instruct the system to become complex.

Instead:

- configurations with lower transfer cost persist longer,
- unstable configurations decay,
- structures that minimize dissipation survive.

This constitutes natural selection in configuration space.

Complexity arises not because it is programmed, but because certain complex structures are more efficient at maintaining coherent transmission under dissipation.

A.10 Relation to Dark and Baryonic Phases

Appendix D showed that electromagnetic modes require amplitude above a threshold.

Appendix E explains why:

- EM modes are highly structured,
- their transmission cost is high,
- dissipation suppresses them unless substrate amplitude is sufficient.

Thus:

- dark matter corresponds to low-amplitude, low-complexity transmission regime,
- baryonic matter corresponds to high-amplitude regime where complex modes survive.

Both emerge from the same transmission law.

A.11 Extreme Limit: Collapse of Transmission

As $A \rightarrow A_{\text{crit}}$:

$$\Delta\tau \rightarrow \infty, \quad \Omega_{\text{eff}} \rightarrow 0$$

Transmission halts. All internal distinctions collapse into a single global state.

This is the physical meaning of black hole formation in F-fabric:

- no propagation,
- no internal differentiation,
- only a boundary of resonance matching with external fabric.

A.12 Summary

Established in this appendix:

1. Transmission through F-fabric is discrete and finite-time
2. Transfer time increases with structural complexity
3. Light is the minimal-complexity limit
4. Background amplitude slows all transmission
5. Motion arises from gradients of transfer time
6. Entropy and arrow of time are unavoidable
7. Self-organization requires no external rules
8. Gravity, inertia, and structure share a single origin

No additional principles are required. All previously derived results follow from this single mechanism.

A.13 Concluding Statement

The universe does not compute, optimize, or follow a program. It simply transmits states step-by-step — and everything else follows.

Appendix B

From F-Fabric Dynamics to Measured Gravitational Phenomena (Weak-Field Regime)

B.0 Purpose

This appendix derives measurable gravitational phenomena directly from F-fabric node dynamics in the weak-field regime. No comparison with other theories is made. No geometric interpretation is assumed.

Only the following chain is established:

node dynamics \rightarrow measurement protocol \rightarrow numerical predictions

B.1 Fundamental Fabric Variables

Each node is characterized by three intrinsic parameters:

- Ω — node update rate
- A — amplitude (local information density)
- Q — conserved topological charge (pattern stability)

These are the only fundamental quantities. All observable notions (time, distance, acceleration) arise from how these parameters affect measurement processes.

B.2 Operational Measurement Protocol

All physical predictions are derived using a single fixed protocol.

B.2.1 Time Measurement

A physical clock is any periodic process. In F-fabric, periodicity corresponds to circulation of a stable pattern through nodes.

Let:

- Ω_{vac} — update rate in vacuum
- $\Omega_{\text{eff}}(x)$ — local effective update rate

Measured proper time τ relates to coordinate parameter t as:

$$\frac{d\tau}{dt} = \frac{\Omega_{\text{eff}}(x)}{\Omega_{\text{vac}}}$$

Interpretation: If Ω_{eff} is reduced, clocks tick more slowly. One clock tick corresponds to one completed circulation of a stable pattern; reduced update rate increases the circulation period.

B.2.2 Distance Measurement

Distance is measured only by radar ranging.

Procedure:

1. Emit signal
2. Measure round-trip time $\Delta\tau$
3. Define distance:

$$d_{\text{radar}} = \frac{c \Delta\tau}{2}$$

Signal propagation occurs via node-to-node transfer. Effective signal speed:

$$v_{\text{signal}}(x) = \ell_{\text{fabric}} \Omega_{\text{eff}}(x)$$

with vacuum relation:

$$c = \ell_{\text{fabric}} \Omega_{\text{vac}}$$

Propagation time for coordinate interval dr :

$$dt = \frac{dr}{v_{\text{signal}}}$$

Thus radar distance:

$$d_{\text{radar}} = \int \frac{\Omega_{\text{vac}}}{\Omega_{\text{eff}}} dr$$

B.2.3 Acceleration Measurement

A test particle is a topologically stable pattern ($Q \neq 0$). Empirically, such patterns drift toward regions of higher amplitude.

