

RISC-V Assembly Language and Architecture

Feb 19th, 2026

Alan Johnson

ii

Published by xelsys
www.risccomputing.com
info@alanjohnson.tech
Copyright © 2026 Alan Johnson. All rights reserved.

iii

TARGET AUDIENCE

• Embedded systems enthusiasts

• Computer architecture learners

• Developers interested in system-level programming

• Computer science students

PRE-REQUISITES

Knowledge of the following areas will ease the journey.

• Familiarity with basic computer hardware

Microprocessor architecture

• Memory and data buses, register, ALUs, …

• Experience with Linux ®

o Installation of the Operating System and applications

o Bash

• Basic knowledge of the C programming language

• High school level mathematics1

• A RISC-V system2 or an emulated device.

1 Some of the optional tasks involve linear algebra, which will be more familiar to those at a higher level. A good reference is found at
https://www.khanacademy.org/math/linear-algebra

2 RISC-V based hardware is preferred over simulation.

https://www.khanacademy.org/math/linear-algebra

iv

Summary of the document

Overview

This book is an in-depth introduction to assembly language programming using the RISC-V instruction set
architecture (ISA). It is designed for readers with basic C/Linux experience, embedded systems
enthusiasts, computer architecture learners, system-level developers, and computer science students.
The text emphasizes foundational concepts, practical coding techniques, and the specifics of the RISC-V
unprivileged architecture, with numerous examples, exercises, and diagrams. There may be areas that
require supplemental knowledge. The focus is on the RISC-V instruction set - unprivileged architecture.

Structure and Key Topics

• Assembly vs. High-Level Languages: Explains the low-level control and transparency of assembly
compared to the abstraction of high-level languages.

• Assembling, Compiling, and Linking: Describes the process of converting human-readable code
to machine code and linking object files.

• Hardware, Software, Firmware: Differentiates these core system components.

• Number Systems: Covers binary, hexadecimal, BCD, conversions, complements, and arithmetic.

• Logic Operations: Introduces AND, OR, XOR, NOT, and truth tables.

• RISC-V Origins & Architecture: Discusses the open-source nature, 32/64-bit modes, and
instruction extensions (M, F, D, C).

• Register Set: Details the 32 general-purpose registers and their ABI names2. Programming
Concepts

• Memory Access: Load/store instructions and addressing modes.

• Arithmetic/Logic: Integer math, shifts, multiplication, division, and condition codes.

• Branching & Loops: Conditional and unconditional branching, loop counters.

• Stack, Macros, Functions: Stack usage, modular code, macro definitions.

• C and Assembly Integration: In-line assembly, calling conventions.

• Floating-Point Arithmetic: IEEE 754 formats, rounding, comparisons.

• Vector Operations: SIMD-style instructions, vector registers, masking, merging.

• Cross-Compiling and Simulation: Installation and use of the Spike simulator, toolchain setup,
debugging, and cross-compilation for RISC-V on non-native hosts.

Detailed Chapter Highlights

v

• Chapter 1: Lays the groundwork for assembly language, number systems, logic, and the rationale
for using assembly.

• Chapter 2: Introduces RISC-V architecture, instruction set variants, register conventions, and
essential tools (GNU assembler, linker, GDB, objdump, make).

• Chapter 3: Focuses on memory operations, addressing modes, linker relaxation, and practical
examples of load/store instructions.

• Chapter 4: Explores arithmetic and logical operations, including overflow detection,
multiplication/division, and shift instructions.

• Chapter 5: Covers control flow, loops, conditional and unconditional branching, and program
structure.

• Chapter 6: Discusses stack management, modular code, macros, and function conventions.

• Chapter 7: Explains how to interface assembly with C, use inline assembly, and optimize code.

• Chapter 8: Details floating-point operations, IEEE 754 compliance, rounding modes, and
exception handling.

• Chapter 9: Introduces vector processing, vector registers, SIMD operations, and advanced vector
instructions.

• Chapter 10: Guides on cross-compiling, using the Spike simulator, and running/debugging RISC-
V programs on various platforms

Appendices and Resources

• Appendices: Include GDB commands, ASCII code tables, references, and assembly directives.

• Figures, Listings, and Tables: The book is rich with diagrams, code listings, and tables to illustrate
concepts and provide practical reference.

Notable Features

• Practical Examples: Each chapter includes code samples, exercises, and step-by-step
walkthroughs.

• Toolchain Guidance: Detailed instructions for setting up and using the GNU toolchain, simulators
(CPUlator, RARS), and debugging tools.

• Modern RISC-V Focus: Emphasizes open-source, extensible, and modern aspects of RISC-V,
including vector and floating-point extensions.

• Integration with C: Shows how to combine assembly with high-level languages for system-level
programming.

vi

Conclusion

This document is a comprehensive, hands-on guide to RISC-V assembly language and architecture,
suitable for learners and practitioners aiming to master low-level programming, system architecture, and
the RISC-V ecosystem. It balances foundational theory with practical application, making it a valuable
resource for both study and reference.

vii

Contents
Chapter 1. The fundamentals of assembly language. .. 1-1

1.1. What is assembly language?... 1-1

1.1.1. High-level languages Vs Assembly language .. 1-1

1.1.2. Architecture and Machine code ... 1-1

1.1.3. Assembling, compiling and linking ... 1-2

1.1.4. Pseudocode .. 1-2

1.1.5. Why use assembly? .. 1-2

1.2. Hardware Vs Software Vs Firmware ... 1-3

1.2.1. Hardware .. 1-3

1.2.2. Software ... 1-3

1.3. Number Systems ... 1-3

1.3.1. Binary, Octal, Hexadecimal .. 1-3

1.3.2. Converting Binary to Decimal ... 1-5

1.3.3. Converting Hexadecimal to Decimal .. 1-9

1.3.4. Converting Decimal to Hexadecimal .. 1-10

1.3.5. Binary Fractions .. 1-10

1.3.6. Converting a binary fraction to decimal ... 1-10

1.3.7. One and Two’s complement ... 1-11

1.3.8. Addition and subtraction of binary numbers ... 1-13

1.3.9. Binary subtraction .. 1-14

1.3.10. Binary multiplication .. 1-15

1.3.11. Binary Division.. 1-16

1.3.12. Shift/ Rotate instructions to perform multiply and divide operations 1-17

1.3.13. Binary Coded Decimal (BCD) .. 1-17

1.3.14. Floating Point ... 1-21

1.4. Logic operations – and, OR, Exclusive OR, NOT .. 1-25

Summary .. 1-28

Exercises for chapter1 .. 1-29

Chapter 2. Getting Started ... 2-1

viii

2.1. Origin of RISC-V... 2-1

2.2. Architecture .. 2-1

2.2.1. RISC-V Registers ... 2-3

2.2.2. Additional fields funct3 and funct7 .. 2-12

2.3. Coding Tools ... 2-13

2.3.1. Editing files ... 2-14

2.3.2. Comments .. 2-17

2.3.3. Assembling ... 2-17

2.3.4. Linker .. 2-18

2.3.5. GDB – The GNU Debugger .. 2-21

2.3.6. Objdump ... 2-23

2.3.7. Make ... 2-24

2.4. Choosing a candidate platform .. 2-25

2.4.1. Hardware Platforms ... 2-25

2.4.2. Emulation and Simulation .. 2-26

2.4.3. Using strace .. 2-37

RISC-V Instructions Covered in Chapter 2 .. 2-38

Exercises for chapter 2 ... 2-39

Chapter 3. Dealing with memory ... 3-2

3.1. Load and Store instructions .. 3-2

3.1.1. LOAD Instructions (Memory → Registers) ... 3-2

3.2. Outputting (Writing) ASCII text .. 3-6

3.3. Inputting (reading) values... 3-7

3.4. Relative and absolute addressing ... 3-8

3.4.1. RISC-V Assembler Modifiers ... 3-9

3.5. Linker Relaxation .. 3-12

3.5.1. Further relaxation example .. 3-17

3.5.2. Enhancements to GDB ... 3-20

Exercises for chapter3 .. 3-22

RISC-V instructions covered in chapter 3 ... 3-23

ix

Chapter 4. Arithmetic operations (First Pass) .. 4-1

4.1. Data Sizes .. 4-1

4.2. Integer Instructions .. 4-1

4.2.1. Register ADD .. 4-1

4.2.2. ADD Immediate .. 4-7

4.2.3. MV instruction .. 4-11

4.3. Condition Codes .. 4-12

4.3.1. Detecting an oVerflow condition ... 4-13

4.3.2. RVM Instructions .. 4-13

4.3.3. Multiply Instructions .. 4-13

4.3.4. Illustrating the mechanics of 64-bit multiplication going to 128 bits 4-17

4.3.5. Divide Instructions.. 4-19

4.3.5.1. Division by zero .. 4-19

4.4. Shift Operations .. 4-20

4.5. Logical Instructions ... 4-23

4.5.1. Logical function observations .. 4-25

Exercises for chapter 4 ... 4-27

RISC-V instructions covered in chapter 4 ... 4-28

Chapter 5. Loops, Branches and Conditions .. 5-1

5.1. J-Type and B-Type instructions ... 5-1

5.1.1. B-Type instruction details .. 5-1

5.1.2. J-Type instruction details ... 5-2

5.2. Implementing a loop counter to square numbers ... 5-3

5.2.1. Summary of jump instructions ... 5-5

Exercises for chapter 5 ... 5-7

RISC-V jump and branch instructions covered in chapter 5 .. 5-8

Chapter 6. The Stack, Macros and Functions ... 6-1

6.1. Overview ... 6-1

6.1.1. The Stack .. 6-1

6.1.2. Functions .. 6-3

x

6.2. Calling nested routines ... 6-4

6.2.1. Combining separate programs ... 6-6

6.3. Macros .. 6-13

6.3.1. Using the Stack – further examples ... 6-17

6.3.2. Macros and routines – numeric labels ... 6-28

6.3.3. Push and Pop Macros ... 6-30

6.3.4. Macros and routines – POP and PUSH Caveats ... 6-33

Exercises for chapter6 .. 6-34

Summary of instructions used in chapter 6 ... 6-36

Chapter 7. RISC_V assembly and C together ... 7-2

7.1. Example C code... 7-2

7.1. Optimizing code with GCC .. 7-5

7.2. C optimization techniques .. 7-5

7.2.1. Compile-time optimization .. 7-6

7.2.2. Run-time optimization ... 7-8

7.3. Calling assembly functions from a high-level language .. 7-9

7.3.1. Basic ASM ... 7-15

7.3.1. Extended ASM .. 7-15

7.4. Format Specifiers .. 7-19

Exercises for chapter 7 ... 7-23

Summary of RISC-V instruction used in chapter 7 ... 7-24

Chapter 8. Floating-Point ... 8-1

8.1. RISC-V floating-point capability .. 8-1

8.1.1. Floating-point register set .. 8-1

8.2. Instruction types ... 8-3

8.2.1. Arithmetic instructions ... 8-3

8.2.2. Load and store instructions .. 8-4

8.2.3. Convert instructions ... 8-4

8.2.4. Categorization instructions .. 8-4

8.2.5. Comparison instructions .. 8-4

xi

8.2.6. Miscellaneous instructions ... 8-4

8.3. Instruction format .. 8-4

8.3.1. Floating point control and status register .. 8-5

8.3.2. Rounding Modes .. 8-6

8.3.3. Accrued Exception bits ... 8-6

8.4. Floating-Point comparison instructions ... 8-16

8.5. Floating-point classification instructions .. 8-17

8.6. Exercises for chapter 8 ... 8-21

8.7. Summary of RISC-V instructions used in chapter 8 .. 8-21

Chapter 9. Vector operations ... 9-1

9.1. Vector system support ... 9-1

9.2. Vector registers overview ... 9-2

9.2.1. General purpose vector registers ... 9-2

9.2.2. Vector CSR’s ... 9-2

9.3. Vector addition/ subtraction example ... 9-6

9.3.1. Adding a vector and a scalar .. 9-9

9.3.2. Vector CSR content after execution of Listing 9-2 .. 9-12

9.4. Moving elements with vslide .. 9-12

9.5. Grouping vector registers ... 9-14

9.5.1. Masking and merging ... 9-18

Summary of RISC-V instructions used in chapter 9 ... 9-22

Chapter 10. Spike simulator and Cross compiling ... 10-1

10.1. Building the Toolchain and Spike ... 10-1

10.1.1. Installing the toolchain .. 10-3

10.1.2. Installing Spike and PK ... 10-4

10.1.3. Spike installation .. 10-4

10.1.4. PK installation .. 10-4

10.1.5. Testing .. 10-4

10.2. Cross-compiling C code ... 10-4

10.3. Cross-assembling and linking.. 10-6

xii

10.3.1. Using objdump ... 10-6

Further resources ... 10-9

Appenix A. GDB Commonly Used Commands ... 1

Appenix B. ASCII Code ... 1

Appenix C. References and Resources .. 1

Appenix D. Assembly Directives .. 10-i

xiii

Figures

Figure 1-1 Converting Decimal to binary using repeated division by 210... 1-9

Figure 1-2 Converting Decimal to binary using repeated division by 1610... 1-10

Figure 1-3 Using shift operations to multiply and divide by two ... 1-17

Figure 1-4 Interpretation of Bias with floating point ... 1-23

Figure 1-5 Addition of two floating point numbers ... 1-25

Figure 2-1 RISC-V register layout ... 2-4

Figure 2-2 LUI left shift of IMM bits into bits 31:12 ... 2-8

Figure 2-3 Tracing AUIPC and LUI instructions .. 2-9

Figure 2-4 Using lui and addi to generate a 32-bit immediate value. ... 2-10

Figure 2-5 CPUlator home page ... 2-34

Figure 2-6 Compiling and executing code with CPUlator .. 2-35

Figure 2-7 RARS Execution screen ... 2-36

Figure 2-8 Downloading RARS .. 2-37

Figure 3-1 GDB trace of listing3-1 .. 3-5

Figure 3-2 AUIPC and ADDI instruction example to generate an address ... 3-9

Figure 3-3 GDB using TUI ... 3-21

Figure 4-1 ADD and ADDW instructions .. 4-3

Figure 4-2 Calculating LI to, 0xffdc5678 non-aliased steps .. 4-6

Figure 4-3 Illustrating the add and addiw instructions .. 4-7

Figure 4-4 GDB trace comparing ADD (64-bit) with ADDIW (64-bit) ... 4-9

Figure 4-5 Comparing ADDI on a 32-bit system to ADDIW on a 64-bit system 4-10

Figure 4-6 MULW instruction ... 4-17

Figure 4-7 Using a manual long multiplication method to multiply two 64-bit hex numbers 4-18

Figure 4-8 SLL instruction sll t2, t0, t1 .. 4-22

Figure 4-9 GDB trace of Listing 4-10 ... 4-23

Figure 5-1 Breakdown of blt instruction .. 5-2

Figure 5-2 Bit breakdown of JAL instruction .. 5-3

Figure 5-3 Program flow of makesquares listing ... 5-5

Figure 6-1 Stack contents operations .. 6-2

xiv

Figure 6-2 Part one of Listing 6-11’s program flow ... 6-22

Figure 6-3 Part two of Listing 6-11’s program flow .. 6-23

Figure 7-1 Using GDB with GCC.. 7-22

Figure 8-1 Floating-point registers ... 8-2

Figure 8-2 FADD bit fields .. 8-5

Figure 8-3 FCSR bit definitions ... 8-5

Figure 8-4 Field breakdown of FADD.s f2,f0,f, rtz instruction... 8-6

Figure 8-5 GDB showing floating-point number classification .. 8-19

Figure 8-6 Annotated instruction steps to generate a subnormal number ... 8-20

Figure 9-1 Vtype register bit fields ... 9-4

Figure 9-2 Using the CSRR instruction to view Vector CSR values ... 9-5

Figure 9-3 Simultaneous addition of multiple array elements .. 9-6

Figure 9-4 GDB showing vector elements .. 9-8

Figure 9-5 Bit field breakdown for vector store instruction .. 9-9

Figure 9-6 Adding a scalar to all elements of a vector ... 9-10

Figure 9-7 Grouping vector registers ... 9-15

Figure 9-8 Loading two vector registers with one instruction ... 9-17

Figure 9-9 Operating on two vector registers with a single add instruction ... 9-18

Figure 9-10 CSR registers after execution of the vsetivli t0, 16, e32, m2 instruction 9-18

xv

Tables

Table 1-1 Binary, Decimal and Hexadecimal equivalents .. 1-4

Table 1-2 Converting decimal to binary ... 1-9

Table 1-3 Signed number representation. ... 1-11

Table 1-4 Signed and unsigned numbers ... 1-12

Table 1-5 Data type sizes ... 1-14

Table 1-6 Double-Dabble example ... 1-20

Table 1-7 Three digit double dabble example ... 1-21

Table 1-8 Floating-Point formats ... 1-22

Table 1-9 BIAS within single precision IEEE 754 ... 1-23

Table 1-10 Truth table - AND ... 1-26

Table 1-11 Truth table - OR .. 1-26

Table 1-12 Truth table - XOR .. 1-26

Table 1-13 Simple example of encoding text using XOR ... 1-27

Table 2-1 Base integer instruction set variants ... 2-3

Table 2-2 Caller/Callee Responsibility for X registers .. 2-5

Table 2-3 Bit fields of the addi I-type instruction .. 2-7

Table 2-4 Bit fields of the add R-Type instruction.. 2-7

Table 2-5 Bit fields of the sw S-Type instruction.. 2-8

Table 2-6 AUIPC example ... 2-9

Table 2-7 LUI example .. 2-9

Table 2-8 Bit fields of the auipc U-Type instruction... 2-10

Table 2-9 Bit fields of the B-Type instruction .. 2-11

Table 2-10 Bit fields of the J-Type instruction ... 2-12

Table 2-11 Funct field usage with instruction types. ... 2-13

Table 2-12 Funct fields used for R-Type Integer instructions .. 2-13

Table 2-13 GNU Tools associated with assembling and linking ... 2-14

Table 2-14 Assembly language sections .. 2-15

Table 2-15 Commonly used GDB commands ... 2-22

xvi

Table 3-1 Using GDB to display memory contents .. 3-2

Table 3-2 Parameters required by the Write syscall .. 3-6

Table 3-3 Parameters required by the read syscall ... 3-7

Table 3-4 Absolute and relative adressing ... 3-10

Table 3-5 Comparison of relaxed and non-relaxed code ... 3-15

Table 4-1 Data Types .. 4-1

Table 4-2 Sign extension example ... 4-5

Table 4-3 Detecting an overflow condition (signed) .. 4-13

Table 4-4 Detecting an overflow condition (unsigned) ... 4-13

Table 4-5 Summary of RVM Multiply Instructions ... 4-18

Table 4-6 RV32 Shift Instructions ... 4-21

Table 4-7 RISC-V Logical Instructions ... 4-24

Table 5-1 Conditional branch instructions ... 5-2

Table 7-1 C optimization levels .. 7-6

Table 7-3 Inline assembly template ... 7-16

Table 7-3 printf format specifiers .. 7-20

Table 8-1 Bit fields of single and double precision floating-point numbers .. 8-3

Table 8-2 Floating-point register width ... 8-3

Table 8-3 Field meaning of FADD.s instruction .. 8-5

Table 8-4 Rounding mode bits ... 8-6

Table 8-5 Floating-point comparison instructions ... 8-16

Table 8-6 Floating-point classes ... 8-17

Table 9-1 Vector CSRs .. 9-3

Table 9-2 Vtype SEW bit meaning .. 9-3

Table 9-3 LMUL and grouping correspondence ... 9-14

Table 10-1 Spike interactive commands for debugging ... 10-8

xvii

Listings

Listing 2-1Assembly code example ... 2-14

Listing 2-2 Interacting with assembly sections. .. 2-16

Listing 3-1 Basic read (load) and write (store) memory operation ... 3-3

Listing 3-2 Use of the Write Syscall ... 3-6

Listing 3-3 Input operation .. 3-7

Listing 3-4-Relative addressing example .. 3-10

Listing 3-5 Using absolute addressing with %lo and %hi .. 3-11

Listing 3-6 Non relaxed version of code .. 3-12

Listing 3-7 Relaxed version of code ... 3-13

Listing 3-8 Further example of linker relaxation use .. 3-17

Listing 4-1 ADD and ADDW instructions .. 4-2

Listing 4-2 ADDi example .. 4-7

Listing 4-3 MV instruction ... 4-11

Listing 4-4 Use of SUB and SUBW instructions ... 4-12

Listing 4-5 Multiply instructions on RV32 ... 4-14

Listing 4-6 64-bit multiplication .. 4-15

Listing 4-7 Further Multiply instructions on RV64 .. 4-16

Listing 4-8 Division example .. 4-19

Listing 4-9 Further Division examples ... 4-19

Listing 4-10 Shift instructions .. 4-22

Listing 4-11 Logical Instructions (RV64) .. 4-24

Listing 5-1 Squaring numbers from 1 to 20.. 5-3

Listing 6-1 Allocation and deallocation of the stack .. 6-2

Listing 6-2 Nested routines example. .. 6-4

Listing 6-3 main.s .. 6-6

Listing 6-4 squareit.s ... 6-9

Listing 6-5 Makefile for squareit .. 6-10

Listing 6-6 Callerprogram ... 6-12

Listing 6-7 Called program ... 6-12

xviii

Listing 6-8 Macro example (callmacro.s) .. 6-13

Listing 6-9 called macro program (printmacro.s) .. 6-14

Listing 6-10 Internal Macro used to print newline character for the squares program 6-15

Listing 6-11 Using the stack with the squares program .. 6-18

Listing 6-12 Main program passing a sting to be printed .. 6-24

Listing 6-13 Macro program to print string .. 6-24

Listing 6-14 Push Macro ... 6-31

Listing 6-15 Pop Macro .. 6-31

Listing 6-16 Using the push and pop macros ... 6-31

Listing 7-1 Basic C program .. 7-2

Listing 7-2 C program with user input .. 7-8

Listing 7-3 C program calling an external assembly routine .. 7-9

Listing 7-4 RISC-V multiply function called from C .. 7-9

Listing 7-5 Basic ASM example .. 7-15

Listing 7-6 Extended ASM example ... 7-16

Listing 7-7 Further BASIC asm example ... 7-18

Listing 7-8 Using the printf function with assembly code .. 7-20

Listing 8-1 Adding two double-precision floating-point numbers .. 8-7

Listing 8-2 Floating-point rounding using static modes .. 8-9

Listing 8-3 Using dynamic rounding mode .. 8-11

Listing 8-4 Use of sqrt instruction and reading the FCSR register .. 8-13

Listing 8-5 Classification of numbers - subnormal and quiet NaN .. 8-18

Listing 9-1 Vector to vector addition/subtraction .. 9-6

Listing 9-2 Adding a vector and a scalar .. 9-10

Listing 9-3 Use of vector vslide instructions.. 9-12

Listing 9-4 Grouping vector registers .. 9-15

Listing 9-5 Use of vmerge instruction ... 9-18

Chapter 1. The fundamentals of assembly language.

Overview of the chapter

Chapter 1 lays the foundation for understanding assembly language. The focus is on general principles
which are essential prior to delving into the specifics of RISC-V. Topics include the purpose, structure,
and advantages of assembly programming, and introduces the number systems and logic operations that
underpin low-level code.

1.1. What is assembly language?

Assembly language is a computer language that is much closer to the operation of the computer itself.
Today most of the coding is performed using languages that are easier for humans to understand, as far
as assembly language goes the coding language uses abbreviations to give an insight into the nature of
the operation being performed. An example could be bgt which stands for branch if greater or less than
(some condition)

1.1.1. High-level languages Vs Assembly language

Many high-level languages place a strong emphasis on abstraction, treating functions as impenetrable
black boxes and hides the inner workings. Assembly language takes a different approach and allows
(indeed mandates) the coder to familiarize themself with the innards of the system.

The former method is like a Rapid Application Development (RAD) methodology that works well with
teams whereas the second approach often includes smaller groups with specialized knowledge. Both
approaches have their place. Digital computers inherently process data in one of two states (binary) so
it is essential that we understand the low -level world of one’s and zero’s.

Strangely enough, assembly language programming has been gaining in popularity after a hiatus, due to
the rise in higher level, object-oriented languages. This comeback may be attributed to the rapid
development of robotics, self-driving cars and other autonomous devices that require sensors reacting
to real-time events. It is envisaged that assembly language programmers will be in higher demand during
the coming decade.

1.1.2. Architecture and Machine code

Processors have different architectures, and they each understand their own machine code instructions
– at their very heart these instructions are combinations of binary numbers that instruct the processor
how to proceed. Binary numbers are cumbersome for human operators and instead a set of mnemonic
instructions are used. A hypothetical example could be an instruction such as add r1, r2,r3 which
would add two numbers together that are contained in register23 and register3, placing the result in
register1 or add r1, r2, 45 which could add the value 45 to the value contained in register2, placing

3 Registers are low-capacity, high-speed storage elements, (typically anywhere from one to eight bytes in size) contained within the processor
architecture.

Chapter 1 Foundations

1-2

the result in register1. The corresponding native machine code (again hypothetical) could be the binary
code 10101100 00010010 00101100. The mnemonic instructions make up the assembly language.

1.1.3. Assembling, compiling and linking

The role of the assembler (program) is to convert programmer-readable assembly instructions into the
corresponding machine code instructions. The output code is termed an object file. Conversely a
disassembler converts machine code instructions back into assembly language. The assembler has
additional roles such as understanding a set of directives that can define and place data into the
computer’s memory locations. An example could be a set of error codes defined as textual informational
messages. These messages are defined by the programmer rather than the specific processor itself. There
are a number of these directives, and they will be discussed in more detail as the document progresses.

Higher-level languages use compilers to translate to machine code. After the assembly or compilation
process the object files are linked to form an executable program. The linker may act on individual or
multiple files. High level language instructions do not normally have a one-to-one correspondence with
the underlying machine code instructions. They are designed to be more instinctive to the programmer
by providing English like keywords such as if ..then, while, and print. High level languages can be
interpretive and translated into machine code instructions during runtime, or pre-compiled before
runtime into native machine-code.

1.1.4. Pseudocode

Pseudocode is used prior to writing real, syntactically4 correct code. It outlines a set of algorithmic
instructions, describing the program flow at a higher level. The benefit is to focus and plan the tasks
ahead without getting too involved in low-level syntactical details, though logic errors may still persist.
The flow is typically Algorithm → Pseudocode → Actual computer code.

Although pseudocode is not strictly defined, keywords such as IF-THEN, WHILE, GREATER THAN, . . ., are
used to define program-flow.

1.1.5. Why use assembly?

Assembly language has a direct relationship with the CPU that it is running on and as a result the
programs will be more compact and efficient. It is also more suited to system-level programming. A
disadvantage is that many lines of code may be required when compared to high level languages and as
a result a hybrid approach may be deployed where the bulk of the code could be written using C or
Python which can pass parameters to and accept return values from a smaller section of assembly code.
Portability is also an issue since the assembly language is tightly coupled with the CPU that it is running
on.

4 The syntax of a language is the grammatical structure of a language. Computer languages usually have a very formal structure, with the precise
order of objects used in a command strictly defined. The statement “an orange has blue skin” is syntactically correct but not semantically correct.

Chapter 1 Foundations

1-3

In the interests of education, this book will focus more on “pure” assembly coding rather than the
pragmatic hybrid approach5.

Experienced system-level coders may wish to skip this chapter or simply skim through it and treat it as a
refresher. The material discussed in this chapter is general and does not necessarily apply to any specific
system.

1.2. Hardware Vs Software Vs Firmware

1.2.1. Hardware

In computer terms hardware refers to the physical components that make up the system. Hardware is
something that can be seen and touched.

1.2.2. Software

Software refers to the actual instructions that are loaded into the computer’s memory. These instructions may direct the
hardware to perform certain tasks. For example, the system software is responsible for displaying the result of an operation onto
a hardware output device such as a display screen or printer and for taking input from a device such as a keyboard. In general,
though, software is a set of instructions that cause an operation to occur such as adding two numbers together.

1.2.2.1. Firmware

Firmware can be thought of as a set of instructions residing in hardware. This definition has become
somewhat blurred as these instructions were originally loaded onto read only devices (ROMs). These
devices would be physically replaced when new upgrade code was required. Over time Erasable
Programmable integrated circuits (IC’s) (EPROMs) were introduced, which as the name implies could be
written over with new code. Today, non-volatile random-access memory (NVRAM) devices are used and
can often be upgraded on-line without even requiring a reboot. This process is sometimes referred to as
flashing since the underlying device is often Flash memory.

1.3. Number Systems

Anthropologists may make a claim that we count in base 10 as this is the number of digits on our hands.
Other cultures have used base 60 and base 20 (possibly using both fingers and toes). These number
systems are not as well suited to computer systems and today6 base 2 and base 16 dominate when using
low-level assembly programming.

1.3.1. Binary, Octal, Hexadecimal

Consider the base 10 number 467310 – this breaks down into:

5 That is not to say that hybrid programming will be ignored within this text.

6 Base 8 - Octal was also used on many earlier computers such as Digital Equipment Corporation’s PDP family of minicomputers.

Chapter 1 Foundations

1-4

4 x 103

+

6 x 102

+

7 x 101

+

3 x 100

= 4000 + 600 + 70 + 3 = 4673

The use of ten (0-9) different characters along with their position represented a major advance in
computation when compared to systems such as the Roman counting method.

Digital electronic systems naturally gravitate towards a two-state binary system where current either
flows or it does not. These two states are represented by the symbols 0 or 1.

Each binary digit is termed a bit(b). For convenience binary digits are often grouped into 8 bits termed a
Byte(B). Since eight bits can represent numbers ranging from 00000000 through 11111111, the decimal
values translate to 0 through 255. A disadvantage of binary numbers is that a three-digit decimal number
may require an equivalent of up to ten binary digits. A more compact numbering system is base 16
(hexadecimal) which treats a group of four binary numbers as a single hexadecimal number. This means
that two hexadecimal numbers will represent a single byte7. Hexadecimal numbers use the same symbols
as decimals up to the value 9, then use the characters A through F to represent decimal numbers ten
through fifteen. The hex number 1016 corresponds to decimal number 1610.

Table 1-1 Binary, Decimal and Hexadecimal equivalents

Binary Decimal Hexadecimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

7 A single hexadecimal number is sometimes referred to as a nibble.

Chapter 1 Foundations

1-5

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

1.3.2. Converting Binary to Decimal

Each binary8 digit can be converted to decimal by multiplying its value by two raised to an index where
the index corresponds to the bit’s position.

The binary number 1101012 then, can be converted to decimal using the following steps.

1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20 =

32 + 16 + 0 + 4 + 0 + 1
= 5310

1.3.2.1. General rule for base conversion

Any number n in binary can be written as:

n = 10 × quotient + remainder

1.3.2.2. Binary long division

Example: n = 101101

8 Note these steps use pure binary, it is often faster to temporarily use decimal numbers as interim steps, for example to find out the largest
divisor that divides 10102 into binary 101110102, convert the numbers to decimal to get 1010 and 18610, so it is easy to see that 1810 is the largest
number when multiplied by 1010 that will divide into 18610. Converting 1810, back to binary gives 100102. Checking 1000102 x 10102 = 101101002
which divides into 101110102

Chapter 1 Foundations

1-6

1.3.2.3. Repeated division method (algorithmic)

• Divide by target base – Here base = 10

• With repeated division the remainders are the decimal digits.

• The decimal numbers appear in reverse order with the least significant appearing first.

Example
Convert: 1111001₂ to decimal by dividing by 1010₂ (10₁₀)

Repeatedly divide by 1010₂; each remainder is one decimal digit (in binary).

Divide:
1111001₂ ÷ 1010₂
Using trial and error - test multiples of 1010₂:

Attempt 1010₂ × 1011₂ = 1101110₂

This divides into 11110012 so try next number up -
1010₂ × 1100₂ = 1111000₂, this also divides so try next number
1010₂ × 1101₂ = 100000010₂, too big so 1100₂ is the quotient

Numerator ÷ Denominator = Quotient + Remainder
Numerator → the number being divided
Denominator → the number you divide by
Quotient → the result of the division
Remainder → what’s left over

1 0 1 1 0 1 = 10 X Quotient +Remainder

so divide by the target base which is 10

1 0 1 1 0 1 ÷ 1 0 1 0 (10 decimal in binary)

Quotent > 0 0 0 1 0 0
1 0 1 0 1 0 1 1 0 1

1 0 1 0 subtract
0 0 0 1
0 0 0 1 0 Bring down the next digit from the numerator

Remainder> 0 0 0 1 0 1 Doesn't divide so bring down the next digit and place 0 in the next quotient position
Still does not divide, place 0 in the next quotient position and
this is the remainder as there are no more numerator digits

This gives a quotient of 4 with a remainder of 5
Verifies n =Base x Quotient plus the Remainder

Chapter 1 Foundations

1-7

Now subtract (the product of the base by the largest divisor) from the number that is to be converted to
get the quotient.

 1111001
- 1111000
 0000001

Quotient = 1100₂ (It divided 1100 times)
Remainder = 12 110

Now divide the quotient by the base 1100 ÷ 1010₂

 1100
-1010
 0010

Quotient=1 It divided 1 time
Remainder = 102 210

Now divide the quotient by the base 1 ÷ 1010
 It did not divide
Quotient = 0
Remainder =12 110

List the remainders in reverse order = 12110

Further example

Convert 10101001 to decimal

1010 x 10000 = 10100000

 10101001

 -10100000

 00001001

Remainder = 910

 10000 (Quotient)

Divide Quotient by the base 10000 ÷ 1010

Chapter 1 Foundations

1-8

 10000

- 01010

 0 1 10

Remainder = 610

Quotient is 1

Divide quotient by the base 1 ÷ 1010

Divides zero times with 1 left over

Remainder = 110

Assemble the remainders in reverse order = 16910

Note there are easier ways to perform these calculations, but the steps presented can be
adapted to assembly programming in a more algorithmic method.

1.3.2.4. Converting Decimal to Binary

The following method breaks down a decimal number into powers of two, so to convert the number
84310 to its equivalent binary number –

1. First get the highest power of two contained in 843 which is 512 (29).

2. Subtract 512 from 843 = 331,

3. The highest power of two contained in 331 is 256 (28),

4. Subtract 256 from 331 to get 75,

5. The highest power of two contained in 75 is 64 (26),

6. Subtract 64 from 75 to get 11,

7. The highest power of two contained in 11 is 8(23),

8. Subtract 8 from11 to get 3,

9. The highest power of two contained in 3 is 2 (21),

10. Subtract from 3 to get 1,

11. The highest power of two contained in 1 is 1 (20),

12. Subtract 1 from 1 to get 0.

Everywhere that a power of two appears, write its index as the binary value one and where it did not
appear write the binary value zero using the positional notation shown in Table 1-2.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 1 Foundations

1-9

Table 1-2 Converting decimal to binary

 Another way of converting is a repeated division method. Divide the number repeatedly until zero is
reached. Take note of the remainders and put the first remainder in the left-most position, then the
second remainder into the left-most second position, repeating until all reminders have been recorded.

Figure 1-1 Converting Decimal to binary using repeated division by 210

Now write down the remainder starting from the top to get:

11010010112.

29 28 27 26 25 24 23 22 21 20

1 1 0 1 0 0 1 0 1 1

1.3.3. Converting Hexadecimal to Decimal

A hex number such as 5B7C16 can be converted to decimal using a power of sixteen method –

= 5 x 163, + B x 162, + 7 x 161, + C x 160

= 20,480 + 2816 + 112 + 12

= 23420

2 843
2 421 Rem 1

2 210 Rem 1
2 105 Rem 0

2 52 Rem 1
2 26 Rem 0

2 13 Rem 0
2 6 Rem 1

2 3 Rem 0
2 1 Rem 1

2 0 Rem 1

Value 1 1 0 1 0 1

Position 5 4 3 2 1 0

Multiply by 25 24 23 22 21 20

Chapter 1 Foundations

1-10

1.3.4. Converting Decimal to Hexadecimal

Take the number as shown, divide repeatedly by 1610 until zero is reached. Record the remainders in
base 16 format (e.g. for a remainder of 1010, record “A”). Note the remainders and put the last remainder
in the left-most position, the second from last remainder into the left-most second position, repeating
until all reminders have been recorded.

Figure 1-2 Converting Decimal to binary using repeated division by 1610

Again, printing out the remainders form the bottom gives 5B7C

1.3.5. Binary Fractions

The binary numbers that have been dealt with up to this point are natural number equivalents (positive
whole numbers). Positional notation is used to show the corresponding power of two index. 9 Fractions
can be represented in binary by moving to the left of the 20. These values then become 2-1, 2-2, . . .

1.3.6. Converting a binary fraction to decimal

1101.01 is equivalent to the base 10 number 13.25 since we have:

1 x 23 + 1 x 22 + 0 x 21 +1 x 20 + 0x 2-1 + 1x2-2.

1.3.6.1. Converting a decimal fraction to binary.

Repeatedly multiply the fractional part by two until it becomes zero, taking note of the value to the left
(integer portion) of the decimal point. Accumulate the values of the integer part from top to bottom to
get the binary fractional part.

Example 0.62510

0.625 x 2 = 1.25

0.25 x 2 = 0.5

0.5 x 2 = 1.0

Stop since the value to the right of the decimal point =0

Take the integer value from top to bottom = 0.1012

9 Recall that negative indices can be resolved by changing the sign of the index and changing the operation from division to multiplication and
vice versa so that 1 / 2-2 becomes 1 x 22 = 4 and 4 x 22 = 4/2-2 = 16

16 23420
16 1463 Rem C

16 91 Rem 7
16 5 Rem B

16 0 Rem 5

Chapter 1 Foundations

1-11

Consider number 0.3

0.3 x 2 = 0.6

0.6 x 2 = 1.2

0.2 x 2 = 0.4

0.4 x 2 = 0.8

0.8 x 2 = 1.6

0.6 x 2 = 1.2

0.2 x 2 = 0.4

0.4 x 2 = 0.8

0.8 x 2 = 1.6

0.6 x 2 = 1.2

This highlighted value has been met before, so this is a recurring fraction with the pattern 0011 repeating
- .0100110011… This means that when evaluating, a halt counter should be added. The logic would be to
end when the fractional part = 0 or when the required degree of precision has been reached.

1.3.7. One and Two’s complement

An eight-bit byte can represent any one of 256 values ranging from 0 – 25510. This is known as unsigned
notation. Another representation is to use half of the range as positive integers and the other half as
negative, in this case the range is from +12710 through -128. This method uses the most significant bit to
represent the sign and is known as signed notation. The number line for an eight-bit signed number is:

-128, -127, …, 0, 1, 2, …, 127

Table 1-3 Signed number representation.

27 26 25 24 23 22 21 20

Sign bit Magnitude Bits

Interpreting the value of a signed number is straightforward –

The procedure is to add the corresponding powers of two of each bit’s place value but leave out the sign
bit. The next step is to add in the value of the sign bit. For positive numbers it makes no difference since
the value of the sign bit is zero, but for negative numbers the value of the sign bit is -128.

Example

10 Zero is treated as a positive number here

Chapter 1 Foundations

1-12

• Take the positive binary number 00101100

• Add the magnitude bits together

0x26 + 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20

= 32 + 8 + 4 = 44

• Add in the value of the sign bit (27) to get:-

0 + 44 = 44

• For the negative number 10011001

• Add the magnitude bits together.

0x26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20

= 16 + 8 + 1 = 25

• Add in the value of the sign bit (27)to get

-128 + 25 = -103

Converting from a signed number to an unsigned number is a simple operation, the procedure is to invert
the bits and then add the binary value 1.

So, to convert the positive number 6310 to negative 6310.

• Convert the number to an eight-bit binary number -

00111111

• Invert the bits to get -

11000000 (one’s complement)

• Add 1 to get –

11000001 (Two’s complement)

• Convert back to decimal to get:-

-128+64+1 = 63

1. The first stage of inverting the bits - obtains the one’s complement, adding the binary digit 1 to
the one’s complement - obtains the two’s complement.

The following table shows an extract of the first few signed numbers.

Table 1-4 Signed and unsigned numbers

Signed Binary Number Decimal Equivalent

0111 1111 127

Chapter 1 Foundations

1-13

0111 1110 126

0111 1101 125

. . .

0000 0000 0

1111 1111 -1

1111 1110 -2

.. . .

1000 0010 -126

1000 0001 -127

1000 0000 -128

1.3.8. Addition and subtraction of binary numbers

1.3.8.1. Binary Addition

To add two binary numbers together is straightforward, there are only four outcomes.

