RISC-V Assembly Language and Architecture

Feb 19th, 2026

Alan Johnson



Xelsys

Published by xelsys
www.risccomputing.com
info@alanjohnson.tech

Copyright © 2026 Alan Johnson. All rights reserved.



TARGET AUDIENCE
e Embedded systems enthusiasts
e Computer architecture learners
e Developers interested in system-level programming
e Computer science students
PRE-REQUISITES
Knowledge of the following areas will ease the journey.
e  Familiarity with basic computer hardware
Microprocessor architecture
e Memory and data buses, register, ALUs, ...
e Experience with Linux ®
o Installation of the Operating System and applications
o Bash
e Basic knowledge of the C programming language
e High school level mathematics!

e ARISC-V system? or an emulated device.

1 Some of the optional tasks involve linear algebra, which will be more familiar to those at a higher level. A good reference is found at
https://www.khanacademy.org/math/linear-algebra

2 RISC-V based hardware is preferred over simulation.


https://www.khanacademy.org/math/linear-algebra

Summary of the document

Overview

This book is an in-depth introduction to assembly language programming using the RISC-V instruction set
architecture (ISA). It is designed for readers with basic C/Linux experience, embedded systems
enthusiasts, computer architecture learners, system-level developers, and computer science students.
The text emphasizes foundational concepts, practical coding techniques, and the specifics of the RISC-V
unprivileged architecture, with numerous examples, exercises, and diagrams. There may be areas that
require supplemental knowledge. The focus is on the RISC-V instruction set - unprivileged architecture.

Structure and Key Topics

Assembly vs. High-Level Languages: Explains the low-level control and transparency of assembly
compared to the abstraction of high-level languages.

Assembling, Compiling, and Linking: Describes the process of converting human-readable code
to machine code and linking object files.

Hardware, Software, Firmware: Differentiates these core system components.
Number Systems: Covers binary, hexadecimal, BCD, conversions, complements, and arithmetic.
Logic Operations: Introduces AND, OR, XOR, NOT, and truth tables.

RISC-V Origins & Architecture: Discusses the open-source nature, 32/64-bit modes, and
instruction extensions (M, F, D, C).

Register Set: Details the 32 general-purpose registers and their ABl names2. Programming
Concepts

Memory Access: Load/store instructions and addressing modes.

Arithmetic/Logic: Integer math, shifts, multiplication, division, and condition codes.
Branching & Loops: Conditional and unconditional branching, loop counters.

Stack, Macros, Functions: Stack usage, modular code, macro definitions.

C and Assembly Integration: In-line assembly, calling conventions.

Floating-Point Arithmetic: IEEE 754 formats, rounding, comparisons.

Vector Operations: SIMD-style instructions, vector registers, masking, merging.

Cross-Compiling and Simulation: Installation and use of the Spike simulator, toolchain setup,
debugging, and cross-compilation for RISC-V on non-native hosts.

Detailed Chapter Highlights



Chapter 1: Lays the groundwork for assembly language, number systems, logic, and the rationale
for using assembly.

Chapter 2: Introduces RISC-V architecture, instruction set variants, register conventions, and
essential tools (GNU assembler, linker, GDB, objdump, make).

Chapter 3: Focuses on memory operations, addressing modes, linker relaxation, and practical
examples of load/store instructions.

Chapter 4: Explores arithmetic and logical operations, including overflow detection,
multiplication/division, and shift instructions.

Chapter 5: Covers control flow, loops, conditional and unconditional branching, and program
structure.

Chapter 6: Discusses stack management, modular code, macros, and function conventions.
Chapter 7: Explains how to interface assembly with C, use inline assembly, and optimize code.

Chapter 8: Details floating-point operations, IEEE 754 compliance, rounding modes, and
exception handling.

Chapter 9: Introduces vector processing, vector registers, SIMD operations, and advanced vector
instructions.

Chapter 10: Guides on cross-compiling, using the Spike simulator, and running/debugging RISC-
V programs on various platforms

Appendices and Resources

Appendices: Include GDB commands, ASCIl code tables, references, and assembly directives.

Figures, Listings, and Tables: The book is rich with diagrams, code listings, and tables to illustrate
concepts and provide practical reference.

Notable Features

Practical Examples: Each chapter includes code samples, exercises, and step-by-step
walkthroughs.

Toolchain Guidance: Detailed instructions for setting up and using the GNU toolchain, simulators
(CPUlator, RARS), and debugging tools.

Modern RISC-V Focus: Emphasizes open-source, extensible, and modern aspects of RISC-V,
including vector and floating-point extensions.

Integration with C: Shows how to combine assembly with high-level languages for system-level
programming.



Conclusion

This document is a comprehensive, hands-on guide to RISC-V assembly language and architecture,
suitable for learners and practitioners aiming to master low-level programming, system architecture, and
the RISC-V ecosystem. It balances foundational theory with practical application, making it a valuable
resource for both study and reference.

Vi
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Chapter 1. The fundamentals of assembly language.

Overview of the chapter

Chapter 1 lays the foundation for understanding assembly language. The focus is on general principles
which are essential prior to delving into the specifics of RISC-V. Topics include the purpose, structure,
and advantages of assembly programming, and introduces the number systems and logic operations that
underpin low-level code.

1.1.What is assembly language?

Assembly language is a computer language that is much closer to the operation of the computer itself.
Today most of the coding is performed using languages that are easier for humans to understand, as far
as assembly language goes the coding language uses abbreviations to give an insight into the nature of
the operation being performed. An example could be bgt which stands for branch if greater or less than
(some condition)

1.1.1.High-level languages Vs Assembly language

Many high-level languages place a strong emphasis on abstraction, treating functions as impenetrable
black boxes and hides the inner workings. Assembly language takes a different approach and allows
(indeed mandates) the coder to familiarize themself with the innards of the system.

The former method is like a Rapid Application Development (RAD) methodology that works well with
teams whereas the second approach often includes smaller groups with specialized knowledge. Both
approaches have their place. Digital computers inherently process data in one of two states (binary) so
it is essential that we understand the low -level world of one’s and zero’s.

Strangely enough, assembly language programming has been gaining in popularity after a hiatus, due to
the rise in higher level, object-oriented languages. This comeback may be attributed to the rapid
development of robotics, self-driving cars and other autonomous devices that require sensors reacting
to real-time events. It is envisaged that assembly language programmers will be in higher demand during
the coming decade.

1.1.2.Architecture and Machine code

Processors have different architectures, and they each understand their own machine code instructions
— at their very heart these instructions are combinations of binary numbers that instruct the processor
how to proceed. Binary numbers are cumbersome for human operators and instead a set of mnemonic
instructions are used. A hypothetical example could be an instruction such as add r1, r2,r3 which
would add two numbers together that are contained in register2® and register3, placing the result in
registerl or add r1, r2, 45 which could add the value 45 to the value contained in register2, placing

3 Registers are low-capacity, high-speed storage elements, (typically anywhere from one to eight bytes in size) contained within the processor
architecture.
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the result in registerl. The corresponding native machine code (again hypothetical) could be the binary
code 10101100 00010010 00101100. The mnemonic instructions make up the assembly language.

1.1.3.Assembling, compiling and linking

The role of the assembler (program) is to convert programmer-readable assembly instructions into the
corresponding machine code instructions. The output code is termed an object file. Conversely a
disassembler converts machine code instructions back into assembly language. The assembler has
additional roles such as understanding a set of directives that can define and place data into the
computer’s memory locations. An example could be a set of error codes defined as textual informational
messages. These messages are defined by the programmer rather than the specific processor itself. There
are a number of these directives, and they will be discussed in more detail as the document progresses.

Higher-level languages use compilers to translate to machine code. After the assembly or compilation
process the object files are linked to form an executable program. The linker may act on individual or
multiple files. High level language instructions do not normally have a one-to-one correspondence with
the underlying machine code instructions. They are designed to be more instinctive to the programmer
by providing English like keywords such as if ..then, while, and print. High level languages can be
interpretive and translated into machine code instructions during runtime, or pre-compiled before
runtime into native machine-code.

1.1.4.Pseudocode

Pseudocode is used prior to writing real, syntactically® correct code. It outlines a set of algorithmic
instructions, describing the program flow at a higher level. The benefit is to focus and plan the tasks
ahead without getting too involved in low-level syntactical details, though logic errors may still persist.
The flow is typically Algorithm = Pseudocode = Actual computer code.

Although pseudocode is not strictly defined, keywords such as IF-THEN, WHILE, GREATER THAN, . . ., are
used to define program-flow.

1.1.5.Why use assembly?

Assembly language has a direct relationship with the CPU that it is running on and as a result the
programs will be more compact and efficient. It is also more suited to system-level programming. A
disadvantage is that many lines of code may be required when compared to high level languages and as
a result a hybrid approach may be deployed where the bulk of the code could be written using C or
Python which can pass parameters to and accept return values from a smaller section of assembly code.
Portability is also an issue since the assembly language is tightly coupled with the CPU that it is running
on.

4 The syntax of a language is the grammatical structure of a language. Computer languages usually have a very formal structure, with the precise
order of objects used in a command strictly defined. The statement “an orange has blue skin” is syntactically correct but not semantically correct.
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In the interests of education, this book will focus more on “pure” assembly coding rather than the
pragmatic hybrid approach®.

Experienced system-level coders may wish to skip this chapter or simply skim through it and treat it as a
refresher. The material discussed in this chapter is general and does not necessarily apply to any specific
system.

1.2. Hardware Vs Software Vs Firmware

| 1.2.1.Hardware

In computer terms hardware refers to the physical components that make up the system. Hardware is
something that can be seen and touched.

‘ 1.2.2.Software

Software refers to the actual instructions that are loaded into the computer’s memory. These instructions may direct the
hardware to perform certain tasks. For example, the system software is responsible for displaying the result of an operation onto
a hardware output device such as a display screen or printer and for taking input from a device such as a keyboard. In general,
though, software is a set of instructions that cause an operation to occur such as adding two numbers together.

1.2.2.1. Firmware

Firmware can be thought of as a set of instructions residing in hardware. This definition has become
somewhat blurred as these instructions were originally loaded onto read only devices (ROMs). These
devices would be physically replaced when new upgrade code was required. Over time Erasable
Programmable integrated circuits (IC's) (EPROMs) were introduced, which as the name implies could be
written over with new code. Today, non-volatile random-access memory (NVRAM) devices are used and
can often be upgraded on-line without even requiring a reboot. This process is sometimes referred to as
flashing since the underlying device is often Flash memory.

1.3.Number Systems

Anthropologists may make a claim that we count in base 10 as this is the number of digits on our hands.
Other cultures have used base 60 and base 20 (possibly using both fingers and toes). These number
systems are not as well suited to computer systems and today® base 2 and base 16 dominate when using
low-level assembly programming.

1.3.1.Binary, Octal, Hexadecimal

Consider the base 10 number 4673¢ — this breaks down into:

> That is not to say that hybrid programming will be ignored within this text.

6 Base 8 - Octal was also used on many earlier computers such as Digital Equipment Corporation’s PDP family of minicomputers.
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4x103
+

6 x 102

7x101

+

3x100

=4000 + 600 + 70 + 3 =4673

The use of ten (0-9) different characters along with their position represented a major advance in
computation when compared to systems such as the Roman counting method.

Digital electronic systems naturally gravitate towards a two-state binary system where current either
flows or it does not. These two states are represented by the symbols 0 or 1.

Each binary digit is termed a bit(b). For convenience binary digits are often grouped into 8 bits termed a
Byte(B). Since eight bits can represent numbers ranging from 00000000 through 11111111, the decimal
values translate to 0 through 255. A disadvantage of binary numbers is that a three-digit decimal number
may require an equivalent of up to ten binary digits. A more compact numbering system is base 16
(hexadecimal) which treats a group of four binary numbers as a single hexadecimal number. This means
that two hexadecimal numbers will represent a single byte’. Hexadecimal numbers use the same symbols
as decimals up to the value 9, then use the characters A through F to represent decimal numbers ten
through fifteen. The hex number 1046 corresponds to decimal number 1640,

Table 1-1 Binary, Decimal and Hexadecimal equivalents

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7

7 A single hexadecimal number is sometimes referred to as a nibble.
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1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

1.3.2.Converting Binary to Decimal

Each binary? digit can be converted to decimal by multiplying its value by two raised to an index where
the index corresponds to the bit’s position.

The binary number 110101, then, can be converted to decimal using the following steps.
Ix2°+1x2*+0x22+1x22+0x2+1x2°=

32+16+0+4+0+1
=531

1.3.2.1. General rule for base conversion

Any number n in binary can be written as:

n = 10 x quotient + remainder

1.3.2.2. Binary long division

Example: n =101101

& Note these steps use pure binary, it is often faster to temporarily use decimal numbers as interim steps, for example to find out the largest
divisor that divides 1010: into binary 10111010, convert the numbers to decimal to get 1010 and 18610, s0 it is easy to see that 181 is the largest
number when multiplied by 1010 that will divide into 18610. Converting 1810, back to binary gives 10010.. Checking 100010; x 1010; = 10110100;
which divides into 10111010;
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Numerator + Denominator = Quotient + Remainder
Numerator - the number being divided
Denominator - the number you divide by
Quotient > the result of the division
Remainder » what'’s left over

1 0 1 1 0 1=10XQuotient+Remainder

so divide by the target base which is 10

10 1 1 0 1+ 1 0 1 0 (10decimalinbinary)
Quotent > 0 0 0 1 0 O
1 0 1 0 1 0 1 1 0 1
1 0 1 0 Subtract
0 0 0 1
0 0 0 1 O Bring down the next digit from the numerator
Remain(> 0 0 0 1 0 1Doesn'tdivideso bringdown the nextdigitand place 0in the nextquotient position

Still does not divide, place 0in the next quotient position and
this is the remainder as there are no more numerator digits
This gives a quotient of 4 with a remainder of 5
Verifies n =Base x Quotient plus the Remainder

1.3.2.3. Repeated division method (algorithmic)

e Divide by target base — Here base = 10
e With repeated division the remainders are the decimal digits.
e The decimal numbers appear in reverse order with the least significant appearing first.

Example
Convert: 1111001, to decimal by dividing by 1010, (10+0)

Repeatedly divide by 1010,; each remainder is one decimal digit (in binary).

Divide:
1111001, + 1010,
Using trial and error - test multiples of 1010,:

Attempt 1010, x 1011, = 1101110,

This divides into 1111001, so try next number up -
1010, x 1100, = 1111000, this also divides so try next number
1010, x 1101, = 100000010,, too big so 1100, is the quotient
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Now subtract (the product of the base by the largest divisor) from the number that is to be converted to
get the quotient.