Measured acceleration is defined as:

$$\vec{a} = \frac{d^2 \vec{x}}{d\tau^2}$$

In the continuum limit, fabric dynamics yield:

$$\boxed{\vec{a} = -\alpha \nabla A_{\text{cl}}}$$

where:

- A_{cl} — coarse-grained collective amplitude
- α — dimensional conversion constant (calibrated once)

The constant α has dimensions [length/time²/amplitude], ensuring consistency between fabric dynamics and measured acceleration. This form follows from first-order expansion of pattern drift in slowly varying amplitude fields.

B.3 Weak-Field Regime

$$\varepsilon(x) = \frac{A_{\text{cl}}(x) - A_{\text{vac}}}{A_{\text{scale}}}$$

Weak-field condition:

$$|\varepsilon| \ll 1$$

B.3.1 Linear Response of Node Dynamics

Empirical gravitational phenomena scale linearly with source mass. Therefore, in the weak-field regime:

$$\Omega_{\text{eff}} = \Omega_{\text{vac}}(1 - \varepsilon)$$

This relation is:

- observationally enforced
- valid only for $\varepsilon \ll 1$
- not assumed beyond this regime

Any nonlinear leading-order term would contradict the observed proportionality between source mass and all weak-field gravitational effects.

B.4 Clock Rate Suppression

$$\frac{d\tau}{dt} = 1 - \varepsilon$$

Thus clocks slow proportionally to local amplitude excess.

B.5 Radar Distance Modification

$$d_{\text{radar}} \approx \int (1 + \varepsilon) dr$$

This is not a separate physical effect — it is the same Ω -suppression observed via a different measurement channel.

B.6 Light Deflection

$$\delta\theta = \frac{4\alpha M}{b}$$

Key point:

- Ω suppression contributes a factor 2 through signal timing
- the same Ω suppression contributes a factor 2 through spatial reconstruction

These are two operational contributions of a single physical mechanism, not two independent forces. The two contributions arise because trajectory reconstruction necessarily combines timing data with radar-defined geometry.

B.7 Orbital Precession

$$\Delta\phi = \frac{6\pi\alpha M}{a(1 - e^2)}$$

B.8 Signal Time Delay

$$\Delta t_{\text{extra}} = \frac{4\alpha M}{c} \ln\left(\frac{r_1 r_2}{b^2}\right)$$

B.9 Calibration of α

$$\alpha = \frac{G}{c^2}$$

After this single calibration, all weak-field predictions are parameter-free. This appendix does not aim to predict numerical values of dimensional constants, only to demonstrate internal consistency and predictive closure after calibration.

B.10 Validity Domain

Applies only when:

- $\varepsilon \ll 1$
- static or quasi-static configurations
- length scales $\gg \ell_{\text{fabric}}$

B.11 Conclusion

Using:

- one physical mechanism (Ω suppression by A)
- one measurement protocol (clocks + radar)
- one calibration constant (α)

F-fabric dynamics reproduce all measured weak-field gravitational phenomena.

Appendix C

Phase Transition Between Dark and Baryonic Matter in F-Fabric

D.0 Purpose and Logical Position

This appendix establishes a necessary and sufficient condition under which a configuration of F-fabric can sustain electromagnetic (EM) interactions. The result is a phase distinction, not a particle distinction.

Dark matter and baryonic matter are shown to be two amplitude regimes of the same fabric, separated by a coherence–dissipation threshold.

This appendix builds directly on:

- discrete transfer dynamics (Chapter 1),
- irreversible information loss (Section 3.7),

- collective amplitude field A_{cl} (Section 4),
- topological stability via Q (Section 5),
- gravitational dynamics from ∇A_{cl} (Appendix C).

No new primitives are introduced.

C.1 What Electromagnetism Means in F-Fabric

C.1.1 EM Interaction Is Not Fundamental

The fundamental entities of F-fabric are nodes characterized by:

$$(\Omega, A, Q).$$

There is no primitive electromagnetic field. Electromagnetic interaction appears only if the fabric can sustain a specific coherent phase-transfer regime.

Thus, EM interaction is conditional, not universal.

C.1.2 Definition: Electromagnetic Mode

An electromagnetic mode is defined as:

A regime of coherent propagation of a phase variable ϕ across the node network, such that phase relations are preserved over many transfer steps.

This regime is characterized operationally by:

- **Phase coherence** — phase differences $\Delta\phi$ between neighboring nodes remain bounded.
- **Temporal persistence** — coherence survives for many oscillation periods despite irreversible losses.
- **Frequency selectivity** — the regime exists only within a restricted frequency window.

We introduce a coherence amplitude

$$a_{\text{mode}}(t),$$

which quantifies the degree of phase correlation of the oscillatory regime. It is not the substrate amplitude.