0 + 0 = 0

0 + 1 = 1

1+ 0 = 1

1 + 1 =10 (0+ carry)

An example of an unsigned binary addition follows-

Add 0 0 1 0 1 1 0 1 to 0 1 1 1 0 1 0 0

0 0 1 0 1 1 0 1

0 1 1 1 0 1 0 0

1 0 1 0 0 0 0 1

Checking by adding the decimal number equivalents together –

45 + 116 = 161

Consider if these numbers being added were in signed notation – here adding two positive numbers
together would result in a negative number since the sign bit of the result = 1. This is an overflow
condition since the result of 161 is clearly outside of the maximum positive number that can be
represented in signed eight-bit binary arithmetic. This is something that needs to be checked and there
are conditions built-in to the processor architecture to detect this kind of situation.

Chapter 1 Foundations

1-14

Larger numbers can be dealt with by using two bytes for storage, treating the second byte as having the
values 28 through 215. Assemblers and compilers will refer to groups of bytes by designations such as long
int, word etc. It is important to check the definitions.

One such definition is:

Table 1-5 Data type sizes

Unit Width

Doubleword 64 bits

Word 32 bits

Halfword 16 bits

Byte 8 bits

Of course, it is important to specify signed or unsigned, again a definition for an unsigned integer in the
programmer’s documentation might be referred to as uint.

1.3.9. Binary subtraction

Binary subtraction can be dealt with using elementary rules for small numbers and then taking into
account “borrows” rather than “carrys” but using the two’s complement method described on page 1-
11 is by far the preferred method for larger numbers.

The steps for binary subtraction are:

1. Obtain the two’s complement of the subtrahend (the number that will be taken away)

2. Add this to the minuend (the number that will be subtracted from).

3. Add the two’s complement of the subtrahend to the minuend.

4. If there is a carry after the addition, then drop the carry (final result is positive)

5. If there is no carry, then compute the two’s complement of the result (final result is negative)

Taking a concrete example of subtracting 00100100 (3610) from 00000010 (210)

• Two’s complement of the subtrahend

1101 1011 +1 = 1101 1100

• Add to the minuend

0 0 0 0 0 0 1 0 Minuend

1 1 0 1 1 1 0 0 Two’s complement of subtrahend

1 1 0 1 1 1 1 0

Chapter 1 Foundations

1-15

(Carry = 0)

Two’s complement of the result is

00100001+1 = 00100010

Result is negative since the carry was false = -34

Another example -

• Subtract 4510 from 12010

• Convert numbers to eight-bit binary

4510= 0010 11012

12010 = 0111 10002

• Two’s complement of 00101101

1101 0011

• Add to 0111 1000

0 1 1 1 1 0 0 0

1 1 0 1 0 0 1 1

0 1 0 0 1 0 1 1

(carry = 1)

The result is positive since carry was zero, 01001011 = 7510

1.3.10. Binary multiplication

The rules for multiplication of two bits are

0 x 0 = 0

0 x 1 = 0

1 x 0 =0

1 x 1 =1

Note anything multiplied by zero is of course zero.

Example multiply binary 10 (210) by 11 (310)

 1 0

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 1 Foundations

1-16

 1 1 x

 1 0

1 0

1 1 0

= 610

Note this is the same as decimal multiplication where we multiply by each of the
digits and then add these results together.

1.3.11. Binary Division

The rules for division of two bits are as follows (recall that division by zero is invalid)

• 0 / 0 invalid

• 0 / 1 = 0

• 1 / 0 invalid

• 1 / 1 =1

Division example

Divide 1 1011 (Dividend) by 00111 (Divisor)

Using long division -

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 1 Foundations

1-17

1.3.12. Shift/ Rotate instructions to perform multiply and divide operations

Consider an eight-bit byte 00101110 which has the decimal equivalent of 46. Next take each bit of the
byte and shift them over one place to the left, filling in the now vacant bit 0 with the padded value 0 as
shown below. Bit 7 has nowhere to go since it has no bit 8 position to occupy. The newly vacated bit 0
position is filled with a binary zero.

By shifting all the bits to the left the original number has been multiplied by two since the bit 0 value of
20 has been moved to the 21 position, bit 1’s value of 21 has been moved to 22, etc.

Note that if the original bit 7 had a value of 1 then it would have been lost giving
an incorrect result. This is a condition that must be checked for by the
programmer and this will be covered in a later section.

Division by two is accomplished by shifting the bit values to the right.

Figure 1-3 Using shift operations to multiply and divide by two

bit 0 → bit 1→ bit 2 → bit 3 → bit 4 → bit 5 → bit 6 → bit 7 → bit 0, . . .

For simplicity the registers shown are byte-wide. In reality the width is more often 32 or 64 bits.

Other rotates are possible where the shifted-out bit feeds back to the input, giving a circular action.

Bit0→Bit1→Bit2→Bit3→Bit4→Bit5→Bit6→Bit7→Bit0→Bit1…

1.3.13. Binary Coded Decimal (BCD)

Binary Coded Decimal represents decimal numbers in groups of bits, the encoding is normally done in
four-bit nibbles. Each bit represents a power of two weight (23, 22, 21, 20, or 8,4,2,1). Since four bits can
represent 16 distinct numbers, and there are only ten decimal digits, wastage occurs with this method.
An alternative known as packed BCD may be used but is less common.

1.3.13.1. Converting Binary Coded Decimal to Decimal

BCD is similar to hexadecimal except that hex characters a through are illegal. A binary grouping of BCD
characters could look like:

1001 0111 1000. Each group of 4 bits (nibbles) are read off as follows –

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 1 Foundations

1-18

• 1001 = 9

• 0111 = 7

• 1000 =8

This corresponds to the decimal number 978.

1.3.13.2. BCD addition

Adding is straightforward, however if the addition of two nibbles results in a value greater than 9 (1010,
1011, 1100,1101, 1110, 1111) then it is an invalid decimal number. The resolution is to add 6 (0110)
which will bring it back to a valid number. The carry will be added to the next nibble.

Addition examples –

1.

14 + 22 = 36 = 0011 0110

Verify by binary addition

0001 0100 (14)

0010 0010 (22) +

0011 0110 (36)

2.

20 +20 = 40 = 0100 0000

0010 0000 (20)

0010 0000 (20) +

0100 0000 (40)

3.

26+25 = 51 = 0101 0001

0010 0110 (26)

0010 0101 (25)+

0100 1011 Least significant nibble is greater than 9 so add 6

0000 0110 + (6)

01010001 (51)

4.

Chapter 1 Foundations

1-19

121 + 157 = 278 = 0010 0111 1000

0001 0010 0001 (121)

0001 0101 0111 (157)+

0010 0111 1000 (278)

5.

199 + 933 = 1132 = 0001 0001 0011 0010

0001 1001 1001(199)

1001 0011 0011 (933)+

1010 1100 1100 (Two nibbles invalid add 0110 0110

0000 0110 0110 +

1011 0011 0010 Now, the most significant nibble is invalid so add 6 to it

0110 0000 0000 +

0001 0001 0011 0010 (1132) Brings in a fourth nibble!

1.3.13.3. Conversion from Hex/Pure Binary to BCD

One way of converting a hex number to BCD is to convert the hex number to decimal and then to BCD.
An alternative is to use the double-dabble method.

1.3.13.4. Double-Dabble

The double-dabble algorithm is fairly simple to implement; it consists of a series of shift11 operations and
additions.

Note that an n digit hex number can translate into more than n decimal digits,
(8516 = 13310, FFF16 = 409510).

The method sets up a store to hold n binary digits and partitions to hold the decimal powers
of two – units, tens, hundreds, thousands, … The partitions are cleared to hold all zeros and then the
binary digits are shifted in one bit at a time, adjustments (addition of decimal 3) are made to the partition
values dependent on their magnitude (>4). Once all bits have been shifted12 the algorithm has been
completed.

An example:

11 Shift/Rotate operations are discussed on page 1-13.

12 The number of shifts is equal to the number of binary digits

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 1 Foundations

1-20

Consider the binary number 00011011 = hex 1B = decimal 27. The steps to convert from pure binary to
BCD are shown in Table 1-6.

Table 1-6 Double-Dabble example

Hundreds
Partition

Tens
Partition

Units
Partition

Binary
Store

Action

0000 0000 0000 00011011

0000 0000 0000 00110110 Shift left-most bit over to partitions (shift1)

0000 0000 0000 01101100 Shift left-most bit over to partitions (shift2)

0000 0000 0000 11011000 Shift left-most bit over to partitions (shift3)

0000 0000 0001 10110000 Shift left-most bit over to partitions (shift4)

0000 0000 0011 01100000 Shift left-most bit over to partitions (shift5)

0000 0000 0110 11000000 Shift left-most bit over to partitions (shift6)

0000 0000 1001 11000000 Add 3 to units, since unit is 5 or greater

0000 0001 0011 10000000 Shift left-most bit over to partitions (shift7)

0000 0010 0111 00000000 Shift left-most bit over to partitions (shift8)

Reading off the tens and unit columns gives the value 2710.

Note 3 is added rather than 6 since the shift left operation multiplies by two!

A more complex 12-bit example is shown in Table 1-7.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 1 Foundations

1-21

Table 1-7 Three digit double dabble example

1.3.14. Floating Point

An integer is a whole, complete and exact number such as 107 or 456. There is a limit to magnitude
within a simple unit of storage such as a register. With floating -point representation a range of extremely
large or extremely small numbers can be represented at the expense of precision. This means that a
floating-point number may be an approximation that introduces rounding to nearest digits. There are
two main parts to a floating-point number, the significand or mantissa and the exponent. There is also
provision for a sign bit. The form is significand multiplied by the base raised to a power, an example
being 3,450,000 = 345 X 104. Here 345 is the significand, ten is the base and four is the exponent.

Double Dabble Three digit Hex (200) number
12 binary digits so 12 shifts are required
Hundreds Tens Units Binary

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Initial State
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Shift #1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Shift #2
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Shift #3
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #4
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #5
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #6
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #7
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #8
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #9
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to tens
0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #10
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #11
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to Tens
0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #12

 5 1 2 200 hex = 001000000000 binary = 512 decimal

Chapter 1 Foundations

1-22

There is a standard IEEE 754 (https://standards.ieee.org/ieee/754/6210/) which is a specification for
floating-point arithmetic. The standard defines Single and Double floating-point formats13as shown in
Table 1-8. There is also provision to include Not-a-Number14 (NaNs) and ±Infinity.

A 32-bit single precision floating-point binary number within IEEE 754 is defined as:

Sign Bit (1 bit) Exponent (8 bits) Significand (23 bits)

A 64-bit double precision floating-point binary number within IEEE 754 is defined as:

Sign Bit (1 bit) Exponent (11 bits) Significand (52 bits)

This is summarized in Table 1-8.

Table 1-8 Floating-Point formats

Format Bits Significand Unbiased Exponent Decimal Precision

Single 32 24 15 (23+1) 8 6-9 digits

Double 64 53 (52+1) 11 15-17 digits

1.3.14.1. Biased exponents

The use of a biased exponent can represent negative exponents. For single precision the values range
from decimal +127 to -126. The bias is normally given as 2n-1-1 where n is the number of exponent bits,
so here we have 27-1= 127. The value of the biased exponent is the unbiased exponent minus 127, so
that an exponent of 10011011 gives a biased exponent of (128+16+8+2+1) – 127 = 155-127 = 28.

See Table 1-9 and Figure 1-4 for more on bias.

1.3.14.2. Infinity and Not-a-number representation

• A biased exponent of all ones and a significand of all zeros (-127) represents infinity. The sign bit
differentiates between negative and positive infinity.

• Not-a-number is represented by the biased exponent being equal to all ones (+128) and the
significand being non-zero.

• The sign bit is don’t care.

13 Other formats are defined but they will not be discussed here.

14 This could arise from operations such as divide by zero or the square root of a negative number.

15 There is an implied bit, since the normalized format is always 1.X then there is no need to specify the “1” value to the left of the decimal point.

https://standards.ieee.org/ieee/754/6210/

Chapter 1 Foundations

1-23

Table 1-9 BIAS within single precision IEEE 754

1.3.14.3. Understanding bias

The diagram shown in Figure 1-4 shows how varying the bias affects the ratio of negative to positive
numbers. The bias used in the standard gives similar ranges of positive and negative exponents.

Figure 1-4 Interpretation of Bias with floating point

With double precision numbers the bias is 1023 since the unbiased component shown in Table 1-8 is 11-
bits wide.

Exponent field
Binary Decimal Exponent
00000001 1 2-126

… …
01111011 123 2-4

01111100 124 2-3

10000011 01111101 125 2-2

10000001 01111110 126 2-1

01111111 127 20 Bias set to mid way point
10000000 128 21

10000001 129 22

100000010 130 23

b= 2n-1-1 =127 where number of bits is 8 100000011 131 24

… …
11111110 254 2127

Chapter 1 Foundations

1-24

1.3.14.4. Normalized numbers

A normalized number has the form 1.XXXXX… The steps are to convert the number to binary and then
perform shifts to give the desired result. Normalization shifts to the left or right depending on where the
decimal point is.

Example 410.625

Steps -

1. Convert to binary (See page 1-10, if needed. for a refresher on converting decimal fractions)

= 110011010.101

2. Perform repeated shift until desired pattern us reached.

110011010.101 ÷2 (shift right operation)

1. = 11001101.0101 ÷2

2. = 1100110.10101 ÷2

3. = 110011.010101 ÷2

4. = 11001.1010101 ÷2

5. = 1100.11010101 ÷2

6. = 110.011010101 ÷2

7. = 11.0011010101 ÷2

=1.10011010101

This took a total of 8 shift operations. Add this number to 127 to get 135. Convert to binary to get:

10000111.

From our shifts earlier we had the value 10011010101, extend this to 23 bits to get
10011010101000000000000 giving the value:

S Exponent Significand

0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

= 410.625

1.3.14.5. Addition of floating-point numbers

Addition is reasonably straightforward; the main concern is when the exponent differs. To equalize the
exponents, take the lower number and shift over the binary point the required number of positions. So,
if one exponent is 136-Bias and the second is 134-Bias, the second number needs to be shifted two places
to the left.

Chapter 1 Foundations

1-25

Figure 1-5 Addition of two floating point numbers

1.4. Logic operations – and, OR, Exclusive OR, NOT

Logic operations are often used in decision making for example –

0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 Number 1
0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Number2

Step 1. Convert exponents to decimal
134 Number 1
131 Number 2 Note the exponents differ

2. Prepend the implicit "1" to the significand

1. 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 X 2 134-bias Number1

1. 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 131-bias Number2

Step 2 Take number 2 and left shift the binary point three places to make the exponents the same

0. 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 134-bias

Step 3 Now add number 1 to the shifted number two

1. 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 X 2 134-bias

0. 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 134-bias

1 0. 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 X 2 134-bias

Step 4 Normalize

1. 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 x 2 135-bias

Step 5 Rounding is necessary since there are too many digits in the significand

1. 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 x 2 135-bias

1. 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 x 2 135-bias

Round down
Step 6 Convert exponent back to a binary number

135 = 10000111

Step 7 Re-assemble

0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0

Chapter 1 Foundations

1-26

1. “If I feel hungry AND I have enough money, then I will order food in”.

2. “If it is cold OR it is raining, then I will wear a coat to go outside”.

3. “I can get a car discount if I pay the total amount in cash OR a I can get a lower interest rate if I
take out a loan”.

Statement 1 is an AND condition and the decision to order food holds true if I am hungry AND I have
enough money. Both conditions must be true.

Statement 2 is an OR condition and it states that I will wear a coat if either of these (or both) conditions
are true.

Statement 3 is like statement 2 except that it is an either-or situation. Statement 2 applies equally well
to both conditions in that it could be cold and also raining (similar to the AND condition). Statement 3
exclusively applies to the OR situation and is referred to as Exclusive OR (XOR).

These conditions are normally represented by Truth Tables such as if condition A is true AND condition
B is true then result C is true. True and false values can be conveniently mapped to binary values 1 and
0. These are known as Boolean variables.

Table 1-10 Truth table - AND

A B C

False (0) False (0) False (0)

True (1) False (0) False (0)

False (0) True (1) False (0)

True (1) True (1) True (1)

Table 1-11 Truth table - OR

A B C

False (0) False (0) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

True (1) True (1) True (1)

Table 1-12 Truth table - XOR

A B C

False (0) False (0) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

Chapter 1 Foundations

1-27

True (1) True (1) False (0)

Other logic functions exist such as NOT which inverts the value, so a binary zero becomes a binary one.
Repeating the operation, of course, gets back to the original value. Boolean algebra is a complex topic by
itself – which is dealt with in set theory.

For fun - a simple encoding can be done with XOR – take the word “Plaintext”, converting this to seven-
bit ASCII16 code becomes –

Table 1-13 Simple example of encoding text using XOR

Text
string

ASCII code
(decimal)

ASCII code
(binary)

Apply XOR function
with 10101010

Resultant ASCII
code letter

P 80 1010000 1111010 z

l 108 1101100 1000110 .

a 97 1100001 1001011 K

i 105 1101001 1000011 C

n 110 1101110 1000100 D

t 116 1110100 1011110 ^

e 101 1100101 1001111 O

x 120 1111000 1010010 4

t 116 1110100 1011110 ^

So, the encoded string “Plaintext” becomes “z.KCD^O4^”.

Of course, this is easily cracked and decoded!

The following rules show the resulting bitwise values:

• X AND 0 = 0

• X AND 1 = X

• X OR 0 = X

• X OR 1 = 1

Now that the foundation is in place it is time to move from generic concepts to programming on a specific
architecture!

16 See the appendix for a table of ASCII codes

Chapter 1 Foundations

1-28

Summary

• Introduction to Assembly language

• Number Systems

• Shift Operations

• Logic and Truth tables

Chapter 1 Foundations

1-29

Exercises for chapter1

1. Convert 11.110 to base 10

2. Divide 10111101 by 111 using manual long division

3. Convert 0x1fd to BCD

4. Convert 35.65 to single precision floating-point according to IEEE 75.

5. Write a pseudocode program to convert lower case ASCII characters a-z to upper case ASCII
character A-Z.

6. Convert the signed binary byte to base10

7. Convert the octal number 341 to base 16

8. What are mnemonics?

9. Describe the advantages of a high-level language over assembly language

Chapter 2 Getting started

2-1

Chapter 2. Getting Started

Overview of the chapter

Chapter 2 introduces the RISC-V architecture and essential tools required to start programming with
RISC-V. It moves from theory to practical steps, providing context, tools, and setup guidance for working
in RISC-V assembly.

2.1. Origin of RISC-V

The design of RISC-V uses a Reduced Instruction Set Computer (RISC) architecture. RISC-V originated in
2010 as a project at the University of California, Berkeley. The suffix “V” indicates that it is the fifth
generation of the RISC architecture. RISC has the advantage of a simpler design with lower power
consumption making it ideal for use in embedded systems. RISC-V is now under the stewardship of RISC-
V International based in Switzerland. A distinguishing feature is that it is open and royalty free.

2.2. Architecture

Implementations use a naming convention to denote which Instruction Set Architectures (ISAs) are
available within a specific implementation. An example being RV64I or RV32E which stands for RISC-V
with a 64-bit integer instruction set and RISC-V with a 32-bit reduced integer set respectively17. The
integer and reduced integer designations form the Base Integer ISA. This is mandatory for
implementations. Optional extensions are defined as:

• M for integer multiplication and division.

• A for Atomic extensions.

• F and D for single and double precision floating-point. Here the designation RV64IM would mean
64-bit with Integer and integer multiplication/division support.

• C for compressed Instructions.

• E for Embedded.

• G for general covers MAFD

• There is also the ability to support non-standard extensions.

To show the RISC-V instruction set support under Linux, the command cat /proc/cpuinfo can be used
–

cat /proc/cpuinfo

17 RV128 definitions also exist but will not be discussed here.

Chapter 2 Getting started

2-2

processor : 0

hart : 1

isa : rv64imafdc_zicntr_zicsr_zifencei_zihpm_zba_zbb

mmu : sv39

uarch : sifive,u74-mc

mvendorid : 0x489

marchid : 0x8000000000000007

mimpid : 0x4210427

. . .

processor : 3

hart : 4

isa : rv64imafdc_zicntr_zicsr_zifencei_zihpm_zba_zbb

mmu : sv39

uarch : sifive,u74-mc

mvendorid : 0x489

marchid : 0x8000000000000007

mimpid : 0x4210427

This system is identified by the string rv64imafdc has 4 18 CPU cores and supports (I)nteger,
(M)ultiplication/division, (A)tomic and (F)single and (D)ouble precision floating point with the ability to
handle the smaller code size of (C)ompressed instructions. A designation of G represents IMAFD. The
architecture shown is 64-bit. The four processors (0-3) are associated with four harts (1-4). A hart is a
hardware thread19 that can execute its own set of instructions independently of the others. Usually there
is a one-to-one correspondence20 between harts and processors.

The next output is taken from a Banana Pi BPI-F3 system showing eight processors with rv64imafdcv
support.

Note the inclusion of the V-extension which is the vector ISA extension. Vector
support is an additional bonus as few systems today support vector operations.

$ cat /proc/cpuinfo

processor : 0

hart : 0

18 Only the first and last CPU cores are shown in the output.

19 A hardware thread is distinct from a software thread. Software threads are multiplexed tasks, controlled by techniques such as time-slicing
giving the illusion of separate tasks, whereas are hardware threads are true independent execution units.

20 Hyper-threading gives the appearance of multiple cores within a processor and so could support more than one hart.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 2 Getting started

2-3

model name : Spacemit(R) X60

isa :

rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_z

ca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscof

pmf_sstc_svinval_svnapot_svpbmt

mmu : sv39

uarch : spacemit,x60

mvendorid : 0x710

marchid : 0x8000000058000001

mimpid : 0x1000000049772200

. . .

processor : 7

hart : 7

model name : Spacemit(R) X60

isa :

rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_z

ca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscof

pmf_sstc_svinval_svnapot_svpbmt

mmu : sv39

uarch : spacemit,x60

mvendorid : 0x710

marchid : 0x8000000058000001

mimpid : 0x1000000049772200

Currently there are four (separate) base ISAs with discussion on a 128-bit (128I) implementation. A
summary is shown in Table 2-1.

Table 2-1 Base integer instruction set variants

Name Address Space/Register Width

RV32I 32-bit

RV64I 64-bit

RV32E 32-bit

RV64E 64-bit

2.2.1. RISC-V Registers

Registers are locations that store values, they are similar to variables in high-level languages.

The primary way of interfacing with the RISC-V system is via the register set. Generically the registers
may be referred to as Rd (destination register), Rs1 (first source register), Rs2 (second source register).

Chapter 2 Getting started

2-4

Registers are denoted by their Application Binary Interface (ABI) name to make it more convenient to
the coder. This is like high level languages where variables are given meaningful descriptive names.

2.2.1.1. Register Set

Figure 2-1 RISC-V register layout

There are 3221 unprivileged integer X registers whose
width is determined by the instruction set which is
either 32,64 or 128 bits as shown in Error! Reference s
ource not found. along with a brief description. The
registers have aliased names which reflect their usage
such as X1 = ra which holds the return address or X0 =
zero which is a read-only register returning the value
0. The aliased names are referred to as the ABI
(Application Binary Interface) register name. Even
though the registers are general-purpose, the aliased
name function should be respected. For example, the
saved and temporary registers are used for functions
where the coder knows when to save registers prior to
making the call and when they do not need to.

When the programmer calls a routine, it is termed the
calling routine and the routine that is being called is
the callee routine. The temporary registers (t0-t6) are
saved by the caller and the saved registers (s0 – s11)
are saved by the callee. This responsibility is shown in
Table 2-2.

It is only necessary to save the registers that are
involved in the routines. So, if the caller was not using
register t1 then it would not be necessary to save it
prior to involving the call.

There are also 32 floating-point registers accessible to
the programmer which will be discussed at a later
point in the book.

The program counter (PC) keeps track of program
execution and is not used as a general-purpose
register. XLEN refers to the data width, which is either

32, 64 or 128 bits. Register functions will be covered in more detail as the book progresses.

21 RV32E and RV64E have 16 registers. The non-contiguous layout is for consistency between register sets

127-64 63-32 31-0 Register Name
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9

x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28
x29
x30
x31

Bit 127 Bit 0
32 registers, data width is determined by RV extension

Chapter 2 Getting started

2-5

Table 2-2 Caller/Callee Responsibility for X registers

Register Name ABI Name Saver
responsibility

Register Name ABI Name Saver
responsibility

x0 zero N/A x16 a6 Caller

x1 ra Caller x17 a7 Caller

x2 sp Callee x18 s2 Callee

x3 gp N/A x19 s3 Callee

x4 tp N/A x20 s4 Callee

x5 t0 Caller x21 s5 Callee

x6 t1 Caller x22 s6 Callee

x7 t2 Caller x23 s7 Callee

x8 s0/fp Callee x24 s8 Callee

x9 s1 Callee x25 s9 Callee

x10 a0 Caller x26 s10 Callee

x11 a1 Caller x27 s11 Callee

x12 a2 Caller x28 t3 Caller

x13 a3 Caller x29 t4 Caller

x14 a4 Caller x30 t5 Caller

This table shows that the temporary (T0-T7) and the argument registers (A0-A7) should be saved by the
caller and the saved registers (S0-S11) by the callee.

2.2.1.2. RV32I Base Instruction Set

The instructions are 32 bits wide; the general format is to include common fields such as:

Field Name Role

rd Destination Register

rs1 Source Register 1

rs2 Source Register 2

opcode Operation Code

func 3 bit (funct3) and 7 bit (funct7) defines a particular operation

Chapter 2 Getting started

2-6

imm Constant value such as 0x5F

2.2.1.3. Base instruction Formats

There are 4 Base Instruction Formats known as”

• I-type

• R-type

• S-type

• U-type

In addition, there are two variants of the I-type instruction known as B-type and J-type. These instructions
use conditional and unconditional branches respectively to alter program flow. The immediate fields are
used to encode the branch destination.

Conditional branches depend on whether certain program events have occurred, an example could be a
decrementing counter, where a branch in the program logic only occurs if the counter has reached value
zero.

An unconditional branch happens regardless of conditions. An example might be a jump to an interrupt
handler service routine22 if a critical or non-critical event was encountered.

2.2.1.3.1. I-type Instruction

Most of the fields occupy the same bit positions across instructions. An example is the instruction addi
a1,a1,1, which disassembles to 0x00158593. The breakdown of the fields for this instruction is shown
in Table 2-3.

The addi instruction format is termed I-type for immediate. The instruction adds the contents of register
a1 plus a constant of 1 to register a1, so the effect is to increase the value of a1 by 1. The a1 register in
both the rd and rs1 fields corresponds to the value 0xb which is the 11th X register, so although the
programmer uses the more friendly register name, the machine code uses the x register number.

22 An interrupt is normally encountered in system level programming and could be used to process an attempt to access kernel memory or a user
level action such as a mouse click.

Chapter 2 Getting started

2-7

Table 2-3 Bit fields of the addi I-type instruction

2.2.1.3.2. R-type Instruction

The next instruction add t3, t1, t2 is an R-Type instruction as it uses the registers for both operands.
Register t2 is added to register t1 and the result is placed in register t3. Disassembly produces the
machine code 0x00730e33. The field breakdown is shown in Table 2-4

Table 2-4 Bit fields of the add R-Type instruction

2.2.1.3.3. S-type Instruction

The Store Word instruction (sw) uses a register and an offset to calculate the destination address. This is
an S-type instruction. No destination register is involved since the destination is memory. The instruction
stores the 32-bits held in register t0 into the memory location pointed to by register t1 plus an immediate
offset of 0. The format of the S-Type instruction is shown in Table 2-5. Note that the immediate data is
broken down into two separate fields with the lower 5 bits replacing the unused (in this type of
instruction) destination (rd) field.

Chapter 2 Getting started

2-8

Disassembly produces the machine code 0x00532023.

Table 2-5 Bit fields of the sw S-Type instruction

2.2.1.3.4. U-type Instruction

The U-Type format is used by two instructions – lui and auipc. There are 20 bits in the immediate field
which permits a larger range of immediate data. These 20 bits are shifted 12 places to the left and
represent bits 31 through 12 of a destination register.

The LUI instruction sets the lower 12 bits of the destination set to zero’s, as shown in Figure 2-2. An
additional I-type instruction (12-bit immediate) is used to provide bits 11 through 0 of the destination to
form a full 32-bit value.

AUIPC adds the 12-place, left shifted immediate 20 bits with the program counter, placing the result into
a destination.

Figure 2-2 LUI left shift of IMM bits into bits 31:12

AUIPC example

Assume that the Program counter has the value 0x000100b0, the instruction auipc t0,0x5a5a5 will add
the immediate data 0x5a5a5000 to 0x000100b0, placing this 0x5a5b50b0 into5a5b register t0.

0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1

0
0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

31 19

31 19

Chapter 2 Getting started

2-9

Table 2-6 AUIPC example

Immediate value (left shifted by 12
places)

5 a 5 a 5 0 0 0

+
Current Program Counter 0 0 0 1 0 0 b 0

Register t0 5 a 5 b 5 0 b 0

LUI example

The instruction lui t1,0x5a5a5 will add the immediate data 0x5a5a5000 to register t1.

Table 2-7 LUI example

Immediate value (left shifted by 12
places)

5 a 5 a 5 0 0 0

Register t1 5 a 5 b 5 0 0 0

The trace in Figure 2-3 show the contents of the registers after program execution.

Figure 2-3 Tracing AUIPC and LUI instructions

The format of AUIPC is shown in Table 2-8 below.

Chapter 2 Getting started

2-10

Table 2-8 Bit fields of the auipc U-Type instruction

LUI with two instructions

The instructions to load a 32-bit value such as 0x1234006 into a register would look like:

lui t1, 0x1234 # Loads upper 20 bits

addi t1,t1, 6 # Loads lower 12 bits

The first instruction shifts the 20-bit value over 12 places and places zeros in the lower 12 bits. The second
instruction adds the 12-bit value 0x006 to the current contents of t1 (0x1234000 + 006 = 0x1234006) and
places the result in t1 as shown in Figure 2-4.

Figure 2-4 Using lui and addi to generate a 32-bit immediate value.

There is, however, an easier method by using the pseudo instruction - Load Immediate li. Instead of
using the two instructions shown above, the code using li looks like:

li t1, 0x1234006.

This pseudo instruction could be translated into:

lui t1, 01234

addw t1, t1, 6

Pseudo instructions are automatically translated by the assembler to one or more real machine
instructions.

2.2.1.3.5. B-type Instruction

The B-Type instruction is used with conditional branches. With this instruction the immediate field has a
range of 13-bits. This is achieved by setting the least significant bit to be zero and then substituting its bit
position with bit 11 in the immediate field imm[4:1].

U-Type

imm[31:12] rd opcode

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1

Bit 31 6 0

Bits 31:12 imm[31:12] 0x13

Bits 11:7 rd 0x5

Bits 6:0 Opcode 0x17

11

auipc t0,0x1 00001297

lui t1, 0x1234 Register t1
addi t1,t1,6 0x1234000

0x1234006

Chapter 2 Getting started

2-11

The location of the label <putit> is at address 0x100f8 and the branch instruction is located at address
0x10104.

10104: fe029ae3 bne t0,zero,100f8 <putit>

Table 2-9 Bit fields of the B-Type instruction

Since this a backwards pointing branch, the immediate field is a minus value; converting it using two’s
complement gives a value of 0xc or 12 places back.

2.2.1.3.6. J-type Instruction

Unconditional branches use the Jump and Link instruction (jal). This is a J-type instruction. It is similar
to the B-type instruction with the immediate bits in disjoint fields to allow for more efficient decoding.
In this example a jal instruction is encountered at program counter address 0x100c0 and the instruction
points to a label located at 0x100d4. The number of bytes to jump is encoded in the immediate bits as
shown in Table 2-10. The machine code produced is 0x014000ef. The opcode for the instruction is 0x6f
and the destination register is x1 which is the return address register (ra).

There is an aliased instruction j which uses the zero register instead of the ra register as shown below:

The aliased instruction j 100b8 <quit>

B-Type

12 imm[10:5] rs2 rs1 funct3 imm[4:1] 11 opcode

1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1

Bit 31 25 6 0

Bit 31 12 0x1

Bits [30:25] imm[10:5] 0x3f

Bits [24:20] rs2 0x0

Bits [19:15] rs1 0x5 When calculating the immediate value
Bits [14:12] funct3 0x1 make sure that bit 11 is placed in the correct position
Bits [11:8] imm[4:1] 0x15 1 1 1 1 1 1 1 1 1 0 1 0
Bit 7 11 0x1
Bits 6:0 Opcode 0x63 Bit 11 (taken from bit 7 of the instruction)

Two's complement is 000000001011

12 10 8 6 4 2 0

imm data 1 1 1 1 1 1 1 1 1 0 1 0 0
1's complement 0 0 0 0 0 0 0 0 0 1 0 1 1
Add in the sign bit (bit12) 1 12 bit imm
2's complement 0 0 0 0 0 0 0 0 0 1 1 0 0

bne t0, zero, label fe029ae3

20 11

Chapter 2 Getting started

2-12

is encoded as:

jal zero,100b8 <quit>

Table 2-10 Bit fields of the J-Type instruction

More information regarding branch and jump instructions are covered in a dedicated chapter of the
book.

2.2.2. Additional fields funct3 and funct7

The opcode can be the same for different related instructions. The opcode is 7-bits wide occupying bit
positions 6:0. To take a specific example the opcode 0110011 (0x36) refers to R-Type integer arithmetic
and logical instructions. Each of these instructions are differentiated by the funct3 and funct7 fields. The
numerical suffix refers to the number of bits used – funct3 is a three-bit field and funct7 is a seven-bit
field. This is really a ten-bit field broken up into two sub fields. It is non-contiguous to ensure consistency
across the different types of instructions (aiding decoders) and to avoid waste by reusing the bits for
different purposes, if a funct field is not required for that particular instruction type. The type of
instruction defines which funct field(s) is in use. The funct3 field will always occupy bits 14:12 on any
instruction that uses the field and funct7 (used on the R-Type instruction) will occupy bit positions 31:25.
The U and J-type instructions do not use the funct fields and will use these bits to specify a greater range
of immediate bits. Table 2-11 shows which of the funct fields are used with each instruction type.

Chapter 2 Getting started

2-13

Table 2-11 Funct field usage with instruction types.

Instruction Type Funct3 field Funct7 field

R-Type Yes Yes

I-Type Yes No

S-Type Yes No

B-Type Yes No

U-Type No No

J-Type No No

For R-Type instructions, the funct fields define the operation type. Some of these definitions are listed in
Table 2-12 below.

Table 2-12 Funct fields used for R-Type Integer instructions

Instruction Opcode Funct7 Funct3

ADD 0110011 0000000 000

SUB 0110011 0100000 000

SRA 0110011 0100000 101

SLL 0110011 0000000 001

SRL 0110011 0000000 101

AND 0110011 0000000 111

OR 0110011 0000000 110

XOR 0110011 0000000 100

Note that ADD and SUB have the same funct3 value, they are differentiated by
bit 5 of funct7 and similarly with SRL and SRA instructions.

2.3. Coding Tools

Chapter One gave a brief introduction to the assembly process. The tool that will be used for assembly is
the GNU assembler (GAS). This utility is also used when compiling higher-level languages to provide
intermediate code during the compilation process. It is part of the open-source GNU Binutils23 collection.
The binary tools include (amongst others) –

23 Use sudo apt install -y binutils - See https://www.gnu.org/software/binutils/ for more detail

https://www.gnu.org/software/binutils/
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 2 Getting started

2-14

Table 2-13 GNU Tools associated with assembling and linking

Tool Name Function

as Assembler

ld Linker

GDB GNU Debugger

objdump Disassembles and dumps object file information

make Utility for assembling and linking multiple files, ignoring files that are up to
date.

The candidate platforms suggested in this chapter include the tools listed in Table 2-13. The GNU tools
are applicable to a wide range of architectures including Intel® and Arm®. The listings in this book have
all been tested with the GNU assembler24. The GNU toolchain25 also includes other programming tools
such as GNU Autotools and Bison for parsing.

The next section illustrates the use of all the tools listed in Table 2-13

2.3.1. Editing files

The first stage in the assembly process is to edit the source files. The assembly code is plaintext so basic
text editors such as vi or nano should be used. By convention the file suffix is “.s”, so a command to write
a source program could be a command such as vi testprogram.s which would edit an existing file or
create a new one if it did not already exist. An example of a small assembly program is shown in Listing
2-1.

Listing 2-1Assembly code example

.section .text

.global _start

_start:

addi t1, zero,6 # mov 6 into t1

addi t2, zero, 11 # mov 11 into t2

add t3, t1, t2 # add t2 and t1 result goes to t3

addi a7, x0, 93 # Call

ecall

24 The GNU assembler is recommended for all the listings here.

25 A toolchain is a collection of programming tools.

Chapter 2 Getting started

2-15

The first line of code defines a label (_start) that marks the entry point of the program. The entry
.global26 is a directive to the assembler defining an action. Directives are not part of the actual machine
code that will be produced but will help the assembly process by providing instructions on how to control
flow, define symbols and reserve space as well as other tasks. They also aid the coder in that they can
define strings of text without having to refer to tables of ASCII codes. The code after the _start label is
the actual code that will be assembled into RISC-V machine code.

The program moves two numbers 6 and 11 into two registers (t1 and t2) and then adds them together,
placing the result of the addition in register t3. The next two lines of code use Operating System calls
(syscalls) to gracefully exit the program.

2.3.1.1. System calls

System Calls (Syscalls) are service requests sent to the Operating Systems’ kernel to perform a privileged
task. These tasks include interaction with the hardware, file operations, memory management and
networking. When a syscall is invoked the system switches to a privileged mode which executes tasks in
a coordinated, standard manner. Syscalls are different across architectures and Operating Systems. With
RISC-V systems running under Linux, the first step is to place the syscall code into register a7 and then
use the ecall instruction to request the function. The last two instructions of Listing 2-1 shows how to
use the exit system call.

2.3.1.1.1. Bare Metal Programming

Bare metal programming is a term used when the code interacts directly with the machine itself, it does
not have the benefit of the Operating System support and so syscalls are unavailable. Bare metal
programming is commonly used in embedded systems.

2.3.1.2. Sections

Assembly language source files are typically divided into sections. The sections used with RISC-V assembly
files include the following.

Table 2-14 Assembly language sections

Section Name Purpose

.text Contains the source level instructions.

.data Allocation of initialized variables.

.rodata Holds constants or text strings that are read only.

.bss Allocates uninitialized data buffers.

The following listing shows the use of sections and how they are interacted with by registers.

26 Some listings may use “.globl” . Both forms are acceptable to the GNU assembler

Chapter 2 Getting started

2-16

Listing 2-2 Interacting with assembly sections.

.section .text

The .text section contains the assembly language source instructions, omitting

the prefix .section also works for .text, .data and .bss sections.

.global _start

_start:

/* This program illustrates the use of sections in RISC-V assembly.

It also shows how to interact with memory via load and store instructions

Note this text is encapsulated using a multi-line comment.

The other comments using the # character are single-line comments */

Interacting with .data section

lw a0, oneword # Loads the content of the address at oneword into a0

lh a1, onehalf # Loads the content of the address at onehalf into a1

lb a2, onebyte # Loads the content of the address at onebyte into a2

Interacting with .bss section

la a3, buffer1

sw a0, 0(a3)

addi a7, x0, 93

ecall

Interacting with .rodata section

lb a4, min

lb a5, max

.data # This section initializes variables.

oneword: .word 2

onehalf: .half 0xaa55

onebyte: .byte 0x44

.section .rodata # This section can hold constants and text strings

Chapter 2 Getting started

2-17

min: .byte 32

max: .byte 100

.bss # This section allocates memory space for storage

buffer1: .space 100

Sections can be shown with the objdump command (see page 2-23).

objdump -h listing3-3b

listing3-3b: file format elf64-littleriscv

Sections:

Idx Name Size VMA LMA File off Algn

0 .text 00000080 00000000000100e8 00000000000100e8 000000e8 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .data 0000002d 0000000000011168 0000000000011168 00000168 2**0

CONTENTS, ALLOC, LOAD, DATA

2 .riscv.attributes 00000037 0000000000000000 0000000000000000 00000195 2**0

CONTENTS, READONLY

. . .

2.3.1.2.1. Virtual Memory Address and Load Memory Address

In the output of the objdump command given above there are field headings VMA and LMA. These are
the Virtual and Load memory addresses. The virtual memory address is the section address at runtime
and the load memory address is the location where the section is loaded.

These locations are usually the same. but can differ if ROM memory (LMA) needs to be re-located to
writable RAM memory (VMA).