1111001
-1111000
0000001

Quotient =1100, (It divided 1100 times)
Remainder = 1; 110

Now divide the quotient by the base 1100 + 1010,

1100
-1010
0010

Quotient=1 It divided 1 time
Remainder = 10; 240

Now divide the quotient by the base 1 + 1010
It did not divide

Quotient=0

Remainder =1, 1190

List the remainders in reverse order = 12149
Further example
Convert 10101001 to decimal
1010 x 10000 = 10100000
10101001
-10100000
00001001
Remainder = 910
10000 (Quotient)
Divide Quotient by the base 10000 + 1010
1-7
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10000
- 01010
0110
Remainder = 619
Quotientis 1
Divide quotient by the base 1 + 1010
Divides zero times with 1 left over
Remainder = 159
Assemble the remainders in reverse order = 16910

Note there are easier ways to perform these calculations, but the steps presented can be
adapted to assembly programming in a more algorithmic method.

1.3.2.4. Converting Decimal to Binary

The following method breaks down a decimal number into powers of two, so to convert the number
8430 to its equivalent binary number —

1. First get the highest power of two contained in 843 which is 512 (2°).
Subtract 512 from 843 = 331,
The highest power of two contained in 331 is 256 (28),
Subtract 256 from 331 to get 75,

The highest power of two contained in 75 is 64 (2°),

2.
3
4
5
6. Subtract 64 from 75 to get 11,
7. The highest power of two contained in 11 is 8(23),
8. Subtract 8 from11 to get 3,
9. The highest power of two contained in 3 is 2 (21),
10. Subtract from 3 to get 1,
11. The highest power of two contained in 1 is 1 (29),
12. Subtract 1 from 1 to get 0.
Everywhere that a power of two appears, write its index as the binary value one and where it did not
appear write the binary value zero using the positional notation shown in Table 1-2.
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Table 1-2 Converting decimal to binary

Position 5 4 3 2 1 0
Multiply by 2° 24 23 22 2t 20

Another way of converting is a repeated division method. Divide the number repeatedly until zero is
reached. Take note of the remainders and put the first remainder in the left-most position, then the
second remainder into the left-most second position, repeating until all reminders have been recorded.

Figure 1-1 Converting Decimal to binary using repeated division by 210
2| 843
2421 Rem 1

2| 210 Rem1
2| 105 Rem 0

2 52 Rem 1
2| 26 Rem 0
2 13 Rem 0
2| 6 Rem1
2 3 RemO
2| 1 Rem1

Now write down the remainder starting from the top to get:

1101001011,.

2° 28 27 26 25 2% 23 22 2t 20

1 1 0 1 O O 1 O 1 1

1.3.3.Converting Hexadecimal to Decimal

A hex number such as 5B7Cys can be converted to decimal using a power of sixteen method —
=5x16% +Bx 162 +7x 16% + Cx 16°

=20,480+ 2816+ 112 + 12

=23420
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‘ 1.3.4.Converting Decimal to Hexadecimal

Take the number as shown, divide repeatedly by 1610 until zero is reached. Record the remainders in
base 16 format (e.g. for a remainder of 104, record “A”). Note the remainders and put the last remainder
in the left-most position, the second from last remainder into the left-most second position, repeating
until all reminders have been recorded.

Figure 1-2 Converting Decimal to binary using repeated division by 1619

16| 23420

16| 1463 Rem C
16| 91 Rem 7

16| 5 RemB
16

0 Rem5

Again, printing out the remainders form the bottom gives 5B7C

1.3.5.Binary Fractions

The binary numbers that have been dealt with up to this point are natural number equivalents (positive
whole numbers). Positional notation is used to show the corresponding power of two index. ° Fractions
can be represented in binary by moving to the left of the 2°. These values then become 21, 272, . ..

1.3.6.Converting a binary fraction to decimal

1101.01 is equivalent to the base 10 number 13.25 since we have:

Ix23+1x22+0x2'+1x2°+ 0x 21+ 1x2°%

| 1.3.6.1. Converting a decimal fraction to binary.

Repeatedly multiply the fractional part by two until it becomes zero, taking note of the value to the left
(integer portion) of the decimal point. Accumulate the values of the integer part from top to bottom to
get the binary fractional part.

Example 0.6251

0.625x2=1.25
0.25x2=0.5
0.5x2=10

Stop since the value to the right of the decimal point =0

Take the integer value from top to bottom = 0.101,

9 Recall that negative indices can be resolved by changing the sign of the index and changing the operation from division to multiplication and
vice versa so that 1 /22 becomes 1x2?2=4and4x22=4/22=16
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Consider number 0.3

03x2=0.6
06x2=1.2
0.2x2=04
04x2=0.8
0.8x2=1.6
06x2=1.2
0.2x2=04
04x2=0.8
0.8x2=1.6
0.6x2=1.2

This highlighted value has been met before, so this is a recurring fraction with the pattern 0011 repeating
-.0100110011... This means that when evaluating, a halt counter should be added. The logic would be to
end when the fractional part = 0 or when the required degree of precision has been reached.

1.3.7.0ne and Two’s complement

An eight-bit byte can represent any one of 256 values ranging from 0 — 25540. This is known as unsigned
notation. Another representation is to use half of the range as positive integers and the other half as
negative, in this case the range is from +127° through -128. This method uses the most significant bit to
represent the sign and is known as signed notation. The number line for an eight-bit signed number is:

-128,-127,..,0,1, 2, ..., 127

< »
< >

Table 1-3 Signed number representation.
27 25 25 24 22 22 2t 20
‘ Sign bit  Magnitude Bits ‘

Interpreting the value of a signed number is straightforward —

The procedure is to add the corresponding powers of two of each bit’s place value but leave out the sign
bit. The next step is to add in the value of the sign bit. For positive numbers it makes no difference since
the value of the sign bit is zero, but for negative numbers the value of the sign bit is -128.

Example

10 Zero is treated as a positive number here
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e Take the positive binary number 00101100

e Add the magnitude bits together
Ox2°+1x2°+0x2*+1x23+1x2>+0x2*+0x2°
=32+8+4=44

e Add in the value of the sign bit (27) to get:-
0+44=44

e For the negative number 10011001

e Add the magnitude bits together.
O0x2°+0x2°+1x2*+1x2°+0x22+0x2'+1x2°
=16+8+1=25

e Add in the value of the sign bit (27)to get
-128 + 25 =-103

Converting from a signed number to an unsigned number is a simple operation, the procedure is to invert
the bits and then add the binary value 1.

So, to convert the positive number 6310 to negative 631o.
e Convert the number to an eight-bit binary number -
00111111
e Invert the bits to get -
11000000 (one’s complement)
e Add1toget-
11000001 (Two’s complement)
e Convert back to decimal to get:-
-128+64+1 =63

1. The first stage of inverting the bits - obtains the one’s complement, adding the binary digit 1 to
the one’s complement - obtains the two’s complement.

The following table shows an extract of the first few signed numbers.

Table 1-4 Signed and unsigned numbers

Signed Binary Number Decimal Equivalent

01111111 127
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0111 1110 126
0111 1101 125
0000 0000 0
11111111 -1
11111110 -2
1000 0010 -126
1000 0001 -127
1000 0000 -128

‘ 1.3.8.Addition and subtraction of binary numbers ‘

[ 1.3.8.1. Binary Addition |

To add two binary numbers together is straightforward, there are only four outcomes.
0+0=0
0+1=1
1+0=1
1+ 1=10 (0+ carry)
An example of an unsigned binary addition follows-
Add00101101to0111 0100
0o 0 1 0 1 1 0o 1
0o 1 1 1 0 1 0 O

1 0 1 0 0 0 0 1
Checking by adding the decimal number equivalents together —
45+116 =161

Consider if these numbers being added were in signed notation — here adding two positive numbers
together would result in a negative number since the sign bit of the result = 1. This is an overflow
condition since the result of 161 is clearly outside of the maximum positive number that can be
represented in signed eight-bit binary arithmetic. This is something that needs to be checked and there
are conditions built-in to the processor architecture to detect this kind of situation.
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Larger numbers can be dealt with by using two bytes for storage, treating the second byte as having the
values 28 through 2%°. Assemblers and compilers will refer to groups of bytes by designations such as long
int, word etc. It is important to check the definitions.

One such definition is:

Table 1-5 Data type sizes

Doubleword 64 bits
Word 32 bits
Halfword 16 bits
Byte 8 bits

Of course, it is important to specify signed or unsigned, again a definition for an unsigned integer in the
programmer’s documentation might be referred to as uint.

1.3.9.Binary subtraction

Binary subtraction can be dealt with using elementary rules for small numbers and then taking into
account “borrows” rather than “carrys” but using the two’s complement method described on page 1-
11 is by far the preferred method for larger numbers.

The steps for binary subtraction are:

1. Obtain the two’s complement of the subtrahend (the number that will be taken away)

2. Add this to the minuend (the number that will be subtracted from).

3. Add the two’s complement of the subtrahend to the minuend.

4. |If there is a carry after the addition, then drop the carry (final result is positive)

5. If there is no carry, then compute the two’s complement of the result (final result is negative)
Taking a concrete example of subtracting 00100100 (3610) from 00000010 (21o)

e Two’s complement of the subtrahend
11011011 +1=1101 1100

e Add to the minuend

1 0 Minuend

0 o0 0 o0
1 1 0 1 1 1 0 0 Two'scomplementofsubtrahend
1 1 1 1

1 1 0
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(Carry =0)
Two’s complement of the result is
00100001+1 = 00100010
Result is negative since the carry was false = -34
Another example -

e Subtract 4550 from 12040

e Convert numbers to eight-bit binary
45,,=0010 1101,
12040= 0111 1000,

e Two’s complement of 00101101
1101 0011

e Addto 0111 1000

0 1 O 0 1 0 1 1

(carry =1)

The result is positive since carry was zero, 01001011 = 753

‘ 1.3.10. Binary multiplication

The rules for multiplication of two bits are

g Note anything multiplied by zero is of course zero.

Example multiply binary 10 (210) by 11 (310)
1 0
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1 1 x
1 O
1 0
1 1 O
=610
- Note this is the same as decimal multiplication where we multiply by each of the
}:ﬁ digits and then add these results together.

‘ 1.3.11. Binary Division

The rules for division of two bits are as follows (recall that division by zero is invalid)

e 0/O0Oinvalid
e 0/1=0
e 1/0invalid
e 1/1=1

Division example
Divide 1 1011 (Dividend) by 00111 (Divisor)

Using long division -

Divide 11011 by 111

0 0011
111/ 1 1 0 1 1 Bringdown
Subtract 111 lthel
1101
Subtract 111
1 1 0 «<— Remainder (sinceitis

too small to be divided by 111)
Check byconvertingtobase 10 27/7 =3 with remainder6
Dividend 27
Divisor 7
Quotient 3
Remainder 6
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‘ 1.3.12. Shift/ Rotate instructions to perform multiply and divide operations

Consider an eight-bit byte 00101110 which has the decimal equivalent of 46. Next take each bit of the
byte and shift them over one place to the left, filling in the now vacant bit 0 with the padded value 0 as
shown below. Bit 7 has nowhere to go since it has no bit 8 position to occupy. The newly vacated bit 0
position is filled with a binary zero.

By shifting all the bits to the left the original number has been multiplied by two since the bit 0 value of
2% has been moved to the 21 position, bit 1’s value of 2* has been moved to 22, etc.

[)

m
<

Note that if the original bit 7 had a value of 1 then it would have been lost giving
an incorrect result. This is a condition that must be checked for by the
programmer and this will be covered in a later section.

Division by two is accomplished by shifting the bit values to the right.

Figure 1-3 Using shift operations to multiply and divide by two

Before Shift 0 0 1 0 1 1 1 0 Basel10(46)
After Shift 0 0 1 0 1 1 1 0 0Basel0(92)

Binary bit 7 falls of the end Binary 0 shifted into bit O position

bit7 bité bitd bit4 bit3 bit2 bitl bit0

" ]

bit 0 = bit 1> bit 2 = bit 3 = bit4 - bit 5 = bit 6 = bit 7 = bitO, . ..

For simplicity the registers shown are byte-wide. In reality the width is more often 32 or 64 bits.

Other rotates are possible where the shifted-out bit feeds back to the input, giving a circular action.

Bit0 >Bit1 2Bit2 >Bit3 2Bit4 2Bit5 2Bit6 2>Bit7 2Bit0 2Bit1...

1.3.13. Binary Coded Decimal (BCD)

Binary Coded Decimal represents decimal numbers in groups of bits, the encoding is normally done in
four-bit nibbles. Each bit represents a power of two weight (23, 22, 2%, 2°, or 8,4,2,1). Since four bits can
represent 16 distinct numbers, and there are only ten decimal digits, wastage occurs with this method.
An alternative known as packed BCD may be used but is less common.

1.3.13.1.

Converting Binary Coded Decimal to Decimal

BCD is similar to hexadecimal except that hex characters a through are illegal. A binary grouping of BCD
characters could look like:

1001 0111 1000. Each group of 4 bits (nibbles) are read off as follows —
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e 1001=9
e 0111=7
e 1000=8

This corresponds to the decimal number 978.

1.3.13.2. BCD addition

Adding is straightforward, however if the addition of two nibbles results in a value greater than 9 (1010,
1011, 1100,1101, 1110, 1111) then it is an invalid decimal number. The resolution is to add 6 (0110)
which will bring it back to a valid number. The carry will be added to the next nibble.

Addition examples —

1.

14 +22 =36 =0011 0110
Verify by binary addition
0001 0100 (14)

0010 0010 (22) +

0011 0110 (36)

2.

20 +20 =40 = 0100 0000
0010 0000 (20)

0010 0000 (20) +

0100 0000 (40)

3.

26+25=51=0101 0001
0010 0110 (26)

0010 0101 (25)+

0100 1011 Least significant nibble is greater than 9 so add 6
0000 0110 + (6)
01010001 (51)

4.
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121 +157 =278 =0010 0111 1000

0001 0010 0001 (121)

0001 0101 0111 (157)+

0010 0111 1000 (278)

5.

199 + 933 = 1132 = 0001 0001 0011 0010

0001 1001 1001(199)

1001 0011 0011 (933)+

1010 1100 1100 (Two nibbles invalid add 0110 0110
0000 0110 0110 +

1011 0011 0010 Now, the most significant nibble is invalid so add 6 to it
0110 0000 0000 +

0001 0001 0011 0010 (1132) Brings in a fourth nibble!