C.2 Dissipation as a Fundamental Constraint

C.2.1 Origin of Dissipation

As established in Section 3.7, each transfer step in F-fabric involves a small irreversible loss of information precision. In coarse-grained time this yields an effective dissipation rate:

$$\Gamma > 0, \quad [\Gamma] = \text{s}^{-1}.$$

This dissipation is:

- intrinsic,
- unavoidable,
- responsible for entropy growth and the arrow of time.

C.2.2 Effect on Coherent Phase Transfer

For any coherent oscillatory regime, dissipation acts as phase error accumulation. In absence of compensation:

$$a_{\text{mode}}(t) = a_{\text{mode}}(0) e^{-\Gamma t}, \quad \tau_{\text{coh}} = \Gamma^{-1}.$$

Thus, coherence has a finite lifetime.

C.2.3 Crucial Distinction of Amplitudes

We emphasize the distinction:

Quantity	Meaning
$A_{\text{cl}}(\vec{x})$	Collective amplitude of fabric substrate
$a_{\text{mode}}(t)$	Coherence amplitude of EM oscillation

Dissipation acts directly on a_{mode} , but whether coherence can be restored depends on A_{cl} . This distinction eliminates common confusions.

C.3 Coherence Restoration by High-Amplitude Fabric

C.3.1 Why Amplitude Matters

From Chapter 1:

Higher A_{cl} implies longer transfer steps and stronger inter-node coupling. As a result, phase matching during transfer becomes more accurate.

This does not add energy. It reduces phase error per step.

C.3.2 Effective Coherence Restoration Rate

We define the rate at which the network corrects accumulated phase errors:

$$R_{\text{coh}} = \kappa \frac{A_{\text{cl}}}{A_{\text{scale}}} \Omega_{\text{mode}},$$

where:

- A_{scale} is the characteristic fabric amplitude scale,
- Ω_{mode} is the oscillation frequency,
- κ is a dimensionless efficiency factor encoding network connectivity and phase-matching geometry.

Interpretation: R_{coh} measures how fast phase coherence is restored relative to the oscillation timescale.

C.3.3 Stability Criterion (Key Result)

A coherent EM mode exists if and only if:

$$R_{\text{coh}} \geq \Gamma$$

Substituting:

$$\kappa \frac{A_{\text{cl}}}{A_{\text{scale}}} \Omega_{\text{mode}} \geq \Gamma.$$

This yields the amplitude threshold:

$$A_{\text{threshold}} = \frac{\Gamma}{\kappa \Omega_{\text{mode}}} A_{\text{scale}}$$

This equation is the central result of Appendix D.

C.4 Hydrogen as Operational Calibration

C.4.1 Why Calibration Is Necessary

At present, κ and Γ are defined phenomenologically and require numerical simulation of node dynamics. Therefore, an operational reference point is required.

C.4.2 Hydrogen Fixes the Threshold

Empirical fact: Hydrogen is the simplest stable electromagnetically active structure in nature.

Interpretation in F-fabric:

$$A_{\text{cl}} \geq A_{\text{threshold}}.$$

Thus:

$$A_{\text{threshold}} \equiv A_{\text{H}}$$

This is not circular reasoning, but scale calibration, analogous to fixing physical constants from experiment.

C.5 Dark Matter as Sub-Threshold Fabric Phase

C.5.1 Definition

Dark matter corresponds to:

$$A_{\text{cl}} < A_{\text{threshold}}.$$

C.5.2 Properties

Sub-threshold fabric:

- ✓ produces gravitational effects via ∇A_{cl} ,
- ✓ can host topologically protected structures ($Q \neq 0$),
- ✗ cannot sustain EM coherence,
- ✗ cannot form atomic structure,
- ✗ is electromagnetically invisible.

No exotic particles are required.

C.5.3 Phase Transition

The transition is continuous:

- increasing A_{cl} suppresses decoherence,
- EM interaction turns on smoothly,
- gravitational effects remain continuous across the threshold.

This is a phase transition, not a decay or conversion.

C.6 Entropy, Time Arrow, and Cosmology

Dissipation $\Gamma > 0$:

- defines the arrow of time,
- makes low-amplitude phases dissipatively stable,
- naturally favors dark matter as the dominant late-time state.

Baryonic matter is an excited, coherence-maintained phase.