2.3.2. Comments

Comments are ignored by the assembler but important for maintaining code clarity. There are multi-line
comments beginning with /* and ending with */ and single line comments using the # character.

2.3.3. Assembling

Note high-level languages have an additional stage between editing and
assembling – this is the compilation stage which will generate assembly code
from a high-level language source code.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 2 Getting started

2-18

Later in27 the book, mixing of hybrid high-level languages and assembly code will be covered but until
then, only pure assembly language programming will be discussed.

Once the file has been edited it can be assembled. The assembler will check for syntax28 errors and if
successful it will generate an object file. This is the main task of the assembler – to generate machine
code for the underlying processor architecture. It is also responsible for translating RISC-V pseudo
instructions into real machine code instructions. The object file uses the suffix “.o”. The GNU assembler
may be referred to as GAS!

The command to assemble a program is shown below:

as -o testprogram.o testprogram.s

Note the order of files where the object file name is given first followed by the
source name.

When initially developing programs, it is normal to include extra information to assist with the debugging
process. Once the code is ready for final release this extra information is removed. The command to
include debugging information is:

as -g -o testprogram.o testprogram.s

Including the debugging data increases the size of the code. The assembler ignores the comments which
are only used for human clarification purposes and have no meaning to the processor. Once the code
has been translated into machine code it is not yet in an executable state. Along with the actual machine
code, a number of symbol references may be defined. These may be references to symbols defined in
other object files that the current source program has no access to.

2.3.4. Linker

The linker’s role is to produce code that can be executed by the system, most large programs are not
standalone but instead consist of a number of smaller programs or library files. The linker “joins” these
programs together and generates the final executable. In addition, the linker has the responsibility of
resolving the symbol references. It will also perform optimization.

Other considerations are integration within the file system. Linux programs use the Executable and
Linkable format (ELF). This format is portable, supporting a wide range of platforms. ELF files consist of
headers and sections to aid with mapping the program into memory. The readelf utility analyzes the
ELF format. The ELF header can be shown with the command readelf -h testprogram as shown below:

readelf -h testprogram

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

27 See Page 7-1.

28 Note logic/flow error checking is largely the coder’s responsibility.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 2 Getting started

2-19

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: RISC-V

Version: 0x1

Entry point address: 0x100b0

Start of program headers: 64 (bytes into file)

Start of section headers: 1192 (bytes into file)

Flags: 0x4, double-float ABI

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 2

Size of section headers: 64 (bytes)

Number of section headers: 11

Section header string table index: 10

To produce an executable from the testprogram.o file use the command –

ld -o testprogram testprogram.o

2.3.4.1. Linker Scripts

Linker scripts are used to describe memory allocation maps and are more commonly used in embedded
systems. They are text files.

The command ld –verbose lists the contents of the default linker script –

GNU ld (GNU Binutils for Debian) 2.40

Supported emulations:

elf64lriscv

elf64lriscv_lp64f

elf64lriscv_lp64

elf32lriscv

elf32lriscv_ilp32f

elf32lriscv_ilp32

elf64briscv

Chapter 2 Getting started

2-20

elf64briscv_lp64f

elf64briscv_lp64

elf32briscv

elf32briscv_ilp32f

elf32briscv_ilp32

using internal linker script:

==

/* Script for -z combreloc */

/* Copyright (C) 2014-2023 Free Software Foundation, Inc.

Copying and distribution of this script, with or without modification,

. . .

/* DWARF 3. */

.debug_pubtypes 0 : { *(.debug_pubtypes) }

.debug_ranges 0 : { *(.debug_ranges) }

/* DWARF 5. */

.debug_addr 0 : { *(.debug_addr) }

.debug_line_str 0 : { *(.debug_line_str) }

.debug_loclists 0 : { *(.debug_loclists) }

.debug_macro 0 : { *(.debug_macro) }

.debug_names 0 : { *(.debug_names) }

.debug_rnglists 0 : { *(.debug_rnglists) }

.debug_str_offsets 0 : { *(.debug_str_offsets) }

.debug_sup 0 : { *(.debug_sup) }

.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }

/DISCARD/ : { *(.note.GNU-stack) *(.gnu_debuglink) *(.gnu.lto_*) }

On the Debian system used here (Linux starfive 6.6.20-starfive #41SF SMP Fri Sep 20 17:48:26
CST 2024 riscv64 GNU/Linux) the linker scripts are located at /lib/riscv64-linux-gnu/ldscripts/
-

lf32briscv_ilp32f.x elf32briscv_ilp32.xdc elf32briscv.xe

elf32lriscv_ilp32f.xsceelf32lriscv_ilp32.xw elf64briscv_lp64f.xce

elf64briscv_lp64.xdw elf64briscv.xs elf64lriscv_lp64f.xswe elf64lriscv.xbn

elf32briscv_ilp32f.xbn elf32briscv_ilp32.xdce elf32briscv.xn

. . .

Chapter 2 Getting started

2-21

2.3.5. GDB – The GNU Debugger

GDB is used to view program flow. The code can be run “one step (instruction) at a time” as a teaching
tool to promote understanding of program execution. It does this by displaying register and memory
contents along with the line of source code being executed. The tool is invaluable for coders looking to
track down more elusive issues such as unexpected results. By single stepping through the code, the
exact location where the error occurs can be readily identified. As mentioned earlier, the assembler
command as uses the -g switch to generate debugging information. The debugger can be launched by
the gdb command.

GDB can be installed on Debian systems with the command sudo apt install -y gdb

sudo apt install -y gdb

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

The following additional packages will be installed:

 libbabeltrace1 libboost-regex1.74.0 libc6-dbg libdebuginfod-common libdebuginfod1

libsource-highlight-common libsource-highlight4v5

Suggested packages:

 gdb-doc gdbserver

The following NEW packages will be installed:

 gdb libbabeltrace1 libboost-regex1.74.0 libc6-dbg libdebuginfod-common libdebuginfod1

libsource-highlight-common libsource-highlight4v5

0 upgraded, 8 newly installed, 0 to remove and 54 not upgraded.

Need to get 11.3 MB of archives.

After this operation, 24.9 MB of additional disk space will be used.

. . .

To illustrate GDB in action issue the command

gdb testprogram

$ gdb testprogram

GNU GDB (Debian 13.2-1) 13.2

Copyright (C) 2023 Free Software Foundation, Inc.

. . .

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from testprogram...

(gdb) list

Chapter 2 Getting started

2-22

.section .text

.global _start

start:

addi t1, zero,6 # mov 6 into t1

addi t2, zero, 11 # mov 11 into t2

add t3, t1, t2 # add t2 and t1 result goes to t3

addi a7, x0, 93

ecall

(gdb) b 1

Breakpoint 1 at 0x100b0: file testprogram.s, line 6.

(gdb) run

Starting program: /home/alan/asm/misc/testprogram

Breakpoint 1, _start () at testprogram.s:6

6 addi t1, zero,6 # mov 6 into t1

(gdb) n

7 addi t2, zero, 11 # mov 11 into t2

(gdb) n

8 add t3, t1, t2 # add t2 and t1 result goes to t3

(gdb) n

9 addi a7, x0, 93

(gdb) i r t1

t1 0x6 6

(gdb) i r t2

t2 0xb 11

(gdb) i r t3

t3 0x11 17

(gdb) q

A debugging session is active.

Inferior 1 [process 8652] will be killed.

Quit anyway? (y or n) y

Table 2-15 lists some of the more commonly used GDB commands

Table 2-15 Commonly used GDB commands

Command Meaning

List List the source assembly file

Chapter 2 Getting started

2-23

B 1 Sets a stopping point known as a breakpoint once the program runs, a number can
be used or a label such as b _start

Run Starts the program and halts at the first breakpoint (if any has been set).

N(ext) Advances to the next (n)line(s)29 of code, by-passing sub-routines.

S(tep) Steps to the next (n)line(s) of code, entering sub-routines.

I(nfo) t1 Shows the contents of register t1

I(nfo) t2 Shows the contents of register t2

I(nfo) t3 Shows the contents of register t3

Q(uit) Exits the program

GDB will be covered in more detail as the document progresses, in addition it will function as the primary
learning tool to illustrate program flow and how each of the instructions work30.

2.3.6. Objdump

The objdump utility is helpful with reverse engineering and understanding object code. The code can be
disassembled to show the original source instructions using the -d switch, for example

$ objdump -d testprogram

testprogram: file format elf64-littleriscv

Disassembly of section .text:

00000000000100b0 <_start>:

100b0: 00800313 li t1,8

100b4: 00b00393 li t2,11

100b8: 00730e33 add t3,t1,t2

100bc: 05d00893 li a7,93

100c0: 00000073 ecall

The option -M no-aliases allows us to see how the assembler translated the pseudo instruction li –

$ objdump -d -M no-aliases testprogram

testprogram: file format elf64-littleriscv

Disassembly of section .text:

00000000000100b0 <_start>:

100b0: 00800313 addi t1,zero,8

29 Default is one line

30 The reader is encouraged to use GDB to step through the program listings.

Chapter 2 Getting started

2-24

100b4: 00b00393 addi t2,zero,11

100b8: 00730e33 add t3,t1,t2

100bc: 05d00893 addi a7,zero,93

100c0: 00000073 ecall

Since the immediate data was small (less than one byte) li was achieved using the single instruction
addi.

2.3.7. Make

The commands that have been used so far for assembling and linking (as,ld) have worked well enough
for our situation, however when multiple files are involved it is normal to use a build tool to accomplish
this. The make utility keeps track of what has been done and will only apply actions to the changed
portions. The instructions are conveyed to the utility using a makefile. The makefile below can be used
to assemble and link the program testprogram.s

Simple makefile

testprogram: testprogram.o

ld -o testprogram testprogram.o

testprogram.o: testprogram.s

as -o testprogram.o testprogram.s

The line at the top denotes the target file which depends on the object file which in turn is dependent on
the source file. The rules on how to create the target file are shown above, so the flow is →

• Create the target file (testprogram) from the object file (testprogram.o) which is created from
the source file (testprogram.s). The first target (here testprogram) is termed the default goal.

The make file is invoked by the command

make testprogram

as -o testprogram.o testprogram.s

ld -o testprogram testprogram.o

or in this case simply enter -

make

make: 'testprogram' is up to date.

Note use Tab characters for indentation in the makefile.

The next example assembles and links two programs into a single executable file.

OBJECTS = program1.o program2.o

all: myprogram

%.o : %.s

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 2 Getting started

2-25

as $< -g -o $@

myprogram: $(OBJECTS)

ld -o myprogram $(OBJECTS)

This example will allow the target to be passed to the makefile:-

TARGETFILE = $(targetfile)

print: $(TARGETFILE).o

 ld -o $(TARGETFILE) $(TARGETFILE).o

$(TARGETFILE).o: $(TARGETFILE).s

 as -g -o $(TARGETFILE).o $(TARGETFILE).s

$ make targetfile=print

make: 'print' is up to date.

$ ls

makefile print print.o print.s

Try the next script -

TARGETFILE = $(targetfile)

$(TARGETFILE): $(TARGETFILE).o

 @echo "Now linking $(TARGETFILE).o to $(TARGETFILE)"

 ld -o $(TARGETFILE) $(TARGETFILE).o

$(TARGETFILE).o: $(TARGETFILE).s

 @echo "Now assembling $(TARGETFILE).s to $(TARGETFILE).o with debug option"

 as -g -o $(TARGETFILE).o $(TARGETFILE).s

Invoke with make targetfile=<filename>.

2.4. Choosing a candidate platform

2.4.1. Hardware Platforms

Low-cost RISC-V hardware is available today, some RV64 hardware platforms that seem to work well are:

• VisionFive2 RISC-V Single Board Computer, StarFive JH7110 Processor with Integrated 3D GPU,
8GB Memory

o starfivetech.com/en

• LicheePi 4A 64bit LPDDR4X 16GB RISC-V Single Board Computer.

o https://wiki.sipeed.com/hardware/en/lichee/th1520/lp4a.html

• BananaPi BPI-F3

o https://docs.banana-pi.org/en/BPI-F3/BananaPi_BPI-F3

https://wiki.sipeed.com/hardware/en/lichee/th1520/lp4a.html
https://docs.banana-pi.org/en/BPI-F3/BananaPi_BPI-F3

Chapter 2 Getting started

2-26

2.4.2. Emulation and Simulation

An alternative is to use RISC-V emulation courtesy of QEMU which is an open-source emulator and
virtualizer. See https://www.qemu.org/docs/master/ for more information.

Installation is covered in the next section.

Cross compilation is another option which is covered later.

2.4.2.1. Configuring a QEMU based Virtual machine

Note if using physical hardware the following steps can be skipped (if desired).

at Architectures/RISC-V/QEMU - Fedora Project Wiki
(https://fedoraproject.org/wiki/Architectures/RISC-V/QEMU)

2.4.2.1.1. Install Qemu

 sudo dnf install \

 libvirt-daemon-driver-qemu \

 libvirt-daemon-driver-storage-core \

 libvirt-daemon-driver-network \

 libvirt-daemon-config-network \

 libvirt-client \

 virt-install \

 qemu-system-riscv-core \

 edk2-riscv64

[sudo] password for fedorauser:

Updating and loading repositories:

Repositories loaded.

gpg: directory '/root/.gnupg' created

gpg: /root/.gnupg/trustdb.gpg: trustdb created

Package "libvirt-daemon-driver-qemu-11.0.0-2.fc42.x86_64" is already installed.

Package "libvirt-daemon-driver-storage-core-11.0.0-2.fc42.x86_64" is already

installed.

Package "libvirt-daemon-driver-network-11.0.0-2.fc42.x86_64" is already installed.

Package "libvirt-daemon-config-network-11.0.0-2.fc42.x86_64" is already installed.

Package "libvirt-client-11.0.0-2.fc42.x86_64" is already installed.

Package Arch Version Repository Size

https://www.qemu.org/docs/master/
https://fedoraproject.org/wiki/Architectures/RISC-V/QEMU
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 2 Getting started

2-27

Installing:

 edk2-risc noarch 20250221-8.fc42 fedora 17.6 MiB

 qemu-system-riscv-core x86_64 2:9.2.3-1.fc42

. . .

2.4.2.1.2. Set up access and default URI

$ sudo usermod -a -G libvirt $(whoami)

$ mkdir -p ~/.config/libvirt && \

echo 'uri_default="qemu:///system"' > ~/.config/libvirt/libvirt.conf

[fedorauser@fedora ~]$ sudo reboot

2.4.2.1.3. Get the image

[fedorauser@fedora ~]$ wget https://dl.fedoraproject.org/pub/alt/risc-

v/release/42/Cloud/riscv64/images/Fedora-Cloud-Base-Generic-42.20250414-

8635a3a5bfcd.riscv64.qcow2

Saving 'Fedora-Cloud-Base-Generic-42.20250414-8635a3a5bfcd.riscv64.qcow2'

. . .

2.4.2.1.4. Re-locate the image

$ sudo mv Fedora-Cloud-Base-Generic-42.20250414-8635a3a5bfcd.riscv64.qcow2

 /var/lib/libvirt/images/fedora-riscv.qcow2

2.4.2.1.5. Set up the environment and yml file

$ mkdir ~/riscv

$ cd riscv

$ vi user-data.yaml

#cloud-config

password: linux

chpasswd:

 expire: false

runcmd:

 - touch /etc/cloud/cloud-init.disabled

2.4.2.1.6. Set up the VM

Configure parameters, editing as required, such as RAM and CPU parameters

$ virt-install \

 --import \

 --name fedora-riscv \

 --osinfo fedora-rawhide \

https://dl.fedoraproject.org/pub/alt/risc-v/release/42/Cloud/riscv64/images/Fedora-Cloud-Base-Generic-42.20250414-8635a3a5bfcd.riscv64.qcow2

Chapter 2 Getting started

2-28

 --arch riscv64 \

 --cpu mode=maximum \

 --vcpus 4 \

 --ram 8192 \

 --boot uefi \

 --disk path=/var/lib/libvirt/images/fedora-riscv.qcow2 \

 --network default \

 --tpm none \

 --graphics none \

 --controller scsi,model=virtio-scsi \

 --cloud-init user-data=user-data.yaml

. . .

Fedora Linux 42 (Cloud Edition)

Kernel 6.13.0-0.rc4.36.0.riscv64.fc42.riscv64 on riscv64 (ttyS0)

enp1s0: 192.168.122.132 fe80::5054:ff:fe43:927a

localhost login: [108.371505] cloud-init[982]: Cloud-init v. 24.2 running

'modules:final' at Thu, 15 May 2025 16:23:09 +0000. Up 107.79 seconds.

ci-info: no authorized SSH keys fingerprints found for user fedora.

<14>May 15 16:23:11 cloud-init: ##########################

<14>May 15 16:23:11 cloud-init:--BEGIN SSH HOST KEY FINGERPRINTS-

<14>May 15 16:23:11 cloud-init: 256 SHA256:WerTtl94f5Use//HZikpuOTZyJzztfVWhGBhP0McjZU

root@localhost (ECDSA)

<14>May 15 16:23:11 cloud-init: 256 SHA256:FEOBA1tWS12IOewDzRywk0HOjkqZ2x66Rx++4LHkwO8

root@localhost (ED25519)

. . .

[109.684931] cloud-init[982]: Cloud-init v. 24.2 finished at Thu, 15 May 2025 16:23:11

+0000. Datasource DataSourceNoCloud [seed=/dev/sr0][dsmode=net]. Up 109.56 seconds

Log on with username “fedora” and password “linux”

localhost login: fedora

Password:

2.4.2.1.7. Check the architecture -

[fedora@localhost ~]$ lscpu

Architecture: riscv64

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Chapter 2 Getting started

2-29

Vendor ID: 0x0

Model name: -

CPU family: 0x0

Model: 0x0

Thread(s) per core: 1

Core(s) per socket: 4

. . .

2.4.2.1.8. Check RAM size

$ free -m

total used free shared buff/cache available

Mem: 7911 348 7549 0 164 7562

Swap: 7910 0 7910

2.4.2.1.9. Test the coding environment

Install tools

$ sudo dnf install -y binutils

Updating and loading repositories:

Fedora RISC-V 42 100% | 1.1 MiB/s | 17.3 MiB | 00m16s

Fedora RISC-V 42 - Staging 100% | 291.8 KiB/s | 453.4 KiB | 00m02s

Repositories loaded.

Package Arch Version Repository Size

Installing:

binutils riscv64 2.44-3.fc42 fedora-riscv 24.3 MiB

Transaction Summary:

Installing: 1 package

. . .

Create a small assembly file

vi test.s

.global _start

_start:

la a1, hellorisc

addi a2, x0, 14

addi a7, x0, 64

ecall

addi a0, x0, 0

Chapter 2 Getting started

2-30

addi a7, x0, 93

ecall

.data

hellorisc:.ascii "Hello RISC-V!\n"

Assemble, link and execute

$ as -g -o test.o test.s

[fedora@localhost ~]$ ls

test.o test.s

[fedora@localhost ~]$ ld -o test test.o

[fedora@localhost ~]$ chmod 777 test

[fedora@localhost ~]$./test

Hello RISC-V!

2.4.2.1.10. Shutdown and restarting

Shutdown the machine with $ sudo poweroff

Restart with $ virsh start fedora-riscv –console

If –console is omitted31 then systems can be shutdown with the virsh command –

$ virsh shutdown <name>. The active VMs can be shown with the virsh list command –

$ virsh list

 Id Name State

 1 fedora-riscv running

$ virsh shutdown fedora-riscv

Domain 'fedora-riscv' is being shutdown

Shutdown all running systems using the script below -

for i in `virsh list | grep running | awk '{print $2}'`; do virsh shutdown $i; done

2.4.2.1.11. Optional activities

Add network tools

$ sudo dnf install -y net-tools

31 This would be the case for remote systems

Chapter 2 Getting started

2-31

2.4.2.1.12. Grow the virtual disk capacity

The virtual disk image can be expanded with qemu-img -

resize /var/lib/libvirt/images/fedora-riscv.qcow2 +20G qemu- img

This adds 20G capacity to the existing image. The next task is to boot the image and grow a partition
(here partition3 will be expanded) with the fdisk utility provided by the virtual machine

[fedora@localhost ~]$ sudo fdisk /dev/vda

Welcome to fdisk (util-linux 2.40.4).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

. . .

Command (m for help): p

Disk /dev/vda: 25 GiB, 26843545600 bytes, 52428800 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: D8EE907C-0F17-41BA-BBEC-8A0DA4FB0950

Device Start End Sectors Size Type

/dev/vda1 2048 206847 204800 100M EFI System

/dev/vda2 206848 2254847 2048000 1000M Linux extended boot

/dev/vda3 2254848 10485726 8230879 3.9G Linux root (RISC-V-64)

Command (m for help): e

Partition number (1-3, default 3):

New <size>{K,M,G,T,P} in bytes or <size>S in sectors (default 23.9G):

Partition 3 has been resized.

Command (m for help): p

Disk /dev/vda: 25 GiB, 26843545600 bytes, 52428800 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: D8EE907C-0F17-41BA-BBEC-8A0DA4FB0950

Device Start End Sectors Size Type

/dev/vda1 2048 206847 204800 100M EFI System

Chapter 2 Getting started

2-32

/dev/vda2 206848 2254847 2048000 1000M Linux extended boot

/dev/vda3 2254848 52428766 50173919 23.9G Linux root (RISC-V-64)

Command (m for help): w

The partition table has been altered.

Syncing disks.

The fdisk utility has expanded the partition to 24G compared to the previous capacity of 4GB.

Verify from the Operating System -

[fedora@localhost ~]$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

sr0 11:0 1 1024M 0 rom

zram0 251:0 0 7.7G 0 disk [SWAP]

vda 252:0 0 25G 0 disk

├─vda1 252:1 0 100M 0 part /boot/efi

├─vda2 252:2 0 1000M 0 part /boot

└─vda3 252:3 0 23.9G 0 part /var

/home

/

2.4.2.2. Updating Fedora

$ sudo dnf upgrade --best

Fedora RISC-V 4.1 kB/s | 3.8 kB 00:00

Dependencies resolved.

===

Package Arch Version Repository Size

===

Installing:

iwlegacy-firmware noarch 20230804-153.fc38 fedora-riscv 140

. . .

2.4.2.3. Simulators

Simulators are as the name suggests program that run on the native system, providing the functionality
of a target system. They can normally be run online or perhaps under the control of an environment such
as Java. Two such programs are:

Chapter 2 Getting started

2-33

• CPUlator

• RARS

2.4.2.3.1. CPUlator

CPUlator32 is an online simulator that supports RV32. The simulator is an excellent tool for debugging as
it provides single stepping through the code, as well as showing memory, registers and code disassembly.

To get started select the system to be emulated (here RISC-V RV32) as shown in Figure 2-5 and enter
code. The code can be made executable in the simulator by selecting <Compile and Load> as shown in
Figure 2-6. The code can be executed one line at a time by selecting <Step Into>. Each step will show
changes to the register and memory contents.

32 The URL for CPUlator is https://cpulator.01xz.net/

Chapter 2 Getting started

2-34

Figure 2-5 CPUlator home page

Chapter 2 Getting started

2-35

Figure 2-6 Compiling and executing code with CPUlator

Chapter 2 Getting started

2-36

2.4.2.3.2. RARS

RARS33 stands for RISC-V Assembler and Runtime Simulator. It is also an excellent tool for learning RISC-
V assembly language.

Figure 2-7 RARS Execution screen

Refer to the URL in the footnote for more information on CPUlator and RARS.

In this example the downloaded RARS version was rars_3897cfa.jar as shown in Figure 2-8. To run
execute java -jar rars_3897cfa.jar.

33 The URL for RARS is https://github.com/TheThirdOne/rars/releases/tag/continuous

https://github.com/TheThirdOne/rars/releases/tag/continuous

Chapter 2 Getting started

2-37

Figure 2-8 Downloading RARS

The following link lists more simulators – https://www.riscvschool.com/risc-v-simulators/

2.4.3. Using strace

The strace utility can be used to monitor which syscalls have been invoked by a particular program or
process: -

$ strace -c ./print

Hello again!

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

0.00 0.000000 0 1 write

0.00 0.000000 0 1 execve

------ ----------- ----------- --------- --------- ----------------

100.00 0.000000 0 2 total

Strace, here shows that the syscalls write and exit were invoked once.

https://www.riscvschool.com/risc-v-simulators/

Chapter 2 Getting started

2-38

RISC-V Instructions Covered in Chapter 2

1. addi Add Immediate Example: addi t2, zero, 11

2. add Add (register-to-register) Example: add t3, t1, t2

3. ecall – Environment call (used for syscalls)

4. lui – Load Upper Immediate

5. auipc – Add Upper Immediate to PC

6. sw – Store Word

7. jal / jalr – Jump and Link / Jump and Link Register (implicitly discussed in context of control
transfer)

Chapter 2 Getting started

2-39

Exercises for chapter 2

1. What qualifier would you add to the as command to embed debug information?

2. What is the purpose of a linker?

3. How many registers are available for general purpose use?

4. What are assembly directives?

5. What are syscalls?

6. What is the function of a makefile?

7. What are assembly aliases?

8. What tool is used to disassemble an executable program

Chapter 3 Dealing with memory

3-2

Chapter 3. Dealing with memory

Overview of the chapter

Chapter 3 focuses on how RISC-V assembly interacts with memory, introducing key concepts such as
loading, storing, and addressing. It builds on previous chapters by explaining how data is accessed,
moved, and manipulated in memory during program execution. Unless specified otherwise the majority
of the programs throughout the book were built and executed on 64-bit systems34.

3.1. Load and Store instructions

Memory addresses are loaded from memory into registers and stored back from registers to memory.
Operations are with respect to memory so loading from memory to registers is a read operation and
storing from registers is a write operation. The method by which memory addresses are derived is known
as addressing modes and there are several. The code fragments in this chapter will show how to
communicate with memory and will also introduce various addressing modes.

Load and store instructions can access memory. Data is loaded from memory, acted on and then stored
back to memory. This is termed load-store architecture.

3.1.1. LOAD Instructions (Memory → Registers)

3.1.1.1. Examining memory with GDB

GDB can be used to examine memory. The format of the command is x/nfu addr. Here the parameters
have the following meaning:

Table 3-1 Using GDB to display memory contents

n How much memory to display in units, with a default value of one.

f This is the display format; default is to display in hex. The main options are o(octal), x(hex),
d(decimal), u(unsigned decimal), t(binary), f(float), a(address), i(instruction), c(char),
s(string)

u Unit size b = byte h = halfword (2 bytes) w = word (4 bytes) g = giant (8 bytes)

Example

(gdb) x/16w 0x4100e0

0x4100e0: 0x6c6c6548 0x00000a6f 0x00000000 0x00000000

0x4100f0: 0x0000002c 0x00000002 0x00080000 0x00000000

0x410100: 0x004000b0 0x00000000 0x00000028 0x00000000

34 See page 4-8 for discussion regarding 32-bit and 64-bit addition behavior.

Chapter 3 Dealing with memory

3-3

0x410110: 0x00000000 0x00000000 0x00000000 0x00000000

To examine memory pointed to by a label (mymemorylocation) the following syntax can be used –

(gdb) x /16xw &mymemorylocation

0x11104: 0x0000abcd 0x00001234 0x00000000 0x00000000

0x11114: 0x36410000 0x72000000 0x76637369 0x002c0100

0x11124: 0x72050000 0x69343676 0x5f307032 0x3070326d

0x11134: 0x7032615f 0x32665f30 0x645f3070 0x5f307032

3.1.1.2. Load and Store example

Listing 3-1 below shows a basic example of how to read from and write to memory.

The first instruction la, t0, word1 the address (here it is 0x11110) of word1 into register t0. The data
is identified by the label word1 in the .data section of the code. The contents of the address are loaded
into the 64-bit register t1, since the instruction is load word the upper 32-bits of the destination register
are sign extended giving a 64-bit value of 0xffffffffabcd1234 (since bit 31 is a 1). The load word unsigned
treats the upper 32-bits differently, it pads them with zeros giving a result of 0x00000000abcd1234.

The next instruction la t3, bufferspace is the destination address for the data that will be loaded into
memory. The address is identified by the label bufferspace.

Next the instruction sd t1, 0(t3) stores the doubleword held in t1 into the memory address pointed
to by register t3 (bufferspace), Finally sd t2,8(t3) stores the 64-bits in register t2 into memory eight
places (the offset) from the start of bufferspace. The format of store is to specify the source location
into a memory address specified by a register added to an offset

Listing 3-1 Basic read (load) and write (store) memory operation

/*Listing 3 1 Basic read (load) and write (store) memory operation, the program defines

four bytes, and copies them to a defined memory location (bufferspace), illustrating

load and store operations*/

.section .text

.global _start

_start:

.option norelax

la t0, word1

lw t1, 0(t0) # t1 = 0xffffffffabcd1234

/*Reads in the value 0xabcd into register t1, note that lw sign extends and lwu is zero

filled*/

lwu t2, 0(t0) # t2 = 0xabcd1234

la t3, bufferspace # Load the address of bufferspace into t3

sd t1, 0(t3) # Store the value of the doubleword held in register t1 into

the memory location pointed to by register t3 plus an offset of 0.

Chapter 3 Dealing with memory

3-4

sd t2, 8(t3) # Store the value of the doubleword held in register t2 into

the memory location pointed to by register t3 plus an offset of 8.

addi a7, x0, 93

ecall

.data

word1: .4byte 0xabcd1234

bufferspace: .space 40

A trace with GDB is instructive.

Chapter 3 Dealing with memory

3-5

Figure 3-1 GDB trace of listing3-1

Note the sd command stores a doubleword (64bits at a time). The store word (sw) instruction is
somewhat unusual in that the first register is the source.

It is important to understand how the lw and lwu instructions differ. Load word (lw) loads 32-bits into
the lower half of the 64-bit register and sign extends the upper 32-bits. Load word unsigned (lwu) zero
fills the upper 32-bits of the register.

Chapter 3 Dealing with memory

3-6

3.2. Outputting (Writing) ASCII text

The next listing shows how text can be sent to the standard output device (stdout) – the screen. The
write syscall will do this job and it has the decimal value of 64. Three registers (a0, a1, a2) hold the
parameters that are required by this syscall and are set up as shown in Table 3-2.

Table 3-2 Parameters required by the Write syscall

Register Parameter meaning

a0 Holds value 1 (stdout)

a1 Hold the address of the output text (located at the label message)

a2 Contains the length of the output text (12 characters)

Note the message string is terminated by the newline character (/n)

Listing 3-2 Use of the Write Syscall

listing3-2.s

.section .text

.global _start

_start:

li a0, 1 # use a0 for stdout

la a1, message # Load the address of the message text

li a2, 12 # Store the message length

li a7, 64 # Write syscall

ecall

li a7, 93 # Exit syscall

ecall

.data

message: .ascii "Hello RISCV\n"

Execute the program with the command –

./listing3-2

Hello RISCV

The unaliased version of this program is shown below:

objdump -d -M no-aliases listing3-2

listing3-2: file format elf64-littleriscv

Disassembly of section .text:

00000000000100e8 <_start>:

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 3 Dealing with memory

3-7

100e8: 00100513 addi a0,zero,1

100ec: 00001597 auipc a1,0x1

100f0: 01c58593 addi a1,a1,28 # 11108 <__DATA_BEGIN__>

100f4: 00c00613 addi a2,zero,12

100f8: 04000893 addi a7,zero,64

100fc: 00000073 ecall

10100: 05d00893 addi a7,zero,93

10104: 00000073 ecall

GDB can be used to show the memory layout -

(gdb) x /16c &message

0x11108: 72 'H' 101 'e' 108 'l' 108 'l' 111 'o' 32 ' ' 82 'R' 73 'I'

0x11110: 83 'S' 67 'C' 86 'V' 10 '\n' 65 'A' 54 '6' 0 '\000' 0 '\000'

This shows that the ASCII characters are laid out starting at the lowest address (0x11108) then counting
upwards to 0x 11113.

3.3. Inputting (reading) values

The next example shows how to read in a value using the read syscall. The read syscall uses the value 63
and places the input into memory defined by the symbol buffer.

Table 3-3 Parameters required by the read syscall

Register Parameter meaning

a0 Holds the value 0 (stdin)

a1 Hold the address of the storage buffer

a2 Contains the length of the input characters

Listing 3-3 Input operation

This is a simple program that reads in a single digit

.section .data

buffer:

.space 1

.section .text

.global _start

_start:

li a0, 0 # file descriptor 0 (stdin)

la a1, buffer # address of the buffer

Chapter 3 Dealing with memory

3-8

li a2, 1 # number of bytes to read

li a7, 63 # Read syscall

ecall

li a7, 93 # syscall number for exit

ecall # make the system call

The GDB session below shows that the memory location buffer holds the value 54 decimal which is the
ASCI code of the character “6”.

3.4. Relative and absolute addressing

Program Counter (PC) relative addressing is used to reference locations relative to the program counter.
For example, a location could be accessed as PC +100 which would refer to a location 100 places beyond
the current program counter’s contents. Execution of consecutive(non-branch/jump) instructions
advances the program counter by four, since instructions have a width of 32-bits (4 bytes). It is important
to facilitate forward and backward locations. Absolute addressing refers to the actual location in memory
where an instruction or data resides.

Chapter 3 Dealing with memory

3-9

3.4.1. RISC-V Assembler Modifiers

Figure 3-2 AUIPC and ADDI instruction example to generate an address

 The assembler supports instructions to generate relative and absolute addresses.
The address is broken up into the 12-bit lower portion (lo) and a 20-bit upper portion
(hi). Before discussing this topic in detail - consider how the pseudo instruction la

breaks into the instructions auipc and addi:

la a1, message

Disassembles to →

00000000000100e8 <_start>:

100e8: 00100513

li a0,1

100ec: 00001597 auipc a1,0x1

100f0: 01c58593 addi a1,a1,28 # 11108

<__DATA_BEGIN__>

The upper 20 bits (from auipc) are taken from the Program Counter’s current
contents (0x110ec) and the lower 12 bits (from addi) are 0x01c.

The immediate value of 0x1 is placed in the a1 register (from the auipc
instruction) and is then shifted 12 places, causing it to occupy the upper 20 bits
of the register. Register a1 now holds the value 0X00001000. This is added to
the value in the Program Counter giving 0x110ec. Next the immediate value
(0x1C) (from the addi instruction) is added to the contents of a1 and placed in
register a1, so a1 now contains 0x11108.

The steps are shown in Error! Reference source not found..

Using the GDB command info variables shows:

All defined variables:

Non-debugging symbols:

0x0000000000011108 __DATA_BEGIN__

0x0000000000011108 message

0x000000000001111f __SDATA_BEGIN__

0x000000000001111f __bss_start

0x000000000001111f _edata

0x0000000000011120 __BSS_END__

0x0000000000011120 _end

This confirms that the address of the string message resides at 0x11108. It also
shows the value of the pseudo instruction la which is much easier to use. The

Register A1
31

20
11

0
Add in AUIPC im

m
 value

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
Step1

Shift left 12 places
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
Step2

Add in PC
(0x100ec)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

1
0

1
1

0
0

Step3
A1 now holds 0x000110ec

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
1

1
0

1
1

0
0

Step4
Add in addi 0x1c

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

0
0

Step5
A1 = 0x00011108

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

1
0

0
0

Final Result

Chapter 3 Dealing with memory

3-10

assembler also helps us if we do not use the pseudo instructions. The instructions can resolve addresses
by using modifiers such as %lo, %hi, %pcrel_hi and %pcrel_lo.

Table 3-4 Absolute and relative adressing

Modifier Format/Example Description

%hi lui a1, %hi(symbol) Loads upper 20 bits of the symbol’s
address into register a1

%lo addi a1, a1, %lo(symbol Loads lower 12 bits of the symbol’s
address into register a1

%pcrel_hi auipc a2, %pcrel_hi(symbol) Loads the high 20 bits of a relative
address between the PC and symbol

%pcrel_lo addi a2, a2, %pcrel_lo(label) Loads the high 20 bits of a relative
address between the PC and label

The reason that two instructions are needed is that there is no single instruction that is capable of loading
a 32-bit immediate value. Referring back to the I-type and U-type instructions on page 2-6, there are
instructions that load 12 bits and instructions that load 20 bits. Combining them is how a 32-bit
immediate value is achieved.

• LUI is a U-type instruction and sets the low order bits to zero in the destination register and fills
in the high order bits.

• ADDI is an I-type instruction and adds in the low order bits to the destination register.

• AUIPC sets the destination register’s high order bits to the sum of the immediate value and the
program counter with the lo order bits set to zero.

The next listing shows an example of PC-Relative addressing.

 Listing 3-4-Relative addressing example

/* Listing 3-4

This listing shows how to use PC-Relative addressing

using modifiers*/

.section .data

message:

.ascii "This is a line of text\n"

.equ writecall, 64

.equ exitcall, 93

.equ stout, 1

.equ stringlength, 23

.section .text

Chapter 3 Dealing with memory

3-11

.global _start

_start:

li a0, stout # stdout

label1: auipc a1,%pcrel_hi(message) # Loads upper 20 bits

addi a1,a1,%pcrel_lo(label1) # Loads lower 12 bits

li a2, stringlength # String length

li a7, writecall # Write syscall

ecall

li a7, exitcall # syscall number for exit

ecall # make the system call

Listing 3-5 shows absolute addressing is achieved with %lo and %hi.

Listing 3-5 Using absolute addressing with %lo and %hi

This listing shows how to generate absolute addressing

using %lo and %hi modifiers*/

.section .data

message:

.ascii "This is a line of text\n"

.equ writecall, 64

.equ exitcall, 93

.equ stout, 1

.equ stringlength, 23

.section .text

.global _start

_start:

li a0, stout # stdout

lui a1, %hi(message) # Loads upper 20 bits of mesages' absolute address

addi a1,a1,%lo(message) # Loads lower 12 bits of message's absolute address

li a2, stringlength # String length

li a7, writecall # Write syscall

ecall

li a7, exitcall # syscall number for exit

ecall # make the system call

Chapter 3 Dealing with memory

3-12

The first absolute addressing instruction lui ai, %hi(message) loads a1 with the value 0x11000, the
next instruction addi a1, a1, %lo(message) adds in 0x108 to a1 giving a final result of 0x11108 which
is the absolute address of the symbol message.

3.5. Linker Relaxation

The directive .option norelax is used to disable linker relaxation35. Relaxation is used to optimize
performance by reducing the number of instructions when the program’s address range is limited. This
is illustrated in the next two listings.

Listing 3-6 Non relaxed version of code

This version does not use relaxation

.section .data

ask:

.ascii "Please input a character\n"

.align 2

confirm:

.ascii "You entered: \n "

.align 2

linefeed:

.ascii "\n"

buffer:

.space 4

.section .text

.global _start

_start:

.option push # Save context

.option norelax # Turn off relaxation to set up the global pointer

1:auipc gp, %pcrel_hi(__global_pointer$)

addi gp, gp, %pcrel_lo(1b)# b for back

.option pop # Now restore relaxation

.option norelax

li a0, 1 #stdout

la a1, ask #Text for first output string

li a2, 27 #String length

35 See https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain for more information on relaxation.

https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain

Chapter 3 Dealing with memory

3-13

li a7, 64 # Write syscall

ecall

li a0, 0 # file descriptor 0 (stdin)

la a1, buffer # address of the buffer

li a2, 1 # number of bytes to read

li a7, 63 # Read syscall

ecall

li a0, 1 #stdout again

la a1, confirm # Text for second output string

li a2, 15#Length

li a7, 64 #Write syscall

ecall

li a0, 1 #stdout again

la a1, buffer

li a2, 1 #Length

li a7, 64 #Write syscall

ecall

Tidy up with a newline!

li a0, 1

la a1, linefeed

li a2, 1

li a7, 64

ecall

li a7, 93 # syscall number for exit

ecall # make the system call

The numeric label 1 is suffixed with ‘b’ or ‘f’ for backward and forward references respectively.