1.3.13.3. Conversion from Hex/Pure Binary to BCD

One way of converting a hex number to BCD is to convert the hex number to decimal and then to BCD.
An alternative is to use the double-dabble method.

1.3.13.4. Double-Dabble

The double-dabble algorithm is fairly simple to implement; it consists of a series of shift'! operations and
additions.

% Note that an n digit hex number can translate into more than n decimal digits,

=
6

1.Z—| (8516 =13310, FFF16 = 409510).

The method sets up a store to hold n binary digits and partitions to hold the decimal powers
of two — units, tens, hundreds, thousands, ... The partitions are cleared to hold all zeros and then the
binary digits are shifted in one bit at a time, adjustments (addition of decimal 3) are made to the partition
values dependent on their magnitude (>4). Once all bits have been shifted!? the algorithm has been
completed.

An example:

1 Shift/Rotate operations are discussed on page 1-13.

12 The number of shifts is equal to the number of binary digits
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Consider the binary number 00011011 = hex 1B = decimal 27. The steps to convert from pure binary to
BCD are shown in Table 1-6.

Table 1-6 Double-Dabble example

Hundreds Tens Units Binary Action

Partition Partition Partition Store

0000 0000 0000 00011011

0000 0000 0000 00110110 Shift left-most bit over to partitions (shift1)
0000 0000 0000 01101100 Shift left-most bit over to partitions (shift2)
0000 0000 0000 11011000 Shift left-most bit over to partitions (shift3)
0000 0000 0001 10110000 Shift left-most bit over to partitions (shift4)
0000 0000 0011 01100000 Shift left-most bit over to partitions (shift5)
0000 0000 0110 11000000 Shift left-most bit over to partitions (shift6)
0000 0000 1001 11000000 Add 3 to units, since unit is 5 or greater
0000 0001 0011 10000000 Shift left-most bit over to partitions (shift7)
0000 0010 0111 00000000 Shift left-most bit over to partitions (shift8)

Reading off the tens and unit columns gives the value 271.

Note 3 is added rather than 6 since the shift left operation multiplies by two!

A more complex 12-bit example is shown in Table 1-7.
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Table 1-7 Three digit double dabble example

Double Dabble Three digit Hex (200) number
12 binary digits so 12 shifts are required

|Units| | Binary

0000 0000 0010 0000 00O0O0 [nitalState
0000 0000 0100 0000 00O0O [Shift#
0000 0000 1000 0000 000 O [Shift#
0000 0001 0000 0000 00OO [shift#3
0000 0010 0000 0000 00O O [Shift#d
0000 0100 0000 0000 0O0OO [shift#s
0000 1000 0000 0000 00OO [shift#e
0000 0000 0000 o0o0o0o0 [N
0000 1011 0000 0000 0000O

0000 0110 0000 0000 00OO [shift#
0000 0000 0000 o00o0o0 [AOURSEN
0000 1001 0000 0000 0000

0000 0010 0000 0000 00OO [shift#s
0000 0100 0000 0000 0O0OO [Shift#o
0000 0011 0000 0000 0000 00O0O [Add3totens
0000 0100 0000 0000 0000

0001 1000 0000 0000 0O0OO [shift#0
0000 0000 0000 o0o0o0o0 [N
0001 1011 0000 0000 0000O

0010 0110 0000 0000 0O0OO [shift#r
0000 0011 0000 0000 0000 O00OO [Add3toTens
0010 0110 0000 0000 0000

0000 0000 o000 o0o0o0o0 [NESCEREEN
0010 1001 0000 0000 0000

0101 0010 0000 0000 00O0O [shift#2

2 200hex=001000000000 binary = 512 decimal

‘ 1.3.14. Floating Point

An integer is a whole, complete and exact number such as 107 or 456. There is a limit to magnitude
within a simple unit of storage such as a register. With floating -point representation a range of extremely
large or extremely small numbers can be represented at the expense of precision. This means that a
floating-point number may be an approximation that introduces rounding to nearest digits. There are
two main parts to a floating-point number, the significand or mantissa and the exponent. There is also
provision for a sign bit. The form is significand multiplied by the base raised to a power, an example
being 3,450,000 = 345 X 10* Here 345 is the significand, ten is the base and four is the exponent.
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There is a standard IEEE 754 (https://standards.ieee.org/ieee/754/6210/) which is a specification for
floating-point arithmetic. The standard defines Single and Double floating-point formatsi®as shown in
Table 1-8. There is also provision to include Not-a-Number* (NaNs) and *Infinity.

A 32-bit single precision floating-point binary number within IEEE 754 is defined as:

Sign Bit (1 bit) Exponent (8 bits) Significand (23 bits)
A 64-bit double precision floating-point binary number within IEEE 754 is defined as:
Sign Bit (1 bit) Exponent (11 bits) Significand (52 bits)

This is summarized in Table 1-8.

Table 1-8 Floating-Point formats

Format Bits Significand  Unbiased Exponent Decimal Precision

Single 32 2415(23+1) 8 6-9 digits

Double 64 53 (52+1) 11 15-17 digits
1.3.14.1. Biased exponents

The use of a biased exponent can represent negative exponents. For single precision the values range
from decimal +127 to -126. The bias is normally given as 2"*-1 where n is the number of exponent bits,
so here we have 27-1= 127. The value of the biased exponent is the unbiased exponent minus 127, so
that an exponent of 10011011 gives a biased exponent of (128+16+8+2+1) — 127 = 155-127 = 28.

See Table 1-9 and Figure 1-4 for more on bias.

1.3.14.2. Infinity and Not-a-number representation ‘

e Abiased exponent of all ones and a significand of all zeros (-127) represents infinity. The sign bit
differentiates between negative and positive infinity.

e Not-a-number is represented by the biased exponent being equal to all ones (+128) and the
significand being non-zero.

e The sign bit is don’t care.

13 Other formats are defined but they will not be discussed here.
14 This could arise from operations such as divide by zero or the square root of a negative number.

15 There is an implied bit, since the normalized format is always 1.X then there is no need to specify the “1” value to the left of the decimal point.
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Table 1-9 BIAS within single precision IEEE 754

Exponentfield

Binary Decimal [Exponent
(00000001 | 1 212
(01111011 | 123 24
(01111100 | 124 2°
10000011 701111101 125 22
10000001 (01111110 | 126 2
r011111 >y 107 [ 2 Bias setto mid way point
m:)—: 128 | 2
/ 10000001 | 129 [ 22
100000010 130 « 23
b= 2""-1 =127 where number of bits is 8 | 100000011 131 r 2!
1.3.14.3. Understanding bias

The diagram shown in Figure 1-4 shows how varying the bias affects the ratio of negative to positive
numbers. The bias used in the standard gives similar ranges of positive and negative exponents.

Figure 1-4 Interpretation of Bias with floating point
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Bias Point

With double precision numbers the bias is 1023 since the unbiased component shown in Table 1-8 is 11-

bits wide.
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| 1.3.14.4. Normalized numbers ‘

A normalized number has the form 1.XXXXX... The steps are to convert the number to binary and then
perform shifts to give the desired result. Normalization shifts to the left or right depending on where the
decimal point is.

Example 410.625
Steps -
1. Convert to binary (See page 1-10, if needed. for a refresher on converting decimal fractions)
=110011010.101
2. Perform repeated shift until desired pattern us reached.
110011010.101 +2 (shift right operation)
=11001101.0101 =2
=1100110.10101 =2
=110011.010101 =2

1.

2.

3

4. =11001.1010101 +2
5 =1100.11010101 <2

6 =110.011010101 +2

7 =11.0011010101 +2

=1.10011010101

This took a total of 8 shift operations. Add this number to 127 to get 135. Convert to binary to get:
10000111.

From our shifts earlier we had the value 10011010101, extend this to 23 bits to get
10011010101000000000000 giving the value:

S Exponent Significand

0100001111001 1010101000000000000

=410.625

1.3.14.5. Addition of floating-point numbers

Addition is reasonably straightforward; the main concern is when the exponent differs. To equalize the
exponents, take the lower number and shift over the binary point the required number of positions. So,
if one exponent is 136-Bias and the second is 134-Bias, the second number needs to be shifted two places
to the left.
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Figure 1-5 Addition of two floating point numbers

01 0 0 0 0 1 1 O Nu

0o 1 o0 o 0 0 0 1 1 Nu
Step 1. Convert exponents to decimal

134 Number 1
131 Number 2 Note the exponents differ

2. Prepend the implicit "1" to the significand

1011110000 1100111000 1000 0Xx2%™ Numbert

r 131-bias

L 101010101 01010101010101X2 Number2
Step 2 Take number 2 and left shift the binary point three places to make the exponents the same

007 10101010101 0101010 1010 1x2%"

Step 3Now add number 1 to the shifted number two

'1. X pl34bias
’0 0 'O X ols4bias
0 2 134-bias

—
o
o
[ue
o
o
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o
o
o
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o
o
o
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o
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=
o
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>

01100 0 1 00 0110 1 1 1 0 1 0 1 0 1 x 213%bias 4—

=
o1
o
o
[
o

Step 5 Rounding is necessary since there are too many digits in the significand

P
A 135-bias
. 0 0 01 00 1 1000100011011 101010 1 X 2

Round down
Step 6 Convert exponent back to a binary number

135=10000111

Step 7 Re-assemble

01 0 0 0 0 1 1 1

1.4. Logic operations — and, OR, Exclusive OR, NOT

Logic operations are often used in decision making for example —
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1. “If I feel hungry AND | have enough money, then | will order food in”.
2. “Ifitis cold ORitis raining, then | will wear a coat to go outside”.

3. “I can get a car discount if | pay the total amount in cash OR a | can get a lower interest rate if |
take out a loan”.

Statement 1 is an AND condition and the decision to order food holds true if | am hungry AND | have
enough money. Both conditions must be true.

Statement 2 is an OR condition and it states that | will wear a coat if either of these (or both) conditions
are true.

Statement 3 is like statement 2 except that it is an either-or situation. Statement 2 applies equally well
to both conditions in that it could be cold and also raining (similar to the AND condition). Statement 3
exclusively applies to the OR situation and is referred to as Exclusive OR (XOR).

These conditions are normally represented by Truth Tables such as if condition A is true AND condition
B is true then result C is true. True and false values can be conveniently mapped to binary values 1 and
0. These are known as Boolean variables.

Table 1-10 Truth table - AND
A B C
False (0) False (0) False (0)
True (1) False (0) False (0)
False (0) True (1) False (0)
True (1) True(1) True (1)

Table 1-11 Truth table - OR
A B C
False (0) False (0) False (0)
True (1) False (0) True (1)
False (0) True (1) True (1)
True (1) True (1) True (1)

Table 1-12 Truth table - XOR

False (0) False (0) False (0)
True (1) False (0) True (1)
False (0) True (1) True (1)
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True (1) True(1) False (0)

Other logic functions exist such as NOT which inverts the value, so a binary zero becomes a binary one.
Repeating the operation, of course, gets back to the original value. Boolean algebra is a complex topic by
itself — which is dealt with in set theory.

For fun - a simple encoding can be done with XOR — take the word “Plaintext”, converting this to seven-
bit ASCII*® code becomes —

Table 1-13 Simple example of encoding text using XOR

Text ASCII code ASCIl code ApplyXOR function Resultant ASCll
string (decimal) (binary) with 10101010 code letter
P 80 1010000 1111010 z

I 108 1101100 1000110

a 97 1100001 1001011 K

i 105 1101001 1000011 C

n 110 1101110 1000100 D

t 116 1110100 1011110 A

e 101 1100101 1001111 0]

X 120 1111000 1010010 4

t 116 1110100 1011110 A

So, the encoded string “Plaintext” becomes “z.KCDA0O4/”.
Of course, this is easily cracked and decoded!

The following rules show the resulting bitwise values:

e XANDO=0
e XAND1=X
e XORO=X
e XOR1=1

Now that the foundation is in place it is time to move from generic concepts to programming on a specific
architecture!

16 See the appendix for a table of ASCII codes
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| Summary ‘

e Introduction to Assembly language
e Number Systems

e Shift Operations

e logic and Truth tables
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| Chapter 1 Foundations

Exercises for chapter1

1 Convert 11.110 to base 10

2 Divide 10111101 by 111 using manual long division

3. Convert Ox1fd to BCD

4 Convert 35.65 to single precision floating-point according to IEEE 75.
5

. Write a pseudocode program to convert lower case ASCIl characters a-z to upper case ASCII
character A-Z.

6. Convert the signed binary byte to base10
7 Convert the octal number 341 to base 16
8. What are mnemonics?
9

Describe the advantages of a high-level language over assembly language
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| Chapter 2 Getting started

Chapter 2. Getting Started

Overview of the chapter

Chapter 2 introduces the RISC-V architecture and essential tools required to start programming with
RISC-V. It moves from theory to practical steps, providing context, tools, and setup guidance for working
in RISC-V assembly.

2.1. Origin of RISC-V

The design of RISC-V uses a Reduced Instruction Set Computer (RISC) architecture. RISC-V originated in
2010 as a project at the University of California, Berkeley. The suffix “V” indicates that it is the fifth
generation of the RISC architecture. RISC has the advantage of a simpler design with lower power
consumption making it ideal for use in embedded systems. RISC-V is now under the stewardship of RISC-
V International based in Switzerland. A distinguishing feature is that it is open and royalty free.

2.2. Architecture

Implementations use a naming convention to denote which Instruction Set Architectures (ISAs) are
available within a specific implementation. An example being RV64/ or RV32E which stands for RISC-V
with a 64-bit integer instruction set and RISC-V with a 32-bit reduced integer set respectively!’. The
integer and reduced integer designations form the Base Integer ISA. This is mandatory for
implementations. Optional extensions are defined as:

e M for integer multiplication and division.
o Afor Atomic extensions.

e Fand D forsingle and double precision floating-point. Here the designation RV64IM would mean
64-bit with Integer and integer multiplication/division support.

e Cfor compressed Instructions.

e Efor Embedded.

e G for general covers MAFD

o There is also the ability to support non-standard extensions.