C.7 Summary

Established:

- Electromagnetism is a conditional coherence regime.
- Dissipation imposes a strict stability limit.
- An amplitude threshold separates two fabric phases.
- Dark and baryonic matter are not different substances.
- Gravity acts in both phases identically.

Key equation:

$$A_{\text{threshold}} = \frac{\Gamma}{\kappa \Omega_{\text{mode}}} A_{\text{scale}}.$$

No geometry. No exotic particles. No separate dark sector.

Only discrete transfer, dissipation, and amplitude.

Appendix D

Formal Node Dynamics and Discrete Transfer Laws in F-Fabric

D.0 Purpose

This appendix provides the minimal formal dynamical framework underlying all results derived in the main text and subsequent appendices.

Its purpose is to:

- fix the discrete evolution laws of F-fabric nodes,
- define transfer, dissipation, and causality at the microscopic level,
- establish the regime of validity of continuum and coarse-grained descriptions.

No geometric assumptions, forces, or external principles are introduced.

D.1 Node State Variables

Each F-fabric node i is fully characterized by the triplet:

$$(\Omega_i, A_i, Q_i),$$

where:

- Ω_i is the intrinsic update rate of the node,
- A_i is the local amplitude (information density),
- Q_i is a conserved topological charge encoding pattern stability.

Nodes possess no absolute position; all relations are defined by adjacency and transfer compatibility.

D.2 Discrete Transfer Law

State propagation occurs via discrete transfer between neighboring nodes.

Let $\mathcal{N}(i)$ denote the set of nodes directly connected to node i .

The amplitude evolution law is:

$$\dot{A}_i = \sum_{j \in \mathcal{N}(i)} J_{ij} (A_j - A_i) - \Gamma A_i$$

where:

- $J_{ij} \geq 0$ is the local transfer coupling,
- $\Gamma > 0$ is the irreversible dissipation rate.

This equation encodes:

- locality (only neighboring nodes interact),
- finite propagation speed,
- intrinsic irreversibility.

No global synchronization or instantaneous transfer is permitted.

D.3 Update Rate Modulation

The effective update rate of a node depends on its local amplitude environment.

In the weak-amplitude regime:

$$\Omega_i = \Omega_{\text{vac}} (1 - \varepsilon_i), \quad \varepsilon_i = \frac{A_i - A_{\text{vac}}}{A_{\text{scale}}}, \quad |\varepsilon_i| \ll 1.$$

This relation is empirical and operational, and applies only within the weak-field domain.

D.4 Phase Transport and Pattern Circulation

Phase variables ϕ_i associated with oscillatory patterns evolve through discrete circulation.

At leading order, phase transfer follows:

$$\dot{\phi}_i = \Omega_i + \sum_{j \in \mathcal{N}(i)} K_{ij} \sin(\phi_j - \phi_i),$$

where K_{ij} encodes phase-matching efficiency.

Stable circulation of phase defines periodic processes and physical clocks.

D.5 Conservation of Topological Charge

Topological charge Q characterizes globally stable configurations of phase and amplitude.

Under local transfer and dissipation:

$$\boxed{\frac{dQ}{dt} = 0}$$

provided no singular node reconnection or boundary interaction occurs.

Dissipation reduces amplitude but does not destroy topological invariants.

D.6 Causality and Finite Signal Speed

All information transfer requires finite time.

Let ℓ_{fabric} denote the characteristic inter-node separation.

The maximum signal speed is:

$$c = \ell_{\text{fabric}} \Omega_{\text{vac}}.$$

This speed is not imposed kinematically but emerges from discrete update constraints.

No signal or pattern can propagate faster than this limit.

D.7 Continuum and Coarse-Grained Limit

For length scales much larger than ℓ_{fabric} , a coarse-grained amplitude field may be defined:

$$A_{\text{cl}}(\vec{x}) = \sum_{i \in V(\vec{x})} A_i.$$

In this limit, the discrete transfer equation reduces to:

$$\partial_t A_{\text{cl}} = D \nabla^2 A_{\text{cl}} - \Gamma A_{\text{cl}},$$

with effective diffusion coefficient $D \sim J \ell_{\text{fabric}}^2$.

This limit is approximate and breaks down near strong gradients or critical amplitudes.

D.8 Scope and Limitations

The formalism in this appendix applies when:

- node connectivity is locally finite,
- amplitude variations are smooth over several nodes,
- dissipation remains perturbative,
- no topological reconnection occurs.

Strong-field, collapse, and horizon-forming regimes require separate treatment.