Listing 3-7 Relaxed version of code

This version uses relaxation

.section .data

ask:

.ascii "Please input a character\n"

.align 2

Chapter 3 Dealing with memory

3-14

confirm:

.ascii "You entered: \n "

.align 2

linefeed:

.ascii "\n"

buffer:

.space 4

.section .text

.global _start

_start:

.option push # Save context

.option norelax # Turn off relaxation to set up the global pointer

1: auipc gp, %pcrel_hi(__global_pointer$)

addi gp, gp, %pcrel_lo(1b)

.option pop # Now restore relaxation state

.option norelax is commented out in this version

li a0, 1 #stdout

la a1, ask #Text for first output string

li a2, 27 #String length

li a7, 64 # Write syscall

ecall

li a0, 0 # file descriptor 0 (stdin)

la a1, buffer # address of the buffer

li a2, 1 # number of bytes to read

li a7, 63 # Read syscall

ecall

li a0, 1 #stdout again

la a1, confirm # Text for second output string

li a2, 15#Length

li a7, 64 #Write syscall

ecall

li a0, 1 #stdout again

la a1, buffer

li a2, 1 #Length

Chapter 3 Dealing with memory

3-15

li a7, 64 #Write syscall

ecall

Tidy up with a newline!

li a0, 1

la a1, linefeed

li a2, 1

li a7, 64

ecall

li a7, 93 # syscall number for exit

ecall # make the system call

Linker relaxation is used to provide more efficient coding. It is not always necessary to specify the full 32-
bit address range as many sections of code can run in the 12-bit range (minus 2048 to plus 2047 bytes)
without having to use auipc to load the upper 20-bits.

There are several types of linker relaxation, however only global pointer relaxation will be discussed here.

The global pointer can be used to specify an offset. So, rather than having to specify two instructions, we
can drop auipc and only use one instruction with the global pointer as an offset.

This is an optimization performed by the linker as it has a global view of all the files that will be linked
together Table 3-536 shows how relaxation reduces the code size and enhances performance. Since the
contents of the .data section are small enough to fit into 12 bits, the upper 20 bits need not be fetched
each time.

The real gain is not so much the size of the code but with performance. Code that uses repetitive loop
iterations can benefit greatly in terms of reduction of execution time.37

Table 3-5 Comparison of relaxed and non-relaxed code

Listing 3-6 Non relaxed version of code

00000000000100e8 <_start>:

100e8: 00002197 auipc gp,0x2

100ec: 88818193 addi gp,gp,-1912 # 11970 <__global_pointer$>

100f0: 00100513 addi a0,zero,1

100f4: 00001597 auipc a1,0x1

100f8: 07c58593 addi a1,a1,124 # 11170 <__DATA_BEGIN__>

100fc: 01b00613 addi a2,zero,27

Listing 3-7 Relaxed version of code

00000000000100e8 <_start>:

100e8: 00002197 auipc gp,0x2

100ec: 87818193 addi gp,gp,-1928 # 11960
<__global_pointer$>

100f0: 00100513 addi a0,zero,1

100f4: 00001597 auipc a1,0x1

100f8: 06c58593 addi a1,a1,108 # 11160
<__DATA_BEGIN__>

36 The listings were generated by objdump -d -M no-aliases <file>

37 Refer to RISC-V ABIs Specification (https://lists.riscv.org/g/tech-psabi/attachment/61/0/riscv-abi.pdf) section 8.5.5 for more information on
the global offset table.

https://lists.riscv.org/g/tech-psabi/attachment/61/0/riscv-abi.pdf
https://lists.riscv.org/g/tech-psabi/attachment/61/0/riscv-abi.pdf

Chapter 3 Dealing with memory

3-16

10100: 04000893 addi a7,zero,64

10104: 00000073 ecall

10108: 00000513 addi a0,zero,0

1010c: 00001597 auipc a1,0x1

10110: 09158593 addi a1,a1,145 # 1119d <buffer>

10114: 00100613 addi a2,zero,1

10118: 03f00893 addi a7,zero,63

1011c: 00000073 ecall

10120: 00100513 addi a0,zero,1

10124: 00001597 auipc a1,0x1

10128: 06858593 addi a1,a1,104 # 1118c <confirm>

1012c: 00f00613 addi a2, zero,15

10130: 04000893 addi a7, zero,64

10134: 00000073 ecall

10138: 00100513 addi a0, zero,1

1013c: 00001597 auipc a1,0x1

10140: 06158593 addi a1,a1,97 # 1119d <buffer>

10144: 00100613 addi a2,zero,1

10148: 04000893 addi a7,zero,64

1014c: 00000073 ecall

10150: 00100513 addi a0,zero,1

10154: 00001597 auipc a1,0x1

10158: 04858593 addi a1, a1,72 # 1119c <linefeed>

1015c: 00100613 addi a2, zero,1

10160: 04000893 addi a7, zero,64

10164: 00000073 ecall

10168: 05d00893 addi a7, zero,93

1016c: 00000073 ecall

100fc: 01b00613 addi a2,zero,27

10100: 04000893 addi a7,zero,64

10104: 00000073 ecall

10108: 00000513 addi a0,zero,0

1010c: 82d18593 addi a1,gp,-2003 # 1118d <buffer>

10110: 00100613 addi a2,zero,1

10114: 03f00893 addi a7, zero,63

10118: 00000073 ecall

1011c: 00100513 addi a0, zero,1

10120: 81c18593 addi a1, gp,-2020 # 1117c <confirm>

10124: 00f00613 addi a2, zero,15

10128: 04000893 addi a7, zero,64

1012c: 00000073 ecall

10130: 00100513 addi a0, zero,1

10134: 82d18593 addi a1,gp,-2003 # 1118d <buffer>

10138: 00100613 addi a2, zero,1

1013c: 04000893 addi a7, zero,64

10140: 00000073 ecall

10144: 00100513 addi a0, zero,1

10148: 82c18593 addi a1,gp,-2004 # 1118c <linefeed>

1014c: 00100613 addi a2, zero,1

10150: 04000893 addi a7, zero,64

10154: 00000073 ecall

10158: 05d00893 addi a7, zero,93

1015c: 00000073 ecall

Listing 3-6 auipc count

100e8: 00002197 auipc gp,0x2

100f4: 00001597 auipc a1,0x1

1010c: 00001597 auipc a1,0x1

10124: 00001597 auipc a1,0x1

1013c: 00001597 auipc a1,0x1

10154: 00001597 auipc a1,0x1

Chapter 3 Dealing with memory

3-17

Listing 3-7 auipc count

100e8: 00002197 auipc gp,0x2

100f4: 00001597 auipc a1,0x1

3.5.1. Further relaxation example

The global pointer is set up as an offset in the middle of the 12-bit address space and uses the linker
defined symbol __global_pointer$ for initialization. The listing below disables linker relaxation,
initializes the GP register and then re-enabled relaxation.

Listing 3-8 Further example of linker relaxation use

/*Listing 3-8 Basic read (load) and write (store) memory operation, the program defines

four bytes, and copies them to a defined memory location (bufferspace), illustrating

load and store operations. This version uses linker relaxation, thus saving an

instruction using the gp register.*/

.section .text

.global _start

_start:

 .option relax

 .option push # Save the options state

 .option norelax # Turn off relaxation to get the global Pointer value

 la gp, __global_pointer$

 .option pop # Restore the options state, with relaxation enabled

 la t0, word1

 lw t1, 0(t0) # t1 = 0xffffffffabcd1234

 /*Reads in the value 0xabcd into register t1, note that lw sign extends and lwu is

zero filled*/

 lwu t2, 0(t0) # t2 = 0xabcd1234

 la t3, bufferspace # Load the address of bufferspace into t3

 sd t1, 0(t3) # Store the value of the doubleword held in register t1 into the

memory location pointed to by register t3 plus an offset of 0.

 sd t2, 8(t3) # Store the value of the doubleword held in register t2 into the memory

location pointed to by register t3 plus an offset of 8.

 addi a7, x0, 93

 ecall

.data

 word1: .4byte 0xabcd1234

 bufferspace: .space 40

Chapter 3 Dealing with memory

3-18

The disassembly from objdump is shown next –

00000000000100e8 <_start>:

100e8: 00002197 auipc gp,0x2

100ec: 82c18193 addi gp,gp,-2004 # 11914 <__global_pointer$>

100f0: 00001297 auipc t0,0x1

100f4: 02428293 addi t0,t0,36 # 11114 <__DATA_BEGIN__>

100f8: 0002a303 lw t1,0(t0)

100fc: 0002e383 lwu t2,0(t0)

10100: 80418e13 addi t3,gp,-2044 # 11118 <bufferspace>

10104: 006e3023 sd t1,0(t3)

10108: 007e3423 sd t2,8(t3)

1010c: 05d00893 li a7,93

10110: 00000073 ecall

A GDB trace is shown below:

Chapter 3 Dealing with memory

3-19

The assembler can be modified to generate non-relaxed code with the -mno-relax option. To modify
the make file to include it edit the makefile to read –

TARGETFILE = $(targetfile)

print: $(TARGETFILE).o

ld -o $(TARGETFILE) $(TARGETFILE).o

$(TARGETFILE).o: $(TARGETFILE).s

as -mno-relax -g -o $(TARGETFILE).o $(TARGETFILE).s

Chapter 3 Dealing with memory

3-20

For the remaining programs in the book the makefiles38 (unless stated otherwise) will include the -mno-
relax option.

3.5.2. Enhancements to GDB

GDB can be used in default mode for analyzing code. Entering the following commands into the file
~/.gdbinit will give a better (TUI) layout experience.

layout split

layout regs

set history save on

set history filename ~/gdbhistory

set logging enabled on

Note that if using the GDB TUI then the up and down arrows are no longer
available for command history; use Ctrl-P(revious) and Ctrl-N(ext) instead.

38 For reasons already discussed linker relaxation can be helpful in performance-oriented applications and then a different makefile would be
used.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 3 Dealing with memory

3-21

Figure 3-3 GDB using TUI

Chapter 3 Dealing with memory

3-22

Exercises for chapter3

1. Write a program that takes a user inputted string, printing out hexadecimal codes for each
character in the string, for example –

“This is the input string”

character Hex value

T 54

h 68

. . .

2. Describe the purpose of linker relaxation.

Chapter 3 Dealing with memory

3-23

RISC-V instructions covered in chapter 3

Load Instructions:

lb – Load byte

lbu – Load byte unsigned

lh – Load halfword

lhu – Load halfword unsigned

lw – Load word

lwu – Load word unsigned (64-bit systems)

ld – Load doubleword

Store Instructions:

sb – Store byte

sh – Store halfword

sw – Store word

sd – Store doubleword

System Call and Immediate Instructions:

li – Load immediate (pseudo-instruction)

la – Load address (pseudo-instruction)

ecall – Environment call (used for invoking syscalls)

Addressing & Assembler-Related:

auipc – Add upper immediate to PC (used in PC-relative addressing)

Assembler modifiers like %lo(symbol) and %hi(symbol) are also discussed to support absolute
addressing.

Chapter 4 Arithmetic and Logic functions

4-1

Chapter 4. Arithmetic operations (First Pass)

Overview of the chapter

Chapter 4 focuses on arithmetic and logical operations in RISC-V assembly. It builds upon the memory-
handling concepts of Chapter 3 by introducing how to perform calculations, data manipulation, and
conditional logic using registers. Floating-point operations are deferred until page 8-1.

4.1. Data Sizes

RISC_V uses the data sizes listed in Table 4-1.

Table 4-1 Data Types

of bits Definition

8 Byte

16 Halfword

32 Word

64 Doubleword

Load and Store instructions designate variants of these data sizes with the following abbreviations:

• W: Word

• H: Halfword

• HU: Halfword unsigned

• B: Byte

• BU: Byte unsigned

4.2. Integer Instructions

4.2.1. Register ADD

The first listing shows the ADD instruction which has the format add rd(estination), rs(ource)1,
rs(ource)2. In this case the addition of source register t0 and source register t1 are sent to the destination
register t3.

The instruction ADDW is an example of a 64-bit instruction operating on 32-bit values. which gives a 64-
bit result of 0xffffffffffdc9999. The result is sign-extended by propagating the sign-bit to preserve the
sign. If the value was positive, then the result would be 0x00000000ffdc9999 or simply 0xffdc9999.

Chapter 4 Arithmetic and Logic functions

4-2

 Sign extension is used when converting signed smaller numbers to signed larger values. Essentially the
upper part of the larger number is padded with the sign-bit (bit 31 when using addw).

Listing 4-1 ADD and ADDW instructions

/* Listing 4-01 Simple addition (register)instruction

64-bit (add) and 32-bit (addw) are shown */

.section .data

.equ wordnumber1, 0xffdc5678 # four digit hex value

.equ wordnumber2, 0x4321

.equ wordnumber3, 0xfffdc5678 # nine digit hex value

.section .text

.global _start

_start:

 li t0, wordnumber1

 li t1, wordnumber2

 add t3,t0,t1 #64-bit addition # t3=0xffdc9999

 addw t4,t0,t1 #32-bit addition #t4=0xffffffffffdc9999

 li t0, wordnumber3

 add t3,t0,t1 #64-bit addition t3=0xfffdc9999

 addw t4,t0,t1 #32-bit addition t4=0xffffffffffdc9999

no difference in addw as upper 32 bits are not used

 li a7, 93

 ecall

Chapter 4 Arithmetic and Logic functions

4-3

Figure 4-1 ADD and ADDW instructions

The instruction ADD gives a 64-bit result of 0xffdc9999

Chapter 4 Arithmetic and Logic functions

4-4

The instruction ADDW operates on the low order 32 bits of each register and sign-extends to give a 64-
bit result.

Note the difference between ADD and ADDW.

• ADDW takes bits 0-31 of each register and gives a sign-extended 64-bit result

• It is not valid for RV32.

• ADD takes bits 0-63 of each register and generates a 64-bit result.

The figure below shows that sign extending39 a 32-bit result ensures that the results are consistent.

39 Sign extending is a technique of extending the most significant bit to preserve the sign and value of the number. Unsigned arithmetic will zero
extend the high order bits so zero extending 16 bits to 32 bits gives 0X0045 → 0x00000045.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 4 Arithmetic and Logic functions

4-5

Table 4-2 Sign extension example

The disassembly for the .text section is as follows:

Disassembly of section .text:

31
#

#
0

0xffdc9999
1

1
1

1
1

1
1

1
1

1
0

1
1

1
0

0
1

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
One's complement

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
1

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
01

Two's complement
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

1
Result 0x236667

32-bit operation
 add t3, t0,t1	#32-bit addition

63
3231

0
0xffffffffffdc9999

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

0
0

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

One's complement
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0
1

1
Two's complement

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
1

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
1

Result 0x236667

64 Bit Operation
addw

 t4, t0,t1 #64-bit addition

Chapter 4 Arithmetic and Logic functions

4-6

00000000000100b0 <_start>:

 100b0: 001002b7 lui t0,0x100

 100b4: dc52829b addiw t0,t0,-571 # ffdc5

<__global_pointer$+0xee4d5>

 100b8: 00c29293 slli t0,t0,0xc

 100bc: 67828293 addi t0,t0,1656

 100c0: 00004337 lui t1,0x4

 100c4: 3213031b addiw t1,t1,801 # 4321 <wordnumber2>

 100c8: 00628e33 add t3,t0,t1

 100cc: 00628ebb addw t4,t0,t1

 100d0: 010002b7 lui t0,0x1000

 100d4: dc52829b addiw t0,t0,-571 # fffdc5

<__global_pointer$+0xfee4d5>

 100d8: 00c29293 slli t0,t0,0xc

 100dc: 67828293 addi t0,t0,1656

 100e0: 00628e33 add t3,t0,t1

 100e4: 00628ebb addw t4,t0,t1

 100e8: 05d00893 li a7,93

 100ec: 00000073 ecall

The li t0, 0xffdc5678 instruction breaks down into:

lui t0, 0x100

lddiw t0, t0, -571

slli t0, t0, 0xc

addi t0, t0, 1656

This results in t0 being equal to 0XFFDC5678 as shown in Figure 4-2.

Figure 4-2 Calculating LI to, 0xffdc5678 non-aliased steps

The instruction SLLi has not been met before. This instruction performs a left shift by the number of
places in the immediate operand which means shift the value currently in t0 12 places to the left.

T0 31 20 11 0
LUI t0, 0x1000x100000 0 0 0 0 0 0 0 0 0 0 0 1 0
ADDIW t0, t0, -571 (ffdc5)0xffdc5 1 0 1 1 1 0 0 0 1 0 1
SLLI t0, t0, 0xc0xffdc5000 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ADDI 1656 (0x678)0xffdc5678 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0

Chapter 4 Arithmetic and Logic functions

4-7

4.2.2. ADD Immediate

The ADDI (add immediate instruction) has the form addi rd, rs, imm12. The source register is added
to a 12-bit immediate value, and the result is placed in the destination register. The format of this
instruction has already been described on page 2-7.

The ADDI instruction is straightforward –

Listing 4-2 ADDi example

/* Listing 4-2 Simple addition (immediate) instruction */

.section .data

 .equ wordnumber1, 0xffdc5678

 .equ wordnumber2, 0x87654321

 .equ myfirstconstant, 0x1ff

 .equ mysecondconstant, 0x321

.section .text

.global _start

_start:

 li t0, wordnumber1

 li t1, wordnumber2

 addi t3, t0,myfirstconstant #t3=0xffdc5877

 addiw t4, t1,mysecondconstant#t4= 0xfffffffff7654642

 li a7, 93

 ecall

The addi and addiw instructions are shown below.

Figure 4-3 Illustrating the add and addiw instructions

Chapter 4 Arithmetic and Logic functions

4-8

4.2.2.1. RV32 Vs RV64 ADDI Behavior

• The ADDI instruction on uses the full native XLEN architecture

• The ADDIW instruction is not valid on RV32 systems and adds the low-order 32 bits of rs
to the 12-bit immediate field and then sign-extends the result to rd.

The ADDIW instruction adds the sign extended immediate value to rs1 and then writes the result which is
sign extended to rd as shown in the snippet below.

/* Sign extension with ADDIW, note how ADDI is different on 32-bit and 64-bit systems.

Compare ADDI on a 64-bit to ADDIW on a 64-bit system */

.section .data

 .equ wordnumber1, 0xfffffff1

 .equ myfirstconstant, 0x7ff

.section .text

.global _start

_start:

 li t0, wordnumber1

 addi t1, t0, myfirstconstant # result = 0x1000007f0, addi is 64 bit native

 addiw t2, t0,myfirstconstant # result =0x7f0, addiw(ord) is sign extended

 addi a7, x0, 93

 ecall

Note the GDB trace following.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 4 Arithmetic and Logic functions

4-9

Figure 4-4 GDB trace comparing ADD (64-bit) with ADDIW (64-bit)

Now compare the result of the ADDI instruction running on a 32-bit system to the ADDIW result obtained
in the previous program.

Running on RV32 with CPUlator shows:

Chapter 4 Arithmetic and Logic functions

4-10

Figure 4-5 Comparing ADDI on a 32-bit system to ADDIW on a 64-bit system

The instruction ADDIW is not valid for 32-bit since W(ord) is the default data width. In this instance the
addition has caused a negative number to go positive. This is not flagged! Overflow with the same
operands on a 64-bit system did not occur.

Finally, the next addition example shows another pitfall –

/* Sign extension with ADDIW, note how ADDI is different on 32-bit and 64-bit systems.

Compare ADDI on a 32-bit to ADDIW on a 64-bit system */

.section .data

 .equ wordnumber1, 0xf00000001

 .equ myfirstconstant, 0xf

.section .text

.global _start

_start:

 li t0, wordnumber1

 addi t1, t0, myfirstconstant # result = 0x1000007f0, addi is 64 bit native

/* Using ADDIW with the same parameters gives 0x10; the 64-bit value 0xf00000001 was

truncated to the 32-bit

value of 0x00000001. The truncated value and the constant 0xf were added together,

placing the reult in register

t2*/

 addiw t2, t0,myfirstconstant # result = 0x10

 addi a7, x0, 93

 ecall

Chapter 4 Arithmetic and Logic functions

4-11

Note. In many cases the numerical values encountered during day-to-day coding easily fit into
the XLEN registers without any issues. Rather than check for overflow conditions after each
arithmetic operation, it may be opportune to only check if there are reasons to believe that

the number bounds may have been exceeded. This was historically more of an issue for 8-bit systems.

See further discussion on page 4-13

4.2.3. MV instruction

The MV instruction is aliased to ADDI. The format is mv rd, rs as shown in Listing 4-3. After execution
the contents of t0 will have been copied40 to t1.

Listing 4-3 MV instruction

/* Listing 4-3

Move instruction, actually a pseudo instruction

mv rd, rs --> addi rd, rs, 0*/

.section .data

.equ number1, 0x12345678

.section .text

.global _start

_start:

li t0, number1

mv t1, t0

addi a7, x0, 93

ecall

The unaliased listing is

–<_start>:

100b0: 123452b7 lui t0,0x12345

100b4: 6782829b addiw t0,t0,1656 # 12345678 <number1>

100b8: 00028313 addi t1,t0,0

100bc: 05d00893 addi a7,zero,93

100c0: 00000073 ecall

SUB instruction

The available subtraction instructions are SUB and SUBW, there is no subtract immediate variant since
this can be achieved through addition, by adding a negative number.

40 The Move instruction is really a copy function, in that the source register’s contents are preserved.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 4 Arithmetic and Logic functions

4-12

Listing 4-4 Use of SUB and SUBW instructions

Listing 4-4

Subtraction operations 32-bit (subw) and 64-bit (sub) are shown

.section .data

.equ wordnumber1, 0xffdc5678

.equ wordnumber2, 0x4321

.equ negativenumber, -4

.section .text

.global _start

_start:

li t0, wordnumber1

li t1, wordnumber2

sub t3, t0, t1 # 0x00000000ffdc1357; positive result

sub t4, t1, t0 # 0xffffffff0023eca9; negative result

subw t5, t0, t1 # 0xffffffffffdc1357; Sign extended negative result, invalid for RV32

addi t2, t1, negativenumber #0x431d; subtracts 4 from t1 result --> t2

addi a7, x0, 93

ecall

Note the results obtained by using SUB and SUBW with the same operands.

4.3. Condition Codes

Many processors incorporate a condition code register (CCR) or status register to detect conditions such
as

• Negative (N) True when signed number is negative, false if positive.

• Zero (Z) True if result such as comparison of values are equal, false if not equal.

• Carry (C) True If carry or no borrow condition occurs, shifted out bit

• Overflow (V) True if and overflow condition occurs.

This is important for processors that have limited register sizes. Checking for these conditions takes time
and for many programs conditions such as overflow and carry will never occur. This is the case where
there is a finite number of elements well below the maximum register data width size. A 32-bit register
can hold over 4 billion positive integers which will not be exceeded when dealing with real-world objects
such as inventory, staff, weather temperatures etc. Clearly it would be wasteful to check for additive

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 4 Arithmetic and Logic functions

4-13

carry conditions when new personnel are hired. There are, however, situations where these situations
can occur and in the case of RISC-V this can be checked.

4.3.1. Detecting an oVerflow condition

An example of an overflow condition occurs when the data is too large to fit into a register. Consider a
small eight-bit register which can hold signed values ranging from -128 to +127. Adding two positive
numbers, such as 0x50 and 0x40 results in 90 which is a negative number in signed eight-bit arithmetic.

Table 4-3 Detecting an overflow condition (signed)

5016 = 0 (Sign bit+) 1 0 1 0 0 0 0

4016 = 0 (Sign bit+) 1 0 0 0 0 0 0

+ = 90 1 (Sign bit-) 0 0 1 0 0 0 0

For unsigned the result of an addition should not be a number smaller than either of the operands.

Table 4-4 Detecting an overflow condition (unsigned)

7316 = 0 1 1 1 0 0 1 1

9516 = 1 0 0 1 0 1 0 1

+ = 90 0 0 0 0 1 0 0 0

Note the 9th bit has been discarded (fallen into the bit bucket)!

In general -

• For signed arithmetic - If the operands have the same sign but the result is a different sign, then
overflow has occurred.

• For unsigned the addition should not be smaller than either of the operands

Other conditions such as Negative, Carry and Borrows can also be checked for by software rather than
implementing dedicated registers.

4.3.2. RVM Instructions

The ADD and SUB instructions are part of the Base Integer Set (RVI). Multiply and Divide instructions
belong to the optional Multiply/Divide instruction set (RVM).

4.3.3. Multiply Instructions

The MUL instruction has the format mul rd, rs1, rs2.

First of all, run the multiply instruction and variants on an RV32 machine.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 4 Arithmetic and Logic functions

4-14

Listing 4-5 Multiply instructions on RV32

/*Listing 4-5 32-bit Multiplication operations

This system ran on RV32 Simulation (CPUlator)*/

.section .data

Define four 32-bit words

word1: .word 0xffffffff

word2: .word 0x0fffffff

word3: .word 0xffffffff

word4: .word 0x8

.section .text

.global _start

_start:

lw t0, word1

lw t1, word2

lw a0, word3

lw a1, word4

#RISC-V documents state to execute in the order of MULH, MULHU, MULHSU first then MUL

Unsigned multiply

mulhu t3, t0, t1 # t3 = 0x0ffffffe Upper 32 bits (63:32) # values are unsigned

mul t2, t0,t1 # t2 = 0xf0000001 lower 32 bits (31:0) # ignores overflow

Overall 64 bit result is 0x 0x0ffffffef0000001

mulhu a2, a0, a1 # a2 = 0x7

mul a3, a0, a1 # a3 = 0xfffffff8

Overall 64 bit result is 0x7fffffff8

mulhu a2, a0, a1 # a2 = 0x00000007

mul a3, a0, a1 # a3 = 0xfffffff8

Overall 64 bit result is 0x7fffffff8

First operand is signed, second operand is unsigned

mulhsu a2, a0, a1 # a2 = 0xffffffff

mul a3, a0, a1 # a3 = 0xfffffff8

Overall result is 0xfffffffffffffff8

addi a7, x0, 93

ecall

Chapter 4 Arithmetic and Logic functions

4-15

Next run on a 64-bit system

Listing 4-6 64-bit multiplication

/*Listing 4-6 This system ran on RV64M*/

 .text

 .globl _start

_start:

 # Load operands (RV64): 0xffffffff and 0x2000000000

 # This product does not fit in 64 bits, it requires 128 bit space

 # MUL instruction

 li t0, 0xffffffff # zero-extended to 64

 li t1, 0x2000000000

 # 128-bit product: (t0 * t1) =(a0:high, a1:low)

 mulh a0, t0, t1 # High 64 bits = 1f

 mul a1, t0, t1 # Low 64 bits = 0xffffffe000000000

/* Full 128-bit result = 0x1FFFFFFFE000000000*/

addi a7, x0, 93

ecall

A GDB trace -

Chapter 4 Arithmetic and Logic functions

4-16

Listing 4-7 Further Multiply instructions on RV64

 /* Listing 4-7 Multiplication operations

This system ran on RV64M*/

.section .data

.section .text

.global _start

_start:

li t0, 0xffffffff

li t1, 0x2000000000

li a0, 0x7ff

li a1, 0x600

#RISC-V documents state to execute in the order of MULH, MULHU, MULHSU first then MUL

/*64-bit x 64 bit multiplication example giving a 128-bit result

Reg t2 holds bits 63-0

Reg t3 holds bits 127-64*/

mulh t3, t0, t1 # t3 = 0x1f Upper 64 bits *127-64)

mul t2, t0,t1 # t2 = 0xffffffe00000000 lower 64 bits (63:0)

Overall 128 bit result is 0x1f ffffffe00000000

mulh a2, a0, a1 # a2 = 0x0

mul a3, a0, a1 # a3 = 0x2ffa00

Overall 128 bit result is 0x0x2ffa00

Unsigned multiply

mulhu a2, a0, a1 # a2 = 0x00000000

mul a3, a0, a1 # a3 = 0x2ffa00

Overall 64 bit result is 0x2ffa00

First operand is signed, second operand is unsigned

mulhsu a2, t2, t2 # a2 = 0xffffffe000000400

addi a7, x0, 93

ecallting 4-7 Multiplication operations */

Chapter 4 Arithmetic and Logic functions

4-17

MULH is used to get the upper half of the product and in conjunction with MUL can generate an XLENx2
value. So with RV64, two registers can be used to form a 128-bit result which is held in two registers, one
register holding bits 63:0 and the other holding bits 127:64.

The instruction MULW is a 64-bit instruction, multiplying the lower 32 bits of the source registers and
sign extending bit 31 as shown in Figure 4-6. Combining the upper 32 bits from MUL and the lower from
MULW gives the result 0x01ffffffd0000001

Figure 4-6 MULW instruction

In this case the product was sign extended. The next instruction where t0 has the value 0xfff and t1 has
the value 0x8 gives a result of 0x7fff8 since the upper 32 bits from the MUL instruction equaled 0x0 and
the lower 32 bits from the MULW instruction equaled 0x0007fff8.

4.3.4. Illustrating the mechanics of 64-bit multiplication going to 128 bits

Evaluating mulh t3,t0,t1 -

Assume t0 = 0xFFFFFFFF and t1=0x200000000

Step1 The instruction mulh writes bits 127-64 of the 64-bit x 64-bit product to rd, so mulh t3,t0,t1
will multiply t0 by t1 placing bits 127-64 into register t3.

Step 2 The instruction mul handles the operands as signed 64-bit. It computes the 128-bit product and
writes the low 64 bits of the product to rd, so mul t2, t0,t1 places bits 63-0 of the 128-bit product into
t2.

Step 3 Combine the two 64-bit registers together to show the 128-bit result →

T3 = 0x1F

T2 = 0xFFFFFFE000000000

T3,T2= 0x1FFFFFFFE000000000

6 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1

3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 Reg t0
0 0 0 0 1 0 1 1 1 1 1 1 1 Reg t1
1 1 0 1 0 1 Multiply

1 1 1 1 0 1 0 1 Reg t3

Multiply t0 x t1=0xd0000001 result in t3

Sign Extend lwr 32 bits (bit 31 = 1)

t3 = 0xffffffffd0000001

Bits 63:32 all set to 1's

. . .

. . .

Chapter 4 Arithmetic and Logic functions

4-18

A non-computer method using long multiplication is shown in Figure 4-7

Figure 4-7 Using a manual long multiplication method to multiply two 64-bit hex numbers

To summarize multiplication –

Table 4-5 Summary of RVM Multiply Instructions

Instruction Description Data Polarity

MUL Multiplies rs1 by rs2, result into rd, ignores
overflow

MULH Multiplies the signed values of rs1 by rs2, upper
half of the product going into rd

Both operands are Signed

MULHU Multiplies the unsigned values of rs1 by rs2,
upper half of the product going into rd

Both operands are Unsigned

MULHSU Multiplies the signed values of rs1 by the
unsigned value of rs2, upper half of the product
going into rd

First operand is Signed, the
second is Unsigned

Long Multiplication in hexadecimal
mulh t3, t0,t1

t0 = 0xFFFFFFFF

t1=0x2000000000

Bits 127-64 Bits 63 -32 Bits 31-0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

f f f f f f f f
1 E 0 0 0 0 0 0 0 0 0 X

1 E 0 0 0 0 0 0 0 0 0 0
1 E 0 0 0 0 0 0 0 0 0 0 0

1 E 0 0 0 0 0 0 0 0 0 0 0 0
1 E 0 0 0 0 0 0 0 0 0 0 0 0 0

1 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 e E 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +
1 F F F F F F F E 0 0 0 0 0 0 0 0 0

Value of ox1F goes into high 64-bit register t3
mul t2, t0, t1

t0 = 0xFFFFFFFF

t1=0x2000000000

Value of 0xFFFFFFE00000000 goes into low 64-bit register t2
128 bit result is:

1 F F F F F F F E 0 0 0 0 0 0 0 0 0

Chapter 4 Arithmetic and Logic functions

4-19

MULW Lower 32-bits of the product and sign- extend Sign-extends to 64-bits

4.3.5. Divide Instructions

Division is simpler than multiplication, the instructions are DIV(W) (Divide Signed) , UDIV(W) (Divide
Unsigned), REM (Remainder Signed) and REMU (Remainder unsigned). A basic example follows –

Listing 4-8 Division example

/*Listing 4-8 Division operations*/

.section .data

Define two 32-bit words

word1: .word 1025

word2: .word 4

.section .text

.global _start

_start:

lw t0, word1

lw t1, word2

Operand1 is the numerator

Operand2 is the denominator

div t2, t0,t1 # t2 = 0x100

divu t3, t0,t1 # t3 = 0x100

rem t4, t0,t1 # t4 = 0x1

remu t5, t0, t1 # t5 = 0x1

addi a7, x0, 93

ecall

There are wide variants - DIVW and DIVUW are 64-bit instructions. These instructions divide the lower
32 bits of operand1 by the lower 32 bits of operand2. DIVW is for signed numbers and DIVUW are for
unsigned. The result is sign-extended. The remainder instruction counterparts are REMW and REMUW
also sign-extending to 64 bits.

4.3.5.1. Division by zero

Division by zero will generate all 1’s result (all bits are set) and is not trapped. The remainder is equal to
the dividend. A further example is shown below:

Listing 4-9 Further Division examples

/*Listing 4-9 Further division operations*/

.section .data

Chapter 4 Arithmetic and Logic functions

4-20

Define two bytes and a 32-bit word

word1: .word 0xfffffff1

byte1: .byte 1

byte2: .byte 4

.section .text

.global _start

_start:

lw t0, word1

lb t1, byte1

lb t2, byte2

mv t6, zero # Use for division by zero

Operand1 is the numerator

Operand2 is the denominator

divw t3, t0, t1 # t3 = 0xfffffffffffffff1

remw t5, t0, t1 # t5 = 0x0

divuw t4, t0, t2 # t4 = 0x3ffffffc

remuw a0, t0, t2 # a0 = 0x1

Divide by zero

div a1, t0, t6 # a1 = 0xffffffffffffffff

rem a2, t0, t6 # a2 = 0xfffffffffffffff1

divw a3, t0, t6 # a3 = 0xfffffffffffffff

remw a4, t0, t6 # a4 = 0xffffffffffffff1

addi a7, x0, 93

ecall

Since division by zero gives the combination of all ones and the original dividend it can be checked after
the division has taken place when necessary. The order given of DIV followed by REM in the listing is
recommended for microarchitecture efficiency.

4.4. Shift Operations

RISC-V offers several shift instructions. Left shifts can be register or immediate. Shift Right instructions
are similar except that they also offer a shift right arithmetic variant. This is summarized in Table 4-6.

Chapter 4 Arithmetic and Logic functions

4-21

Table 4-6 RV32 Shift Instructions

Instruction Description Syntax Example

sll Shift Left Logical, shifts rs1 bits
leftwards by count in rs2 fills
moved empty bit positions with
zeros, result in rd.

sll rd, rs1, rs2 sll t2, t0, t1

slli Shift Left Logical Immediate, shifts
rs1 bits leftwards by count in
immediate field, fills moved empty
bit positions with zeros

slli rd, rs1, imm slli t3, t0, 18

srl Shift Right Logical, shifts rs1 bits
rightwards by count in rs2 fills
moved empty bit positions with
zeros, result in rd

srl rd, rs1, rs2 srl t4, t0, t1

srli Shift Right Logical Immediate,
shifts rs1 bits rightwards by count
in immediate field fills moved
empty bit positions with zeros,
result in rd

srli rd, rs1, imm srli t5, t0, 10

sra Shift Right Arithmetic, shifts rs1
bits rightwards by count in rs2 fills
moved empty bit positions with
the value of rs1’s most significant
bit, result in rd

sra rd, rs1, rs2 sra t6, t2, t1

srai Shift Right Arithmetic Immediate,
shifts rs1 bits rightwards by count
in immediate field fills moved
empty bit positions with the value
of rs1’s most significant bit, , result
in rd

srai rd, rs1, imm srai t6,t2, 18

RV64 features wide variants of the shift instruction which sign-extends to 64-bits – slliw, srliw and
sraiw.

RV32 uses the five least significant bits (4:0) for the shift amount and RV64 will use the six least significant
bits (5:0)41. Figure 4-8 shows a five-bit shift to the left, note that bits 4:0 are replaced by incoming zeros.
As discussed earlier each move to the left is equivalent to multiplying by two. In this example the value
0xffffff1 has been multiplied by 32 (25).

41 Using a larger value such as srli t5, t0, 64 gives an error message such as “Error: improper shift amount (64)” by the GNU assembler.

Chapter 4 Arithmetic and Logic functions

4-22

Figure 4-8 shows how the instruction sll t2, t0, t1 is handled. Here t1=5 and t0 =0xFFFFFFF1.

Figure 4-8 SLL instruction sll t2, t0, t1

Listing 4-10 Shift instructions

/*Listing 4-10 Shift operations*/

.section .data

Define data

.equ word1,0x0ffffff1

.equ byte1,0x5

.section .text

.global _start

_start:

li t0, word1

li t1, byte1

Shift Left

sll t2, t0, t1 # t2 = 0x1fffffe20

slli t3, t0, 18 # t3 = 0x3fffffc40000

Shift Right

srl t4, t0, t1 # t4 = 0x7fffff

srli t5, t0, 10 # t5 = 0x3ffff

Arithmetic shift right

sra t6, t2, t1 # t6 = 0xffffff1

srai t6,t2, 18 # t6 = 0x7fff

addi a7, x0, 93

ecall

Currently there is no rotate instruction. A GDB trace is shown below:

6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

T0 0xFFFFFFF1 0 0 0 1

T1 Move 5 places to the left 1 0 1

T2 0x1FFFFFFE2 1 0 0 0 1 0 0 0 0 0

Chapter 4 Arithmetic and Logic functions

4-23

Figure 4-9 GDB trace of Listing 4-10

4.5. Logical Instructions

RISC-V includes the following family of logical instructions:

• AND

• OR

• XOR

• NOT

These instructions are summarized in Table 4-7.

Chapter 4 Arithmetic and Logic functions

4-24

Table 4-7 RISC-V Logical Instructions

Instruction Description Syntax Example

AND Performs rs1 and rs2 bitwise AND
operation, placing result in rd

and rd, rs1, rs2 and a0, t0, t1

ANDI Performs rs1 and sign-extended
immediate field bitwise AND operation,
placing result in rd

andi rd, rs1, imm andi a1, a0, 0xf

OR Performs rs1 and rs2 bitwise OR
operation, placing result in rd

or rd, rs1, rs2 or a2, t0, t1

ORI Performs rs1 and sign-extended
immediate filed bitwise OR operation,
placing result in rd

ori rd, rs1, imm ori a3, a2, 0x000

XOR Performs rs1 and rs2 bitwise XOR
operation, placing result in rd

xor rd, rs1, rs2 xor a4, t0, t3

XORI Performs rs1 and sign-extended
immediate field bitwise XOR operation,
placing result in rd

xor rd, rs1, imm xori a5, a2, 0xa

NOT Performs bitwise inversion of bits in rs1
placing result in rd

not rd, rs1 not a5, a5

Listing 4-11 shows the result of the various logical instructions on RV64

Listing 4-11 Logical Instructions (RV64)

/*Listing 4-11 Logical operations (RV64 system)*/

.section .data

Define data

.equ word1,0xaa55aa55

.equ maskupper,0xfff

.equ masklower,0x0

.equ xormask1, 0xaaaaaaaa

.equ xormask2, 0x55555555

.section .text

.global _start

_start:

 li t0, word1

 li t1, maskupper

 li t2, masklower

Chapter 4 Arithmetic and Logic functions

4-25

 li t3, xormask1 # t3 sign-extended = 0xffffffffaaaaaaaa

 li t4, xormask2

AND

and a0, t0, t1 # a0 = 0xa55, note Boolean algebra X AND 1 = x, X AND 0 = 0

 and a0, t0, t2 # a0 = 0, note X AND 0 = 0

 andi a1, a0, 0xf # a1 = 0, since X = a0 = 0

OR

 or a2, t0, t1 # a2 = 0xaa55afff, note Boolean or X or 1 = 1, X or 0 = X

 or a2, t0, t2 # a2 = 0xaa55aa55, X or 0 = X

 ori a3, a2, 0x000 # a3 = 0xaa55aa55

XOR

 xor a4, t0, t3 # a4 = 0x00ff00ff, Note x XOR x = 0, x XOR Xinverse = 1

 xor a4, t0, t4 # a4 = 0xff00ff00

 xori a5, a2, 0xa # a5 = 0xaa55aa5f

NOT

 not a5, a5 # a5 = 0xffffffff55aa55a0

 addi a7, x0, 93

 ecall

4.5.1. Logical function observations

• The AND function can be used to clear bits by anding the corresponding bit position with a binary
zero.

o Bits can be tested to see if they are high or low by anding with a binary one.