To show the RISC-V instruction set support under Linux, the command cat /proc/cpuinfo can be used

cat /proc/cpuinfo

17 RV128 definitions also exist but will not be discussed here.
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processor 0

hart 1

isa rv6d4imafdc zicntr zicsr zifencei zihpm zba zbb
mmu sv39

uarch sifive,u74-mc

mvendorid 0x489

marchid 0x8000000000000007

mimpid 0x4210427

processor 3

hart 4

isa rv64imafdc zicntr zicsr zifencei zihpm zba zbb
mmu sv39

uarch sifive,u74-mc

mvendorid 0x489

marchid 0x8000000000000007

mimpid 0x4210427

This system is identified by the string rv64imafdc has 4 CPU cores and supports (I)nteger,
(M)ultiplication/division, (A)tomic and (F)single and (D)ouble precision floating point with the ability to
handle the smaller code size of (C)ompressed instructions. A designation of G represents IMAFD. The
architecture shown is 64-bit. The four processors (0-3) are associated with four harts (1-4). A hart is a
hardware thread® that can execute its own set of instructions independently of the others. Usually there
is a one-to-one correspondence?® between harts and processors.

The next output is taken from a Banana Pi BPI-F3 system showing eight processors with rv64imafdcv
support.

Note the inclusion of the V-extension which is the vector ISA extension. Vector
support is an additional bonus as few systems today support vector operations.

$ cat /proc/cpuinfo
processor : 0

hart : 0

18 Only the first and last CPU cores are shown in the output.

19 A hardware thread is distinct from a software thread. Software threads are multiplexed tasks, controlled by techniques such as time-slicing
giving the illusion of separate tasks, whereas are hardware threads are true independent execution units.

20 Hyper-threading gives the appearance of multiple cores within a processor and so could support more than one hart.
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model name : Spacemit (R) X60

isa 2
rvéedimafdcv zicbom zicboz zicntr zicond zicsr zifencei zihintpause zihpm zfh zfhmin z
ca zcd zba zbb zbc zbs zkt zve32f zve32x zveb64d zveb64f zve64x zvfh zvfhmin zvkt sscof
pmf sstc svinval svnapot svpbmt

mmu ¢ sv39

uarch : spacemit, x60
mvendorid : 0x710

marchid : 0x8000000058000001
mimpid : 0x1000000049772200
processor H

hart g 7

model name : Spacemit (R) X60
isa

rv64imafdcv _zicbom zicboz zicntr zicond zicsr zifencei zihintpause zihpm zfh zfhmin z
ca zcd zba zbb zbc zbs zkt zve32f zve32x zveb64d zveb64f zve64x zvfh zvfhmin zvkt sscof
pmf sstc svinval svnapot svpbmt

mmu : sv39

uarch : spacemit, x60
mvendorid : 0x710

marchid : 0x8000000058000001
mimpid : 0x1000000049772200

Currently there are four (separate) base ISAs with discussion on a 128-bit (128l) implementation. A
summary is shown in Table 2-1.

Table 2-1 Base integer instruction set variants

Address Space/Register Width

RV32i 32-bit
RV64i 64-bit
RV32E 32-bit
RV64E 64-bit

2.2.1.RISC-V Registers

Registers are locations that store values, they are similar to variables in high-level languages.

The primary way of interfacing with the RISC-V system is via the register set. Generically the registers
may be referred to as Rd (destination register), Rs1 (first source register), Rs2 (second source register).
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Registers are denoted by their Application Binary Interface (ABI) name to make it more convenient to
the coder. This is like high level languages where variables are given meaningful descriptive names.

| 2.2.1.1. Register Set

Figure 2-1 RISC-V register layout

A

127-64

63-32 [ 31-0 [ Register Name

\ 4

X0

x1

X2
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x4

x5

A
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X6

X7

X8

X9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

xX22

x23

x24

x25

x26

x27

x28

x29

x30

x31

Bit127

32 registers, datawidth is determined by RV extension

Bit0

There are 322! unprivileged integer X registers whose
width is determined by the instruction set which is
either 32,64 or 128 bits as shown in Error! Reference s
ource not found. along with a brief description. The
registers have aliased names which reflect their usage
such as X1 = ra which holds the return address or X0 =
zero which is a read-only register returning the value
0. The aliased names are referred to as the ABI
(Application Binary Interface) register name. Even
though the registers are general-purpose, the aliased
name function should be respected. For example, the
saved and temporary registers are used for functions
where the coder knows when to save registers prior to
making the call and when they do not need to.

When the programmer calls a routine, it is termed the
calling routine and the routine that is being called is
the callee routine. The temporary registers (t0-t6) are
saved by the caller and the saved registers (sO — s11)
are saved by the callee. This responsibility is shown in
Table 2-2.

It is only necessary to save the registers that are
involved in the routines. So, if the caller was not using
register t1 then it would not be necessary to save it
prior to involving the call.

There are also 32 floating-point registers accessible to
the programmer which will be discussed at a later
point in the book.

The program counter (PC) keeps track of program
execution and is not used as a general-purpose
register. XLEN refers to the data width, which is either

32, 64 or 128 bits. Register functions will be covered in more detail as the book progresses.

21 RV32E and RV64E have 16 registers. The non-contiguous layout is for consistency between register sets
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Table 2-2 Caller/Callee Responsibility for X registers

Register Name ABI Name Saver Register Name ABI Name Saver
responsibility responsibility

x0 zero N/A x16 ab Caller
x1 ra Caller x17 a7 Caller
X2 sp Callee x18 s2 Callee
x3 gp N/A x19 s3 Callee
x4 tp N/A x20 s4 Callee
x5 t0 Caller x21 s5 Callee
x6 tl Caller x22 s6 Callee
x7 t2 Caller x23 s7 Callee
x8 s0/fp Callee x24 s8 Callee
x9 sl Callee x25 s9 Callee
x10 a0 Caller x26 s10 Callee
x11 al Caller x27 s11 Callee
x12 a2 Caller x28 t3 Caller
x13 a3 Caller x29 t4 Caller
x14 ad Caller x30 t5 Caller

This table shows that the temporary (TO-T7) and the argument registers (A0-A7) should be saved by the
caller and the saved registers (S0-S11) by the callee.

| 2.2.1.2. RV32I Base Instruction Set

The instructions are 32 bits wide; the general format is to include common fields such as:

Field Name Role

rd Destination Register

rsl Source Register 1

rs2 Source Register 2

opcode Operation Code

func 3 bit (funct3) and 7 bit (funct7) defines a particular operation
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imm Constant value such as Ox5F

2.2.1.3. Base instruction Formats

U

There are 4 Base Instruction Formats known as’

o |-type

e R-type
e S-type
o U-type

In addition, there are two variants of the I-type instruction known as B-type and J-type. These instructions
use conditional and unconditional branches respectively to alter program flow. The immediate fields are
used to encode the branch destination.

Conditional branches depend on whether certain program events have occurred, an example could be a
decrementing counter, where a branch in the program logic only occurs if the counter has reached value
zero.

An unconditional branch happens regardless of conditions. An example might be a jump to an interrupt
handler service routine® if a critical or non-critical event was encountered.

2.2.1.3.1. I-type Instruction

Most of the fields occupy the same bit positions across instructions. An example is the instruction addi
al,al, 1, which disassembles to 0x00158593. The breakdown of the fields for this instruction is shown
in Table 2-3.

The addi instruction format is termed I-type for immediate. The instruction adds the contents of register
al plus a constant of 1 to register al, so the effect is to increase the value of al by 1. The al register in
both the rd and rs1 fields corresponds to the value Oxb which is the 11th X register, so although the
programmer uses the more friendly register name, the machine code uses the x register number.

22 An interrupt is normally encountered in system level programming and could be used to process an attempt to access kernel memory or a user
level action such as a mouse click.
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Table 2-3 Bit fields of the addi I-type instruction

I-Type
addi al, al,1 0x158593
imm([11:0] rsl funct3 rd opcode
‘00000000000101011000010110010011
Bit 31 0
Bits 31:20 imm[11:0] Ox1
Bits 19:15 rsl 0xB
Bits 14:12 funct3 0x0
Bits 11:7 rd 0xB
Bits 6:0 Opcode 0x13
2.2.1.3.2. R-type Instruction

The next instruction add t3, tl, t2isan R-Type instruction as it uses the registers for both operands.
Register t2 is added to register t1 and the result is placed in register t3. Disassembly produces the
machine code 0x00730e33. The field breakdown is shown in Table 2-4

Table 2-4 Bit fields of the add R-Type instruction

R-Type addt3, t1, 2 00730e33
funct7 rs2 rsl funct3 rd opcode
0 0 0 O 0 0011100110000111000110011
Bit 31 24 19 14 11 6 0

Bits 31:25 funct? 0x0

Bits 24:20 rs2 0x7

Bits 19:15 rsl 0x6

Bits 14:12 funct3 0x0

Bits 11:7 rd Oxlc

Bits 6:0 Opcode 0x33

2.2.1.3.3. S-type Instruction

The Store Word instruction (sw) uses a register and an offset to calculate the destination address. This is
an S-type instruction. No destination register is involved since the destination is memory. The instruction
stores the 32-bits held in register t0 into the memory location pointed to by register t1 plus an immediate
offset of 0. The format of the S-Type instruction is shown in Table 2-5. Note that the immediate data is
broken down into two separate fields with the lower 5 bits replacing the unused (in this type of
instruction) destination (rd) field.
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Disassembly produces the machine code 0x00532023.

Table 2-5 Bit fields of the sw S-Type instruction

S-Type
sw t0,0(tl) 00532023
imm[11:5] rs2 rs1 funct3  imm[4:0] opcode
001010011001000000 0100011
Bit 31 24 19 14 11 6 0
Bits 31:25 imm[11:5]  0x0
Bits 24:20 52 0x5
Bits 19:15 rsl 0x6
Bits 14:12 funct3 0x0
Bits 11:7 imm[4:0]  Oxlc
Bits 6:0 Opcode 0x23
2.2.1.3.4. U-type Instruction

The U-Type format is used by two instructions — 1ui and auipc. There are 20 bits in the immediate field
which permits a larger range of immediate data. These 20 bits are shifted 12 places to the left and
represent bits 31 through 12 of a destination register.

The LUI instruction sets the lower 12 bits of the destination set to zero’s, as shown in Figure 2-2. An
additional I-type instruction (12-bit immediate) is used to provide bits 11 through 0 of the destination to
form a full 32-bit value.

AUIPC adds the 12-place, left shifted immediate 20 bits with the program counter, placing the result into
a destination.

Figure 2-2 LUI left shift of IMM bits into bits 31:12

31 19 0
F F F F F F
000O0OO0OOO0OO0OO0O1O010O0O1100100O0O0O0OO0OO0ODT1ITO0OGO0O©O0T171

00110010O0O0O0O0OO0OO0O1O0O0OO0O11T1(00O0O0O0O0ODO0OO0ODO0OO0OTO 0O

AUIPC example

Assume that the Program counter has the value 0x000100b0, the instruction auipc t0, 0x5a5a5 will add
the immediate data 0x5a5a5000 to 0x000100b0, placing this 0x5a5b50b0 into5a5b register tO0.
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Table 2-6 AUIPC example

Immediate value (left shifted by 12 5 a 5 a 5 0 0 0
places)

Current Program Counter 0 0 0 1 0 0 b 0

Register t0 5 a 5 b 5 0 b 0
LUl example
The instruction 1ui t1, 0x5a5a5 will add the immediate data 0x5a5a5000 to register t1.
Table 2-7 LUI example

Immediate value (left shifted by 12 5 a 5 a 5 0 0 0
places)

Register t1 5 a 5 b 5 0 0 0

The trace in Figure 2-3 show the contents of the registers after program execution.

Figure 2-3 Tracing AUIPC and LUI instructions

0x0 1] OxZaaaafllc4 OxZaaaafllc4 Ox3LLffff2ed
op OxZaaabdlb94 OxZaaabdlb94 tp O0x3££7=0£780 O0x3££7=0£780 t0 0x5a5p50k0
0x5a5a5006 15158 13 o2 Oxade 2630 fp 0x3fffffecsn
0x2aaabed040 al 0x0 Q Ox2aaabecff0
a2 OxZaaabed0s0 183253258384 a3 0x0 a 0x0 (4]
&5 ox0 Q ab ox0 Q Oxdd 221
52 0Ox2aaabecffl 183253258224 =3 0x2aaabed040 0x0 0
=5 OxZaaabecffl 183253258224 =6 Ox2aaabed090 =7 0x3ff7ffddos
=38 ox0 Q =9 ox0 Q 510 OxZaaab438e2
211 OxZaaakdd798 183253178264 t3 O0x3££Teb0690 274742314640 td 0x0 4]
t5 0x5 5 té Ox3fffff 274877902432 [t O0b 0
1 # Listing 3-35
2 # This demonstrates auipc and lui . .
3 Registers t0 and 1 after completion
2 -=scmion .mexe ofthe addi tl1, tl1, 6 instruction
5 .global _start
€ _start:
B+ 7 auipc tl, OxSaSab
8 lui tl, Ox5as5as
S addi tl, tl, &

The format of AUIPC is shown in Table 2-8 below.
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Table 2-8 Bit fields of the auipc U-Type instruction

U-Type
auipc t0,0x1 00001297
imm[31:12] rd opcode
o ooo0o000 0000000001001 010010111
Bit 31 11 6 0
Bits 31:12 imm[31:12] 0x13
Bits 11:7 rd 0x5
Bits 6:0 Opcode 0x17

LUI with two instructions

The instructions to load a 32-bit value such as 0x1234006 into a register would look like:
lui tl1, 0x1234 # Loads upper 20 bits

addi tl,tl, 6# Loads lower 12 bits

The first instruction shifts the 20-bit value over 12 places and places zeros in the lower 12 bits. The second
instruction adds the 12-bit value 0x006 to the current contents of t1 (0x1234000 + 006 = 0x1234006) and
places the result in t1 as shown in Figure 2-4.

Figure 2-4 Using lui and addi to generate a 32-bit immediate value.

lui tl, 0x1234 Register tl
addi tl1,tl,6 0x1234000
\‘Ox1234006
There is, however, an easier method by using the pseudo instruction - Load Immediate 1i. Instead of
using the two instructions shown above, the code using 11 looks like:

1i t1, 0x1234006.

This pseudo instruction could be translated into:
lui t1, 01234
addw tl1, tl1, 6

Pseudo instructions are automatically translated by the assembler to one or more real machine
instructions.

2.2.1.3.5. B-type Instruction

The B-Type instruction is used with conditional branches. With this instruction the immediate field has a
range of 13-bits. This is achieved by setting the least significant bit to be zero and then substituting its bit
position with bit 11 in the immediate field imm[4:1].
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The location of the label <putit> is at address 0x100f8 and the branch instruction is located at address
0x10104.