D.9 Conclusion

This appendix fixes the microscopic dynamical rules of F-fabric:

- discrete state transfer,
- local coupling,
- finite propagation speed,

- intrinsic dissipation,
- topological stability.

All emergent phenomena discussed in the main text and subsequent appendices follow from these rules without additional assumptions.

Appendix E

Continuum Limit, Scaling, and Dimensional Consistency in F-Fabric

E.0 Purpose

This appendix establishes the continuum approximation, scaling relations, and dimensional consistency of the F-fabric formalism.

Its goals are:

- to define when a coarse-grained description is valid,
- to derive emergent length and time scales,
- to fix the origin of signal speed and dimensional constants,
- to clarify the limits of applicability of continuum equations.

No new dynamical principles are introduced.

E.1 Coarse-Graining Procedure

Let A_i denote the amplitude of discrete node i .

For length scales much larger than the characteristic node separation ℓ_{fabric} , define a coarse-grained amplitude field:

$$A_{\text{cl}}(\vec{x}) = \sum_{i \in V(\vec{x})} A_i,$$

where $V(\vec{x})$ is a mesoscopic volume containing many nodes.

This definition is purely operational and does not assume an underlying geometric manifold.

E.2 Emergent Length Scale

The characteristic inter-node separation ℓ_{fabric} defines the minimal spatial resolution of the fabric.

Continuum descriptions are valid only when:

$$L \gg \ell_{\text{fabric}},$$

where L is the characteristic scale of amplitude variation.

Below this scale, discrete transfer dynamics must be used.

E.3 Emergent Time Scale and Signal Speed

Each node updates at a characteristic rate Ω .

In vacuum:

$$\Omega = \Omega_{\text{vac}}.$$

The maximal signal propagation speed is defined as:

$$c = \ell_{\text{fabric}} \Omega_{\text{vac}}$$

This speed emerges from:

- discrete node spacing,
- finite update rate,
- causal transfer constraints.

It is not imposed as a kinematic postulate.

E.4 Continuum Limit of Discrete Transfer

Starting from the discrete transfer equation:

$$\dot{A}_i = \sum_{j \in \mathcal{N}(i)} J_{ij}(A_j - A_i) - \Gamma A_i,$$

and assuming locally uniform connectivity and smooth amplitude variation, the coarse-grained field satisfies:

$$\partial_t A_{\text{cl}} = D \nabla^2 A_{\text{cl}} - \Gamma A_{\text{cl}}$$

with effective diffusion coefficient:

$$D \sim J \ell_{\text{fabric}}^2.$$

This approximation holds only when gradients satisfy:

$$|\nabla A_{\text{cl}}| \ll \frac{A_{\text{cl}}}{\ell_{\text{fabric}}}.$$

E.5 Dimensional Analysis

The fundamental dimensional assignments are:

Quantity	Dimension
A	informational amplitude
Ω	s^{-1}
ℓ_{fabric}	m
c	m s^{-1}
Γ	s^{-1}
D	$\text{m}^2 \text{s}^{-1}$

Derived quantities such as acceleration:

$$\vec{a} = -\alpha \nabla A_{\text{cl}}$$

are dimensionally consistent provided:

$$[\alpha] = \frac{\text{m}}{\text{s}^2 A}.$$

E.6 Validity of Continuum Approximation

The continuum description is valid only under the following conditions:

- amplitude varies slowly over many nodes,
- dissipation remains perturbative,
- no critical or collapse regime is approached,
- topological connectivity remains fixed.

Near strong gradients, horizons, or amplitude collapse, discrete dynamics must be restored.

E.7 Relation to Operational Measurements

All operational measurements (time, distance, acceleration) rely on the continuum limit:

- clocks average over many update cycles,
- radar distances average over many transfer steps,
- acceleration is inferred from coarse-grained drift.

Thus, the continuum approximation is not fundamental but instrumental.

E.8 Breakdown at Critical Amplitudes

As A_{cl} approaches critical values:

$$\Omega_{\text{eff}} \rightarrow 0, \quad \ell_{\text{eff}} \rightarrow \infty,$$

the continuum description fails.

This signals the onset of collapse regimes discussed elsewhere.

E.9 Conclusion

This appendix establishes that:

- spatial and temporal scales emerge from discrete transfer,
- signal speed arises from node spacing and update rate,
- continuum equations are controlled approximations,
- dimensional consistency follows without additional postulates.

Together with Appendix D, this completes the formal closure of the F-fabric framework.