▪ A non-zero value denotes that the corresponding bit tested was a binary one

▪ A zero value denotes that the corresponding bit tested was a binary zero

• Bits can be set by oring the corresponding bit position with a binary one

o Bits can be tested to see if they are high or low by oring with a binary zero

▪ A non-zero value denotes that the corresponding bit tested was a binary one

▪ A zero value denotes that the corresponding bit tested was a binary zero

• Exclusive or can check to see if the corresponding bit has equal polarity

o A non-zero value indicates that the bit was of the opposite polarity

o A zero value indicates that the bit was if the same polarity

Chapter 4 Arithmetic and Logic functions

4-26

o Applying the exclusive or function using the same bit pattern as the number itself will
clear the bits

Chapter 4 Arithmetic and Logic functions

4-27

Exercises for chapter 4

1. Write code to perform multiplication by 24 using shift instructions, do not use RISC-V multiply
instruction variants

Chapter 4 Arithmetic and Logic functions

4-28

RISC-V instructions covered in chapter 4

Arithmetic Instructions (Base ISA)

• add – Add (32-bit)

• addw – Add word (sign-extended to 64-bit)

• addi – Add immediate

• sub – Subtract (32-bit)

• subw – Subtract word

Multiply and Divide Instructions (RVM Extension)

• mul – Multiply

• mulh – Multiply high (signed × signed)

• mulhsu – Multiply high (signed × unsigned)

• mulhu – Multiply high (unsigned × unsigned)

• mulw – Multiply word (32-bit)

• div – Divide (signed)

• divu – Divide unsigned

• rem – Remainder (signed)

• remu – Remainder unsigned

• divw – Divide word

• remw – Remainder word

Shift Instructions

• sll – Shift left logical

• srl – Shift right logical

• sra – Shift right arithmetic

• sllw – Shift left logical word

• srlw – Shift right logical word

• sraw – Shift right arithmetic word

Logical Instructions

Chapter 4 Arithmetic and Logic functions

4-29

• and – Bitwise AND

• or – Bitwise OR

• xor – Bitwise XOR

• andi – AND immediate

• ori – OR immediate

• xori – XOR immediate

• not – Bitwise NOT (pseudo-instruction)

Chapter 5 Decisions and Branching

5-1

Chapter 5. Loops, Branches and Conditions

Overview of the chapter

Chapter 5 introduces control flow mechanisms in RISC-V assembly. It explains how to make decisions,
repeat code (loops), and redirects program execution using conditional and unconditional branches.

5.1. J-Type and B-Type instructions

Paragraphs 2.2.1.3.4 and 2.2.1.3.5 discussed the control transfer J and B type instructions. Recall that
unconditional jumps are J-type and conditional branches are B-type. The ability to vary the program flow,
based on conditions such as greater than (>), less than (<) or equality greatly enhances the power of
computing devices. RISC-V can perform conditional branches with a single instruction. Other instruction
sets may use two instructions, by first performing a comparison and then deciding whether to branch by
the status of a condition code register flag.

Comparison using two instructions -

cmp r1, r2 # Compare two registers

bgt <label> # Branch if the value of register1 is greater than the value of register2

RISC-V only uses a single instruction -

bgt t0, t1, <label> # Branch if t0 is less than t1

This can result in more economic code.

5.1.1. B-Type instruction details

Consider the instruction blt t0, t1, exit where the branch instruction is located at 0x100c0 and the
label <exit> is located at location 0x100c8. When t0 is less than t1 then the flow will branch to the address
at <exit>. The opcode in this case is 0x0062c463.

Referring to Figure 5-1 the diagram shows that the offset has a value of 8 which is the number of places
that the program will branch to (0x100c8 minus 0x100c0). Recall that bit zero need not be encoded in
the immediate value which specifies the offset and is always implicitly set to zero. This means that the
offset is always even. The reason that the offset is a multiple of two rather than four is to accommodate
RISC-V 16-bit implementations. The register operands use the X register number showing the values 5
and 6 which correspond to registers t1 and t0.

Chapter 5 Decisions and Branching

5-2

Figure 5-1 Breakdown of blt instruction

Table 5-1 shows the available branch instructions which includes the additional pseudo instructions.

Note that comparisons can be made with signed and unsigned values.

Table 5-1 Conditional branch instructions

Instruction Description Syntax Example

blt Branch if less than blt rs1, rs2, imm blt t0, t1, exit42

bltu Branch if less than unsigned bltu rs1, rs2, imm bltu t0, t1, exit

bltz Branch if less than zero* bltz rs1, imm bltz t0, exit

ble Branch if less than or equal to zero* ble rs1, rs2, imm ble t0, t1, exit

bleu Branch if less than or equal
unsigned*

bleu rs1, rs2, imm bleu t0, t1, exit

blez Branch if less than or equal to zero* blez rs1, imm blez t0, exit

bge Branch if greater than or equal bge rs1, rs2, imm bge t0, t1, exit

bgt Branch if greater than* bgt rs1, rs2, imm bgt t0, t1, exit

bgtu Branch if greater than unsigned* bgtu rs1, rs2 bgt t0, t1, exit

bgtz Branch if greater than zero* bgtz, rs1, imm bgtz t0, exit

42 This is a memory location pointed to by the label “exit”

blt t0, t1,exit

[12] Imm (10:5) rs2 rs1 funct3 imm(4:1) [11] Opcode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1

12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0

Immediate field breaks down into 8 Bit 0 always = 0, allowing its bit position to be used as bit 11 of imm field)
rs2 = x6 = T1
rs1 = x5 = T0
Opcode = 0x63

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 5 Decisions and Branching

5-2

Instruction Description Syntax Example

bgeu Branch if greater than or equal to
zero unsigned

bgeu rs1, rs2, imm bgeu t0, t1, exit

bgez Branch if greater than or equal to
zero*

bgez rs1, imm bgez t0, exit

beq Branch if equal beq rs1, rs2, imm beq t0, t1, exit

beqz Branch if equal to zero* beqz rs1, imm beqz t0, exit

bne Branch if not equal bne rs1, rs2, imm bne t0, t1, exit

bnez Branch if not equal to zero* bnez rs1, imm bnez t0, exit

*=Pseudo instruction

5.1.2. J-Type instruction details

5.1.2.1. JAL

The format of the Jump and link instruction (JAL) is JAL rd, <label>.

The instruction jal makesquare is equivalent to the pseudo instruction j makesquare which
disassembles to the non-aliased instruction jal ra,<makesquare>. It has a 20-bit immediate value
specifying bits 20:1. Bit 0 of the immediate value is not coded and always set to zero to give even values.
This gives a total of 21 signed bits which is equivalent to a range of minus one MB through to plus one
MB.

By convention the destination register (rd) is register X1 (ra), if no destination register is specified then
ra is automatically used. An instruction such as jal ra, makesquare will use an offset to the address
located at the label <makesquare>. The return address register (ra) will hold the address of the next
instruction following the current jal ra, makesquare instruction (current PC+4 = 0x100bc).

An instruction such as jal zero, mylabel will not store the return address43 and is an unconditional
jump. The aliased instruction J actually expands to jal x0, offset.

Referring to Figure 5-2 the immediate value is 0xc so adding this value to the address of the JAL
instruction (here 0x100b8) gives a jump address of 0x100c4 which is where the makesquare routine is
located. When the routine has finished the program flow returns to the address stored in the ra register
(0x100bc). This is achieved by the pseudo instruction ret which is an alias for jalr, zero,0(ra).

43 Since the zero register is not writable.

Chapter 5 Decisions and Branching

5-3

Figure 5-2 Bit breakdown of JAL instruction

5.1.2.2. JALR

The jump and link register instruction (JALR) gets its target address by adding a sign-extended 12 -bit
value to the source register rs1, setting the least significant bit to zero. The destination register will be
loaded with the address of the instruction following the JALR instruction address.

JALR zero, 0(ra), will return to the address in the ra register, the ra register is not updated in this case
since the X0 register has been specified as rd. The pseudo instruction for jalr rd,offset(rs1) is jr.

The ret instruction is the pseudo instruction for jalr x0,0(x1).

5.1.2.3. Difference between Jr and ret

The pseudo instruction ret will map to jalr x0,0(ra) but jalr is free to use different registers since
it has the form jalr rd,offset(rs1) so an instruction such as jalr, offset(t0) is acceptable

5.2. Implementing a loop counter to square numbers

The first example is that of a simple loop counter. The program uses a sub-routine to compute squares
of numbers from 1 to 20. The results are stored in consecutive halfword locations. The listing features
one unconditional branch (blt) and one unconditional jump (jal). After the sub-routine has completed
the jalr instruction will jump to the instruction (addi a7,zero,93) immediately following the
instruction (jal squareit) that called the sub-routine. When tracing the program flow with GDB use
S(tep) rather than N(ext), since “N” will skip a function44 such as squareit.

Listing 5-1 Squaring numbers from 1 to 20

listing5-1

44 There is a small, subtle difference between a function and a sub-routine, typically a function returns a value whereas a sub-routine might not.
In practice, the terms may often be used interchangeably, although purists may object.

imm[20] imm[10:1] imm[11] imm[19:12] Rd Opcode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
100b8 jal ra, Makesquare 00c000ef

Makesquare is at 100c4
rd = x1 = ra

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
imm = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

=0xc (Offset)

+ 0x100b8 (Current PC)

=0x100c4

Chapter 5 Decisions and Branching

5-4

section .text

.global _start

_start:

addi t0,zero,21 # Set up counter

addi t1,zero,1 # Start at 1

la a0, storesquares

jal squareit # Jump to routine at <squareit>, saving return address in ra

addi a7,zero,93 # Routine finished, time to leave

ecall

squareit:

mul t2,t1,t1 # Square the contents of t1 and put the result in t2

sh t2,0(a0)

addi a0, a0,2 # Point to the next halfword location (2 bytes on)

addi t1,t1,1 # increment the number to be squared

blt t1,t0,squareit # If 20 numbers have been squared then return from routine

jalr zero,0(ra)

.section .data

storesquares:

.space 64

Examining the memory after the sub-routine has finished shows -

0x1111c: 0x0001 0x0004 0x0009 0x0010 0x0019 0x0024 0x0031 0x0040

0x1112c: 0x0051 0x0064 0x0079 0x0090 0x00a9 0x00c4 0x00e1 0x0100

0x1113c: 0x0121 0x0144 0x0169 0x0190

0x1111c: 1 4 9 16 25 36 49 64

0x1112c: 81 100 121 144 169 196 225 256

0x1113c: 289 324 361 400

Chapter 5 Decisions and Branching

5-5

Figure 5-3 Program flow of makesquares listing

1. Call sub-routine <squareit>

2. Return from sub-routine

3. Resume code execution

J-Type (Unconditional Jumps)

jal Jump and link

jalr Jump and link register

5.2.1. Summary of jump instructions

jr is a jump instruction

and is a pseuo instruction for:

jalr x0, rs1, 0

which is:

• Jump to the address in rs1

• Do not write a return address (because rd = x0)

ret is a pseudo instruction for returning from a function, expanding to:

ret → jalr x0, ra, 0

jal squareit

addi a7, zero, 93

squareit sub-routine
a7,zero,93

jalr zero,0(ra)

More code . . .

Chapter 5 Decisions and Branching

5-6

which is:

• Jump to the address stored in ra (x1)

• Do not write a return address

So ret is a special case of jr where the register is fixed to x1 (ra).

jr rs1

jalr x0, rs1, 0 Jump to arbitrary register

ret jalr x0, ra, 0 Return from function

Chapter 5 Decisions and Branching

5-7

Exercises for chapter 5

1. Write a program that takes as its input a number less than 1000 and then calculate the number of
primes below that number.

2. The program crashes after executing the jalr zero,0(ra) instruction highlighted in the GDB trace
below – why?

Chapter 5 Decisions and Branching

5-8

RISC-V jump and branch instructions covered in chapter 5

B-Type (Conditional Branches)

blt – Branch if less than

bltu – Branch if less than unsigned

bltz – Branch if less than zero (pseudo-instruction)

ble – Branch if less than or equal (pseudo-instruction)

bleu – Branch if less than or equal unsigned (pseudo-instruction)

blez – Branch if less than or equal to zero (pseudo-instruction)

bge – Branch if greater than or equal

bgt – Branch if greater than (pseudo-instruction)

J-Type (Unconditional Jumps)

jal – Jump and link

jalr – Jump and link register

Chapter 6 The Stack, Macros and Functions

6-1

Chapter 6. The Stack, Macros and Functions

Overview of the chapter

Chapter 6 focuses on modularizing code in RISC-V assembly using functions, macros, and the stack. It
introduces structured programming principles in low-level development and shows how to organize code
effectively.

6.1. Overview

The concepts between macros and functions are similar but the way that the programs are assembled
leads to tradeoffs behind performance and code size. The previous chapter used a sub-routine called
<squareit>. The routine can be a separate piece of code outside of the main listing which means that
routines can be used as functions that other programs can call on rather than having to keep writing the
additional code enhancing clarity and manageability.

6.1.1. The Stack

Functions will make use of the stack. In general, the stack is a data structure which stores data in a
structured manner. As an example, a register’s contents can be Pushed on to the stack and can be
restored by Popping the data from the stack back to the register again. Push and Pop operations are
performed in a Last in First out (LIFO) manner, in that if multiple items were pushed on to the stack the
last item pushed would be the first one restored. The stack is a location in memory. The stack pointer will
show where in memory the lowest address of the stack is situated. When data is pushed the stack pointer
will be decremented to a lower memory location and when data is popped, the stack pointer will be
incremented.

There are some subtle differences in the RISC-V stack implementation -

Note that RISC-V does not use actual push and pop instructions that are found in other processor
architectures. A push to the stack is accomplished using the store instruction and a pop is accomplished
using the load instruction. This means that the stack can be randomly accessed.

Both these load and store instructions are familiar, the only difference being that the stack pointer is
used as the operand rather than a normal register. With RISC-V the convention is to use register X2 as
the stack pointer, its ABI name is sp. RV6445 architectures require that the stack must be 16-byte (128-
bits) aligned. The stack by default with RISC_V grows downwards and is termed a full descending stack.

45 Also RV 32

Chapter 6 The Stack, Macros and Functions

6-2

Figure 6-1 Stack contents operations

The example program shows how to allocate stack space, followed by pushing (store) and popping (load)
items using the stack.

Listing 6-1 Allocation and deallocation of the stack

.section .text

.global _start

_start:

Allocate 256 Bytes for the stack

addi sp, sp, -256

 li t0,1

li t1,2

li t2, 3

li t3, 4

#Push registers

sd t0, 24(sp)

sd t1, 16(sp)

sd t2, 8(sp)

Chapter 6 The Stack, Macros and Functions

6-3

sd t3,(sp)

#Pop registers, in a LIFO fashion

ld t3, (sp)

ld t2, 8(sp)

ld t1, 16(sp)

ld t0, 24(sp)

Clean up stack

addi sp,sp,32

exit:

li a7, 93

ecall

• Stack pointer initially = 0x3FFFFFF1F0

• After addi sp,sp,-256= 0x3FFFFFF0F0

GDB can be used to view the stack pointer –

Note use /g rather than /d with gdb

Each location shown is a quadword

X /d in GDB causes issues with RV64

6.1.2. Functions

Functions are used to promote coding efficiency and clarity. They are sections of code that can be
included in a program and shared with others as libraries. Over time a coder will usually generate their
own functions for use in their code. When using external functions, registers can be saved on the stack
prior to calling the function, thus ensuring that on return from the function code everything has been
restored, and coding will continue from where it left off. The Program Counter (PC) keeps track of the
location in memory where the code is next to be executed. When a portion of code calls a function, it is
termed the caller. The code that was called (the function itself) is termed the callee. When calling a
function there are several tasks that the caller must perform and similarly the callee has its own
responsibilities. When a function calls another function then the ra register must be preserved otherwise
the original return address used by the first calling routine will be lost.

The registers follow certain conventions which are described below:

Chapter 6 The Stack, Macros and Functions

6-4

1. There are eight argument registers a0-a7

2. Additional arguments are pushed onto the stack and popped by the called routine.

3. Two registers are used for return values – A0 and A1

4. More values will use a reference to an address (call by reference) where the additional data is stored.

5. Values equal to double the XLEN bits can be passed using two registers. The low order XLEN bits are
passed the lowest number register such as a0 and the high order XLEN bits passed in the higher
register such as a1

6. The value can be passed on the stack.

7. If there is only one register available then it can be used, in conjunction with the stack.

8. Nested functions must preserve the ra register,

9. Leaf functions46 do not need to save the return address to the stack,

10. When functions are called without knowing the register usage then the rules shown in Table 2-2 must
be respected47.

6.2. Calling nested routines

This program uses two routines, the first routine calls the second routine which simple returns flow back
to its caller, which then in turn returns flow back to the main program. The program outputs text to
illustrate the location. Note the parent routine must save the ra register prior to calling the child routine
as the jump will cause its value to be overwritten. This is not the case for the child routine as it is a leaf
function.

The main routing saves the arguments register for printing a second time when it has returned from the
parent and child routines.

Listing 6-2 Nested routines example.

.data

 # This program shows nested functions where the main routine calls a routine, which

in turn calls another routine

46 A leaf function is a function that has been called but does not call any other functions.

47 A summary of the rules –

Zero register (x0) is immutable,

ra must be preserved,

t0-t7 If needed should be saved by the calling routine,

s0-s11 Saved by the callee if used via the stack,

a0-a7 If needed should be saved by the calling routine,

Chapter 6 The Stack, Macros and Functions

6-5

mainmessage: .ascii "In main program\n"

parentmessage: .ascii "Now in Parent Routine\n"

childmessage: .ascii "Now in child routine\n"

.equ mainlen, 16

.equ parentlen, 22

.equ childlen, 21

.text

.global _start

_start:

 li a0, 1

 la a1, mainmessage

 li a2, mainlen

 #Set up stack

 addi sp,sp,-32 #Allocate

 sw a0, 0(sp)

 sw a1, 8(sp)

 sw a2, 16(sp)

 li a7,64

 ecall

 jal ra, parent

 lw a0, 0(sp)

 lw a1, 8(sp)

 lw a2,16(sp)

 addi sp,sp,32

 li a7,64

 ecall

exit:

 li a7,93

 ecall

parent:

parent is not a leaf function as it calls the routine "child"

 li a0,1

Chapter 6 The Stack, Macros and Functions

6-6

 la a1, parentmessage

 li a2, parentlen

 li a7,64

 ecall

 sw ra, 24(sp)

 jal ra, child

 lw ra, 24(sp)

 ret

child:

child is a leaf function as it does not call any other routines

 li a0, 1 # Set start value of 1

 la a1, childmessage

 li a2, childlen

 li a7, 64

 ecall

 ret

6.2.1. Combining separate programs

The next program (maina.s) calls an external program (squareit.s) to calculate the squares.

Listing 6-3 main.s

.section .data

message: .ascii "\nPlease enter a sequence of digits (up to 4 characters)to be

squared\n"

 .equ messagelength, 70

 errormessage1: .ascii "\nIllegal character(s) found, please enter only base10

numbers\n"

.equ errormessage1length, 63

 errormessage2: .ascii "\nIncorrect number of digits, please enter 1,2,3 or 4

digits\n"

 .equ errormessage2length, 60

 inputbuffer: .space 16 # Holds user input

 numberbuffer: .space 16 # Holds the converted ASCII to integer numbers

 asciioutputbuffer: .space 16

 successmessage: .ascii "\nThe result is "

 .equ successmessagelength, 16

Chapter 6 The Stack, Macros and Functions

6-7

 tidyupchars: .ascii "\n\n"

 .equ tidyupcharslength, 2

 .equ linefeed, 10

.section .text

 .global _start

_start:

Prompt for number

 li a0, 1 #<stdout>

 la a1, message

 li a2, messagelength

 li a7, 64

 ecall

Read in number from keyboard

 li a0, 0 # file descriptor 0 (stdin)

 la a1, inputbuffer # address of the buffer

 li a2, 5 # Max number of bytes to read

 li a7, 63 # Read syscall

 ecall

Convert inputted ASCII number to decimal

Load the address of the ASCII number string

 la a0, inputbuffer # a0 = address of "string"

 li a1, 0 # a1 = result (initialize it to 0)

 li t0, linefeed # Linefeed character

 li a3, 48 # Ascii number is actual number +48 so need to subtract this value

 li a4, 10 # used in convert_loop to multiply input character to correct position

 li a5, 57 # upper bound (entered digit can't be > 9)

 li a6, 48 # lower bound (entered digit can't be < 0)

 la t5, inputbuffer+5 # Check for too many digits entered

convert_loop:

Load the next ASCII character

 lb a2, 0(a0) # a2 = *a0 (current ASCII character)

 beq t0, a2,skip_valuechecks #(if <LF> then skip the checks for legal decimal number)

 bgt a2,a5,illegalcharacter #(too high)

 ble a2, a6,illegalcharacter #(too low)

Chapter 6 The Stack, Macros and Functions

6-8

skip_valuechecks:

Check if we've reached the <LF> character (end of input string)

 beq t0, a2, conversion_done # If character is <LF> then all numbers have been processed

Convert ASCII to integer:

 li a3, 48 # Load '0' ASCII value

 sub a2, a2, a3 # Convert ASCII character to integer

 mul a1, a1, a4 # shift left by one decimal place

 add a1, a1, a2 # Add the digit to result

Move to the next character in the string

 addi a0, a0, 1 # Increment the pointer

 beq t5,a0, toomanydigits # More than 4 digits have been entered

 j convert_loop # Next character

conversion_done:

 mv a0,a1

 jal squarenumber

The number has been squared, time to convert back to ASCII format

 la a1, asciioutputbuffer +11 # Point to the end of buffer

 sb zero, 0(a1) # Null-terminate the string

 li t3, 0

convertbacktoascii:

 addi t3, t3, 1

 li t1, 10 # Load divisor (10)

 rem t2, a0, t1 # Get last digit (a0 % 10)

 div a0, a0, t1 # Remove last digit (a0 / 10)

 addi t2, t2, 48 # Convert digit to ASCII (for printing)

 addi a1, a1, -1 # Move buffer pointer back one place

 sb t2, 0(a1) # Store ASCII character in buffer

 bnez a0, convertbacktoascii # Repeat if number is not zero

printsuccess:

 li a0, 1 # syscall for print_string

 la a1, successmessage # Address of ASCII string

 li a2, successmessagelength

 li a7, 64 # Syscall number for printing string

 ecall # Make syscall

Chapter 6 The Stack, Macros and Functions

6-9

print:

 li a0, 1 # syscall for print_string

 la a1, asciioutputbuffer # Address of ASCII string

 li a2,12

 li a7, 64 # Syscall number for printing string

 ecall # Make syscall

 li a0, 1

 la a1, tidyupchars

 li a2, tidyupcharslength

 li a7, 64

 ecall

exit:

 li a7, 93 # Syscall for exit

 ecall

illegalcharacter:

 li a0, 1

 la a1, errormessage1

 li a2, errormessage1length

 li a7, 64

 ecall

 j exit

toomanydigits:

 li a0, 1

 la a1, errormessage2

 li a2, errormessage2length

 li a7, 64

ecall

 j exit

Listing 6-4 squareit.s

.global squarenumber

squarenumber:

Note Register a0 contains the user input (the number to be squared)

The same register will hold the return value

mul a0,a0,a0 # Square the contents of a0 and put the result in a0

Chapter 6 The Stack, Macros and Functions

6-10

jalr zero,0(ra)

The makefile is as shown

Listing 6-5 Makefile for squareit

OBJECTS = maina.o squareit.o

all:maina

%.o:%.s

as -mno-relax $^ -g -o$@

maina:$(OBJECTS)

ld -o maina $(OBJECTS)

Validate the program –

./maina

Please enter a sequence of digits (up to 4 characters) to be squared

6

The result is

36

./maina

Please enter a sequence of digits (up to 4 characters) to be squared

12

The result is

144

./maina

Please enter a sequence of digits (up to 4 characters) to be squared

843

The result is

710649

./maina

Please enter a sequence of digits (up to 4 characters) to be squared

9999

The result is

99980001

$./maina

Please enter a sequence of digits (up to 4 characters) to be squared

3f

Illegal character(s) found, please enter only base10 numbers

Chapter 6 The Stack, Macros and Functions

6-11

./maina

Please enter a sequence of digits (up to 4 characters)to be squared

23146

Incorrect number of digits, please enter 1,2,3 or 4 digits

Note that the called program <squareit.s> has declared <squarenumber> as a

global, this is to allow it to be shared and used by other files. Declarations
without the .global directive are treated as local to the file that they were declared

in and not accessible by other programs.

When tracing the program flow with GDB set the first breakpoint to b _start rather than b 1.

The programs are named maina.s and squareit.s.

The program flow is:

1. Prompt the user to enter a number

2. Get the number from keyboard entry, storing it in inputbuffer

3. Convert the number from ASCII representation to integers, storing it in numberbuffer

4. Validate the number to be in the range <0-9> unless the ASCII character is Linefeed48, If not valid then
print out an error message (errormessage1) and exit.

5. Validate the quantity of digits entered, only 1,2,3 or allowed, if invalid then print out an error
message (errormessage2) and exit.

6. The convert_loop routine will place the converted integers in the correct buffer location, the
multiplication by ten shifts the digit to the correct magnitude value.49

7. Once the <linefeed> character has been encountered then all digits have been converted.

8. The number is passed to the squarenumber routine in the program squareit. The squared number
will be returned via register a050.

9. The next step is to display the result by converting the squared integer back to ASCII format which is
performed by the routine convertbacktoascii.

10. Finally, the result is printed on the screen and the program exits.

48 Pressing enter on the keyboard will store the linefeed character (0xa) in the buffer

49 For example, the number 6543 will be processed in stages as 6, 60, 65, 650, 654, 6540, 6543 by the multiply and add instructions in convert_loop

50 It has not been necessary to store values on the stack in this particular example. If the called routine were to overwrite any register that would
need to be preserved then the caller/callee conventions would be respected.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 6 The Stack, Macros and Functions

6-12

The program should be stepped through with GDB; ensure that the routines - convert_loop: and
conversion_done: are fully understood.

Further example –

Listing 6-6 Callerprogram

This is the caller program (callerprogram.s) that passes the address of a string

to be printed to another program (calledprogram.s)

.section .data

message:

 .asciz "This string was defined in the calling program!\n"

 .section .text

 .global _start

 .extern print_str # Not defined here, defined externally

_start:

 la a0, message # a0 = address of string

 call print_str # call external routine

 # exit(0)

 li a0, 0 # Return success, check in linux with echo $?

 li a7, 93 # exit syscall

 ecall

Listing 6-7 Called program

Callee program (calledprogram.s)

 .section .text

 .global print_str

print_str:

Allocate and push stack items

 addi sp, sp, -16

 sd ra, 8(sp)

 sd s0, 0(sp) # Callee has the burden to save the S registers

 mv s0, a0 # save pointer to the string which was loaded into a0

 # find string length

 mv t0, s0

1:

 lbu t1, 0(t0) # Put current character of string into t1

 beqz t1, 2f # If t1 equals zero then we have reached the end of the string

Chapter 6 The Stack, Macros and Functions

6-13

 addi t0, t0, 1 # if not get the next character string

 j 1b # Jump backwards to label 1:

2: # OK we now have reached the end of the string as ised with .asciz

 sub a2, t0, s0 # length is now computed from t0

 mv a1, s0 # buffer address loaded into a1

 li a0, 1 # stdout

 li a7, 64 # write syscall

 ecall

Unwind the stack

 ld ra, 8(sp)

 ld s0, 0(sp)

 addi sp, sp, 16

 ret # Our work is done here!

Build with:

as -g -o callerprogram.o callerprogram.s

as -g -o calledprogram.o calledprogram.s

ld -o printstring callerprogram.o calledprogram.o

6.3. Macros

Macros, like functions can be used to promote coding efficiency and clarity. Macros can be included inline
within a program or defined separately using the .include directive. Macro code is encased between
the directives .macro and .endm. They are used to repeat frequently used instructions using different
parameter values. The format of a macro is macroname argument1, argument2, . . . Inside the macro
code, these arguments have a backslash \ character in front of them. Macros differ importantly from
functions in that the actual macro code is substituted inline within the main code, this means that 100
calls to the same macro will generate 100 copies of the macro code. The use of Macro’s can increase
performance since there is no need to deal with return addresses as is the case for functions.

Listing 6-8 Macro example (callmacro.s)

This code calls a macro to print strings to stdout

The input parameters are the string's location and its length

.section .data

string1: .ascii "\nThis string was printed using a macro call"

string2: .ascii "\nAnd so was this\n"

.equ stringlength1, 43

.equ stringlength2, 17

Chapter 6 The Stack, Macros and Functions

6-14

.section .text

.include "printmacro.s"

.global _start

_start:

li a0, 1 #stdout

Save a0 on to the stack, would have been simpler to just load it again after the

macro call

however this illustrates an example

Allocate space on the stack

addi sp, sp, -16

sw a0, 12(sp)

print string1, stringlength1

lw a0, 12(sp)

No need to preserve a0 this time since we no longer need to restore it

print string2, stringlength2

Exit program

li a7, 93 # Syscall number for exit

ecall # Make syscall

Listing 6-9 called macro program (printmacro.s)

.macro print location, length

la a1, \location

li a2, \length

li a7, 64

ecall

.endm

The disassembly (below) shows that the macro has been placed in line, GDB shows that the address of
string1 is located at 0x11128 and that string2’s address is at 0x11153.

Chapter 6 The Stack, Macros and Functions

6-15

The next part of the macro is the li instruction which loads the string length into register a2, finally the
syscall is invoked.

Note unlike functions there are no return calls since the macro code is inline.

00000000000100e8 <_start>:

100e8: 00100513 li a0,1

100ec: ff010113 addi sp,sp,-16

100f0: 00a12623 sw a0,12(sp)

100f4: 00001597 auipc a1,0x1

100f8: 03458593 addi a1,a1,52 # 11128 <__DATA_BEGIN__>

100fc: 02b00613 li a2,43

10100: 04000893 li a7,64

10104: 00000073 ecall

10108: 00c12503 lw a0,12(sp)

1010c: 00001597 auipc a1,0x1

10110: 04758593 addi a1,a1,71 # 11153 <string2>

10114: 01100613 li a2,17

10118: 04000893 li a7,64

10120: 05d00893 li a7,93

10124: 00000073 ecall

The next macro is part of the same program and does not call the macro externally

Listing 6-10 Internal Macro used to print newline character for the squares program

.section .data

 .equ begincount,1

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 6 The Stack, Macros and Functions

6-16

 .equ endcount,21

.section .rodata

newline:

 .byte 10

.section .text

.global _start

Must define macros before they are called

.macro PRINT_NL nl

 # Print Newline Macro

 # Save all argument registers that are being used by the macro

 addi sp,sp,-32

 sd a0, 24(sp)

 sd a1,16(sp)

 sd a2, 8(sp)

 sd a7,0(sp)

 li a0, 1 # stdout

 la a1, newline #Newline

 li a2, 1

 li a7, 64 # sys_write

 ecall

 ld a7,(sp)

 ld a2,8(sp)

 ld a1,16(sp)

 ld a0,24(sp)

 addi sp,sp,32

.endm

_start:

 li s0, begincount # for i = 1 to 20

li s1, endcount # if we reach 21 we need to leave!

forloop:

Call the macro (PRINT_NL) to print the newline character

PRINT_NL newline

beq s0, s1, exit # if i == 21, exit

 mul s2, s0, s0 # Square the number in the counter s2 = i * i

Chapter 6 The Stack, Macros and Functions

6-17

 # Convert and Print Square

 mv a0, s2

 jal ra, print_integer

 addi s0, s0, 1 # count++

 j forloop

exit:

 li a0, 0 # Return 0 status

 li a7, 93 # sys_exit

 ecall

print_integer:

 addi sp, sp, - 32 # Allocate 32 bytes on stack

 addi t0, sp, 31

 li t1, 10 # Divisor in decimal system

 # Count the number of characters before returning zero when dividing, convert to

ASCII and set up syscall write parameters in A registers

conv_to_ascii:

 rem t2, a0, t1 # Get digit

 addi t2, t2, 48 # Convert to ASCII

 addi t0, t0, -1 # Move pointer back BEFORE storing

 sb t2, 0(t0) # Place ascii char in the bottom of the stack

 div a0, a0, t1

 bnez a0, conv_to_ascii

 addi t1, sp, 31

 sub a2, t1, t0 # length in a2

 mv a1, t0 # buffer address in a1

 li a0, 1 # stdout

 li a7, 64 # sys_write

 ecall

 addi sp, sp, 32 # Free up stack

 ret

6.3.1. Using the Stack – further examples

This program uses the stack as a buffer to calculate the squares of the first twenty integers. It prints out
the number to stdout.

Chapter 6 The Stack, Macros and Functions

6-18

Listing 6-11 Using the stack with the squares program

.section .data

 newline: .asciz "\n"

 .equ begincount,1

 .equ endcount,21

.section .text

.global _start

_start:

 li s0, begincount # for i = 1 to 20

 li s1, endcount # if we reach 21 we need to leave!

forloop:

 beq s0, s1, exit # if i == 21, exit

 mul s2, s0, s0 # Square the number in the counter s2 = i * i

 # Convert and Print Square

 mv a0, s2

 jal ra, print_integer

 # Print Newline

 li a0, 1 # stdout

 la a1, newline

 li a2, 1

 li a7, 64 # sys_write

 ecall

 addi s0, s0, 1 # count++

 j forloop

exit:

 li a0, 0 # Return 0 status

 li a7, 93 # sys_exit

 ecall

Could have used memory as buffer but using the stack is more educational

print_integer:

 addi sp, sp, - 32 # Allocate 32 bytes on stack

 addi t0, sp, 31 # T0 points to the bottom of the stack

 li t1, 10 # Divisor in decimal system

 # Count the number of characters before returning zero when dividing, convert to

ASCII and set up syscall write parameters in the argument registers

Chapter 6 The Stack, Macros and Functions

6-19

conv_to_ascii:

 rem t2, a0, t1 # Get digit

 addi t2, t2, 48 # Convert to ASCII

 addi t0, t0, -1 # Move pointer back BEFORE storing

 sb t2, 0(t0) # Place ascii char in the bottom of the stack

 div a0, a0, t1

 bnez a0, conv_to_ascii

 # Calculate length for sys_write

 # Length = (Initial end of stack) - (current t0):wq

 addi t1, sp, 31

 sub a2, t1, t0 # length in a2

 mv a1, t0 # buffer address in a1

 li a0, 1 # stdout

 li a7, 64 # sys_write

 ecall

 addi sp, sp, 32 # Free up stack

 ret

./listing6-6

Output:

1

4

9

16

25

36

49

64

81

100

121

144

Chapter 6 The Stack, Macros and Functions

6-20

169

196

225

256

289

324

361

400

Use strace to view the syscalls

$ strace -c ./listing6-6

1

4

9

16

25

36

49

64

81

100

121

144

169

196

225

256

289

324

361

400

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

 52.02 0.001093 1093 1 execve

Chapter 6 The Stack, Macros and Functions

6-21

 47.98 0.001008 25 40 write

------ ----------- ----------- --------- --------- ----------------

100.00 0.002101 51 41 total

The program flow with annotations is shown with Figure 6-2 and Figure 6-3. Register transitions are
highlighted. The trace is divided into two parts, the first part shows the flow for the square of the first
integer, and the second part shows the flow when the counter has reached its terminal value (20).

Note: The repeated remainder algorithm that converts from binary to decimal is described in chapter
one of the book.