10104: fe029%ae3 bne t0,zero,100£8 <putit>
Table 2-9 Bit fields of the B-Type instruction

B-Type
bne t0, zero, label fe029%ae3
12 imm[10:5] rs2 rsl funct3  imm[4:1] 11 opcode
b1 2% 1110000000101 00110101 1100011
Bit 31 25 20 11 6 0
Bit 31 12 0x1
Bits [30:25] imm[10:5]  Ox3f
Bits [24:20] rs2 0x0
Bits [19:15] rsi 0x5 When ulating the immediate value
Bits [14:12] funct3 0x1 make sure thatbit 11is placed in the correct position
Bits[11:8] imm[4:1] 0x15 111111111010
Bit7 11 0x1
Bits 6:0 Opcode 0x63 Bit 11 (taken from bit 7 of the instruction)
Two's complementis 000000001011
12 10 8 6 4 2 0
imm data 1111111110100
I'scomplement 0 0 0 00 0O0O 001011
Add in the sign bit (bit12) 1 12 bitimm
2's complement 0000000001100

Since this a backwards pointing branch, the immediate field is a minus value; converting it using two’s
complement gives a value of Oxc or 12 places back.

2.2.1.3.6. J-type Instruction

Unconditional branches use the Jump and Link instruction (jal). This is a J-type instruction. It is similar
to the B-type instruction with the immediate bits in disjoint fields to allow for more efficient decoding.
In this example a jal instruction is encountered at program counter address 0x100c0 and the instruction
points to a label located at 0x100d4. The number of bytes to jump is encoded in the immediate bits as
shown in Table 2-10. The machine code produced is 0x014000ef. The opcode for the instruction is Ox6f
and the destination register is x1 which is the return address register (ra).

There is an aliased instruction 3 which uses the zero register instead of the ra register as shown below:

The aliased instruction 5 100b8 <quit>
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is encoded as:
jal zero,100b8 <quit>

Table 2-10 Bit fields of the J-Type instruction

J-Type
jal 100d4 (Program Counter currentlyat 100c0) 014000ef
imm[20] imm[10:1] imm[11] imm[19:12] rd opcode
o Joooooo 101 oo NN 0 0011101111
Bit 31 # 20 19 12 11 6 0
Bit 31 imm[20] 0x0
Bits 30:21 imm[10:1] Oxa
Bit 20 imm[11] 0x0
Bits 19:12 imm[19:12] 0x0
Bits 11:7 rd 0x1
Bits 6:0 Opcode OxBf
Note rd is the link register.

Write down the immediate bits in bit order

00O 0OODOOODI1O0I10O0O0O0OO0OOOOODOTOQO
2010 9 8 7 6 5 4 3 2111191817 161514 1312
Re-arrange immediate bits

00 00OO0OOOO0OOOOO0OOOOOOOOQO 010100
31 30 28282726252423222120#181716151413121110 8 8 7 675 3210
=0x14

More information regarding branch and jump instructions are covered in a dedicated chapter of the
book.

2.2.2.Additional fields funct3 and funct?7

The opcode can be the same for different related instructions. The opcode is 7-bits wide occupying bit
positions 6:0. To take a specific example the opcode 0110011 (0x36) refers to R-Type integer arithmetic
and logical instructions. Each of these instructions are differentiated by the funct3 and funct7 fields. The
numerical suffix refers to the number of bits used — funct3 is a three-bit field and funct7 is a seven-bit
field. This is really a ten-bit field broken up into two sub fields. It is non-contiguous to ensure consistency
across the different types of instructions (aiding decoders) and to avoid waste by reusing the bits for
different purposes, if a funct field is not required for that particular instruction type. The type of
instruction defines which funct field(s) is in use. The funct3 field will always occupy bits 14:12 on any
instruction that uses the field and funct7 (used on the R-Type instruction) will occupy bit positions 31:25.
The U and J-type instructions do not use the funct fields and will use these bits to specify a greater range
of immediate bits. Table 2-11 shows which of the funct fields are used with each instruction type.
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Table 2-11 Funct field usage with instruction types.

Instruction Type Funct3 field Funct? field
R-Type Yes Yes
I-Type Yes No
S-Type Yes No
B-Type Yes No
U-Type No No
J-Type No No

For R-Type instructions, the funct fields define the operation type. Some of these definitions are listed in
Table 2-12 below.

Table 2-12 Funct fields used for R-Type Integer instructions

Instruction Opcode Funct? Funct3
ADD 0110011 0000000 000
SUB 0110011 0100000 000
SRA 0110011 0100000 101
SLL 0110011 0000000 001
SRL 0110011 0000000 101
AND 0110011 0000000 111
OR 0110011 0000000 110
XOR 0110011 0000000 100

Note that ADD and SUB have the same funct3 value, they are differentiated by
bit 5 of funct7 and similarly with SRL and SRA instructions.

2.3.Coding Tools

Chapter One gave a brief introduction to the assembly process. The tool that will be used for assembly is
the GNU assembler (GAS). This utility is also used when compiling higher-level languages to provide
intermediate code during the compilation process. It is part of the open-source GNU Binutils* collection.
The binary tools include (amongst others) —

23 Use sudo apt install -y binutils - See https://www.gnu.org/software/binutils/ for more detail
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Table 2-13 GNU Tools associated with assembling and linking

Tool Name Function

as Assembler

Id Linker

GDB GNU Debugger

objdump Disassembles and dumps object file information

make Utility for assembling and linking multiple files, ignoring files that are up to
date.

The candidate platforms suggested in this chapter include the tools listed in Table 2-13. The GNU tools
are applicable to a wide range of architectures including Intel® and Arm®. The listings in this book have
all been tested with the GNU assembler?’. The GNU toolchain® also includes other programming tools
such as GNU Autotools and Bison for parsing.

The next section illustrates the use of all the tools listed in Table 2-13

2.3.1.Editing files

The first stage in the assembly process is to edit the source files. The assembly code is plaintext so basic
text editors such as vi or nano should be used. By convention the file suffix is “.s”, so a command to write
a source program could be a command such as vi testprogram.s which would edit an existing file or
create a new one if it did not already exist. An example of a small assembly program is shown in Listing
2-1.

Listing 2-1Assembly code example

.section .text

.global start

_BEarts

addi tl, zero,6 # mov 6 into tl

addi t2, zero, 11 # mov 11 into t2

add t3, tl, t2 # add t2 and tl result goes to t3
addi a7, x0, 93 # Call
ecall

24 The GNU assembler is recommended for all the listings here.

25 A toolchain is a collection of programming tools.
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The first line of code defines a label (_start) that marks the entry point of the program. The entry
.global?¢ is a directive to the assembler defining an action. Directives are not part of the actual machine
code that will be produced but will help the assembly process by providing instructions on how to control
flow, define symbols and reserve space as well as other tasks. They also aid the coder in that they can
define strings of text without having to refer to tables of ASCII codes. The code after the start label is
the actual code that will be assembled into RISC-V machine code.

The program moves two numbers 6 and 11 into two registers (t1 and t2) and then adds them together,
placing the result of the addition in register t3. The next two lines of code use Operating System calls
(syscalls) to gracefully exit the program.

2.3.1.1. System calls

System Calls (Syscalls) are service requests sent to the Operating Systems’ kernel to perform a privileged
task. These tasks include interaction with the hardware, file operations, memory management and
networking. When a syscall is invoked the system switches to a privileged mode which executes tasks in
a coordinated, standard manner. Syscalls are different across architectures and Operating Systems. With
RISC-V systems running under Linux, the first step is to place the syscall code into register a7 and then
use the ecall instruction to request the function. The last two instructions of Listing 2-1 shows how to
use the exit system call.

2.3.1.1.1. Bare Metal Programming

Bare metal programming is a term used when the code interacts directly with the machine itself, it does
not have the benefit of the Operating System support and so syscalls are unavailable. Bare metal
programming is commonly used in embedded systems.

2.3.1.2. Sections

Assembly language source files are typically divided into sections. The sections used with RISC-V assembly
files include the following.

Table 2-14 Assembly language sections

Section Name Purpose

text Contains the source level instructions.

.data Allocation of initialized variables.

.rodata Holds constants or text strings that are read only.
.bss Allocates uninitialized data buffers.

The following listing shows the use of sections and how they are interacted with by registers.

26 Some listings may use “.globl” . Both forms are acceptable to the GNU assembler
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Listing 2-2 Interacting with assembly sections.
.section .text
# The .text section contains the assembly language source instructions, omitting

# the prefix .section also works for .text, .data and .bss sections.

.global start

_start:

/* This program illustrates the use of sections in RISC-V assembly.

It also shows how to interact with memory via load and store instructions
Note this text is encapsulated using a multi-line comment.

The other comments using the # character are single-line comments */

# Interacting with .data section
lw a0, oneword # Loads the content of the address at oneword into a0l
1lh al, onehalf # Loads the content of the address at onehalf into al

1b a2, onebyte # Loads the content of the address at onebyte into a2

# Interacting with .bss section
la a3, bufferl

sw a0, 0(a3)

addi a7, x0, 93

ecall

# Interacting with .rodata section
1b a4, min

1lb a5, max

.data # This section initializes variables.

oneword: .word 2

onehalf: .half Oxaab5

onebyte: .byte 0x44

.section .rodata # This section can hold constants and text strings
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min: .byte 32
max: .byte 100
.bss # This section allocates memory space for storage

bufferl: .space 100

Sections can be shown with the objdump command (see page 2-23).

objdump -h listing3-3b

listing3-3b: file format elf6d4-littleriscv
Sections:
Idx Name Size VMA LMA File off Algn

0 .text 00000080 00000000000100e8 00000000000100e8 000000e8 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .data 00000024 0000000000011168 0000000000011168 00000168 2**0
CONTENTS, ALLOC, LOAD, DATA

2 .riscv.attributes 00000037 0000000000000000 0000000000000000 00000195 2**0

CONTENTS, READONLY

2.3.1.2.1. Virtual Memory Address and Load Memory Address

In the output of the objdump command given above there are field headings VMA and LMA. These are
the Virtual and Load memory addresses. The virtual memory address is the section address at runtime
and the load memory address is the location where the section is loaded.

These locations are usually the same. but can differ if ROM memory (LMA) needs to be re-located to
writable RAM memory (VMA).

‘ 2.3.2.Comments ‘

Comments are ignored by the assembler but important for maintaining code clarity. There are multi-line
comments beginning with /* and ending with */ and single line comments using the # character.

‘ 2.3.3.Assembling ‘

Note high-level languages have an additional stage between editing and
1.3 assembling — this is the compilation stage which will generate assembly code
1, from a high-level language source code.
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Later in*” the book, mixing of hybrid high-level languages and assembly code will be covered but until
then, only pure assembly language programming will be discussed.

Once the file has been edited it can be assembled. The assembler will check for syntax® errors and if
successful it will generate an object file. This is the main task of the assembler — to generate machine
code for the underlying processor architecture. It is also responsible for translating RISC-V pseudo
instructions into real machine code instructions. The object file uses the suffix “.0”. The GNU assembler
may be referred to as GAS!

The command to assemble a program is shown below:
as -0 testprogram.o testprogram.s

Note the order of files where the object file name is given first followed by the
source name.

When initially developing programes, it is normal to include extra information to assist with the debugging
process. Once the code is ready for final release this extra information is removed. The command to
include debugging information is:

as —-g -o testprogram.o testprogram.s

Including the debugging data increases the size of the code. The assembler ignores the comments which
are only used for human clarification purposes and have no meaning to the processor. Once the code
has been translated into machine code it is not yet in an executable state. Along with the actual machine
code, a number of symbol references may be defined. These may be references to symbols defined in
other object files that the current source program has no access to.

2.3.4.Linker

The linker’s role is to produce code that can be executed by the system, most large programs are not
standalone but instead consist of a number of smaller programs or library files. The linker “joins” these
programs together and generates the final executable. In addition, the linker has the responsibility of
resolving the symbol references. It will also perform optimization.

Other considerations are integration within the file system. Linux programs use the Executable and
Linkable format (ELF). This format is portable, supporting a wide range of platforms. ELF files consist of
headers and sections to aid with mapping the program into memory. The readelf utility analyzes the
ELF format. The ELF header can be shown with the command readelf -h testprogramas shown below:

readelf -h testprogram
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00O 0O 00 00 0O 00O 00

27 See Page 7-1.

28 Note logic/flow error checking is largely the coder’s responsibility.
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Class:

Data:

Version:

OS/ABI:

ABI Version:

Type:

Machine:

Version:

Entry point address:

Start of program headers:
Start of section headers:
Flags:

Size of this header:

Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

Section header string table index:

ELF64
2's complement, little endian
1 (current)

UNIX - System V

0

EXEC (Executable file)
RISC-V

0x1

0x100b0

64 (bytes into file)
1192 (bytes into file)
Ox4, double-float ABI
64 (bytes)

56 (bytes)

2

64 (bytes)

11

10

To produce an executable from the testprogram.o file use the command -

1ld -o testprogram testprogram.o

2.3.4.1. Linker Scripts

Linker scripts are used to describe memory allocation maps and are more commonly used in embedded

systems. They are text files.

The command 1d -verbose lists the contents of the default linker script —

GNU 1d (GNU Binutils for Debian)
Supported emulations:
elf6d4lriscv

elf6d4lriscv_1p64f
elfo6dlriscv 1p64

elf32lriscv

elf321lriscv ilp32f
elf321lriscv_ilp32

elf64briscv

2.40
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elf6dbriscv 1p64f
elf6dbriscv 1p64
elf32briscv
elf32briscv ilp32f
elf32briscv _ilp32

using internal linker script:

/* Script for -z combreloc */
/* Copyright (C) 2014-2023 Free Software Foundation, Inc.