Chapter 6 The Stack, Macros and Functions

6-22

Figure 6-2 Part one of Listing 6-11’s program flow

Tutorial 6-1
Program

 Flow
Notes: print_integer is at 0x

Register transitions are highlighted

Register s0/FP
Register s1

Register s2
Register a0

Register a1
Register a2

Register t0
Register t1

Register t2
Register ra

Register sp
Stack

0x3FFFFFF1E0
-

-
-

-
-

-
-

-
-

-
0x3FFFFFF1E0

0x3FFFFFF1DC
0x1

-
-

-
-

-
-

-
-

-
0x3FFFFFF1E0

0x3FFFFFF1D8
0x1

0x15
-

-
-

-
-

-
-

-
0x3FFFFFF1E0

0x3FFFFFF1D4
0x1

0x15
-

-
-

-
-

-
-

-
0x3FFFFFF1E0

0x3FFFFFF1D0
0x1

0x15
0x1

-
-

-
-

-
-

-
0x3FFFFFF1E0

0x3FFFFFF1CC
0x1

01x15
0x1

0x1
-

-
-

-
-

-
0x3FFFFFF1E0

0x3FFFFFF1C8
0x1

0x15
0x1

0x1
-

-
-

-
-

0x10100
0x3FFFFFF1E0

0x3FFFFFF1C4
0x1

0x15
0x1

0x1
-

-
-

-
-

0x10100
0x3FFFFFF1C0

0x3FFFFFF1C0
0x1

0x15
0x1

0x1
-

-
0x3FFFFFF1DF

-
-

0x10100
0x3FFFFFF1C0

0x1
0x15

0x1
0x1

-
-

0x3FFFFFF1DF
10

-
0x10100

0x3FFFFFF1C0
0x1

0x15
0x1

0x1
-

-
0x3FFFFFF1DF

10
1

0x10100
0x3FFFFFF1C0

Note Converts to ASCII
0x1

0x15
0x1

0x1
-

-
0x3FFFFFF1DF

10
49

0x10100
0x3FFFFFF1C0

0x1
0x15

0x1
0x1

-
-

0x3FFFFFF1DE
10

49
0x10100

0x3FFFFFF1C0
Note Loads Stack location 0x3FFFFFF1DE with 49 (0x31)

0x1
0x15

0x1
0x1

-
-

0x3FFFFFF1DE
10

49
0x10100

0x3FFFFFF1C0
0x1

0x15
0x1

0x0
-

-
0x3FFFFFF1DE

10
49

0x10100
0x3FFFFFF1C0

Note a0 is equal to zero so this tim
e, we do not have to jum

p back t conv_to_ascii
0x1

0x15
0x1

0x0
-

-
0x3FFFFFF1DE

10
49

0x10100
0x3FFFFFF1C0

Load t0 with the location before the stored ascii character
0x1

0x15
0x1

0x0
-

-
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1C0

Now we get the length by subtracting the stack value of t0 from
 t1

0x1
0x15

0x1
0x0

-
1

0x3FFFFFF1DE
0x3FFFFFF1DF

49
0x10100

0x3FFFFFF1C0
Now we have a1 ready for printing with the character's buffer address

0x1
0x15

0x1
0x0

0x3FFFFFF1DE
1

0x3FFFFFF1DE
0x3FFFFFF1DF

49
0x10100

0x3FFFFFF1C0
a0 = <stdout>

0x1
0x15

0x1
0x1

0x3FFFFFF1DE
1

0x3FFFFFF1DE
0x3FFFFFF1DF

49
0x10100

0x3FFFFFF1C0
0x1

0x15
0x1

0x1
0x3FFFFFF1DE

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1C0

Execute write syscall
0x1

0x15
0x1

0x1
0x3FFFFFF1DE

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1C0

Set sp back to original value; tidy up!
0x1

0x15
0x1

0x1
0x3FFFFFF1DE

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1E0

Back to the instruction im
m

ediately following the JAL RA, print_integer com
m

and
0x1

0x15
0x1

0x1
0x3FFFFFF1DE

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1E0

Tidy up with a newline character
0x1

0x15
0x1

0x1
0x3FFFFFF1DE

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1E0

Set up syscall write registers
0x1

0x15
0x1

0x1
0x11170

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1E0

0x1
0x15

0x1
0x1

0x3FFFFFF1DE
1

0x3FFFFFF1DE
0x3FFFFFF1DF

49
0x10100

0x3FFFFFF1E0
0x1

0x15
0x1

0x1
0x3FFFFFF1DE

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1E0

W
rite out newline

0x1
0x15

0x1
0x1

0x3FFFFFF1DE
1

0x3FFFFFF1DE
0x3FFFFFF1DF

49
0x10100

0x3FFFFFF1E0
Increm

ent index for the next square
0x2

0x15
0x1

0x1
0x3FFFFFF1DE

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1E0

Process next square
0x2

0x15
0x1

0x1
0x3FFFFFF1DE

1
0x3FFFFFF1DE

0x3FFFFFF1DF
49

0x10100
0x3FFFFFF1E0

Resum
e when index in s0 reaches 20

. . .
Use break forloop if $S0==20 in GDB

addi sp, sp, 32

addi t2, t2, 48
addi t0, t0,-1
sb t2, 0(t0)
div a0, a0, t1
bnez a0, conv_to_ascii
addi t1, sp, 31
sub a2, t1, t0
m

v a1, t0
li a0,1
li A7, 64
ecall

rem
 t2,a0, t1 Instruction

li s0, begincount
li s1, endcount
beq s0, a1, exit
m

ul s2, s0, s0
m

v a0, s2
jal RA, print_integer
addi sp, sp, -32
addi t0, sp, 31
lI t1, 10

ret
li a0,1
la a1, newline
li a2,1
li a7,64

addi s0,s0,1
J forloop

ecall

Chapter 6 The Stack, Macros and Functions

6-23

Figure 6-3 Part two of Listing 6-11’s program flow

Register s0/FP
Register s1

Register s2
Register a0

Register a1
Register a2

Register t0
Register t1

Register t2
Register ra

Register sp
beq s0, s1, exit

Index has reached 20 decim
al

m
ul s2, s0,s0

0x14
0x15

0x169
0x1

0x11170
1

0x3FFFFFF1DC
0x3FFFFFF1DF

51
0x10100

0x3FFFFFF1E0
m

v a0,s2
0x14

0x15
0x190

0x1
0x11170

1
0x3FFFFFF1DC

0x3FFFFFF1DF
51

0x10100
0x3FFFFFF1E0

Square of 20 is 400
jal ra, print_integer

0x14
0x15

0x190
0x190

0x11170
1

0x3FFFFFF1DC
0x3FFFFFF1DF

51
0x10100

0x3FFFFFF1E0
addi sp, sp, -32

0x14
0x15

0x190
0x190

0x11170
1

0x3FFFFFF1DC
0x3FFFFFF1DF

51
0x10100

0x3FFFFFF1E0
addi t0, sp, 31

0x14
0x15

0x190
0x190

0x11170
1

0x3FFFFFF1DC
0x3FFFFFF1DF

51
0x10100

0x3FFFFFF1C0
lI t1, 10

0x14
0x15

0x190
0x190

0x11170
1

0x3FFFFFF1DF
0x3FFFFFF1DF

51
0x10100

0x3FFFFFF1C0
rem

 t2,a0, t1
0x14

0x15
0x190

0x190
0x11170

1
0x3FFFFFF1DF

10
51

0x10100
0x3FFFFFF1C0

addi t2, t2, 48
0x14

0x15
0x190

0x190
0x11170

1
0x3FFFFFF1DF

0x10
0

0x10100
0x3FFFFFF1C0

Rem
ainder is 0

addi t0, t0,-1
0x14

0x15
0x190

0x190
0x11170

1
0x3FFFFFF1DF

0x10
48

0x10100
0x3FFFFFF1C0

Convert to ASCII "0"
sb t2, 0(t0)

0x14
0x15

0x190
0x190

0x11170
1

0x3FFFFFF1DE
0x10

48
0x10100

0x3FFFFFF1C0
div a0, a0, t1

0x14
0x15

0x190
0x190

0x11170
1

0x3FFFFFF1DE
0x10

48
0x10100

0x3FFFFFF1C0
Stores "0"

0x14
0x15

0x190
0x28

0x11170
1

0x3FFFFFF1DE
0x10

48
0x10100

0x3FFFFFF1C0
400 divided by 10 is 40

0x14
0x15

0x190
0x28

0x11170
1

0x3FFFFFF1DE
0x10

48
0x10100

0x3FFFFFF1C0
Still m

ore digits since quotient is non zero
addi t2, t2, 48

0x14
0x15

0x190
0x28

0x11170
1

0x3FFFFFF1DE
0x10

0
0x10100

0x3FFFFFF1C0
Back in convert loop, rem

 is 0
addi t0, t0,-1

0x14
0x15

0x190
0x28

0x11170
1

0x3FFFFFF1DE
0x10

48
0x10100

0x3FFFFFF1C0
Convert to ASCII "0"

sb t2, 0(t0)
0x14

0x15
0x190

0x28
0x11170

1
0x3FFFFFF1DD

0x10
48

0x10100
0x3FFFFFF1C0

div a0, a0, t1
0x14

0x15
0x190

0x28
0x11170

1
0x3FFFFFF1DD

0x10
48

0x10100
0x3FFFFFF1C0

Both digits "0" and "0" stored
0x14

0x15
0x190

0x4
0x11170

1
0x3FFFFFF1DD

0x10
48

0x10100
0x3FFFFFF1C0

40 divided by 10 is 4
0x14

0x15
0x190

0x4
0x11170

1
0x3FFFFFF1DD

0x10
48

0x10100
0x3FFFFFF1C0

Still have a non zero quotient
addi t2, t2, 48

0x14
0x15

0x190
0x4

0x11170
1

0x3FFFFFF1DD
0x10

4
0x10100

0x3FFFFFF1C0
Rem

ainder is 4
addi t0, t0,-1

0x14
0x15

0x190
0x4

0x11170
1

0x3FFFFFF1DD
0x10

52
0x10100

0x3FFFFFF1C0
Convert to ASCII "4"

sb t2, 0(t0)
0x14

0x15
0x190

0x4
0x11170

1
0x3FFFFFF1DC

0x10
52

0x10100
0x3FFFFFF1C0

div a0, a0, t1
0x14

0x15
0x190

0x4
0x11170

1
0x3FFFFFF1DC

0x10
52

0x10100
0x3FFFFFF1C0

0x14
0x15

0x190
0

0x11170
1

0x3FFFFFF1DC
0x10

52
0x10100

0x3FFFFFF1C0
N

ow
 w

e are equal to zero so don’t loop back
addi t1, sp,31

0x14
0x15

0x190
0

0x11170
1

0x3FFFFFF1DC
0x10

52
0x10100

0x3FFFFFF1C0
sub a2,t1,t0

0x14
0x15

0x190
0

0x11170
1

0x3FFFFFF1DC
0x3FFFFFF1DF

52
0x10100

0x3FFFFFF1C0
m

v a1, t0
0x14

0x15
0x190

0
0x11170

3
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1C0

li a0,1
0x14

0x15
0x190

0
0x3FFFFFF1DC

3
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1C0

All argum
ent registers are ready for W

rite syscall
li a7,64

0x14
0x15

0x190
1

0x3FFFFFF1DC
3

0x3FFFFFF1DC
0x3FFFFFF1DF

52
0x10100

0x3FFFFFF1C0
ecall

0x14
0x15

0x190
1

0x3FFFFFF1DC
3

0x3FFFFFF1DC
0x3FFFFFF1DF

52
0x10100

0x3FFFFFF1C0
addi sp,sp,32

0x14
0x15

0x190
3

0x3FFFFFF1DC
3

0x3FFFFFF1DC
0x3FFFFFF1DF

52
0x10100

0x3FFFFFF1C0
ret

0x14
0x15

0x190
3

0x3FFFFFF1DC
3

0x3FFFFFF1DC
0x3FFFFFF1DF

52
0x10100

0x3FFFFFF1E0
li a0,1

0x14
0x15

0x190
3

0x3FFFFFF1DC
3

0x3FFFFFF1DC
0x3FFFFFF1DF

52
0x10100

0x3FFFFFF1E0
la a1, new

line
0x14

0x15
0x190

1
0x3FFFFFF1DC

3
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

li a2,1
0x14

0x15
0x190

1
0x11170

3
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

li a7,64
0x14

0x15
0x190

1
0x11170

1
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

ecall
0x14

0x15
0x190

1
0x11170

1
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

addi s0,s0,1
0x14

0x15
0x190

1
0x11170

1
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

j forloop
0x15

0x15
0x190

1
0x11170

1
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

beq s0,s1 exit
0x15

0x15
0x190

1
0x11170

1
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

li a0,0
0x15

0x15
0x190

1
0x11170

1
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

li a7, 93
0x15

0x15
0x190

0
0x11170

1
0x3FFFFFF1DC

0x3FFFFFF1DF
52

0x10100
0x3FFFFFF1E0

Return a zero status
ecall

0x15
0x15

0x190
0

0x11170
1

0x3FFFFFF1DC
0x3FFFFFF1DF

52
0x10100

0x3FFFFFF1E0
Exit Program

Instruction

bnez a0, conv_to_ascii
rem

 t2, a0, t1

bnez a0, conv_to_ascii

bnez a0, conv_to_ascii
rem

 t2, a0, t1

Chapter 6 The Stack, Macros and Functions

6-24

The next program uses an external macro to print a user defined string. The main program calls the macro
code print_str.

Listing 6-12 Main program passing a sting to be printed

#This is the main program

section .data

 mystring: .ascii "This was printed by a macro\n"

 msglength= 28

.include "print_str.s"

.section .text

.global _start

_start:

Call the macro (PRINT_STR_) to print the above text

 PRINT_STR 1, mystring, msglength

exit:

 li a7,93

 ecall

Listing 6-13 Macro program to print string

This is the macro program print_str.s

.macro PRINT_STR filedescr, msgaddr, msglength

 # Macro to print a user supplied string

 # Save all argument registers that are being used by the macro

 addi sp,sp,-32

 sd a0, 24(sp)

 sd a1,16(sp)

 sd a2, 8(sp)

 sd a7,0(sp)

 li a0, \filedescr # stdout

 la a1, \msgaddr # User defined string

 li a2, \msglength # Length of string

 li a7, 64 # sys_write

 ecall

 ld a7,(sp)

 ld a2,8(sp)

 ld a1,16(sp)

Chapter 6 The Stack, Macros and Functions

6-25

 ld a0,24(sp)

 addi sp,sp,32

.endm

6.3.1.1. Macros Vs Routines

• Modifying the main program to call the macro three times

• Will result in three copies of the inline code which can be verified by objdump

_start:

Call the macro (PRINT_STR_) to print the above text

 PRINT_STR 1, mystring, msglength

 PRINT_STR 1, mystring, msglength

 PRINT_STR 1, mystring, msglength

$ objdump -d -S main

PRINT_STR 1, mystring, msglength

 100e8: fe010113 addi sp,sp,-32

 100ec: 00a13c23 sd a0,24(sp)

 100f0: 00b13823 sd a1,16(sp)

 100f4: 00c13423 sd a2,8(sp)

 100f8: 01113023 sd a7,0(sp)

 100fc: 00100513 li a0,1

 10100: 00001597 auipc a1,0x1

 10104: 0b058593 addi a1,a1,176 # 111b0 <__DATA_BEGIN__>

 10108: 01c00613 li a2,28

 1010c: 04000893 li a7,64

 10110: 00000073 ecall

 10114: 00013883 ld a7,0(sp)

 10118: 00813603 ld a2,8(sp)

 1011c: 01013583 ld a1,16(sp)

 10120: 01813503 ld a0,24(sp)

 10124: 02010113 addi sp,sp,32

 PRINT_STR 1, mystring, msglength

 10128: fe010113 addi sp,sp,-32

 1012c: 00a13c23 sd a0,24(sp)

Chapter 6 The Stack, Macros and Functions

6-26

 10130: 00b13823 sd a1,16(sp)

 10134: 00c13423 sd a2,8(sp)

 10138: 01113023 sd a7,0(sp)

 1013c: 00100513 li a0,1

 10140: 00001597 auipc a1,0x1

 10144: 07058593 addi a1,a1,112 # 111b0 <__DATA_BEGIN__>

 10148: 01c00613 li a2,28

 1014c: 04000893 li a7,64

 10150: 00000073 ecall

 10154: 00013883 ld a7,0(sp)

 10158: 00813603 ld a2,8(sp)

 1015c: 01013583 ld a1,16(sp)

 10160: 01813503 ld a0,24(sp)

 10164: 02010113 addi sp,sp,32

 PRINT_STR 1, mystring, msglength

 10168: fe010113 addi sp,sp,-32

. . .

Converting the program to use a function instead results in one copy

.section .data

 mystring: .ascii "This was printed by a function\n"

 msglength= 31 #

.include "print_str.s"

.section .text

.global _start

_start:

Call the function (print_str_) to print the above text

 jal print_str

 jal print_str

 jal print_str

 j exit

print_str:

 # This function is used to print a string

 # Save all argument registers that are being used by the function

 addi sp,sp,-32

Chapter 6 The Stack, Macros and Functions

6-27

 sd a0, 24(sp)

 sd a1,16(sp)

 sd a2, 8(sp)

 sd a7,0(sp)

 li a0, 1 # stdout

 la a1, mystring # Message string

 li a2, msglength # Length of string

 li a7, 64 # sys_write

 ecall

 ld a7,(sp)

 ld a2,8(sp)

 ld a1,16(sp)

 ld a0,24(sp)

 addi sp,sp,32

ret

objdump shows –

Disassembly of section .text:

00000000000100e8 <_start>:

 100e8: 010000ef jal 100f8 <print_str>

 100ec: 00c000ef jal 100f8 <print_str>

 100f0: 008000ef jal 100f8 <print_str>

 100f4: 0480006f j 1013c <exit>

00000000000100f8 <print_str>:

 100f8: fe010113 addi sp,sp,-32

 100fc: 00a13c23 sd a0,24(sp)

 10100: 00b13823 sd a1,16(sp)

 10104: 00c13423 sd a2,8(sp)

 10108: 01113023 sd a7,0(sp)

 1010c: 00100513 li a0,1

 10110: 00001597 auipc a1,0x1

 10114: 03458593 addi a1,a1,52 # 11144 <__DATA_BEGIN__>

 10118: 01f00613 li a2,31

 1011c: 04000893 li a7,64

 10120: 00000073 ecall

Chapter 6 The Stack, Macros and Functions

6-28

 10124: 00013883 ld a7,0(sp)

 10128: 00813603 ld a2,8(sp)

 1012c: 01013583 ld a1,16(sp)

 10130: 01813503 ld a0,24(sp)

 10134: 02010113 addi sp,sp,32

 10138: 00008067 ret

000000000001013c <exit>:

 1013c: 05d00893 li a7,93

 10140: 00000073 ecall

6.3.2. Macros and routines – numeric labels

Some of the programs here have used numeric labels such as 1:,2: . . . These are local labels. If regular
labels are used within the macro, errors will occur during assembly. This is because the label appears
multiple times and a global can only occupy a single location, so this cannot be reconciled.

.macro PRINT_STR filedescr, msgaddr, msglength

 # Macro to print a user supplied string

 # Save all argument registers that are being used by the macro

savestack:

 addi sp,sp,-32

 sd a0, 24(sp)

 sd a1,16(sp)

 sd a2, 8(sp)

 sd a7,0(sp)

 li a0, \filedescr # stdout

 la a1, \msgaddr # User defined string

 li a2, \msglength # Length of string

 li a7, 64 # sys_write

 ecall

restorestack:

 ld a7,(sp)

Assembling causes errors –

as -g -o main.o main.s

maine.s: Assembler messages:

maine.s:4: Error: symbol `savestack' is already defined

maine.s:10: Info: macro invoked from here

Chapter 6 The Stack, Macros and Functions

6-29

maine.s:15: Error: symbol `restorestack' is already defined

maine.s:10: Info: macro invoked from here

maine.s:4: Error: symbol `savestack' is already defined

maine.s:11: Info: macro invoked from here

. . .

Numeric labels behave differently.

• They will not encounter name collisions.

• Defined by a single digit followed by a colon :

• Even though they are defined by a single digit, this is not a constraint as they can appear multiple
times in the same program

• Use b(ackward) or f(orward) to specify the nearest label

An example follows

. . .

 sd s0, 0(sp) # Callee has the burden to save the S registers

 mv s0, a0 # save pointer to the string which was loaded into a0

 # find string length

 mv t0, s0

1:

 lbu t1, 0(t0) # Put current character of string into t1

 beqz t1, 1f # If t1 equals zero then we have reached the end of the string

 addi t0, t0, 1 # if not get the next character string

 j 1b # Jump backwards to label 1:

1: # OK we now have reached the end of the string as used with .asciz

 sub a2, t0, s0 # length is now computed from t0

 mv a1, s0 # buffer address loaded into a1

 li a0, 1 # stdout

. . .

Key points are:

• Numeric labels are resolved during assembly not during linking

• An instruction such as bnez t0, 1b is reconciled to an instruction such as bnez 0x11008

• Consequently, they will not show up as symbols.

Note the disassembly below:

Chapter 6 The Stack, Macros and Functions

6-30

Disassembly of section .text:

00000000000100e8 <_start>:

 100e8: 00001517 auipc a0,0x1

 100ec: 06050513 addi a0,a0,96 # 11148 <__DATA_BEGIN__>

 100f0: 010000ef jal 10100 <print_str>

 100f4: 00000513 li a0,0

 100f8: 05d00893 li a7,93

 100fc: 00000073 ecall

0000000000010100 <print_str>:

 10100: ff010113 addi sp,sp,-16

 10104: 00113423 sd ra,8(sp)

 10108: 00813023 sd s0,0(sp)

 1010c: 00050413 mv s0,a0

 10110: 00040293 mv t0,s0

 10114: 0002c303 lbu t1,0(t0)

 10118: 00030663 beqz t1,10124 <print_str+0x24> Note address

substituted for label 1f

 1011c: 00128293 addi t0,t0,1

 10120: ff5ff06f j 10114 <print_str+0x14> Note address

substituted for label 1b

 10124: 40828633 sub a2,t0,s0

 10128: 00040593 mv a1,s0

 1012c: 00100513 li a0,1

 10130: 04000893 li a7,64

 10134: 00000073 ecall

 10138: 00813083 ld ra,8(sp)

 1013c: 00013403 ld s0,0(sp)

 10140: 01010113 addi sp,sp,16

 10144: 00008067 ret

6.3.3. Push and Pop Macros

We have seen that saving values to the stack requires :

• Allocation of space by adjusting the stack pointer

• Saving the registers into the memory location pointed to by the stack with an offset

• Restoring the registers

Chapter 6 The Stack, Macros and Functions

6-31

• Deallocation of stack space by adjusting the stack pointer

Many programmers are more familiar with stack manipulation by using push and pop instructions.

The next two listings show macros that implement single register push and pop instructions.

Listing 6-14 Push Macro

.macro PUSH pushregister

 addi sp, sp, -8

 sd \pushregister, 0(sp)

 .endm

Listing 6-15 Pop Macro

.macro POP popregister

 ld \popregister, 0(sp)

 addi sp, sp, 8

 .endm

The next listing shows push and pop in action.

• The next example shows the temporary registers being saved and restored across calls:

Listing 6-16 Using the push and pop macros

.section .text

.global _start

.include "pushmacro.S"

.include "popmacro.S"

_start:

 li t0, 10

 li t1, 20

 li t2, 30

 push t0

 push t1

 push t2

 call nonleaf # call nonleaf function, which calls a leaf function

 pop t2

 pop t1

 pop t0

exit(result held in register A0)

 li a7, 93 # sys_exit

Chapter 6 The Stack, Macros and Functions

6-32

 ecall

#---#

Now in nonleaf function which calls another function → register ra is saved by the

push macro

nonleaf:

overwrite temp registers

 li t0, 110

 li t1, 120

 li t2, 130

 push t0

 push t1

 push t2

 push ra # Save ra

 call leaf # call leaf function

Back from nonleaf

 addi a0, a0, 10 # Add 10 to the leaf function's return value

 pop ra # Restore ra

 pop t2

 pop t1

 pop t0

 ret

Now in leaf function

leaf:

Since we are a leaf function we do not need to save ra

 li a0, 42 # return the answer to life, meaning ...

 li t0, 200

 li t1, 300

 li t2, 400

 ret

Verify the return value -

./nestedfunctions

$ echo $?

52

Chapter 6 The Stack, Macros and Functions

6-33

6.3.4. Macros and routines – POP and PUSH Caveats

• The implementation shown is ABI compliant but uses 128 bits to store a single register.

o With RV64 only 64 bits are needed

• It is possible to use 64-bits for single register allocation on RV64 but it breaks ABI alignment rules.

o Allocating 128 bits is clean and compliant

• The macros can be easily modified to store two or more registers on the stack.

• The lack of native push and pop instructions, is not an oversight, instead it is part of the design
philosophy of RISC-V.

• Since the push and pop macros are made up of multiple instructions, they are not Atomic and
could conceivably cause issues with autonomous events.

Chapter 6 The Stack, Macros and Functions

6-34

Exercises for chapter6

1. What is the purpose of the RA register?

2. Modify the program maina.s to keep running after an error message or successful result has been
printed by asking the user if they would like to input another value (or not)

3. Why is there an offset of 12 in the instruction sw a0, 12(sp)?

4. Explain the difference between a function and a macro

5. Which directives signify the start and end of a macro?

6. When is the .include directive used?

7. Modify on eor more of the programs to make better use of functions, and macros. Compare the
results using strace.

8. Explain why leaf routines do not need to save the RA register.

9. Modify the push and pop macros to function with two registers at a time.

10. Check the program below to find the error. This is a common real-world error that could go
unnoticed/ If you cannot see the error then use GDB to trace the register contents.

.section .text

.global _start

.include "pushmacro.S"

.include "popmacro.S"

_start:

Put values in the temp registers to check out macros

 li t0, 10

 li t1, 20

 li t2, 30

 push t0

 push t1

 push t2

 call nonleaf # call nonleaf function, which calls a leaf function

 pop t2

 pop t1

 pop t0

exit(result held in register A0)

Chapter 6 The Stack, Macros and Functions

6-35

 li a7, 93 # sys_exit

 ecall

Cannot get here!

Now in non_leaf function which calls another function → register ra is saved by the

push macro

nonleaf:

overwrite temp registers

 li t0, 100

 li t1, 200

 li t2, 300

 push t0

 push t1

 push t2

 push ra # Save ra

 call leaf # call leaf function

Back from non-leaf

 addi a0, a0, 10 # Add 10 to the leaf function's return value

 pop ra # Restore ra

 pop t0

 pop t1

 pop t2

 ret

Now in leaf function

leaf:

Since we are a leaf function we do not need to save ra

 li a0, 42 # return the answer to life, meaning ...

 li t0, 2000

 li t1, 3000

 li t2, 4000

 ret

Chapter 6 The Stack, Macros and Functions

6-36

Summary of instructions used in chapter 6

Stack Management Instructions

addi – Used to adjust the stack pointer (sp)

Example: addi sp, sp, -32 (allocate stack space)

sd – Store doubleword (store register onto stack)

ld – Load doubleword (retrieve register from stack)

Control Transfer / Function Support

jal – Jump and Link (used to call functions)

ret – Return from function (pseudo-instruction for jalr x0, ra, 0)

jalr – Jump and Link Register (used indirectly via ret)

Macros and Utilities

.macro / .end_macro – Assembler directives for defining macros (not instructions but critical to macro
usage)

Chapter 7 Intermingling Assembly and C

7-2

Chapter 7. RISC_V assembly and C together

Overview of the chapter

Chapter 7 explores how assembly language and C code can work together, bridging low-level and
high-level programming. It’s highly practical for system developers who want to embed
performance-critical routines in C-based applications. This chapter will show how to combine RISC-V
assembly language with the C programming language. Embedded application developers often have
to have to resort to development using pure machine code, but as we have seen in the earlier
chapters tutorials we have the benefit of development under the Linux operating system. We realize
the advantages of using system calls especially in the area of screen output and keyboard input. This
is best illustrated for those using real hardware such as the platforms described earlier. An operating
system such as Linux allows us to use C code which can be compiled together with RISC-V assembly.

7.1. Example C code

Consider the basic C program shown below:

Listing 7-1 Basic C program

// Addprog.c

include <stdio.h>

int main() {

int first=10, second=20, sum;

 // Calculate the sum

 sum = first + second;

/ / Display the result

 printf("%d + %d = %d\n", first, second, sum);

return 0;

}

Compile and run

$ gcc addprog.c

$./a.out

10 + 20 = 30

$

Chapter 7 Intermingling Assembly and C

7-3

Compiling generates intermediate files and by default, the compiler will delete these intermediate
files once the executable program has been generated. To retain the generated assembly files, use
the –S option

$ gcc –S addprog.c

$ ls

addprog.c addprog.s

Print the intermediate assembly code.

$ cat addprog.s

.option pic

.attribute arch,

"rv64i2p1_m2p0_a2p1_f2p2_d2p2_c2p0_zicsr2p0_zifencei2p0_zba1p0_zbb1p0_zbc1p0_zbs1p

0"

.attribute unaligned_access, 1

.attribute stack_align, 16

.text

.section .rodata

.align 3

.LC0:

.string "%d + %d = %d\n"

.text

.align 1

.globl main

.type main, @function

main:

.LFB0:

.cfi_startproc

addi sp,sp,-32

.cfi_def_cfa_offset 32

sd ra,24(sp)

sd s0,16(sp)

cfi_offset 1, -8

.cfi_offset 8, -16

addi s0,sp,32

.cfi_def_cfa 8, 0

Chapter 7 Intermingling Assembly and C

7-4

li a5,10

sw a5,-28(s0)

li a5,20

sw a5,-24(s0)

lw a5,-28(s0)

mv a4,a5

lw a5,-24(s0)

addw a5,a4,a5

sw a5,-20(s0)

lw a3,-20(s0)

lw a4,-24(s0)

lw a5,-28(s0)

mv a2,a4

mv a1,a5

lla a0,.LC0

call printf@plt

li a5,0

mv a0,a5

ld ra,24(sp)

.cfi_restore 1

ld s0,16(sp)

.cfi_restore 8

.cfi_def_cfa 2, 32

addi sp,sp,32

.cfi_def_cfa_offset 0

jr ra

.cfi_endproc

.LFE0:

.size main, .-main

The stack pointer has been set up with the instruction addi sp,sp,-32. You can see how the
variables first and second are assigned in the highlighted instructions li a5,10 and li a5, 20. In
between and after the load immediate instructions there is a stack push to save register a5. A copy

Chapter 7 Intermingling Assembly and C

7-5

of register a5 is loaded into register a4 via the move instruction. Both registers are added together
using addw a5,a4,a5 and the result is stored on the stack.

Following this the output print parameters are set up via the argument registers a0, a1 and a2.

7.1. Optimizing code with GCC

Table 7-1 shows the main levels of code optimization that the compiler can generate. The assembly
code that was generated by the compiler uses the default optimization level. Generally, optimization
level 2 is considered a good compromise51. Level 3 can use inline code like macros but can the
optimization at the expense of size.

7.2. C optimization techniques

If the file has been compiled with the –g option then the optimization level may be included in the
executable. The grep utility can be used for this with the dash a switch denoting that the file is an
executable file. The extract shows that level 3 optimization was used with this binary.

$ grep -a "\-O" a.out

? ? first__fmtlong unsigned intunsigned charmainlong intshort unsigned

intprintfsecond__printf_chkshort intGNU C17 14.2.0 -mtune=spacemit-x60 -mabi=lp64d

-misa-spec=20191213 -mtls-dialect=trad -

march=rv64imafdc_zicsr_zifencei_zba_zbb_zbc_zbs -g -O3 -fstack-protector-

strongaddprog.c/home/alan/c/usr/include/riscv64-linux-gnu/bitsstdio2.hstdio2-

decl?h

51 It is recommended to stay with the default levels of optimization until the testing and debugging phases have been carried out.

Chapter 7 Intermingling Assembly and C

7-6

Table 7-1 C optimization levels

Optimization level Description Effect

O0 No optimization Default, easier to debug

O1 Basic optimization Small optimization, not significantly
increasing compilation time

O2 Recommended Perform optimizations that do not
involve space to speed tradeoffs such
as inlining bloat – a good compromise,
safe!

O3 Aggressive Uses O2 optimizations and use
inlining for loops, can slow down
compilation

Ofast Aggressive, disregards strict
standards compliance

Uses O3 and optimizations that are
not valid for all standard compliant
programs

Oz Smaller size Uses O2, excluding optimizations that
may increase size

7.2.1. Compile-time optimization

The same program (addprog.c) that we saw earlier has been compiled with level 3 optimization. You
may notice that it does not use the addw instruction, instead it eliminates the variables first, second
and sum and calculates the result first. The only reason that the values 10 and 20 are retained is for
the print string. The compilation command is:

$ gcc –O3 addprog.s

The resulting program is much smaller in size. With optimization level 3 the compiler pre-calculates
the addition since the values of first and second are constant and do not change. This eliminates the
addw instruction. In addition, the stack handling has been reduced. It is important to note that the
optimized code may be harder to debug since it has performed optimization that may be harder to
spot since there is not necessarily a one-to-one correspondence.

7.2.1.1. Constant folding and copy propagation

These techniques are known as constant folding and copy propagation. Constant folding occurred
here by evaluating 10+20 and just using a single variable to store the result. In the code shown it was

Chapter 7 Intermingling Assembly and C

7-7

achieved with the instruction li a4,30. In C terms it would simply look like sum=30 without using the
variables first and second. Constant propagation will replace the variables with their values so it can
replace the variables first and second with the constants 10 and 20, so instead of a statement like
sum = first + second, the compiler can directly use sum = 10+20.

cat addprog.s

.file "addprog.c"

.option pic

.attribute arch,

"rv64i2p1_m2p0_a2p1_f2p2_d2p2_c2p0_zicsr2p0_zifencei2p0_zba1p0_zbb1p0_zbc1p0_zbs1p

0"

.attribute unaligned_access, 1

.attribute stack_align, 16

.text

.section .rodata.str1.8,"aMS",@progbits,1

.align 3

.LC0:

.string "%d + %d = %d\n"

.section .text.startup,"ax",@progbits

.align 1

.globl main

.type main, @function

main:

.LFB23:

.cfi_startproc

addi sp,sp,-16

.cfi_def_cfa_offset 16

li a4,30

li a3,20

li a2,10

lla a1,.LC0

li a0,2

sd ra,8(sp)

.cfi_offset 1, -8

call __printf_chk@plt

ld ra,8(sp)

Chapter 7 Intermingling Assembly and C

7-8

.cfi_restore 1

li a0,0

addi sp,sp,16

.cfi_def_cfa_offset 0

jr ra

.cfi_endproc

.LFE23:

.size main, .-main

7.2.2. Run-time optimization

Consider the basic C program shown below. This program does not know the variable’s values at
compile time.

Listing 7-2 C program with user input

include <stdio.h>

int main() { int first, second, sum;

printf("Enter two integers: "); // Read two integers from the user

scanf("%d %d", &first, &second); // Calculate the sum sum = first + second; //

Display the result

printf("%d + %d = %d\n", first, second, sum); return 0; }

Compile and run

$ gcc addprog1.c

$./a.out

Enter two integers: 4

3

4 + 3 = 7

$

Compile and run

$ gcc addprog1.c

$./a.out

Enter two integers: 4

3

4 + 3 = 7

$

Chapter 7 Intermingling Assembly and C

7-9

The programs ask the user for input so the values of the variables first and second is not known until
runtime. Consequently, constant folding and copy propagation will not apply. Compile time
optimization is a static process, unlike run time optimization which responds to dynamic conditions.
Some of the techniques used in run time optimization include Caching which remembers the result
of a lookup function and Adaptive Inlining which decides which of the functions should be inlined by
monitoring execution frequency.

7.3. Calling assembly functions from a high-level language

The next example creates two source programs, one written in C52 code and the other in RISC_V
assembly. The C program (Listing 7-3) shown declares an external function (getproduct), located in
the assembly program (Listing 7-4) and calls it passing the two arguments via a0 and a1. It then calls
the printf function to output the result. The assembly program is executed in the normal fashion
generating an object file. The gcc program 53 generates the C object file and links it with the
previously generated object file.

Listing 7-3 C program calling an external assembly routine

/* This code shows how to call an assembly language program from C

Listing 7-3.c*/

#include <stdio.h>

// Declare the assembly function

extern int getproduct(int a, int b);

int main() {

int x = 100, y = 200;

// Call RiscV assembly function

int result = getproduct(x, y);

printf("The product of %d and %d is %d\n", x, y, result);

return 0;

}

Listing 7-4 RISC-V multiply function called from C

$ cat listing7-4.s

.text

52 None of the c code presented here is overly complex, however if the reader is not familiar with C, there is a wealth of on-line tutorials to
be consumed that will cover the basics for what is needed here.

53 An alternative c compiler is clang which can be installed by sudo apt install -y clang.

Chapter 7 Intermingling Assembly and C

7-10

.global getproduct

getproduct:

mul a0, a0, a1 # Add the two input registers (a0 and a1) and store in a0

ret # Return

The commands to generate the output file are:

$ as -g -o listing7-4.o listing7-4.s

$ gcc listing7-3.c listing7-4.o -o outputfile

Here gcc (GNU complier collection) is used instead of the ld command that was previously used to
perform the linkage.

The generated assembly files from the .c listing can be saved during compilation with the option -
save-temps. Alternatively, as we saw earlier, to just generate the RISC_V assembly code use the
command gcc -S <filename.c> which generates <filename.s>

The command line is:

$ gcc -save-temps listing7-3.c listing7-4.o -o outputfile

$ls -l outputfile*

-rwxrwxr-x 1 alan alan 9584 Jan 28 11:49 outputfile

-rw-rw-r-- 1 alan alan 21460 Jan 28 11:49 outputfile-listing7-3.i

-rw-rw-r-- 1 alan alan 2408 Jan 28 11:49 outputfile-listing7-3.o

-rw-rw-r-- 1 alan alan 1024 Jan 28 11:49 outputfile-listing7-3.s

This generates the assembly .s file shown above. The bolded and italicized comments have been
added to help with explanation and were not part of the -save-temps output.

.option pic

.attribute arch, "rv64i2p1_m2p0_a2p1_f2p2_d2p2_c2p0_zicsr2p0_zifencei2p0"

.attribute unaligned_access, 0

.attribute stack_align, 16

.text

.section .rodata

.align 3

.LC0:

.string "The product of %d and %d is %d\n" # String as defined as part of the

C source

.text

.align 1

.global main

Chapter 7 Intermingling Assembly and C

7-11

.type main, @function

main:

addi sp,sp,-32 # Allocate space on the stack

sd ra,24(sp) # Store a double word (64 bits, our architecture is RV64) from

the ra register with an offset of 24 from the stack pointer

sd s0,16(sp) # Store a double word from the s0(fp) register with an offset

of 16 from the stack pointer

addi s0,sp,32 # Store stack pointer with an offset of 32, from the current

stack pointer

li a5,100 # First factor

sw a5,-20(s0) # Store first factor

li a5,200 # Second factor

sw a5,-24(s0) # Both factors stored in addresses pointed to by s0 (s0 -20, s0

024)

lw a4,-24(s0) # Load a4 with second factor

lw a5,-20(s0) # Load a5 with first factor

mv a1,a4 # Move second factor to a1

mv a0,a5 # Move first factor to a0

call getproduct@plt # Call function with parameters held in a0 and a1

mv a5,a0 # Move first factor into a5

sw a5,-28(s0) # Store first factor into location pointed to by s0 with an

offset of -28

lw a3,-28(s0) # Load first factor into a3

lw a4,-24(s0) # Load second factor into a4

lw a5,-20(s0) # Load first factor into a5

mv a2,a4 # Load second factor into a2

mv a1,a5 # Load first factor into a1

lla a0,.LC0

call printf@plt # call printf function using the procedure linkage table54

li a5,0

mv a0,a5

ld ra,24(sp) # Pop ra register back to original value

ld s0,16(sp) # Pop frame pointer back to original value

54 Refer to RISC-V ABIs Specification (https://lists.riscv.org/g/tech-psabi/attachment/61/0/riscv-abi.pdf) section 8.5.6 for more information
on the procedure linkage table.

https://lists.riscv.org/g/tech-psabi/attachment/61/0/riscv-abi.pdf
https://lists.riscv.org/g/tech-psabi/attachment/61/0/riscv-abi.pdf

Chapter 7 Intermingling Assembly and C

7-12

addi sp,sp,32 # Set stack pointer back to original value

jr ra

. . .

Looking at the listing, it appears that a deal of optimization could be performed.

.file "listing7-2.c"

.option pic

.attribute arch, "rv64i2p1_m2p0_a2p1_f2p2_d2p2_c2p0_zicsr2p0_zifencei2p0"

.attribute unaligned_access, 0

.attribute stack_align, 16

.text

.section .rodata.str1.8,"aMS",@progbits,1

.align 3

.LC0:

.string "Result of adding %d to %d is: %d\n"

.section .text.startup,"ax",@progbits

.align 1

.globl main

.type main, @function

main:

addi sp,sp,-16

sd ra,8(sp)

li a3,15

li a5,27

#APP

8 "listing7-2.c" 1

add a3, a3, a5

0 "" 2

#NO_APP

li a2,27

sext.w a3,a3

li a1,15

lla a0,.LC0

call printf@plt

Chapter 7 Intermingling Assembly and C

7-13

ld ra,8(sp)

li a0,0

addi sp,sp,16

jr ra

.size main, .-main

.ident "GCC: (Debian 12.2.0-14) 12.2.0"

.section .note.GNU-stack,"",@progbits

The optimization options are shown in Table 7-1

An optimized listing is shown below:

. cat outputfileOz-listing7-3.s

 .file "listing7-3.c"

 .option pic

 .attribute arch,

"rv64i2p1_m2p0_a2p1_f2p2_d2p2_c2p0_zicsr2p0_zifencei2p0_zba1p0_zbb1p0_zbc1p0_zbs1p

0"

 .attribute unaligned_access, 1

 .attribute stack_align, 16

 .text

 .section .rodata.str1.8,"aMS",@progbits,1

 .align 3

.LC0:

 .string "The product of %d and %d is %d\n"

 .section .text.startup,"ax",@progbits

 .align 1

 .globl main

 .type main, @function

main:

.LFB13:

 .cfi_startproc

 addi sp,sp,-16

 .cfi_def_cfa_offset 16

 li a1,200

 li a0,100

 sd ra,8(sp)

Chapter 7 Intermingling Assembly and C

7-14

 .cfi_offset 1, -8

 call getproduct@plt

 mv a4,a0

 li a3,200

 li a2,100

 lla a1,.LC0

 li a0,2

 call __printf_chk@plt

 ld ra,8(sp)

 .cfi_restore 1

 li a0,0

 addi sp,sp,16

 .cfi_def_cfa_offset 0

 jr ra

 .cfi_endproc

.LFE13:

 .size main, .-main

 .ident "GCC: (Bianbu 14.2.0-19ubuntu2bb3) 14.2.0"

 .section .note.GNU-stack,"",@progbits

$ ls -l outputfileO0-listing7-3.s outputfileOz-listing7-3.s

-rw-rw-r-- 1 alan alan 1024 Jan 28 11:58 outputfileO0-listing7-3.s

-rw-rw-r-- 1 alan alan 830 Jan 28 12:00 outputfileOz-listing7-3.s

The clang compiler uses similar optimization options. A comparison of the assembly file size using
the wc utility55 is shown following:

$ clang with -O0

52 182 1463

$ clang with -Oz

39 124 1015 Using in-line code

The next program uses in-line code to execute assembly language instructions from a single C source
program. The GNU assembler keyword asm is used to denote the operands using C syntax.

55 wc counts lines, words and bytes so an output of 52 182 1463 refers to 52 lines, 182 words and 1463 bytes; using wc -l will only return

the line count

Chapter 7 Intermingling Assembly and C

7-15

There are two forms of ASM– Basic and Extended. In-line assembly code is a bridge for interfacing
the high-level convenience of C/C++ to the low-level functionality of RISC-V assembly code

7.3.1. Basic ASM

Basic ASM is a set of assembly instructions. With inline code the asm keyword is not an actual C
keyword 56 but it is understood by the assembler. Note that non-GNU assemblers may use an
alternative keyword. Basic ASM is simpler than extended ASM and can be used when no operands
are involved. The next listing shows an example of in-line Basic ASM used with C code; in practice
Extended ASM is used more often with in-line assembly code.

Listing 7-5 Basic ASM example

include <stdio.h>

const char message[] = "Hello - RiscV Basic ASM!\n";

int main()

{

asm(

"la a0, message\n" // load address of msg into a0 (1st argument to puts)

"call puts\n" // call puts(message)

"li a7, 93\n"

"ecall\n"

);

return 0;

}

As an exercise you may wish to run the program with optimization and note the most significant
changes.

7.3.1. Extended ASM

Extended ASM can use variables from the C/C++ source code. Extended ASM cannot be used outside
of these functions. The assembler template consists of:

asm(code template : output operand(s) : input operand(s) : clobber list);

Table 7-2 gives an explanation.

56 This is not the case with C++.

Chapter 7 Intermingling Assembly and C

7-16

Table 7-2 Inline assembly template

Template

 Example Description

Code - Assembler
Instruction

"mul %0, %1, %2" Regular assembly instruction

Code Template parameters add%[inputa], %[inputb] Using parameters passed as
inputs to the code template

Output Operand(S) List : "=r" (result)

Can be left empty using

:

List of output operand(s)
[answer] is a symbolic name, r is
a constraint string meaning
register and (result) is returned
to the Calling code.

Input Operands List [inputa] "r" (a),

[inputb] "r" (b)
Similar syntax to operand list

Clobber List “t0”, “t1” Optional list of registers, that
may not be preserved

An example of in-line assembly code in a C program using Extended ASM is shown in Listing 7-6

Listing 7-6 Extended ASM example

cat listing7-4.c

#include <stdio.h>

int main() {

int number1 = 15, number2 = 27, result;

// Using extended ASM to add a and b

asm volatile (

"add %0, %1, %2"

: "=r"(result) // Output operand

: "r"(number1), "r"(number2) // Input operands

: // No clobbered registers

);

printf("Result of adding %d to %d is: %d\n", number1,number2,result);

return 0;

}}

• This instruction adds two registers indicated by the input operands %1 and %2,

Chapter 7 Intermingling Assembly and C

7-17

• %0 represents the output operand.

• "=r" indicates that the result (sum) will be stored in a register.

• "r"(number1), "r"(number2) indicates registers.

The intermediate assembly file generated by the C compiler is shown below:

Note the comments are not generated by gcc but edited in for clarity.

.option pic

.attribute arch, "rv64i2p1_m2p0_a2p1_f2p2_d2p2_c2p0_zicsr2p0_zifencei2p0"

.attribute unaligned_access, 0

.attribute stack_align, 16

.text

.section .rodata

.align 3

.LC0:

.string "Result of adding %d to %d is: %d\n"

.text

.align 1

.globl main

.type main, @function

main:

addi sp,sp,-32

sd ra,24(sp)

sd s0,16(sp)

addi s0,sp,32

li a5,15 //number1 is stored in register a5

sw a5,-20(s0) // It is then pushed onto the stack

li a5,27 // number2 is stored in register a5

sw a5,-24(s0) // It is then stored onto the next stack location

lw a5,-20(s0) // number1 is retrieved from the stack and stored in register a5

lw a4,-24(s0) //number2 is retrieved from the stack and stored in register a4

#APP

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 7 Intermingling Assembly and C

7-18

add a5, a5, a4 // Number1 is added to number2 storing result in register a5

0 "" 2

#NO_APP

sw a5,-28(s0) // Result is stored onto the stack

lw a3,-28(s0) // Result is popped form the stack and loaded into register a3

lw a4,-24(s0) // Restore number2 into register a4

lw a5,-20(s0) // Restore number1 into register a5

mv a2,a4 // Store numbers into registers a1 and a2

mv a1,a5

lla a0,.LC0 // Set up print output

call printf@plt

li a5,0

mv a0,a5

ld ra,24(sp)

ld s0,16(sp)

addi sp,sp,32

jr ra

.size main, .-main

.ident "GCC: (Debian 12.2.0-14) 12.2.0"

.section .note.GNU-stack,"",@progbits

7.3.1.1. Further Basic ASM example

The C program presented here shows another example of Basic ASM. The C variables are matched
to the RISC-V registers T0 through T2 using the register keyword The addition is performed with the
instruction add t2, t0, t1 enclosed within the asm block. On entry It is actually in the text section, after
this the .rodata section is defined and then the last part of the asm block is to return to the text
section. This is important as the program needs to exit the data section. The printing is performed
by the C code. The alternative is to save the section state and then restore it as shown in the listing
below.

Listing 7-7 Further BASIC asm example

include <stdio.h>

//Declare the assembly message as an external variable since it is defined in

assembly block

extern char assembly_msg[];

int main() {

Chapter 7 Intermingling Assembly and C

7-19

 int number1 = 42;

 int number2 = 569;

 int result; //Assign registers to C variables

 register int num1 asm("t0") = number1;

 register int num2 asm("t1") = number2;

 register int output asm("t2");

asm (

"add t2, t0, t1 \n\t"

".section .rodata\n\t"

".global assembly_msg\n\t"

" assembly_msg:\n\t"

" .asciz \"The result of adding 42 and 569 (calculated using basic ASM) is: \"\n\t"

".section .text\n\t" // Now back in the text section

);

// Get the result from the register

 result = output;

 printf("%s %d\n", assembly_msg, result);

 return 0;

}

./a.out

The result of adding 42 and 569 (calculated using basic ASM) is: 611

7.4. Format Specifiers

Earlier programs in this chapter have already used printf to output results. The C standard library
function printf is defined within <stdio.h> as int printf(const char *format,…) It is a variadic
function which means that it can take a variable number of arguments. This is conveyed by the
ellipsis… in the prototype. The function takes a minimum of one argument which is a pointer to the
location of the starting character of the text. The text itself can embed formatting tags which specify
how the arguments that are passed are to be printed – for example a variable using “%d” will be
formatted as a signed base 10 integer.

A non-exhaustive list of format specifiers is shown in Table 7-3.

Chapter 7 Intermingling Assembly and C

7-20

Table 7-3 printf format specifiers

Format specifier interpretation

%d Signed decimal number.

%u Unsigned decimal number.

%s Pointer to an array of characters.

%c Outputs a single character.

%x Represents an unsigned integer in lower case hexadecimal
form.

%X Represents an unsigned integer in upper case hexadecimal
form.

%% Outputs a literal “%” character.

%e Represents floating point as decimal exponent notation.

%f Represents floating point as decimal.

Using the printf specifiers helps immensely when using assembly code, although it should be noted
that some systems will not have printf available57. Listing 7-5 Listing 7-8 shows examples. Here the
registers a0 through a3 are used as function parameters to printf as specified in the ABI calling
convention. The use of printf could conceivably slow down execution in time-dependent code
whereas the direct assembly printing methods are faster. The printf function expects the first
parameter to be a null-terminated string, which uses the .asciz assembler directive.

Listing 7-8 Using the printf function with assembly code

$.extern printf

 .section .rodata

string1: .asciz "The square of decimal number 42 = %d (Base 10)\n"

string2: .asciz "The square of number 42 decimal = %x (Base 16)\n"

string3: .asciz "The square of number 42 decimal =%X (Upper Case hex)\n"

.equ number1,42

 .section .text

 .global main

57 Typically, this would apply to bare-metal embedded implementations with limited resources.

Chapter 7 Intermingling Assembly and C

7-21

main:

 #Prologue

 addi sp, sp, -16 # allocate stack (16‑byte aligned)

 sd ra, 8(sp) # save return address

 li a1, number1

 mul a1,a1,a1

 la a0, string1 # a0 = pointer to format string

 call printf # call printf

 li a1, number1

 mul a1,a1,a1

 la a0, string2

 call printf

 li a1, number1

 mul a1,a1,a1

 la a0, string3

 call printf

 # Epilogue

 ld ra, 8(sp) # restore return address

 addi sp, sp, 16 # restore stack

 li a0, 0 # return 0 from main

 ret

The program was built with gcc. Using gcc ensures that the program is linked with the C standard
library (libc) which is necessary for invoking printf.

gcc -o test listing7-7a.s

./test

The square of decimal number 42 = 1764 (Base 10)

The square of number 42 decimal = 6e4 (Base 16)

The square of number 42 decimal =6E4 (Upper Case hex)

Chapter 7 Intermingling Assembly and C

7-22

We can see that using printf is much simpler than printing with pure assembly.Building with the -g
option lets us run with GDB.

Figure 7-1 Using GDB with GCC

Chapter 7 Intermingling Assembly and C

7-23

Exercises for chapter 7

1. Write a program that could benefit from optimization; include redundant instructions to see how
it is handled by the disassembled code

2. Generate compute-intensive code and see if optimization can reduce run-time.

3. List the parameters and their locations, expected by printf.

Chapter 7 Intermingling Assembly and C

7-24

Summary of RISC-V instruction used in chapter 7

Function Calling and Stack Use

sd – Store doubleword (save registers to stack)

ld – Load doubleword (restore registers from stack)

jal – Jump and link (function calls)

ret – Return from function (pseudo-instruction for jalr)

Inline ASM Tools

• While these are not actual RISC-V instructions, the chapter discusses basic and extended
inline assembly syntax in GCC using:

o asm("...") or __asm__ volatile ("...") blocks

o Constraints like r, m, =r, 0, etc.

o Clobber lists and output/input operands

Chapter 8 Floating-point

8-1

Chapter 8. Floating-Point

Overview of the chapter

Chapter 8 introduces floating-point operations in RISC-V, based on the IEEE 754 standard. It explains how
floating-point numbers are represented, manipulated, and evaluated in assembly, highlighting both
single and double precision.

8.1. RISC-V floating-point capability

Not all RISC-V systems can handle floating point; recall that only some RISC-V systems have floating-point
support as evidenced from their identification string (the F extension), as discussed on page 2-2.

8.1.1. Floating-point register set

Capable systems have 32 (f0 → f31) floating-point registers shown in Figure 8-1, while the register width
(FLEN) is determined by the RV extension shown in Table 8-2.

Chapter 8 Floating-point

8-2

Figure 8-1 Floating-point registers

Floating-Point registers

127-64 63-32 31-0 Register Name ABI Name Saver responsibity

f0 ft0 Caller

f1 ft1 Caller

f2 ft2 Caller

f3 ft3 Caller

f4 ft4 Caller

f5 ft5 Caller

f6 ft6 Caller

f7 ft7 Caller

f8 fs0 Callee

f9 fs1 Callee

f10 fa0 Caller

f11 fa1 Caller

f12 fa2 Caller

f13 fa3 Caller

f14 fa4 Caller

f15 fa5 Caller

f16 fa6 Caller

f17 fa7 Caller

f18 fs2 Callee

f19 fs3 Callee

f20 fs4 Callee

f21 fs5 Callee

f22 fs6 Callee

f23 fs7 Callee

f24 fs8 Callee

f25 fs9 Callee

f26 fs10 Callee

f27 fs11 Callee

f28 ft8 Caller

f29 ft9 Caller

f30 ft10 Caller

f31 ft11 Caller

Bit 127 Bit 0

32 floating -point registers, data width is determined by RV extension

Chapter 8 Floating-point

8-3

Table 8-2 indicates the number of bits that are used by floating-point numbers in the RISC-V architecture,
for reference a single precision number is referenced as a float in the C language and a double precision
number as a double.

This chapter will only discuss single and double precision numbers not half or quad.

Recall from chapter one:

• Single precision numbers are divided into three fields with a single sign bit, eight bits for a biased
exponent and 23 bits for the significand.

• Double precision numbers are divided into three fields with a single sign bit, eleven bits for a
biased exponent and 52 bits for the significand.

• With normalized numbers the leading 1.XXX… is implicit and not coded.

Table 8-1 Bit fields of single and double precision floating-point numbers

Format Bits Significand Unbiased Exponent Decimal Precision

Single 32 24 (23+1) 8 6-9 digits

Double 64 53 (52+1) 11 15-17 digits

Table 8-2 Floating-point register width

Optional extension Register width

H Half precision 16 bits (FLEN)

F Single precision 32 bits (FLEN)

D Double precision 64 bits (FLEN)

Q Quad precision 128 bits (FLEN)

8.2. Instruction types

Floating-point instructions can be broadly categorized into the following areas.

8.2.1. Arithmetic instructions

Floating-point arithmetic operations include –

• Add

• Subtract

• Multiply

• Divide

Chapter 8 Floating-point

8-4

• Square root

• Minimum

• Maximum

8.2.2. Load and store instructions

• Load

• Store

8.2.3. Convert instructions

• Convert from float to unsigned integer

• Convert from unsigned integer to float

• Convert from single precision float to double precision float

• Convert from double precision float to single precision float

8.2.4. Categorization instructions

These are used to ascertain the type of value such as minus infinity -∞, -0, NaN, . . . The fclass
instructions are used to store a value corresponding to the type in a destination.

8.2.5. Comparison instructions

This covers the usual comparisons – less than or equal, equal,

8.2.6. Miscellaneous instructions

• Sign-injection which copies from a source to a destination with sign-bit manipulation.

8.3. Instruction format

The format of a floating-point instruction is F<instruction>.<precision> rd, rs1, rs2 where
<instruction> is an operation such as <ADD>, <MUL> or <DIV> and <precision> is the floating-point
precision such as <S> or <D>, so the instruction FSUB.S refers to a single precision floating-point
subtraction operation. An arithmetic instruction – FADD.S f0,f1,f2 will add the contents of registers f1
and f2 placing the result in register f0. The field breakdown of this instruction is as follows:

Chapter 8 Floating-point

8-5

Table 8-3 Field meaning of FADD.s instruction

Field Value Notes

Opcode 1010011 (53) Used with funct5 to determine operation

rd 00010 (2) Destination register (F2)

rm 111 (7) Select the dynamic rounding mode held in frm (rounding mode
field) which is the default mode if not specified in the instruction

rs1 00000 First source register (F2)

rs2 00001 Second source register (F1)

fmt 00 S (32-bit) Single precision see

funct5 00000 FADD instruction

Figure 8-2 FADD bit fields

Instruction - 00107153 fadd.s ft2,ft0,ft1

3 2 2 2 2 1 1 1

1

6 5 4

0 9

 4

2

 6

0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1

funct5 fmt rs2 rs1 rm rd Opcode

8.3.1.
 Floating point control and status register

The floating-point control and status register (FCSR) is a 32-bit register that is used to flag exceptions and
the rounding mode that is used with floating point operations. The exception flags occupy bits 4:0 and
the rounding mode occupies bits 7:5 as shown in Figure 8-3.

Figure 8-3 FCSR bit definitions

3
1 7 5 4 0

N D O U N
Z Z F F X

Rounding
Mode

Accrued Exception

Flags field (fflags)

Reserved

Chapter 8 Floating-point

8-6

8.3.2. Rounding Modes

There are two types of rounding modes - dynamic and static. Static rounding modes are specified in the
floating-point instruction such as fadd.s ft2, ft0. ft1, rtz where rtz stands for round towards
zero. Static rounding modes are fixed.

The bit field breakdown for fadd.s ft2, ft0. ft1, rtz is shown in Figure 8-4

Figure 8-4 Field breakdown of FADD.s f2,f0,f, rtz instruction

3 2 2 2 2 1 1 1

1 6 5 4 0 9 4 2 6 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1

funct5 fmt rs2 rs1 rm rd Opcode

Dynamic rounding modes can be changed during code execution; the current rounding mode is specified
within the fcsr register.

Table 8-4 defines the various encoding modes:

Table 8-4 Rounding mode bits

Mode Mnemonic Notes

000 RNE Round to nearest (even values are preferred)

001 RTZ Round towards zero

010 RDN Round down towards -infinity

011 RUP Round up towards +infinity

100 RMM Round to nearest (max magnitude)

101 Reserved

110 Reserved

111 DYN Dynamic rounding

8.3.3.
Accrued Exception bits

The meaning of the exception bits are:

• NZ Invalid

• OF Overflow

• UF Underflow

Chapter 8 Floating-point

8-7

• DZ Divide by zero

• NX Inexact

The frcr rd command can be used to read the register placing the result into a general-purpose (integer)
register and the fscsr rs1 instruction is used to set bits from a source general-purpose register.

Note that the accrued exception bits must be cleared by the software once they
have been set!

The first listing in this section adds two double precision floating-point numbers and uses printf58 to print
the result. The address of the numbers pi and e are first placed in the integer registers a0 and a1. They
are then loaded into floating-point registers fa0 and fa1. They are added together, placing the result in
fa2 by the fadd.d instruction. After this the floating-point values are placed back into the integer
registers so that they can be displayed using printf.

Listing 8-1 Adding two double-precision floating-point numbers

Double-precision floating-point addition example

.data

pi: .double 3.141592653589793 # First double-precision number

euler: .double 2.718281828459045 # Second double-precision number

displayresult: .string "Pi %.15f added to e %.15f = %.15f\n" # Format string for printf

.text

.global main

main:

 # Load double-precision floating-point numbers

 la a0, pi # Load address of pi

 fld fa0, 0(a0) # Load pi value into fa0

 la a0, euler # Load address of e

 fld fa1, 0(a0) # Load e value into fa1

 fadd.d fa2, fa0, fa1 # Double-precision addition, result in fa2

 # set printf arguments

 # Move Floating-point numbers into integer registers

 fmv.x.d a1, fa0 # pi goes to a1

 fmv.x.d a2, fa1 # e goes to a2

58 Use double-precision with printf. See assembly - How to print a single-precision float with printf - Stack Overflow
(https://stackoverflow.com/questions/37082784/how-to-print-a-single-precision-float-with-printf) for elaboration.

https://stackoverflow.com/questions/37082784/how-to-print-a-single-precision-float-with-printf
https://stackoverflow.com/questions/37082784/how-to-print-a-single-precision-float-with-printf
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 8 Floating-point

8-8

 fmv.x.d a3, fa2 # Result to a3

 # Load string

 la a0, displayresult # printf a0 for string, a1,a2,... for other parameters

 # Print the result

 call printf

 # exit

 li a7, 93

 ecall

The compilation string used was:

$ gcc -g -listing8-1.s -o listing8-1

and the output shows:

 ./listing8-1

Pi 3.141592653589793 added to e 2.718281828459045 = 5.859874482048838

After the floating-point registers have been added their contents shows:

After the floating-point values have been moved back into the integer registers, their contents are:

To verify:

Convert 40177082efac4240 to binary

• Extract sign bit (bit 63) = 0 = Positive

• Extract Exponent field (bits 62:52) = 1025 decimal, double precision range is -1022→ +1023,
biased exponent is 1025-1023 = 2

• Extract significand field bits 51:0), adding explicit leading 1 to get

1.0111011100001000001011101111101011000100001001000000

6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Chapter 8 Floating-point

8-9

= (1 × 2⁰) + (0 × 2⁻¹) + (1 × 2⁻²) + (1 × 2⁻³) + (1 × 2⁻⁴) + (0 × 2⁻⁵) + (1 × 2⁻⁶) + (1 × 2⁻⁷) + (1 × 2⁻⁸) + (0 × 2⁻⁹)

4. + (0 × 2⁻¹⁰) + (0 × 2⁻¹¹) + (0 × 2⁻¹²) + (1 × 2⁻¹³) + (0 × 2⁻¹⁴) + (0 × 2⁻¹⁵) + (0 × 2⁻¹⁶) + (0 × 2⁻¹⁷) + (0 ×
2⁻¹⁸) + (1 × 2⁻¹⁹)

5. + (0 × 2⁻²⁰) + (1 × 2⁻²¹) + (1 × 2⁻²²) + (1 × 2⁻²³) + (0 × 2⁻²⁴) + (1 × 2⁻²⁵) + (1 × 2⁻²⁶) + (1 × 2⁻²⁷) + (1 ×
2⁻²⁸) + (1 × 2⁻²⁹) + (0 × 2⁻³⁰) + (1 × 2⁻³¹) + (0 × 2⁻³²) + (1 × 2⁻³³) + (1 × 2⁻³⁴) + (0 × 2⁻³⁵) + (0 × 2⁻³⁶) + (0 × 2⁻³⁷)
+ (1 × 2⁻³⁸) + (0 × 2⁻³⁹) + (0 × 2⁻⁴⁰) + (0 × 2⁻⁴¹) + (0 × 2⁻⁴²) + (1 × 2⁻⁴³) + (0 × 2⁻⁴⁴) + (0 × 2⁻⁴⁵) + (1 × 2⁻⁴⁶) +
(0 × 2⁻⁴⁷) + (0 × 2⁻⁴⁸) + (0 × 2⁻⁴⁹) + (0 × 2⁻⁵⁰) + (0 × 2⁻⁵¹) + (0 × 2⁻⁵²)

6. = (1.46496862051220944068)₁₀

• Multiply by exponent (obtained earlier) = 1.46496862051220944068 * (1*22) = ~5.86

The next section of code introduces the floating-point multiply and divide instructions along with integer
conversion with different types of rounding. Two numbers are multiplied together and then this result is
divided by one of the original numbers to see if there are any errors due to precision.

Listing 8-2 Floating-point rounding using static modes

.data

number1: .double 123.141592653589793 # First double-precision number

number2: .double 422.718281828459045 # Second double-precision number

displaymresult: .asciz "\n The result of %.15f multiplied by %.15f = %.15f\n"

Format string for printf

displaydresult: .asciz "\n The result of %.15f divided by %.15f = %.15f\n"

displayrne: .asciz "\n The integer result rounded to nearest (ties to even)

is %d\n"

displayrup: .asciz "\n The integer result rounded up is %d\n"

displayrdn: .asciz "\n The integer result rounded down is %d\n"

displayrmm: .asciz "\n The integer result rounded to nearest (max magnitude)

is %d\n"

.text

.global main

main:

 # Load double-precision floating-point numbers

 la a0, number1 # Load address of first number

 fld fa0, 0(a0) # Load number1 value into fa0

 la a0, number2 # Load address of second number

 fld fa1, 0(a0) # Load number2 value into fa1

 fmul.d fa2, fa0, fa1 # Double-precision multiplication, result in fa2

Chapter 8 Floating-point

8-10

 fdiv.d fa3, fa2, fa0 # Now divide (number1*number2)by number1 result in fa3

 fcvt.lu.d t0,fa2,rne

 fcvt.lu.d t1,fa2,rup

 fcvt.lu.d t2,fa2,rdn

 fcvt.lu.d t3,fa2,rmm

 # Set up stack space and push registers t0-t3

 addi sp,sp,-48 #Allocate space

 sd t0, 8(sp)

 sd t1,16(sp)

 sd t2,24(sp)

 sd t3,32(sp)

 # set printf arguments for fa2 value

 # Move Floating-point numbers into integer registers

 fmv.x.d a1, fa0 # number1 goes to a1

 fmv.x.d a2, fa1 # number2 goes to a2

 fmv.x.d a3, fa2 # Result to a3

 # Load multiplication string

 la a0, displaymresult # printf a0 for string, a1,a2,... for other parameters

 call printf

 # Print the division result

 la a0, number1

 fld fa0, 0(a0)

 fmv.x.d a1, fa2 # multiplication result goes into parameter1

 fmv.x.d a2, fa0 # Number1 is parameter2

 fmv.x.d a3, fa3 # derived number2 is parameter3

 # Load division string

 la a0, displaydresult

 call printf

 # Now show rounding values and pop stack values

 ld a1, 8(sp) # Pop t0 to a0

 la a0, displayrne

 call printf

Chapter 8 Floating-point

8-11

 ld a1, 16(sp) # Now pop t1 onto a1

 la a0, displayrup

 call printf

 ld a1, 24(sp) # Pop t2

 la a0, displayrdn

 call printf

 ld a1, 32(sp) # Pop t3

 la a0, displayrmm

 call printf

 # Restore stack pointer

 addi sp,sp,48

 # exit

 li a7, 93

 ecall

Output:

$./listing8-2

 The result of 123.141592653589797 multiplied by 422.718281828459055 =

52054.202468145471357

 The result of 52054.202468145471357 divided by 123.141592653589797 =

422.718281828459055

 The integer result rounded to nearest (ties to even) is 52054

 The integer result rounded up is 52055

 The integer result rounded down is 52054

 The integer result rounded to nearest (max magnitude) is 52054

Listing 8-3 Using dynamic rounding mode

listing 8-3, use of dynamic rounding

.section .data

 pi: .float 3.141

 formatrup: .asciz "\n Pi Rounded up result (RUP) is %d\n"

 formatdn: .asciz "\n Pi Rounded down result (RDN) is %d\n"

 .equ roundingmask, 0xe0

 .equ rup, 0x60

Chapter 8 Floating-point

8-12

 .equ rdn, 0x40

.section .text

 .global main

 .extern printf

main:

 # Set the rounding mode to round up (0x60)

 frcsr t0 # Read FCSR into t0

 li t1, roundingmask # Mask to clear rounding bits

 not t1, t1

 and t0, t0, t1 # Clear bits 7:5

 li t2, rup

 or t0, t0, t2

 fscsr t0 # Write updated FCSR to t0

 # Load Pi into f0

 la t3, pi

 flw f0, 0(t3)

 # Convert to int using dynamic rounding mode (RUP)

 fcvt.w.s a1, f0 # Result goes to a1 (first int argument)

 # Load format string into a0 (first arg for printf)

 la a0, formatrup

 call printf

 # Do it again, this time round down

 frcsr t0 # Read FCSR into t0

 li t1, roundingmask # Mask to clear rounding bits

 not t1, t1

 and t0, t0, t1 # Clear bits 7:5

 li t2, rdn # 0x40 (RDN)

 or t0, t0, t2

 fscsr t0 # Write updated FCSR

 # Load Pi into f0

 la t3, pi

 flw f0, 0(t3)

 # Convert to int using dynamic rounding mode (RDN)

Chapter 8 Floating-point

8-13

 fcvt.w.s a1, f0 # Result goes to a1 (first int argument)

 # Load format string into a0 (first arg for printf)

 la a0, formatdn

 call printf

 # Return 0 from main

 #li a0, 0

 #ret

 li a7, 93

ecall

Output

$./listing8-3

 Pi Rounded up result (RUP) is 4

 Pi Rounded down result (RDN) is 3

Before looking at floating-point compare instructions Listing 8-4 generates the square root of two
numbers. The first number (2) does not have an exact59 square root whereas the second number (9)
does.

Listing 8-4 Use of sqrt instruction and reading the FCSR register

Listing 8-4.s square root function and reading the fcsr register

This code could be improved on greatly by showing the actual instruction that flagged

the condition

.section .data

message1: .asciz "\n The square root of the number 9 and 2 when squared is

approximately %.14f and %.14f\n"

fcsrerrormsg: .asciz "\n Warning fcsr flags set; the hex value read is %d\n"

accexceptbitsmsg: .asciz "\n 1 = NX (Inexact)\n 2 = UF (Underflow)\n 4 = OF (Overflow)\n

8 = DZ (Divide by zero)\n 10 = NV (Invalid)\n"

square1: .double 9.0

square2: .double 2.0

.equ flagmask, 0x1f

.section .text

.global main

59 The square root of 2 is irrational

Chapter 8 Floating-point

8-14

.extern printf

main:

 la t0, square1

 la t1, square2

 fld fa0, 0(t0)

 fld fa1, 0(t1)

 fsqrt.d fa2, fa0

 fsqrt.d fa3, fa1

 fmul.d fa4, fa2, fa2

 fmul.d fa5, fa3, fa3

 la a0, message1

 fmv.x.d a1,fa4

 fmv.x.d a2,fa5

 call printf

 li t2, flagmask # Not interested in the rounding bits this time

 frcsr t0 # read fcsr register

 and t0, t0,t2

 beq t0, x0, exit

 la a0, fcsrerrormsg

 mv a1, t0

 call printf

 la a0, accexceptbitsmsg

 call printf

exit:

 li a7, 93

 ecall

Output

$./listing8-4

 The square root of the number 9 and 2 when squared is approximately 9.00000000000000

and 2.00000000000000

 Warning fcsr flags set; the hex value read is 1

 1 = NX (Inexact)

 2 = UF (Underflow)

 4 = OF (Overflow)

Chapter 8 Floating-point

8-15

 8 = DZ (Divide by zero)

 10 = NV (Invalid)

Note that after the instruction fsqrt.d fa2, fa0 (square root of 9) has been executed
the FCSR register looks like:

After the instruction fsqrt.d fa3, fa1 (square root of 2) has completed GDB shows that the Inexact
bit has been set. This will normally indicate that rounding had to be invoked.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 8 Floating-point

8-16

Care must be taken when making comparisons between floating-point numbers. After a flag has been
set in the FCSR register, it is important to note that it must be cleared implicitly by the code. Usually, it is
not necessary to check the state of the FCSR register after each floating-point computation has been
executed as the boundaries are usually finite and known in advance.

8.4. Floating-Point comparison instructions

The floating-point comparison instructions are shown in Table 8-5.

Table 8-5 Floating-point comparison instructions

Instruction Example Explanation

feq.s|d60 feq.d rd, rs1,rs2 Write the value 1 to the integer register rd, if the double
precision number in rs1 is equal to the double precision
number in rs2, else write the value 0 to the integer register
rd.

flt.s|d flt.s rd, rs1, rs2 Write the value 1 to the integer register rd, if the single
precision number in rs1 is less than the single precision

60 Here “|” means or so the instruction could be feq.s or feq.d

Chapter 8 Floating-point

8-17

number in rs2, else write the value 0 to the integer register
rd.

fle.s|d fle.d rd, rs1, rs2 Write the value 1 to the integer register rd, if the double
precision number in rs1 is less than or equal to the double
precision number in rs2, else write the value 0 to the integer
register rd.

8.5. Floating-point classification instructions

The classify instructions are used to signify the properties of a floating-point number. There are ten bits
available to specify a number’s class only one of these bits set at any given time. Some of these
classifications require further explanation as they were not discussed in chapter one –

- Subnormal A subnormal number or a denormalized number is a number that is smaller than
can be expressed in normal format (1.000…) as described in the IEEE 754 standard. Subnormal
numbers are closer to zero than can be expressed in normal format and have less precision.

- Signaling NaN An exception can be raised when NaN is encountered.

- Quiet NaN A quiet NaN does not signal an exception.

Table 8-6 lists the classification bits and their definitions.

Table 8-6 Floating-point classes

Bit Interpretation when set

0 (1) 7. Negative infinity -∞

1 (2) Negative normal

2 (4) Negative subnormal

3 (8) Negative zero -0

4 (10) Positive zero +0

5 (20) Positive subnormal

6 (40) Positive normal

7 (80) Positive infinity +∞

8 (100) Signaling NaN

9 (200) Quiet NaN

Chapter 8 Floating-point

8-18

The next program generates two classes of number – Subnormal and a quiet NaN. The annotated stages
to generate the subnormal number are shown in Figure 8-6.

Listing 8-5 Classification of numbers - subnormal and quiet NaN

.section .data

minusone: .double -1

.section .text

.global _start

_start:

 # Generate a subnormal number by applying division to two normal number

 # For RV64D systems (64-bit registers)

 # First Generate a 64-bit tiny number across t0 and t1

 li t0, 0x00100000 # Upper 32 bits of smallest normal double (2^-1022)

 li t1, 0x00000000 # Lower 32 bits

 # Set up divisor

 li t2, 0x40000000 # Upper 32 bits of 2.0

 li t3, 0x00000000 # Lower 32 bits

 # Consolidate into 64-bit values

 slli t0, t0, 32

 or t0, t0, t1 # t0 = 2^-1022 (smallest normal double)

 slli t2, t2, 32

 or t2, t2, t3 # t2 = 2.0

 # T0 and T2 now have full 64 bit values

 # Store them over to Floating-point registers

 fmv.d.x f0, t0 # f0 = 2^-1022

 fmv.d.x f1, t2 # f1 = 2.0

 # Divide them - produces 2^-1023 (subnormal)

 fdiv.d f2, f0, f1 # f2 = (2^-1022)/2 = 2^-1023

 # Verify the result is subnormal (exp=0, mantissa≠0)

 fmv.x.d t4, f2 # Get bit pattern

 fclass.d t0, f2

 # Expected result: 0x0008000000000000

 # Exponent bits (62:52) = 0

 # Mantissa bits (51:0) = 0x800000000000

Chapter 8 Floating-point

8-19

 la t5, minusone

 fld f4, 0(t5)

 fsqrt.d f4, f4 # Square root of -1?

 fclass.d t1, f4

 # Exit

 li a7, 93 # Exit syscall number

 ecall

GDB shows the classification of the f2 and f4 registers after computation. Register f2 holds a value smaller
than can be represented by normal numbers and is therefore classified as subnormal. Register f4 was
used to calculate the square root of minus one which is a complex number and is categorized NaN.

Figure 8-5 GDB showing floating-point number classification

Chapter 8 Floating-point

8-20

Figure 8-6 Annotated instruction steps to generate a subnormal number

Step 1 li t0, 100000
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 T0

0 0 1 0 0 0 0 0
Step 2 li t1, 0
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 T1

0 0 0 0 0 0 0 0
Step 3 li t2, 40000000
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 1 0 T2

4 0 0 0 0 0 0 0
Step 4 li t3, 0
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 T3

0 0 0 0 0 0 0 0
Step 5 slli t0, t0, 32
6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 T0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 6 or t0, t0, t1
6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 T0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 7 slli t2, t2, 32
6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 1 0 T2

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 8 or t2, t2, T3
6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 1 0 T2

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 9 fmv.d.x f0. T0
6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 f0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 10 fmv.d.x f1, T2
6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 f1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 11 fdiv.d f2, f0, f1
6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 1 0 f2

0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 8 Floating-point

8-21

8.6. Exercises for chapter 8

1. Write a program to generate different classes of floating-point numbers, print out the class of
number that was produced.

2. Explain Bias as described in IEEE 754

8.7. Summary of RISC-V instructions used in chapter 8

Floating-Point Arithmetic Instructions

FADD.S – Floating-point add (single precision)

FSUB.S – Floating-point subtract (single precision)

FMUL.S – Floating-point multiply (single precision)

FDIV.S – Floating-point divide (single precision)

FSQRT.S – Square root (single precision)

FMIN.S / FMAX.S – Minimum / maximum (single precision)

(There are .D variants for double precision, e.g., FADD.D, FSUB.D.

Floating-Point Load/Store Instructions

FLW – Load single-precision float

FLD – Load double-precision float

FSW – Store single-precision float

FSD – Store double-precision float

Conversion Instructions

FCVT.W.S / FCVT.S.W – Convert between float and integer (single)

FCVT.WU.S / FCVT.S.WU – Convert unsigned integer ↔ float

FCVT.D.S / FCVT.S.D – Convert between single and double precision

Classification Instructions

FCLASS.S / FCLASS.D – Classify a floating-point value.

Chapter 8 Floating-point

8-22

(Identifies if a value is NaN, infinity, subnormal, etc.)

Comparison Instructions

FEQ.S / FEQ.D – Compare for equality

FLT.S / FLT.D – Compare less than

FLE.S / FLE.D – Compare less than or equal

Miscellaneous Instructions

FSGNJ.S / FSGNJN.S / FSGNJX.S – Sign manipulation (sign-inject, negate, xor)

FMV.X.W / FMV.W.X – Move between integer and float registers

Control & Status

Floating-Point Control and Status Register (FCSR) – Read/set via CSRs

Includes: Rounding mode (frm), exception flags (fflags), etc.

Chapter 9 Vector operations

9-1

Chapter 9. Vector operations

Overview of the chapter

Chapter 9 introduces vector processing in RISC-V using the Vector Extension (V-extension). It explains
how to perform SIMD-style operations (Single Instruction, Multiple Data), enabling parallel computation
for tasks like matrix math, signal processing, or scientific computing. Vector programming is a complex
topic and many areas are beyond the scope of this document. More details can be found in section 31 of
the unprivileged instruction set manual volume1.

At the time of writing the current version is 20240411 and the document can be found by following the
link at https://riscv.org/specifications/ratified/

9.1. Vector system support

The examples shown here were performed on a physical BananaPi BF3 system. The BananaPi has support
for vectors61 as shown by the Linux command below:

$ cat /proc/cpuinfo

processor : 0

hart : 0

model name : Spacemit(R) X60

isa :

rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_z

ca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscof

pmf_sstc_svinval_svnapot_svpbmt

mmu : sv39

uarch : spacemit,x60

mvendorid : 0x710

marchid : 0x8000000058000001

mimpid : 0x1000000049772200

. . .

processor : 7

hart : 7

model name : Spacemit(R) X60

isa :

rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_z

61 At the time of writing the default GDB debugger on the BananaPi Bf3 Armbian O/S did not show the vector registers during a debug session.
The link https://forum.spacemit.com/t/topic/319?u=alice provided a fix.

https://riscv.org/specifications/ratified/
https://forum.spacemit.com/t/topic/319?u=alice

Chapter 9 Vector operations

9-2

ca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscof

pmf_sstc_svinval_svnapot_svpbmt

mmu : sv39

uarch : spacemit,x60

mvendorid : 0x710

marchid : 0x8000000058000001

mimpid : 0x1000000049772200

The command string to assemble the vector capable programs used in this chapter is:

as -mno-relax -march=rv64gcv -g -o <filename>.o <filename>.s

(indicating that the architecture has RV64gcv capability)

Followed by:

ld -o <filename> <filename>.o

to perform the linking.

If physical hardware is not available there are simulators available62.

9.2. Vector registers overview

9.2.1. General purpose vector registers

There are 32 vector registers (v0…V31). Vectors can hold scalar values63 or vector values. The number of
elements64 associated with the vector registers is variable and is defined by the total amount of memory
available for the vector registers. The number of elements in a vector register is held in the vector length
register. Arithmetic and logical tasks can be performed including multiply/divide, floating-point and shift
operations.

Vector registers can be combined into vector register groups, allowing a single instruction to operate
across multiple vector registers. The vector length multiplier, VLMUL, represents the number of registers
that collectively form a vector register group.

VLMUL has integer values of 1, 2, 4, and 8.

9.2.2. Vector CSR’s

There are seven vector associated CSR registers shown in Table 9-165

62 See https://github.com/riscvarchive/riscv-v-spec for references to simulation.

63 Integers or floating point.

64 An element is an independent data entity such as the numerator in a division operation.

65 See Vector Extension Programmer’s model in volume 1 of the RISC-V instruction set manual for further information

https://github.com/riscvarchive/riscv-v-spec

Chapter 9 Vector operations

9-3

Table 9-1 Vector CSRs

Address Privilege level CSR Name Meaning

0x008 Unprivileged (Read/Write) vstart Vector start position

0x009 Unprivileged (Read/Write) vxsat Fixed-point saturate flag

0x00A Unprivileged (Read/Write) vxrm Fixed-point rounding mode

0x00F Unprivileged (Read/Write) vcsr Vector control and status register

0xC20 Unprivileged (Read) vl Vector length

0xC21 Unprivileged (Read) vtype Vector data type

0XC22 Unprivileged (Read) vlenb Vector register byte length

9.2.2.1. VSTART register

The vector start position register (vstart) is used to specify the index of the first element to be executed
by vector instructions. Listing 9-2 references vector element indices.

9.2.2.2. Vl register

The vector length register (vl) contains an unsigned int specifying the number of elements. It is set with
the instruction vset(i)vl(i) such as vsetvli t1, t0, e32 where t0 holds the number of elements
and e3266 indicates the elements are 32-bits in size. VL is the number of elements involved in a vector
operation.

9.2.2.3. VTYPE register

The vector data type register (vtype) indicates the encoding for the selected element width (SEW), it
occupies bits 5:3 of the vtype register. The SEW bits are defined as shown in Table 9-2. SEW is the bit size
of each individual element withing a vector register.

Table 9-2 Vtype SEW bit meaning

VSEW bits SEW

0 0 0 8

0 0 1 16

0 1 0 32

0 1 1 64

66 Additionally, e8 corresponds to 8 bits, e16 corresponds to 16 bits and e64 corresponds to 64 bits.

Chapter 9 Vector operations

9-4

 Bits2:0 represents the vector register group multiplier setting collectively termed LMUL. LMUL has mandatory integer values of
1, 2, 4 and 8. Refer to Table 9-3 for bit definitions. The register layout is shown in

Figure 9-1. Fractional values are also supported such as ½ or ¼67.

Figure 9-1 Vtype register bit fields

The other bitfield definitions (VILL, VMA and VTA) in the vtype register are discussed later in this chapter.

9.2.2.4. VLENB register

The vector byte length (vlenb) register has the value VLEN/8, thus representing values in bytes. It is
design-implementation, dependent so could vary by manufacturer. The BananaPi -BF3 (used here)
utilizes the SpacemiT K system which has a fixed VLENB value of 3268.

 VLEN=VLENB*8,

 VLEN = 32*8 = 256

VLMAX is defined as LMUL * (VLEN/SEW). It represents the maximum length of the number of elements
that are involved in a single instruction.

Vector instructions use the .vv suffix such as vadd.vv to indicate vector operands and the .vs suffix to
indicate vector and scalar operands. Instructions with three operands would use suffixes such as .vvv.

Figure 9-2 shows the vector control and status register state after the vsetvli instruction has been
executed, here register T0 has been set with the value = 8.

67 See the specification for further information and rules.

68 The instruction csrr rd, vlenb can be used to return the vlenb value in register rd. The instruction csrr is the control and status read

comma

vill vta vmul(2:0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

vma xsew(5:3)

Chapter 9 Vector operations

9-5

Figure 9-2 Using the CSRR instruction to view Vector CSR values

The instruction vsetvli t1,t0, e6469 causes the vtype register to change its value to 11000 (binary)
and the vl register to change its value to 100 (t0 has been set to 4).

• Vtype (SEW bits = 011b = 64 as the standard element width)

• Vl (100b = 4 elements)

• VLEN/SEW = 256/64 = 4 elements per vector register

To summarize:

VLENB: The amount of bytes in a vector register

VLEN: Related to VLENB, being the amount of bits available in a vector register, must be a power of two

ELEN: The maximum element size for a single vector element, must be a power of two

VL: The number of elements involved in a vector operation

SEW: Defined as the standard element width, (set by vsetvl instruction).

LMUL: The vector register grouping value, (2,4 or 8)

69 The instruction vsetivli allows an immediate value rather than using a register, for example vsetivli t1, 4, e64

Chapter 9 Vector operations

9-6

9.3. Vector addition/ subtraction example

The first example adds and then subtracts two vector registers, each register contains a total of 8
elements.