Copying and distribution of this script, with or without modification,

/* DWARF 3. */

.debug pubtypes 0 : { *(.debug pubtypes) }
.debug ranges 0 : { *(.debug ranges) }
/* DWARF 5. */
.debug addr { *(.debug _addr) }
.debug line str { *(.debug line str) }
.debug_loclists .debug loclists) }

.debug macro { *(.debug macro) }

(@] (@] (@] (@] (@]
—_~—
*
—

.debug names { *(.debug names) }

.debug rnglists 0 : { *(.debug rnglists) }

.debug str offsets 0 : { *(.debug str offsets) }

.debug sup 0 : { *(.debug sup) }

.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }

/DISCARD/ : { *(.note.GNU-stack) *(.gnu debuglink) *(.gnu.lto *) }

On the Debian system used here (Linux starfive 6.6.20-starfive #41SF SMP Fri Sep 20 17:48:26
CST 2024 riscv64 GNU/Linux)the linker scripts are located at /1ib/riscv64-linux-gnu/ldscripts/

1f32briscv_ilp32f.x elf32briscv_ilp32.xdc elf32briscv.xe
elf32lriscv_ilp32f.xsceelf32lriscv ilp32.xw elf64briscv_1p64f.xce
elf6dbriscv_1p64.xdw elf64briscv.xs elf6dlriscv lpb64f.xswe elf6d4lriscv.xbn

elf32briscv_ilp32f.xbn elf32briscv_ilp32.xdce elf32briscv.xn
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| 2.3.5.GDB - The GNU Debugger

GDB is used to view program flow. The code can be run “one step (instruction) at a time” as a teaching
tool to promote understanding of program execution. It does this by displaying register and memory
contents along with the line of source code being executed. The tool is invaluable for coders looking to
track down more elusive issues such as unexpected results. By single stepping through the code, the
exact location where the error occurs can be readily identified. As mentioned earlier, the assembler
command as uses the -g switch to generate debugging information. The debugger can be launched by
the gdb command.

GDB can be installed on Debian systems with the command sudo apt install -y gdb

sudo apt install -y gdb

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done

The following additional packages will be installed:

libbabeltracel libboost-regexl.74.0 libc6-dbg libdebuginfod-common libdebuginfodl
libsource-highlight-common libsource-highlight4v5

Suggested packages:
gdb-doc gdbserver
The following NEW packages will be installed:

gdb libbabeltracel libboost-regexl.74.0 libc6-dbg libdebuginfod-common libdebuginfodl
libsource-highlight-common libsource-highlight4v5

0 upgraded, 8 newly installed, 0 to remove and 54 not upgraded.
Need to get 11.3 MB of archives.

After this operation, 24.9 MB of additional disk space will be used.

To illustrate GDB in action issue the command
gdb testprogram

$ gdb testprogram

GNU GDB (Debian 13.2-1) 13.2

Copyright (C) 2023 Free Software Foundation, Inc.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from testprogram...

(gdb) 1list
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.section .text

.global start

start:

addi tl, zero,6 # mov 6 into tl

addi t2, zero, 11 # mov 11 into t2

add t3, tl, t2 # add t2 and tl result goes to t3
addi a7, x0, 93

ecall

(gdb) b 1

Breakpoint 1 at 0x100b0O: file testprogram.s, line 6.
(gdb) run

Starting program: /home/alan/asm/misc/testprogram

Breakpoint 1, start () at testprogram.s:6

6 addi tl, zero,6 # mov 6 into tl

(gdb) n

7 addi t2, zero, 11 # mov 11 into t2

(gdb) n

8 add t3, tl, t2 # add t2 and tl result goes to t3
(gdb) n

9 addi a7, x0, 93

(gdb) i r tl

tl 0x6 6

(gdb) 1 r t2

t2 Oxb 11

(gdb) i r t3

t3 Ox11 17

(gdb) g

A debugging session is active.

Inferior 1 [process 8652] will be killed.
Quit anyway? (y or n) y

Table 2-15 lists some of the more commonly used GDB commands

Table 2-15 Commonly used GDB commands

Command Meaning

List List the source assembly file
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B1

Run
N(ext)
S(tep)
I(nfo) t1
I(nfo) t2
I(nfo) t3
Q(uit)

Sets a stopping point known as a breakpoint once the program runs, a number can
be used or a label such as b _start

Starts the program and halts at the first breakpoint (if any has been set).
Advances to the next (n)line(s)? of code, by-passing sub-routines.

Steps to the next (n)line(s) of code, entering sub-routines.

Shows the contents of register t1

Shows the contents of register t2

Shows the contents of register t3

Exits the program

GDB will be covered in more detail as the document progresses, in addition it will function as the primary

learning tool to illustrate program flow and how each of the instructions work3°.

| 2.3.6.0bjdump

The objdump utility is helpful with reverse engineering and understanding object code. The code can be

disassembled to show the original source instructions using the -d switch, for example

$ objdump -d testprogram

testprogram:

file format elfo64-littleriscv

Disassembly of section .text:

00000000000100b0 < start>:

100b0:
100b4:
100b8:
100bc:
100cO0:

The option -Mno-aliases allows us to see how the assembler translated the pseudo instruction 11 —

00800313 1i tl,8
00b00393 1i t2,11
00730e33 add t3,tl,t2
05400893 1i a7l,93
00000073 ecall

S objdump -d -M no-aliases testprogram

testprogram:

file format elf64-littleriscwv

Disassembly of section .text:

00000000000100b0 < start>:

100b0:

00800313 addi tl, zero, 8

29 Default is one line

30 The reader is encouraged to use GDB to step through the program listings.

2-23




Chapter 2 Getting started

100b4: 00b00393 addi t2,zero, 11
100b8: 00730e33 add t3,tl,t2
100bc: 05d00893 addi a’l,zero, 93
100cO: 00000073 ecall

Since the immediate data was small (less than one byte) 1i was achieved using the single instruction
addi.

2.3.7.Make

The commands that have been used so far for assembling and linking (as, 1d) have worked well enough
for our situation, however when multiple files are involved it is normal to use a build tool to accomplish
this. The make utility keeps track of what has been done and will only apply actions to the changed
portions. The instructions are conveyed to the utility using a makefile. The makefile below can be used
to assemble and link the program testprogram.s

Simple makefile

testprogram: testprogram.o

1ld -o testprogram testprogram.o

testprogram.o: testprogram.s

as -0 testprogram.o testprogram.s

The line at the top denotes the target file which depends on the object file which in turn is dependent on
the source file. The rules on how to create the target file are shown above, so the flow is 2>

e C(Create the target file (testprogram) from the object file (testprogram. o) which is created from
the source file (testprogram.s). The first target (here testprogran) is termed the default goal.
The make file is invoked by the command
make testprogram
as -o testprogram.o testprogram.s

1ld -o testprogram testprogram.o
or in this case simply enter -
make

make: 'testprogram' is up to date.

1S Note use Tab characters for indentation in the makefile.
o _/
1,

The next example assembles and links two programs into a single executable file.
OBJECTS = programl.o program2.o
all: myprogram

%.0 : %.8
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as $< -g -o sa@
myprogram: $ (OBJECTS)
1d -o myprogram $ (OBJECTS)

This example will allow the target to be passed to the makefile:-
TARGETFILE = $(targetfile)
print: $(TARGETFILE) .o
1d -o $(TARGETFILE) $(TARGETFILE) .o
$ (TARGETFILE) .o0: $ (TARGETFILE) .s
as -g -o $(TARGETFILE).o $(TARGETFILE).s
$ make targetfile=print
make: 'print' is up to date.
$ 1s

makefile print print.o print.s

Try the next script -
TARGETFILE = $(targetfile)
S (TARGETFILE) : $ (TARGETFILE) .o
@echo "Now linking $(TARGETFILE).o to $(TARGETFILE)"
1d -o $(TARGETFILE) $(TARGETFILE) .o
S (TARGETFILE) .o0: $ (TARGETFILE) .s
@echo "Now assembling $ (TARGETFILE) .s to $(TARGETFILE) .o with debug option"

as -g -o $(TARGETFILE) .o $(TARGETFILE).s

Invoke with make targetfile=<filename>.

2.4.Choosing a candidate platform

2.4.1.Hardware Platforms

Low-cost RISC-V hardware is available today, some RV64 hardware platforms that seem to work well are:

e VisionFive2 RISC-V Single Board Computer, StarFive JH7110 Processor with Integrated 3D GPU,
8GB Memory

O starfivetech.com/en

e LicheePi 4A 64bit LPDDR4X 16GB RISC-V Single Board Computer.

o https://wiki.sipeed.com/hardware/en/lichee/th1520/1p4a.html

e BananaPi BPI-F3

o https://docs.banana-pi.org/en/BPI-F3/BananaPi BPI-F3
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‘ 2.4.2 .Emulation and Simulation

An alternative is to use RISC-V emulation courtesy of QEMU which is an open-source emulator and
virtualizer. See https://www.gemu.org/docs/master/ for more information.

Installation is covered in the next section.

Cross compilation is another option which is covered later.

2.4.2.1. Configuring a QEMU based Virtual machine

Note if using physical hardware the following steps can be skipped (if desired).

at Architectures/RISC-V/QEMU - Fedora Project Wiki
(https://fedoraproject.org/wiki/Architectures/RISC-V/QEMU)

2.4.2.1.1. Install Qemu
sudo dnf install \

libvirt-daemon-driver-gemu \
libvirt-daemon-driver-storage-core \
libvirt-daemon-driver-network \
libvirt-daemon-config-network \
libvirt-client \
virt-install \
gemu-system-riscv-core \
edk2-riscv64d
[sudo] password for fedorauser:
Updating and loading repositories:
Repositories loaded.
gpg: directory '/root/.gnupg' created
gpg: /root/.gnupg/trustdb.gpg: trustdb created
Package "libvirt-daemon-driver-gemu-11.0.0-2.fc42.x86 64" is already installed.

Package "libvirt-daemon-driver-storage-core-11.0.0-2.fc42.x86 64" is already
installed.

Package "libvirt-daemon-driver-network-11.0.0-2.fc42.x86 64" is already installed.
Package "libvirt-daemon-config-network-11.0.0-2.fc42.x86 64" is already installed.
Package "libvirt-client-11.0.0-2.fc42.x86 64" is already installed.

Package Arch Version Repository Size
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Installing:
edk2-risc noarch 20250221-8.fc42 fedora 17.6 MiB

gemu-system-riscv-core x86 64 2:9.2.3-1.fc42

2.4.2.1.2. Set up access and default URI

$ sudo usermod -a -G libvirt $ (whoami)

$ mkdir -p ~/.config/libvirt && \

echo 'uri default="gemu:///system"' > ~/.config/libvirt/libvirt.conf

[fedorauser@fedora ~]$ sudo reboot

2.4.2.1.3. Get the image

[fedorauser@fedora ~1$ wget https://dl.fedoraproject.org/pub/alt/risc-
v/release/42/Cloud/riscv64/images/Fedora-Cloud-Base-Generic-42.20250414-
8635a3abbfcd.riscv64.gcow2

Saving 'Fedora-Cloud-Base-Generic-42.20250414-8635a3abbfcd.riscv64.qcow2’

2.4.2.1.4. Re-locate the image
$ sudo mv Fedora-Cloud-Base-Generic-42.20250414-8635a3a5bfcd.riscv64.qgcow2

/var/lib/libvirt/images/fedora-riscv.qcow?2

2.4.2.1.5. Set up the environment and yml file
$ mkdir ~/riscv
$ cd riscv
$ vi user-data.yaml
#cloud-config
password: linux
chpasswd:
expire: false
runcmd:
- touch /etc/cloud/cloud-init.disabled
2.4.2.1.6. Set up the VM
Configure parameters, editing as required, such as RAM and CPU parameters
$ virt-install \
——import \
--name fedora-riscv \

--osinfo fedora-rawhide \
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-—arch riscv64 \

--cpu mode=maximum \

--vcpus 4 \

--ram 8192 \

--boot uefi \

--disk path=/var/lib/libvirt/images/fedora-riscv.qgcow2 \
--network default \

--tpm none \

-—graphics none \

—--controller scsi,model=virtio-scsi \

--cloud-init user-data=user-data.yaml

Fedora Linux 42 (Cloud Edition)
Kernel 6.13.0-0.rc4.36.0.riscv64.fcd42.riscv64 on riscved (ttyS0)
enpls0: 192.168.122.132 fe80::5054:ff:fed3:927a

localhost login: [ 108.371505] cloud-init[982]: Cloud-init V.
'modules:final' at Thu, 15 May 2025 16:23:09 +0000. Up 107.79 seconds.

ci-info: no authorized SSH keys fingerprints found for user fedora.
<l4>May 15 16:23:11 cloud-init: #####H4###4H4H4H4HSHSHHHESHH
<1l4>May 15 16:23:11 cloud-init:--BEGIN SSH HOST KEY FINGERPRINTS-

24.2 running

<l4>May 15 16:23:11 cloud-init: 256 SHA256:WerTtl94f5Use//HZikpu0TZyJzztfVWhGBhPOMc])ZU

root@localhost (ECDSA)

<l4>May 15 16:23:11 cloud-init: 256 SHA256:FEOBAltWS12I0ewDzRywkOHOjkqgZ2x66Rx++4LHkwO8

root@localhost (ED25519)

[ 109.684931] cloud-init[982]: Cloud-init v. 24.2 finished at Thu, 15 May 2025 16:23:11
+0000. Datasource DataSourceNoCloud [seed=/dev/sr0] [dsmode=net]. Up 109.56 seconds

Log on with username “fedora” and password “linux”
localhost login: fedora

Password:

24.2.1.7. Check the architecture -
[fedora@localhost ~]$ lscpu
Architecture: riscvé64

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3
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addi a7, x0, 93
ecall
.data

hellorisc:.ascii "Hello RISC-V!\n"

Assemble, link and execute

$ as -g -o test.o test.s
[fedora@localhost ~]$ 1s

test.o test.s

[fedora@localhost ~]$ 1d -o test test.o
[fedora@Rlocalhost ~]$ chmod 777 test
[fedoraRlocalhost ~]$ ./test

Hello RISC-V!

2.4.2.1.10. Shutdown and restarting
Shutdown the machine with $ sudo poweroff
Restart with $ virsh start fedora-riscv -console

If -console is omitted® then systems can be shutdown with the virsh command —

$ virsh shutdown <name>. The active VMs can be shown with the virsh 1ist command —
S virsh list

Id Name State

1 fedora-riscv running

$ virsh shutdown fedora-riscwv

Domain 'fedora-riscv' is being shutdown

Shutdown all running systems using the script below -

for 1 in “virsh list | grep running | awk '{print $2}'"'; do virsh shutdown $i; done
2.4.2.1.11. Optional activities
Add network tools

$ sudo dnf install -y net-tools

31 This would be the case for remote systems
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2.4.2.1.12. Grow the virtual disk capacity

The virtual disk image can be expanded with gemu-img -

resize /var/lib/libvirt/images/fedora-riscv.qgcow?2 +20G gemu- img

This adds 20G capacity to the existing image. The next task is to boot the image and grow a partition
(here partition3 will be expanded) with the £disk utility provided by the virtual machine
[fedoraRlocalhost ~]$ sudo fdisk /dev/vda

Welcome to fdisk (util-linux 2.40.4).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Command (m for help): p

Disk /dev/vda: 25 GiB, 26843545600 bytes, 52428800 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt

Disk identifier: D8EE907C-0F17-41BA-BBEC-8A0DA4FB0950
Device Start End Sectors Size Type

/dev/vdal 2048 206847 204800 100M EFI System

/dev/vda2 206848 2254847 2048000 1000M Linux extended boot
/dev/vda3 2254848 10485726 8230879 3.9G Linux root (RISC-V-64)
Command (m for help): e

Partition number (1-3, default 3):

New <size>{K,M,G,T,P} in bytes or <size>S in sectors (default 23.9G):
Partition 3 has been resized.

Command (m for help): p

Disk /dev/vda: 25 GiB, 26843545600 bytes, 52428800 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt

Disk identifier: D8EE907C-0F17-41BA-BBEC-8A0DA4FB0950
Device Start End Sectors Size Type

/dev/vdal 2048 206847 204800 100M EFI System
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/dev/vda2 206848 2254847 2048000 1000M Linux extended boot
/dev/vda3 2254848 52428766 50173919 23.9G Linux root (RISC-V-64)
Command (m for help): w

The partition table has been altered.

Syncing disks.

The fdisk utility has expanded the partition to 24G compared to the previous capacity of 4GB.

Verify from the Operating System -

[fedora@Rlocalhost ~]$ 1lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
srO 11:0 1 1024M O rom

zramO 251:0 0 7.7G 0 disk [SWAP]

vda 252:0 0 25G 0 disk

F—vdal 252:1 0 100M 0 part /boot/efi
Fvda2 252:2 0 1000M 0 part /boot

L vda3 252:3 0 23.9G 0 part /var

/home

/

2.4.2.2. Updating Fedora

$ sudo dnf upgrade --best
Fedora RISC-V 4.1 kB/s | 3.8 kB 00:00

Dependencies resolved.

Package Arch Version Repository Size
Installing:
iwlegacy-firmware noarch 20230804-153.£fc38 fedora-riscv 140

2.4.2.3. Simulators

Simulators are as the name suggests program that run on the native system, providing the functionality
of a target system. They can normally be run online or perhaps under the control of an environment such
as Java. Two such programs are:
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e (CPUlator
e RARS
2.4.2.3.1. CPUlator

CPUlator* is an online simulator that supports RV32. The simulator is an excellent tool for debugging as
it provides single stepping through the code, as well as showing memory, registers and code disassembly.

To get started select the system to be emulated (here RISC-V RV32) as shown in Figure 2-5 and enter
code. The code can be made executable in the simulator by selecting <Compile and Load> as shown in
Figure 2-6. The code can be executed one line at a time by selecting <Step Into>. Each step will show
changes to the register and memory contents.

32 The URL for CPUlator is https://cpulator.01xz.net/
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Figure 2-5 CPUlator home page

& cpulator.0lxz.net

CPUlator Computer System Simulator

CPUlator is a Nios II, ARMv7, MIPS, and RISC-V RV32 simulator of a computer system (processor and I/0 devices) and debugger that runs in
a modern web browser. It is designed as a tool for learning assembly-language programming and computer organization.

To start using CPUlator now, choose a computer system to simulate, then follow the link.

To learn more, try a sample program in the simulator (Help — Sample programs), or see the documentation.

Choose a system to simulate

Architecture System
Any Nios Il generic
Nios Il Nios Il DE1-SoC
ARMvV7 Nios Il DE1-SoC (v16.1)
MIPS32r5 Nios Il DE2-115
MIPS32r6 Nios Il DE2-115 (v16.1)
RISC-V RV32 Nios Il DE2

Nios Il DEO

https://cpulator.01xz.net/?sys=nios Go

Nios Il generic
Nios Il system with 4 GB of memory and no other 1/0 devices

Optional I/0 Devices @
| Beam balancer @
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Figure 2-6 Compiling and executing code with CPUlator

Step Into
F2

Step Over
Ctrl-F2

Step Out
Shift-F2

Restart
Ctrl-R

Reload
Ctrl-shift-L

Continue Stop

i v
F3 F4 File

¥ Registers

[# Editor (Ctrl-E)

Refresh Compile and Load (F5) Language: Rv32 8
pc | ©000000c 1 .global _start
zerox0 | 00000000 2 _start:
ra x1 00000000 3
SpX2 | 00060000 Register, 4 1i t1, 0
gpx3 | 00000000 Tvalues I/5/// 1§ t2, 10
tpx4 | oeoeoeoe et % dnc:  add t1, t1, 1
t0 x5 00000000 .
t1 x6 | 00000006 ! bne t1,t2, inc
t2x7 | eoo0000a 8 i a7,93
sOx8 | 0000000 9 ecall
s1Xx9 | 00000000
a0 x10 00000000
al x11 00000000
a2 x12 00000000
a3 x13 | 00000000
a4 x14 00000000
a5 x15 | oe0e0000
a6 x16 | 00000000
a7 x17 00000000
s2x18 | 00000000
s3 x19 00000000
s4x20 | 00000000
s5 x21 00000000
S6 X22 | 00000000
s7 x23 00000000
s8 x24 | 00000000
ELLGHECIEY K Call stack | 3 Trace | 3k Breakpoints Show memory
¥ Watchpoints | ¥ Symbols | ¥ Counters contents
———
& Settings Shows code
disassembly
Number Display Options
Size: Word a8
Format: Hexadecimal 8
Memory words perrow: 4 B

Editor Options

Help ~

untitled.s [changed since save]

QA& </> Disassembly (Ctrl-D) | Q Memory (Ctrl-M)

& Messages

Compile succeeded.

Compiling...
Code and data loaded from ELF executable into memo

ry. Total size is 24 bytes.
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2.4.2.3.2. RARS

RARS33 stands for RISC-V Assembler and Runtime Simulator. It is also an excellent tool for learning RISC-
V assembly language.

Figure 2-7 RARS Execution screen
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Refer to the URL in the footnote for more information on CPUlator and RARS.

In this example the downloaded RARS version was rars 3897cfa.jar as shown in Figure 2-8. To run
execute java -jar rars 3897cfa.jar.

33 The URL for RARS is https://qithub.com/TheThirdOne/rars/releases/tag/continuous
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Figure 2-8 Downloading RARS

i (] 2% github.com/TheThirdOne/rars/ Féleasesftag/continuous

v Assets 3

@rars_S 897cfa.jar
] |

The following link lists more simulators — https://www.riscvschool.com/risc-v-simulators/

‘ 2.4.3.Using strace

The strace utility can be used to monitor which syscalls have been invoked by a particular program or
process: -

$ strace -c ./print

Hello again!

% time seconds usecs/call calls errors syscall
0.00 0.000000 0 1 write
0.00 0.000000 0 1 execve
100.00 0.000000 0 2 total

Strace, here shows that the syscalls write and exit were invoked once.
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| RISC-V Instructions Covered in Chapter 2 ‘

addi Add Immediate Example: addi t2, zero, 11

add Add (register-to-register) Example: add t3, t1, t2
ecall — Environment call (used for syscalls)

lui — Load Upper Immediate

auipc — Add Upper Immediate to PC

sw — Store Word

N o v ok w NoPe

jal / jalr — Jump and Link / Jump and Link Register (implicitly discussed in context of control
transfer)
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Exercises for chapter 2

What qualifier would you add to the as command to embed debug information?
What is the purpose of a linker?

How many registers are available for general purpose use?

What are assembly directives?

What are syscalls?

What is the function of a makefile?

What are assembly aliases?

© N @ v A~ w N R

What tool is used to disassemble an executable program
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Chapter 3. Dealing with memory

Overview of the chapter

Chapter 3 focuses on how RISC-V assembly interacts with memory, introducing key concepts such as
loading, storing, and addressing. It builds on previous chapters by explaining how data is accessed,
moved, and manipulated in memory during program execution. Unless specified otherwise the majority
of the programs throughout the book were built and executed on 64-bit systems3*.

3.1.Load and Store instructions

Memory addresses are loaded from memory into registers and stored back from registers to memory.
Operations are with respect to memory so loading from memory to registers is a read operation and
storing from registers is a write operation. The method by which memory addresses are derived is known
as addressing modes and there are several. The code fragments in this chapter will show how to
communicate with memory and will also introduce various addressing modes.

Load and store instructions can access memory. Data is loaded from memory, acted on and then stored
back to memory. This is termed load-store architecture.

3.1.1.LOAD Instructions (Memory = Registers)

3.1.1.1. Examining memory with GDB

GDB can be used to examine memory. The format of the command is x/nfu addr. Here the parameters
have the following meaning:

Table 3-1 Using GDB to display memory contents

B How much memory to display in units, with a default value of one.

£ This is the display format; default is to display in hex. The main options are o(octal), x(hex),
d(decimal), u(unsigned decimal), t(binary), f(float), a(address), i(instruction), c(char),
s(string)

u Unit size b = byte h = halfword (2 bytes) w = word (4 bytes) g = giant (8 bytes)

Example
(gdb) x/16w 0x4100e0

0x4100e0: 0x6c6c6548 0x00000a6f 0x00000000 0x00000000
0x4100£0: 0x0000002¢c 0200000002 0x00080000 0x00000000
0x410100: 0x004000b0 0x00000000 0x00000028 0x00000000

34 see page 4-8 for discussion regarding 32-bit and 64-bit addition behavior.
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0x410110: 0x00000000 0x00000000 0x00000000 0x00000000

To examine memory pointed to by a label (mymemorylocation) the following syntax can be used —

(gdb) x /l6xw &mymemorylocation

0x11104: 0x0000abcd 0x00001234 0x00000000 0x00000000
0x11114: 0x36410000 0x72000000 0x76637369 0x002c0100
0x11124: 0x72050000 0x69343676 0x5£307032 0x3070326d
0x11134: 0x7032615f 0x32665£30 0x645£3070 0x5£307032

3.1.1.2. Load and Store example

Listing 3-1 below shows a basic example of how to read from and write to memory.

The first instruction 1a, t0, wordl the address (here it is 0x11110) of word1 into register t0. The data
is identified by the label word1 inthe .data section of the code. The contents of the address are loaded
into the 64-bit register t1, since the instruction is load word the upper 32-bits of the destination register
are sign extended giving a 64-bit value of 0xffffffffabcd1234 (since bit 31 isa 1). The load word unsigned
treats the upper 32-bits differently, it pads them with zeros giving a result of 0x00000000abcd1234.

The next instruction 1a t3, bufferspace is the destination address for the data that will be loaded into
memory. The address is identified by the label bufferspace.

Next the instruction sd t1, 0(t3) storesthe doubleword held intlinto the memory address pointed
to by register t3 (bufferspace), Finally sd t2, 8 (t3) stores the 64-bits in register t2 into memory eight
places (the offset) from the start of bufferspace. The format of store is to specify the source location
into a memory address specified by a register added to an offset

Listing 3-1 Basic read (load) and write (store) memory operation

/*Listing 3 1 Basic read (load) and write (store) memory operation, the program defines
four bytes, and copies them to a defined memory location (bufferspace), illustrating
load and store operations*/

.section .text

.global start

_ Sitart:

.option norelax

la t0, wordl

1w tl, 0(tO0) # tl = Oxffffffffabcdl234

/*Reads in the value Oxabcd into register tl, note that lw sign extends and lwu is zero
filled*/

lwu t2, 0(t0) # t2 = Oxabcdl234
la t3, bufferspace # Load the address of bufferspace into t3
sd tl, 0(t3) # Store the value of the doubleword held in register tl into

the memory location pointed to by register t3 plus an offset of O.
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Figure 3-1 GDB trace of listing3-1

Zero 0x0 Q ra OxZaaaaef44s OxZaazaef44s
3l Ox3fffE££480 Ox3IELL£££480 [=)23 OxZaaakbclkod Ux2aaabclkbf4
Tt 0x3ff7ele T80 Ox3££f7eleTE0 td 0x11110 &S5904

tl Oxffffffffabodl234 -1412823820 t2 Oxabcdl234 2882343476
o OxZaaabdd2cO OxZaaabdd270 183253193328
ald 0x0 o] Ox2aaabdd270 183253193328
az OxZaaabdac4l 0x0 o}

ad 0x0 Q 0x0 v}

=1 0x0 a Oxdd 221

=52 OxZaaabdd2co 18325315934 OxZaaabdd270 183253193328
=4 Ox3ffTEfdcks 274743680184 ox0 Q

=14 OxZaaabdac40 183253183552 OxZaaabcZ3al 183253083040
=& 0x0 Q Ox2aaabcZ3ac 183253083052
510 OxZaaab34ddz 183252504018 OxZaaab362cO 183252505376
t3 0x11114 &5508 OxZaaabdb 44739547

t5S 0x104 Zal B

9 /*Reads in the wvalue Oxabcd into registc
10 and lwu is zero filled*/

11 1lwu t2, 0{to) # £2 = Oxabcdiff4

12 1a t3, bufferspace # Load the a

13 =d tl, 0(t3) # Store the ey £l into the memory
14 =d t2, 2({t3) # Store thi 2 into the memory

Ngfe the contents of registers t1 and

2o porreat: aeess - 12 are dependent on whether the

instructions 1w or 1wu were used.

(gdb) =/4wx 0x11114

Px11114: Oxakbcdl234 OxELEFEFFf Ox00000000 0x00000000
(gdb) n

(gdb) =/ 4wx O0x11114

Px11114: Oxabcdl234 OxffEFFfFf Oxabcodl234 0x00000000
{gdbk) run

[he program being debugged has been started already.
Ftart it from the bkeginning? (v or n) ¥
Ftarting program: /home/alan/asm/chapter3/tutorial3-la

After sd
After sd

t1, 0(t3)
t2. 8(t3)

Preakpoint 1, start () at tutorial3-la.s:7

{gdb} n

(gdb) x/4wx 0x11114

Fxllll4: Oxabcdl234 OrEfEEFEFE Q=00000000 Q0x00000000
(gdib) n

(gdk) =/ /4wx 0x11114

Pxll1114: Oxabcdl234 OXELELEFFEE Oxabcdl234 0x00000000

Note the sd command stores a doubleword (64bits at a time). The store word (sw) instruction is
somewhat unusual in that the first register is the source.

It is important to understand how the 1w and 1wu instructions differ. Load word (Iw) loads 32-bits into
the lower half of the 64-bit register and sign extends the upper 32-bits. Load word unsigned (lwu) zero
fills the upper 32-bits of the register.
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3.2. Outputting (Writing) ASCII text

The next listing shows how text can be sent to the standard output device (stdout) — the screen. The
write syscall will do this job and it has the decimal value of 64. Three registers (a0, al, a2) hold the
parameters that are required by this syscall and are set up as shown in Table 3-2.