• Vector register1 contains the values

• Vector register2 contains the values

• Vector register3 contains the additive results.

• Vector register4 contains the subtraction results

From the programmer’s70 perspective, the operation takes place in parallel effectively operating on all
the elements of two arrays simultaneously - data1[0], data1[1], .. data[i] to data2[0], data2[1], …data2[i]
and placing the result in result[0], result[1],..., result[i]. This is shown in Figure 9-3.

Figure 9-3 Simultaneous addition of multiple array elements

Listing 9-1 Vector to vector addition/subtraction

Listing9-1a.s

RISC-V Vector Addition and subtraction example

Adds two vectors with 8 elements each

Each element is 32 bits in size

.text

.global _start

_start:

 # Configure vector parameters

 li t0, 8 # Set vector length (8 elements)

 vsetvli t1, t0, e32 # Set vector length to 8 (t0), element width to 32 bits

(e32)

 # Load vector data (example values)

70 This does not necessarily mean that the instruction is completed during one hardware clock cycle.

Chapter 9 Vector operations

9-7

 la a0, data1 # Load address of first vector

 la a1, data2 # Load address of second vector

 la a2, addresult # Load address for addition result

 la a3, subresult # Load address for subtraction result

 # Load vectors into vector registers

 vle32.v v1, (a0) # Load first vector into v1

 vle32.v v2, (a1) # Load second vector into v2

Vector operations take one instruction vv is vector,vector

 vadd.vv v3, v1, v2 # v3 = v1 + v2 (element-wise)

 vsub.vv v4, v1, v2 # v4 = v1- v2

Store result

 vse32.v v3, (a2) # Store addition result vector in memory

 vse32.v v4, (a3) # Store subtraction result vector in memory

Exit program

 li a7, 93 # Exit syscall number

 li a0, 0 # Exit code 0

 ecall

.data

data1: .word 110, 220, 330, 440, 550, 660, 777, 880 # First vector (8 elements)

data2: .word 100, 200, 300, 400, 500, 600,700,800 # Second vector (8 elements)

addresult: .word 0, 0, 0, 0, 0, 0, 0, 0 # Addition result

subresult: .word 0, 0, 0, 0, 0, 0, 0, 0 # Subtraction result

Figure 9-4 shows the contents of the vector registers v3 and v4 which hold the results of the vector
addition and vector subtraction operations. The content of the vectors is pushed out to memory via the
vse 32.v instructions and is shown in GDB by examining location 0x11170 which is pointed to by the
integer register a2.

In total 64 bytes of memory stores the two 32-byte vector registers (v3 and V4). The width of the vector
registers was set by e32 in the vsetvli t1, t0, e32 instruction71.

71 64-bit width is indicated by e64.

Chapter 9 Vector operations

9-8

Figure 9-4 GDB showing vector elements

This instruction (vadd.vv v2, v0, v1) is an example of a Single Instruction acting on Multiple pieces of
Data (SIMD).

Disassembly shows:

$ objdump -d -M no-aliases listing9-1

listing9-1: file format elf64-littleriscv

Disassembly of section .text:

00000000000100e8 <_start>:

 100e8: 42a1 c.li t0,8

 100ea: 0102f357 vsetvli t1,t0,e32,m1,tu,mu

 100ee: 00001517 auipc a0,0x1

Chapter 9 Vector operations

9-9

 100f2: 04250513 addi a0,a0,66 # 11130 <__DATA_BEGIN__>

 100f6: 00001597 auipc a1,0x1

 100fa: 05a58593 addi a1,a1,90 # 11150 <data2>

 100fe: 00001617 auipc a2,0x1

 10102: 07260613 addi a2,a2,114 # 11170 <addresult>

 10106: 00001697 auipc a3,0x1

 1010a: 08a68693 addi a3,a3,138 # 11190 <subresult>

 1010e: 02056087 vle32.v v1,(a0)

 10112: 0205e107 vle32.v v2,(a1)

 10116: 021101d7 vadd.vv v3,v1,v2

 1011a: 0a110257 vsub.vv v4,v1,v2

 1011e: 020661a7 vse32.v v3,(a2)

 10122: 0206e227 vse32.v v4,(a3)

. . .

The opcode breakdown for the vector store instruction V3 → Memory vse23.v v3, (a2) is shown in Figure
9-5.

Figure 9-5 Bit field breakdown for vector store instruction

9.3.1. Adding a vector and a scalar

The next example adds a vector to a scalar. A scalar value is singular. The first vector register will hold a
vector quantity and the second vector register will hold the scalar. Scalars can be taken from the integer
registers or the first element of a vector register. The concept is shown in Figure 9-6.

vse 32.v.v3,(a2)020661a7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1

0 2 0 6 6 1 a 7

Bits 6:0 Opcode Vector store
Bits 11:7 Store data (vs3) Vector register 3
Bits 14:12 Mew = 0 110 = 32b element
Bits 19:15 Reg x12 (a2)
Bits 24:20
Bit 25 vm Used for masking 1 =unmasked
Bits 27:26 mop Memory operating mode
Bit 28 mew Extended memory element widthSee bits 14:12
Bits 31:29 nf No of fields per segment

Chapter 9 Vector operations

9-10

Figure 9-6 Adding a scalar to all elements of a vector

The graphic in Figure 9-6 shows a vector register holding an array of eight elements, a scalar quantity is
held in an integer register. The content of the integer register is replicated to all elements of a second
vector register and finally both vector registers are added together. The code is shown below.

Listing 9-2 Adding a vector and a scalar

Listing 9-2.s

Vector-Scalar Addition

v1 = vector (8 elements)

x10 (a0) = scalar = 15

Result stored in v2

No data section here as the value for the vector registers are generated

within the program. This program also introduces the concept of stride

and broadcasting a scalar from an integer register to all elements of another

vector register

.text

.global _start

_start:

Configure vector setting

 li t0, 8 # Set vector length to 8 elements

 vsetvli t0, t0, e32 # 32-bit elements, vl = 8

Load scalar value into an integer register (a0)

 li a0, 15 # Scalar value = 15

Generate vector values for v1 rather than obtain them for a .data section

 li t1, 0xffff # Load integer register t1 with 65535

Chapter 9 Vector operations

9-11

 vmv.v.x v1, t1 # Set all elements to 0xffff (the value in t1)

 li t1, 11 # Set Stride amount

vid.v is the vector element index instruction, each element's index is written from

0 to the vector length -1, since vl = 8, 0-7 are written to the dest register (v0)

 vid.v v0 # indices (0,1,2...) into v0

 vmul.vx v0, v0, t1 # Multiply indices by stride

 vadd.vv v1, v1, v0 # v1 = [65535, 65546, 65557, 65568, 65579, 65590, 65601, 65612]

Convert scalar in x register to vector (broadcast)

 vmv.v.x v3, a0 # Broadcast scalar to all elements of v3

Vector-scalar addition (v2 = v1 + v3)

 vadd.vv v2, v1, v3 # v2[i] = v1[i] + scalar

Exit (result is in v2)

 li a7, 93 # Invoke syscall

 ecall

By way of introducing new instructions the program does more than simply adding a scalar and vector
together. The data was generated using new commands, although it would have been simpler to load
the vectors with values defined in the data section this method adds educational value!

Steps 1 through 7 are used to (lengthily) generate the vector content of v1.

The program explanation is as shown.

1. The vector settings are configured for eight elements with a width of 32 bits

2. The code loads a scalar value 0xffff (65535) into the integer register t1

3. The instruction vmv.v.x v1, t1 moves the value held in the x register T1 to all elements of the
vector register v1. Each element in v1 is now {65535, 65535, 65535, 65535, 65535, 65535, 65535,
65535}

4. The stride amount is set to 11.

5. The vid.v v0 instruction writes each elements index ID to the destination, the indices are from 0 to
the vector length – 1. Since v0 is the destination and the vector length has been set to 8, v0 is now
{0,1,2,3,4,5,6,7}.

6. The indices are multiplied by the stride value of 11 (register t1) with the instruction vmul.vx v0,
v0, t1, giving a result of {0, 11,22,33,44,55,66,77} in vector v0.

7. Vector v0 and vector v1 are added together giving v1 the result {65535, 65546, 65557, 65568, 65579,
65590, 65601, 65612}.

8. The scalar value 15 is replicated (broadcasted) to all elements of v3. Giving v3 the value
{15,15,15,15,15,15,15,15}

Chapter 9 Vector operations

9-12

9. Finally vector v1 and v3 are adding placing the result of {65550, 65561, 65572, 65583, 65594, 65605,
65616, 65527} into vector register v2.

9.3.2. Vector CSR content after execution of Listing 9-2

The CSR register can be shown in GDB with the command info registers vector (I R V)

9.4. Moving elements with vslide

The next example (Listing 9-3) adds individual elements from two vector registers. This is accomplished
by extracting the individual elements from the vector registers, placing them in scalar registers and then
performing a scalar addition. This is accomplished by the vslidedown instruction. For completeness the
vslideup instruction is included.

The elements are actually moved by the vslide instructions which "slides" elements by a number of
positions, elements that have been slid out are replaced by zeros. This is similar to shift/rotate
operations.

Listing 9-3 Use of vector vslide instructions

Listing9-3.s

Extract individual elements form vector registers, performs arithmetic,

placing the result in integer registers

.section .data

vector1: .word 10, 20, 30, 40, 50, 60, 70, 80

vector2: .word 1, 2, 3, 4, 5, 6, 7, 8

.text

Chapter 9 Vector operations

9-13

.global _start

_start:

Load vector from memory

 la a0, vector1

 la a1, vector2

 vsetivli t0, 8, e32 # 8 elements, 32-bit each

 vle32.v v1, (a0) # v1 = [10,20,30,40,50,60,70,80]

 vle32.v v2, (a1) # v1 = [1,2,3,4,5,6,7,8]

Get value at index 2 (30) from vector1

and value at index 7 (8) from vector2

Slide and extract

vslidedown moves an element down a register group

vslideup moves an element up a register group

Move down four places, v3 = [50,...], 30 in pole position

 vslidedown.vi v3, v1, 4

Move down seven places v4 = [8,...], 8 in pole position

 vslidedown.vi v4, v2, 7

V3 looks like [50, 60, 60, 0, 0, 0, 0, 0]

V4 looks like [8, 0, 0, 0, 0, 0, 0, 0]

 vmv.x.s t2, v3 # t2 now holds 50 v3[0]

 vmv.x.s t3, v4 # t3 now holds 8 v4[0]

 add t4, t, t3

Now t4 contains the value 58

 vslideup.vi v5, v1, 5 # v3 = [...,10,20 30]

 vslideup.vi v6, v2, 6 # v4 = [...,1,2]

 # Exit

 li a7, 93

 ecall

Consider the instruction vslidedown.vi v3, v1, 4 in the listing. Initially vector register 1 contains the
eight elements [10, 20, 30, 40, 50, 60, 70 80] and they will be “slid” 4 places downwards (to the left). As
the elements are moved leftwards they are replaced from the right by zeros, with the result being placed
in vector register v3.

Vector register 1

[10, 20, 30, 40, 50, 60, 70, 80]

[20, 30, 40, 50, 60, 70, 80, 0] Slide down one place

Chapter 9 Vector operations

9-14

[30, 40, 50, 60, 70, 80, 0, 0] Slide down two places

[40, 50, 60, 70, 70, 0, 0, 0] Slide down three places

[50, 60, 60, 80, 0, 0, 0, 0] Slide down four places

Place this value into vector register 3

Vslideup moves the elements rightwards, padding from the left.

9.5. Grouping vector registers

When dealing with certain datasets, it is often not necessary to have 32 vector registers, this might be
the case when dealing with comparisons of data held in just two vector registers. Rather than compare
eight elements at a time (assuming that 8 is the maximum number of elements having the required data
size that can be accommodated by a single vector register the data size) it could be more convenient to
process sixteen elements (or more) with each instruction.

By grouping vector registers the model presented to the programmer might be 16 registers each having
16 elements, or 8 registers with 32 elements etc.

Figure 9-6 shows the concept where two 8-element vector registers are combined into one 16-element
vector register. Grouping is accomplished by the instruction vsetivli T0, 16. E32, m2, here m2
signifies that the number of groups is 16 (32/2), a value of 4 represents 8 groups and a value of 8 would
represent 4 groups. This is shown in Table 9-3.

Table 9-3 LMUL and grouping correspondence

Vlmul (2:0) LMUL # of groups

000 1 32

001 2 16

010 4 8

011 8 4

The grouped register is addressed as a single operand using the first grouped register so an instruction
such as vle32.v v0, (t0) would load the data pointed to by t0 into register v0 and v1.

Chapter 9 Vector operations

9-15

Figure 9-7 Grouping vector registers

Listing 9-4 Shows how to combine vector registers into groups of two.

Listing 9-4 Grouping vector registers

Listing 9-4.s

Groups two vectors together as one

V0 and V1 form one group addressed by v0

V2 and V3 form the second group addressed by V2

. . .

.section .data

First vector's contents

dataset1: .word 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Second vector's contents

dataset2: .word 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

.section .text

.global _start

_start:

Configure for LMUL=2 with m2 (group 2 registers together)

 vsetivli t0, 16, e32, m2 # 16 elements (2x8), 32-bit, LMUL=2

Recall LMUL represents the grouping factor

Chapter 9 Vector operations

9-16

Load first dataset into v0 (first register in group)

 la t1, dataset1 #Point to dataset1

 vle32.v v0, (t1) # Address group by first vector in the group (v0)

Load second dataset into the next group)

 la t1, dataset2 #Point to dataset2

Address group by first vector in the group (v2)

 vle32.v v2, (t1)

v0-v1: First vector

v2-v3: Second vector

#Process each group as single 16-element vector:

Example :

Add 2 to all 16 elements of the first grouped vector

Add 3 to all 16 elements of the second grouped vector

Use vector integer add instruction

 vadd.vi v0, v0, 2 # Add 2 to first vector

 vadd.vi v2, v2, 3 #Add 3 to second vector

Exit

 li a7, 93

 ecall~

The instruction vsetivli t0, 16, e32, m2 includes m2 to set the grouping, previous instances of this
instruction did not include an m value which left the default group at 1 → 1 register corresponding to 1
group. The e32 designation is the element size → 32 bits and the preceding number → 16 is the number
of elements

Figure 9-8 shows the vector registers before and after the data has been loaded.

Note that a single instruction loads 16 elements, without grouping two
instructions would be required – the first instruction to load vector 0 and the
second to load vector 1.

Similarly, each vadd instruction operates on all of 16 elements of each register pair with one instruction.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Chapter 9 Vector operations

9-17

Figure 9-8 Loading two vector registers with one instruction

Chapter 9 Vector operations

9-18

Figure 9-9 Operating on two vector registers with a single add instruction

After the vsetivli t0, 16, e32, m2 has been executed the CSR registers show the values listed in
Figure 9-10. The value 0x11 in the vtype register gives the sew bits (5:3) as 010 and the vmul bits as 001

Figure 9-10 CSR registers after execution of the vsetivli t0, 16, e32, m2 instruction

9.5.1. Masking and merging

RISC-V can merge elements from two vectors based on certain conditions. A mask can be used so that a
value can be taken from the first source register if a Boolean is true or from the second source register if
the Boolean is false with the result going to a destination register. For example a mask consisting of
1,1,0,1,0,1 would take the first two values from rs1, the next value from rs2, the fourth value from rs1,
the fifth from rs2 and finally the sixth from rs1. Listing 9-5 shows an example.

Listing 9-5 Use of vmerge instruction

Listing 9-5.s

Use of mask and vector vmerge instruction

.section .data

 oddnumbers: .word 1, 3, 5, 7, 9, 11, 13, 15

Chapter 9 Vector operations

9-19

 evennumbers: .word 2, 4, 6, 8, 10, 12, 14, 16

 result: .space 16

.section .text

.global _start

_start:

Set VL (vector length) to 8 elements

 li t0, 8

 vsetvli t0, t0, e32, m1

Load oddnumbers into v1

 la a1, oddnumbers

 vle32.v v1, (a1)

Load evennumbers into v2

 la a2, evennumbers

 vle32.v v2, (a2)

Set up a mask register: this will select alternate elements odd and even

Use v0 with binary pattern: to hold mask bits

 li t1, 0b1010101010101010

 vmv.v.x v0, t1

 vmerge.vvm v3, v1, v2, v0

Store the result

 la a3, result

 vse32.v v3, (a3)

Exit

 li a7, 93

 ecall

GDB shows the content of V3 after the merge has been completed.

Chapter 9 Vector operations

9-20

9.5.1.1. Other vtype fields

Often in vector processing several elements are unused, for example if 12 elements72 are processed out
of 16, then the unprocessed elements are known as the tail. Store/load operations will only work with
the processed elements. The remaining tail elements can be set to any value which is known as tail
agnostic (ta) or they can remain with their previous value which is termed tail undisturbed (tu). The policy
is set with the vsetvli instruction. The unprivileged instruction set manual volume1 now states that the
full form of the instruction is mandatory and will be required by future code. The full form also includes
the mask policy which is Mask Agnostic (ma) or Mask Undisturbed (mu). An example would be vsetvli
t0, a0, e32, m4, ta, ma.

72 These are the active elements

Chapter 9 Vector operations

9-21

The tail policy is set in bit 6 of the vtype register (refer to Figure 9-1) and the mask policy is set in bit 7. Tail elements are set to
agnostic when bit 6 is set to 1 and undisturbed when set to 0. There may be occasions where the tail values are important, in this
case use tail undisturbed. Use tail agnostic when there is no dependency on the tail elements. In some cases, it may be simpler
to just overwrite the tail elements.

Bit 31 is the vill bit and normally clear, set if vtype has an illegal value. Bits 8:30 are reserved.

Chapter 9 Vector operations

9-22

Summary of RISC-V instructions used in chapter 9

Vector Arithmetic Instructions

vadd.vv – Vector + Vector addition

vsub.vv – Vector - Vector subtraction

vadd.vi – Vector + Immediate scalar addition

vmul.vx – Vector × Scalar multiplication

Vector Load/Store Instructions

vle32.v – Load 32-bit elements into a vector

vse32.v – Store 32-bit elements from a vector

Vector Slide Instructions

vslidedown.vi – Slide vector elements down by immediate

vslideup.vi – Slide vector elements up by immediate

Vector Merge and Mask Instructions

vmerge.vvm – Merge vector elements based on mask

vmslt.vv – Set mask if less than (vector-vector comparison)

vmsne.vx – Set mask if not equal (vector-scalar comparison)

Vector Configuration and CSR

vsetvli – Set vector length and configuration

vsetivli – Set vector length with immediate value

vid.v – Generate index vector

vmv.v.x – Move scalar to all vector elements

Register and CSR Usage

• Vector registers used: v0–v31

• CSR-related instructions include:

Chapter 9 Vector operations

9-23

o Reading vector control/status via csrr (e.g., csrr t0, vtype)

Chapter 10 Cross- Compiling

10-1

Chapter 10. Spike simulator and Cross compiling

Overview of the chapter

Chapter 10 focuses on cross compiling which is the process of building RISC-V programs on a non-native
host machine such as X86-64 to run on a different architecture (RISC-V). The official RISC-V simulator -
Spike will be used to run the cross-compiled programs. Spike supports both 32-bit and 64-bit base ISA’s
with support for vector extensions. There is a proxy kernel PK which provides a run-time environment.

Spike also supports debugging operations.

The target machine that was used to host Spike is an X86_64 Virtual machine running Ubuntu 24.10.

If not using pre-compiled binaries refer to the following section which discusses how to build the
software.

10.1. Building the Toolchain and Spike

The commands below will be executed during the installation; there are three stages:

• Install and build the RISC-V toolchain

• Install and build spike

• Install and build PK

Prepare paths, directories and ownerships

sudo apt update

sudo apt install -y autoconf automake autotools-dev curl libmpc-dev libmpfr-dev

libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-

dev libexpat-dev git ninja-build cmake device-tree-compiler

mkdir ~/riscv

cd ~/riscv

sudo mkdir /opt/riscv

sudo chown ubuntuser:ubuntuser /opt/riscv

echo 'export PATH=/opt/riscv/bin:$PATH' >> ~/.bashrc

source ~/.bashrc

Clone from Github

git clone https://github.com/riscv/riscv-gnu-toolchain

git clone https://github.com/riscv-software-src/riscv-isa-sim

git clone https://github.com/riscv-software-src/riscv-pk

Chapter 10 Cross- Compiling

10-2

Build toolchain

cd ~/riscv/riscv-gnu-toolchain

mkdir build && cd build

../configure --prefix=/opt/riscv

make -j$(nproc)

Check

riscv64-unknown-elf-gcc -v

Build C program

include <stdio.h>

int main ()

{

 printf ("Hello RISC-V!\n");

 return 0;

}

riscv64-unknown-elf-gcc ~/helloriscv.c

Build Spike

cd ~/riscv/riscv-isa-sim

mkdir build && cd build

../configure --prefix=/opt/riscv

make -j$(nproc)

sudo make install

Check

spike --help

#Build PK

cd ~/riscv/riscv-pk

mkdir build && cd build

../configure --prefix=/opt/riscv --host=riscv64-unknown-elf

make -j$(nproc)

sudo make install

#Check

#a.out left over for c compilation above

spike pk a.out

Chapter 10 Cross- Compiling

10-3

10.1.1. Installing the toolchain

Execute the following commands -

$ sudo apt-get install device-tree-compiler autoconf automake autotools-dev curl python3

python3-pip libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo

gperf libtool patchutils bc zlib1g-dev libexpat-dev ninja-build git cmake libglib2.0-

dev binutils gcc libpthread-stubs0-dev libboost-all-dev

$ mkdir riscv

$ cd riscv

$ sudo mkdir /opt/riscv

$ sudo chown ubuntuuser:ubuntuuser /opt/riscv

$ echo ‘export PATH=/opt/riscv/bin:$PATH’ >> ~/.bashrc

$ source ~/.bashrc

$ git clone https://github.com/riscv/riscv-gnu-toolchain

$ git clone https://github.com/riscv-software-src/riscv-isa-sim

$ git clone https://github.com/riscv-software-src/riscv-pk

Build the toolchain

$ cd ~/riscv/riscv-gnu-toolchain

$ mkdir build

$ cd build

$../configure --prefix=/opt/riscv

$ make -j$(nproc)

Check to see if we can compile –

$ Riscv64-unknown-elf-gcc-v

Create a small C program –

$ vi helloriscv.c

include <stdio.h>

int main ()

{

 printf (“Hello RISC-V!”);

 return 0;

}

$ riscv64-unknown-elf-gcc ~/helloriscv.c

https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-pk

Chapter 10 Cross- Compiling

10-4

10.1.2. Installing Spike and PK

10.1.3. Spike installation

$ cd RISCV

$ cd ~/riscv/riscv-isa-sim

$ mkdir build && cd build

$ sudo ../configure --prefix=/opt/riscv

$ make -j$(nproc)

$ sudo make install

Check

$ spike --help

10.1.4. PK installation

$ cd ~/riscv/riscv-pk

$ mkdir build && cd build

$../configure --prefix=$RISCV --host=riscv64-unknown-elf

$ make -j$(nproc)

$ sudo make install

10.1.5. Testing

Install gcc for risc-v.

riscv64-unknown-elf-gcc -march=rv64gcv helloriscv.c

Use the C program created earlier –

include <stdio.h>

int main ()

{

 printf (“Hello RISC-V!”);

 return 0;

}

10.2. Cross-compiling C code
$ riscv64-unknown-linux-gnu-gcc helloriscv.c

Execute the file within the spike environment.

ubuntuuser@ubuntu100:~/RISCV$ spike pk ./a.out

Hello, RISC-V!

Chapter 10 Cross- Compiling

10-5

Examine the file type

$ readelf -h a.out

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: RISC-V

 Version: 0x1

 Entry point address: 0x1014e

 Start of program headers: 64 (bytes into file)

 Start of section headers: 22816 (bytes into file)

 Flags: 0x5, RVC, double-float ABI

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 4

 Size of section headers: 64 (bytes)

 Number of section headers: 15

 Section header string table index: 14

The program can be transferred over to a native RISC-V host and executed on that host. In the example
below the file has been transferred to a Banana Pi BF3 RISC_V native host and then executed.

$ scp a.out 192.168.68.231:

user@192.168.68.231's password:

a.out

$./a.out

Hello, RISC-V!

Typically, programmers will use spike for initial development and then test their final releases on a native
host.

Chapter 10 Cross- Compiling

10-6

10.3. Cross-assembling and linking

The command line for assembling and linking are similar to the commands that run on a native host. To
differentiate the RISC_V tools from the (in this case) X86-64 tools they are preceded here with riscv64-
unknown—elf-<toolname>.

Writing the HelloRiscv program followed by cross assembling and linking in pure assembly is shown
below –

$ cat hellorisc.s

hellorisc.s

.section .text

.global _start

_start:

li a0, 1 # use a0 for stdout

la a1, message # Load the address of the message text

li a2, 12 # Store the message length

li a7, 64 # Write syscall

ecall

li a7, 93 # Exit syscall

ecall

.data

message: .ascii "Hello RISCV\n"

$ riscv64-unknown-elf-as -g -o hellorisc.o hellorisc.s

$ riscv64-unknown-elf-ld -o hellorisc hellorisc.o

$ spike --isa=rv64gcv pk hellorisc

Hello RISCV

10.3.1. Using objdump

The command to dump the executable is-

riscv64-unknown-elf-objdump -d helloriscv.

The disassembled .text section looks like:

000000000001014e <_start>:

 1014e: 00003197 auipc gp,0x3

 10152: 6ca18193 addi gp,gp,1738 #13818 <__global_pointer$>

 10156: 00004517 auipc a0,0x4

 1015a: 86250513 addi a0,a0,-1950 # 139b8 <__stdio_exit_handler>

Chapter 10 Cross- Compiling

10-7

 1015e: 00004617 auipc a2,0x4

 10162: e1a60613 addi a2,a2,-486 # 13f78 <__BSS_END__>

 10166: 8e09 sub a2,a2,a0

 10168: 4581 li a1,0

 1016a: 742000ef jal 108ac <memset>

 1016e: 00001517 auipc a0,0x1

 10172: 95450513 addi a0,a0,-1708 # 10ac2 <atexit>

 10176: c519 beqz a0,10184 <_start+0x36>

 10178: 00002517 auipc a0,0x2

 1017c: ac250513 addi a0,a0,-1342 # 11c3a <__libc_fini_array>

 10180: 143000ef jal 10ac2 <atexit>

 10184: 6c6000ef jal 1084a <__libc_init_array>

 10188: 4502 lw a0,0(sp)

 1018a: 002c addi a1,sp,8

 1018c: 4601 li a2,0

 1018e: 04e000ef jal 101dc <main>

 10192: b779 j 10120 <exit>

Debugging with Spike

Spike has debugging capabilities, it can be invoked by adding -d to the command line as follows:

spike -d --isa=rv64gcv pk hellorisc

Enter “help” to show available actions -

(spike) help

Interactive commands:

reg <core> [reg] # Display [reg] (all if omitted) in <core>

freg <core> <reg> # Display float <reg> in <core> as hex

. . .

quit # End the simulation

q Alias for quit

help # This screen!

h Alias for help

Note: Hitting enter is the same as: run 1

The help session uses “core” with many of the commands, here core will have the value 0 representing
a single core, a debug session illustrating some of the debug commands follows –

Chapter 10 Cross- Compiling

10-8

Table 10-1 Spike interactive commands for debugging

Command Output Interpretation

pc 0 0x0000000000001000 Program counter at
0x1000

insn 0 0x0000000002028593 addi a1, t0, 32 Current Instruction at
Program Counter

run 1 Run 1 line Advances n
instructions

reg 0 t0 0x0000000000001000 Shows the value held
in register t0

Reg 0

If register is not
specified all registers
are displayed

until pc 1008 0x0000000000001008 Set a breakpoint at
PC=0x1008

priv 0 M Shows current
privilege level

The up-arrow key can be used to recall previous commands.

For more information on spike and the proxy kernel refer to the resources listed at the end of this
chapter.

This chapter has not covered “Bare-metal coding” and spike is useful in the situation where a host
operating System is not available.

 For Linux-based implementations (the focus of this book), GDB is recommended.

Chapter 10 Cross- Compiling

10-9

Further resources

• Information steps for spike installation can be found at GitHub

https://github.com/riscv-software-src/riscv-isa-sim).

• Installation steps for the RISC-V toolchain can be found at GitHub

https://github.com/riscv-collab/riscv-gnu-toolchain)

• Risc-V toolchain projects

https://riscv.atlassian.net/wiki/spaces/HOME/pages/16154663/Toolchain+Projects

https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-collab/riscv-gnu-toolchain
https://riscv.atlassian.net/wiki/spaces/HOME/pages/16154663/Toolchain+Projects

Appendix

Appenix A. GDB Commonly Used Commands

Command Description Example

(B)reak Set breakpoint “b _start” “b 1”

 Conditional break Break myloop if $t0
== 36

(D)elete Delete Breakpoints “d” followed by “y”

(I)nfo b Show breakpoints “i b”

(I)nfo (ad)dress Show the location of a Symbol “i ad _start”

(I)nfo files Show the names of files being debugged “i files”

(I)nfo (R)egisters List the integer registers “i r ”

(I)nfo (R)egister sn List the content of an individual register “i r t0”

(I)nfo (R)egisters (V)ector Shows vector-related registers “ i r v”

(I)nfo (R)egisters CSR Shows Control and Status Registers “I r csr”

P $vn.w Prints the vector register Vn as groups of
words

“p $v2.w”

(I)nfo source Info about the source file being debugged “i source”

(I)nfo symbol &_start Show the section location of a symbol “ i symbol _start”

(I)nfo (va)riables Shows addresses of variables “ I va”

(I)nfo win Shows windows used in TUI “i win”

(Main)tenance (i)nfo
(t)arget-sections

Shows section information “mai i t#

N(ext) Steps n lines (default is 1) and steps over a
sub-routine

“n” “n 3”

S(tep) Steps n lines (default is 1) and steps into a
sub-routine

“s” “s 2”

TUI reg N(ext) Shows next set of registers “tui reg n”

x/FMT address Shows # of memory locations (n), format (f)
such as x(hex), d(decimal), f(float), s(string)
and size such as b(byte), h(halfword), w
(word), g (giant 8 bytes)

X /2xg 0x11100

Appendix

x/FMT register Shows # of memory locations when a register
holds an address (n), format (f) such as
x(hex), d(decimal), f(float), s(string) and size
such as b(byte), h(halfword), w (word), g
(giant 8 bytes)

X /2xg $SP

Up and down arrow Cycles through commands, use <Ctrl>
P(revious) or <Ctrl> N(ext) if using the TUI

Refresh <Ctrl-L>

Enable TUI

The TUI can be enabled by default by adding the following lines to ~/.gdbinit

Layout split

Layout regs

Set history save on

Set history filename ~/gdbhistory

Set logging enabled on

Other default options are available, refer to the GDB documentation for these!

Appendix

Appenix B. ASCII Code

De
c

Hex Char Dec Hex Char Dec Hex Cha
r

Dec Hex Char

0 0x00 Null character 32 0x20 SPACE 64 0x40 @ 96 0x60 `

1 0x01 Start of heading 33 0x21 ! 65 0x41 A 97 0x61 a

2 0x02 Start of text 34 0x22 ” 66 0x42 B 98 0x62 b

3 0x03 End of text 35 0x23 # 67 0x43 C 99 0x63 c

4 0x04
End of
transmission 36 0x24 $ 68

0x44 D 100 0x64 d

5 0x05 Enquiry 37 0x25 % 69 0x45 E 101 0x65 e

6 0x06 Acknowledgment 38 0x26 & 70 0x46 F 102 0x66 f

7 0x07 Bell 39 0x27 ’ 71 0x47 G 103 0x67 g

8 0x08 Backspace 40 0x28 (72 0x48 H 104 0x68 h

9 0x09 Horizontal tab 41 0x29) 73 0x49 I 105 0x69 i

10 0x0A Line feed 42 0x2A * 74 0x4A J 106 0x6A j

11 0x0B Vertical tab 43 0x2B + 75 0x4B K 107 0x6B k

12 0x0C Form feed 44 0x2C , 76 0x4C L 108 0x6C l

13 0x0D Carriage return 45
0x2
D - 77

 0x4
D M 109

0x6
D m

14 0x0E Shift out 46 0x2E . 78 0x4E N 110 0x6E n

15 0x0F Shift in 47 0x2F / 79 0x4F O 111 0x6F o

16 0x10 Data link escape 48 0x30 0 80 0x50 P 112 0x70 p

17 0x11 Device Control 1 49 0x31 1 81 0x51 Q 113 0x71 q

18 0x12 Device Control 2 50 0x32 2 82 0x52 R 114 0x72 r

19 0x13 Device Control 3 51 0x33 3 83 0x53 S 115 0x73 s

20 0x14 Device Control 4 52 0x34 4 84 0x54 T 116 0x74 t

21 0x15
Negative
Acknowledgment 53 0x35 5 85

0x55 U 117 0x75 u

22 0x16 Synchronous Idle 54 0x36 6 86 0x56 V 118 0x76 v

23 0x17
End of
Transmission Block 55 0x37 7 87

0x57 W 119 0x77 w

24 0x18 Cancel 56 0x38 8 88 0x58 X 120 0x78 x

25 0x19 End of Medium 57 0x39 9 89 0x59 Y 121 0x79 y

26 0x1A Substitute 58 0x3A : 90 0x5A Z 122 0x7A z

Appendix

27 0x1B Escape 59 0x3B ; 91 0x5B [123 0x7B {

28 0x1C File Separator 60 0x3C < 92 0x5C | 124 0x7C

29 0x1D Group Separator 61
0x3
D = 93

 0x5
D] 125

0x7
D }

30 0x1E Record Separator 62 0x3E > 94 0x5E ^ 126 0x7E ~

31 0x1F Unit Separator 63 0x3F ? 95 0x5F _ 127 0x7F

References

Appenix C. References and Resources

• Green Card Reference sheet

• https://cs315-f24.cs.usfca.edu/files/RISCVGreenCardv8.pdf

• Ratified Specifications

• https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-
V+Technical+Specifications

• RISC-V Summits https://riscv.org/community/risc-v-summits/

https://cs315-f24.cs.usfca.edu/files/RISCVGreenCardv8.pdf
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://riscv.org/community/risc-v-summits/

Index

Appenix D. Assembly Directives

.text Beginning of the code (text) section.

.data Beginning of the data section.

.bss Beginning of the uninitialized data section.

.rodata Beginning of read-only section

.global or .globl Declares a symbol as global, making it accessible across
files.

.section Specifies a named section.

.align Aligns the next item to a specified boundary.

.byte Allocates and initializes 1-byte data

.half/.2byte Allocates and initializes 2-byte data.

.word/.4byte Allocates and initializes 4-byte data.

.dword/.8byte Allocates and initializes 8-byte data.

.string or .asciz Allocates string space with null-terminatation

.ascii – Allocates string space without a null terminator.

.space N Reserves a specified number of bytes without initialization.

.zero N Reserves and zeroes a specified number of bytes.

.equ or .set Defines a constant value for a symbol.

.type Specifies the symbol type

option arch,rv64imafdc -Specify ISA

.option pic / .option nopic Position-independent code mode

.option relax,/mno-relax Relaxation

Index

INDEX

%%, 7-21

%c, 7-21

%d, 7-20

%e, 7-21

%f, 7-21

%s, 7-20

%u, 7-20

%x, 7-21

%X, 7-21

(V-extension, 9-1

.global, 2-15

.include, 6-13

.macro, 6-13

absolute addresses, 3-9

abstraction, 1-1

ADDI, 4-7

AND, 1-26, 4-24

ANDI, 4-24

ASCII, 2-15

assembler, 2-18

auipc, 2-8, 2-9

BananaPi BPI-F3, 2-25

Bare metal programming, 2-15

Base Integer ISA, 2-1

Basic ASM, 7-15

beq, 5-2

beqz, 5-2

bge, 5-2

bgeu, 5-2

bgez, 5-2

bgt, 5-2

bgtu, 5-2

bgtz, 5-2

biased exponent, 1-22

Binary Coded Decimal, 1-17

Binutils, 2-13

ble, 5-2

bleu, 5-2

blez, 5-2

blt, 5-2

bltu, 5-2

bltz, 5-2

bne, 5-2

bnez, 5-2

B-type, 2-6

callee, 6-3

caller, 6-3

calling routine, 2-4

compilation stage, 2-17

CPUlator, 2-33

cross compiling, 10-1

D Double precision, 8-3

debugging, 2-18

DIV, 4-19

double precision, 1-22

double-dabble method., 1-19

Doubleword, 1-14

ELEN, 9-5

Index

emulation, 2-26

encoding, 1-27

endm., 6-13

Exclusive OR, 1-26

Executable and Linkable format (ELF)., 2-18

Extended ASM, 7-15

F Single precision, 8-3

FADD.S, 8-21

FCLASS.D, 8-21

FCLASS.S, 8-21

FCSR, 8-22

FCVT.D.S / FCVT.S.D, 8-21

FCVT.W.S / FCVT.S.W, 8-21

FEQ.S / FEQ.D, 8-22

FLD, 8-21

FLE.S / FLE.D, 8-22

FLEN, 8-1

floating -point, 1-21

FLT.S / FLT.D, 8-22

FLW, 8-21

FMIN.S / FMAX.S, 8-21

FMUL.S, 8-21

FMV.X.W / FMV.W.X –, 8-22

Format specifier, 7-20

FSD, 8-21

FSGNJ.S / FSGNJN.S / FSGNJX.S, 8-22

FSQRT.S, 8-21

FSUB.S, 8-21

FSW, 8-21

funct3, 2-12

funct5, 8-5

funct7, 2-12

Functions, 6-1

gcc, 7-10

GDB, 2-21

GDBinit, 3-20

H Half precision, 8-3

Halfword, 1-14

hart, 2-2

IEEE 754, 1-22

Instruction Set Architectures (, 2-1

I-type, 2-6

JAL, 5-2

JALR, 5-3

J-type, 2-6

Leaf functions, 6-4

li., 2-10

LicheePi 4A, 2-25

linker, 2-18

linker relaxation, 3-12

Linker scripts, 2-19

LMUL, 9-4

lui, 2-8

lw, 3-3

Macros, 6-13

make, 2-24

mask, 9-18

minuend, 1-14

mno-relax, 9-2

mno-relax option, 3-19

MULW, 4-17

nano, 2-14

Index

Nested functions, 6-4

normalized number, 1-24

NOT, 4-24

Not-a-number, 1-22

NVRAM, 1-3

objdump, 2-17, 2-23

object file., 2-18

one’s complement,, 1-12

opcode, 2-12

optimization, 7-18

OR, 1-26, 4-24

ORI, 4-24

overflow, 4-13

plaintext, 2-14

Pop, 6-1

printf, 7-20

program counter, 2-4

Program Counter (PC) relative addressing, 3-8

proxy kernel PK, 10-1

Pseudo instructions, 2-10

Pseudocode, 1-2

Push, 6-1

Q Quad precision, 8-3

QEMU, 2-26

RARS, 2-36

Registers, 2-3

REM, 4-19

REMU, 4-19

RISC, 2-1

RISC-V, 2-1

rounding modes, 8-6

R-type, 2-6

save-temps, 7-10

scalar, 9-2

sections, 2-15

SEW, 9-5

signed, 1-11

significand, 1-22

Simulators, 2-32

single precision, 1-22

sll, 4-21

slli, 4-21

source files, 2-14

SpacemiT K system, 9-4

Spike, 10-1

sra, 4-21

srai, 4-21

srl, 4-21

srli, 4-21

stdout, 3-6

strace, 2-37

S-type, 2-6

subtrahend, 1-14

sw, 2-7

symbol, 2-18

syntax, 2-18

Syscalls, 2-15

tail, 9-20

tail undisturbed, 9-20

TUI, 3-20

two’s complement., 1-12

UDIV(, 4-19

Index

Unconditional branches, 2-11

unsigned, 1-11

U-type, 2-6

vadd.vv, 9-4

variadic function, 7-20

vector byte length, 9-4

vector data type register, 9-3

vector length multiplier, 9-2

vector length register., 9-2

vector register groups, 9-2

vector start position register, 9-3

vi, 2-14

virtualizer, 2-26

VisionFive2, 2-25

VLMAX, 9-4

VLMUL, 9-2

VMA, 2-17

vsetivli t0, 16, e32, m2, 9-16

vsetvli t1,t0, e64, 9-5

vslidedown, 9-12

Vslideup, 9-14

vstart, 9-3

vtype, 9-3

Word, 1-14

XLEN, 2-4

XOR, 4-24

XORI, 4-24