Table 3-2 Parameters required by the Write syscall

Register Parameter meaning

a0 Holds value 1 (stdout)

al Hold the address of the output text (located at the label message)
a2 Contains the length of the output text (12 characters)

Note the message string is terminated by the newline character (/n)

Listing 3-2 Use of the Write Syscall
# listing3-2.s
.section .text
.global start
_start:
1i a0, 1 # use a0 for stdout
la al, message # Load the address of the message text
1i a2, 12 # Store the message length
1i a7, 64 # Write syscall
ecall
1i a7, 93 # Exit syscall
ecall
.data

message: .ascii "Hello RISCV\n"

Execute the program with the command —
./listing3-2

Hello RISCV

The unaliased version of this program is shown below:
objdump -d -M no-aliases listing3-2
listing3-2: file format elf64-littleriscv
Disassembly of section .text:

00000000000100e8 < start>:
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100e8: 00100513 addi a0, zero, 1

100ec: 00001597 auipc al,0Ox1

100£f0: 01c58593 addi al,al,28 # 11108 < DATA BEGIN >
100£f4: 00c00613 addi az2,zero,12

100£8: 04000893 addi a’l,zero, 64

100fc: 00000073 ecall

10100: 05d00893 addi a’l,zero, 93

10104: 00000073 ecall

GDB can be used to show the memory layout -

(gdb) x /16c &message

0x11108: 72 'H' 101 'e' 108 'l' 108 'l1' 111 'o' 32 ' ' 82 'R' 73 'I'

0x11110: 83 'S' 67 'C' 86 'V' 10 '\n' 65 'A' 54 '6' 0 '\000' 0 '\000'

This shows that the ASCII characters are laid out starting at the lowest address (0x11108) then counting
upwards to Ox 11113.

3.3. Inputting (reading) values

The next example shows how to read in a value using the read syscall. The read syscall uses the value 63
and places the input into memory defined by the symbol buffer.

Table 3-3 Parameters required by the read syscall

Register Parameter meaning

a0 Holds the value 0 (stdin)

al Hold the address of the storage buffer

a2 Contains the length of the input characters

Listing 3-3 Input operation

# This is a simple program that reads in a single digit
.section .data

buffer:

.space 1

.section .text

.global start

_ Sitart:

1i a0, 0 # file descriptor 0 (stdin)
la al, buffer # address of the buffer
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1i a2, 1 # number of bytes to read
1i a7, 63 # Read syscall

ecall

1i a7, 93 # syscall number for exit
ecall # make the system call

The GDB session below shows that the memory location buffer holds the value 54 decimal which is the
ASCI code of the character “6”.

16 1i a7, 93 # syscall number for exit
> 17 ecall # make the sy
18

The number "6" was entered and
this can be shown at the
memory location buffer

native process 71361 (rags

Reading symbols from #isting3-3a...

(gdb) b 14

Breakpoint 1 at 0xf00fc: file listing3-3a.s, line 14.
(gdb) run

Starting progrgh: /home/alan/asm/chapter03/listing3-3a
Breakpoint M () at listing3-3a.s:14

(gdb) n A" & means the address of buffer
(gdb) = /lbc sbuffer ) e
Oxll108: 54 1410 Ap— 54 is the ASCIl value for "6

3.4. Relative and absolute addressing

Program Counter (PC) relative addressing is used to reference locations relative to the program counter.
For example, a location could be accessed as PC +100 which would refer to a location 100 places beyond
the current program counter’s contents. Execution of consecutive(non-branch/jump) instructions
advances the program counter by four, since instructions have a width of 32-bits (4 bytes). It is important
to facilitate forward and backward locations. Absolute addressing refers to the actual location in memory
where an instruction or data resides.
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‘ 3.4.1.RISC-V Assembler Modifiers
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I92:|]l?u!:l000'[00OO'IZOOOI000'[00000000000000000000000
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Figure 3-2 AUIPC and ADDI instruction example to generate an address

The assembler supports instructions to generate relative and absolute addresses.
The address is broken up into the 12-bit lower portion (lo) and a 20-bit upper portion
(hi). Before discussing this topic in detail - consider how the pseudo instruction 1a
breaks into the instructions auipc and addi:

la al, message
Disassembles to 2>
00000000000100e8 < start>:

100e8: 00100513
1i a0, 1
00001597 auipc al,0Oxl
100£0: 01c58593 addi al,al, # 11108

<_DATA BEGIN >

The upper 20 bits (from auipc) are taken from the Program Counter’s current
contents ( ) and the lower 12 bits (from addi) are

The immediate value of Ox1 is placed in the al register (from the auipc
instruction) and is then shifted 12 places, causing it to occupy the upper 20 bits
of the register. Register al now holds the value 0X00001000. This is added to
the value in the Program Counter giving Ox110ec. Next the immediate value
(0x1C) (from the addi instruction) is added to the contents of al and placed in
register al, so al now contains 0x11108.

The steps are shown in Error! Reference source not found..

Using the GDB command info variables shows:
All defined variables:

Non-debugging symbols:

0x0000000000011108 _ DATA BEGIN
0x0000000000011108 message
0x000000000001111f  SDATA BEGIN
0x000000000001111f  bss start
0x000000000001111f edata
0x0000000000011120  BSS END_
0x0000000000011120 end

This confirms that the address of the string message resides at 0x11108. It also
shows the value of the pseudo instruction 1a which is much easier to use. The
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assembler also helps us if we do not use the pseudo instructions. The instructions can resolve addresses
by using modifiers such as $1o, %hi, $pcrel hi and %pcrel lo.

Table 3-4 Absolute and relative adressing
Modifier Format/Example Description

%hi lui al, %hi(symbol) Loads upper 20 bits of the symbol’s
address into register al

%lo addi al, al, %lo(symbol Loads lower 12 bits of the symbol’s
address into register al

%pcrel_hi  auipc aZ, Spcrel hi(symbol) Loads the high 20 bits of a relative
address between the PC and symbol

%pcrel_lo addi a2, a2, Spcrel lo(label) Loads the high 20 bits of a relative
address between the PC and label

The reason that two instructions are needed is that there is no single instruction that is capable of loading
a 32-bit immediate value. Referring back to the I-type and U-type instructions on page 2-6, there are
instructions that load 12 bits and instructions that load 20 bits. Combining them is how a 32-bit
immediate value is achieved.

e LUl is a U-type instruction and sets the low order bits to zero in the destination register and fills
in the high order bits.

e ADDI is an I-type instruction and adds in the low order bits to the destination register.

o AUIPC sets the destination register’s high order bits to the sum of the immediate value and the
program counter with the lo order bits set to zero.
The next listing shows an example of PC-Relative addressing.
Listing 3-4-Relative addressing example
/* Listing 3-4
This listing shows how to use PC-Relative addressing
using modifiers*/
.section .data
message:
.ascii "This is a line of text\n"
.equ writecall, 64
.equ exitcall, 93
.equ stout, 1
.equ stringlength, 23

.section .text
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.global start

_start:

11 a0, stout # stdout

labell: auipc al,%pcrel hi (message) # Loads upper 20 bits
addi al,al,%pcrel lo(labell) # Loads lower 12 bits

1i a2, stringlength # String length

1i a7, writecall # Write syscall

ecall

1i a7, exitcall # syscall number for exit

ecall # make the system call

Listing 3-5 shows absolute addressing is achieved with $10 and %hi.
Listing 3-5 Using absolute addressing with %lo and %hi

This listing shows how to generate absolute addressing
using %lo and %$hi modifiers*/

.section .data

message:

.ascii "This is a line of text\n"

.equ writecall, 64

.equ exitcall, 93

.equ stout, 1

.equ stringlength, 23

.section .text

.global start

_BEarts

1i a0, stout # stdout

lui al, %hi(message) # Loads upper 20 bits of mesages' absolute address
addi al,al,%lo(message) # Loads lower 12 bits of message's absolute address
1i a2, stringlength # String length

1i a7, writecall # Write syscall

ecall

1i a7, exitcall # syscall number for exit

ecall # make the system call
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The first absolute addressing instruction 1ui ai, %hi (message) loads al with the value 0x11000, the
next instruction addi al, al, %lo (message) addsin Ox108 to al giving a final result of 0x11108 which
is the absolute address of the symbol message.

3.5. Linker Relaxation

The directive .option norelax is used to disable linker relaxation®. Relaxation is used to optimize
performance by reducing the number of instructions when the program’s address range is limited. This
is illustrated in the next two listings.

Listing 3-6 Non relaxed version of code

# This version does not use relaxation

.section .data

ask:

.ascii "Please input a character\n"

.align 2

confirm:

.ascii "You entered: \n "

.align 2

linefeed:

.ascii "\n"

buffer:

.space 4

.section .text

.global start

_BEarts

.option push # Save context

.option norelax # Turn off relaxation to set up the global pointer
l:auipc gp, $pcrel hi( global pointers$)

addi gp, gp, %pcrel lo(lb)# b for back

.option pop # Now restore relaxation

.option norelax

1i a0, 1 #stdout

la al, ask #Text for first output string

1i a2, 27 #String length

35 See https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain for more information on relaxation.
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1i a7, 64 # Write syscall

ecall

1i a0, 0 # file descriptor 0 (stdin)
la al, buffer # address of the buffer
1i a2, 1 # number of bytes to read

1i a7, 63 # Read syscall

ecall

1i a0, 1 #stdout again

la al, confirm # Text for second output string
1i a2, 15#Length

1i a7, 64 #Write syscall

ecall

1i a0, 1 #stdout again

la al, buffer

1i a2, 1 #Length

1i a7, 64 #Write syscall

ecall

# Tidy up with a newline!

11 a0, 1

la al, linefeed

11 a2, 1

1i a7, 64

ecall

1i a7, 93 # syscall number for exit

ecall # make the system call

The numeric label 1 is suffixed with ‘b’ or “f’ for backward and forward references respectively.
Listing 3-7 Relaxed version of code

# This version uses relaxation

.section .data

ask:

.ascii "Please input a character\n"

.align 2
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confirm:

.ascii "You entered: \n "

.align 2

linefeed:

.ascii "\n"

buffer:

.space 4

.section .text

.global start

_start:

.option push # Save context

.option norelax # Turn off relaxation to set up the global pointer
1: auipc gp, %pcrel hi( global pointers$)
addi gp, gp, %pcrel lo(lb)

.option pop # Now restore relaxation state
# .option norelax is commented out in this version
1i a0, 1 #stdout

la al, ask #Text for first output string
1i a2, 27 #String length

1i a7, 64 # Write syscall

ecall

1i a0, 0 # file descriptor 0 (stdin)

la al, buffer # address of the buffer

1i a2, 1 # number of bytes to read

1i a7, 63 # Read syscall

ecall

1i a0, 1 #stdout again

la al, confirm # Text for second output string
1i a2, 15#Length

1i a7, 64 #Write syscall

ecall

1i a0, 1 #stdout again

la al, buffer

1i a2, 1 #Length
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1i a7, 64 #Write syscall

ecall

# Tidy up with a newline!

1i a0, 1

la al, linefeed

11 a2, 1

1i a7, 64

ecall

1i a7, 93 # syscall number for exit
ecall # make the system call

Linker relaxation is used to provide more efficient coding. It is not always necessary to specify the full 32-

bit address range as many sections of code can run in the 12-bit range (minus 2048 to plus 2047 bytes)
without having to use auipc to load the upper 20-bits.

There are several types of linker relaxation, however only global pointer relaxation will be discussed here.

The global pointer can be used to specify an offset. So, rather than having to specify two instructions, we
can drop auipc and only use one instruction with the global pointer as an offset.

This is an optimization performed by the linker as it has a global view of all the files that will be linked
together Table 3-5% shows how relaxation reduces the code size and enhances performance. Since the
contents of the .data section are small enough to fit into 12 bits, the upper 20 bits need not be fetched
each time.

The real gain is not so much the size of the code but with performance. Code that uses repetitive loop
iterations can benefit greatly in terms of reduction of execution time.?’

Table 3-5 Comparison of relaxed and non-relaxed code

Listing 3-6 Non relaxed version of code

00000000000100e8 <_start>:

100e8: 00002197  auipc gp,0x2

100ec: 88818193 addi gp,gp,-1912 # 11970 <__global_pointer$>
100f0: 00100513 addi a0,zero,1

100f4: 00001597 auipc al1,0x1

100f8: 07c¢58593 addi al,al,124 # 11170 <__DATA_BEGIN_ >

100fc: 01b00613 addi a2,zero,27

36 The listings were generated by objdump -d -M no-aliases <file>

37 Refer to RISC-V ABIs Specification (https://lists.riscv.org/q/tech-psabi/attachment/61/0/riscv-abi.pdf) section 8.5.5 for more information on
the global offset table.
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04000893 addi a7,zero,64
00000073 ecall
00000513 addi a0,zero,0
00001597 auipc al,0x1
09158593 addi al1,a1,145 # 1119d <buffer>
00100613 addi a2,zero,1
03f00893 addi a7,zero,63
00000073  ecall
00100513 addi a0,zero,1
00001597  auipc al1,0x1
06858593 addi al,al,104 # 1118c <confirm>
00f00613 addi a2, zero,15
04000893 addi a7, zero,64
00000073 ecall

00100513 addi a0, zero,1

00001597 auipc al1,0x1

06158593 addi al,a1,97 # 1119d <buffer>
00100613 addi a2,zero,1

04000893 addi a7,zero,64

00000073 ecall

00100513 addi a0,zero,1

00001597 auipc al1,0x1

04858593 addi al,al,72 # 1119c <linefeed>
00100613 addi a2, zero,1

04000893 addi a7, zero,64

00000073 ecall

05d00893 addi a7, zero,93

00000073 ecall

Listing 3-6 auipc count

100e8: 00002197 auipc gp, 0x2
100f4: 00001597 auipc al,0Oxl
1010c: 00001597 auipc al, 0x1
10124: 00001597 auipc al,0Oxl
1013c: 00001597 auipc al, 0x1
10154: 00001597 auipc al,0Oxl
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Listing 3-7 auipc count
100e8: 00002197 auipc gp, 0x2
100£f4: 00001597 auipc al,0x1

3.5.1.Further relaxation example

The global pointer is set up as an offset in the middle of the 12-bit address space and uses the linker
defined symbol _ global pointer$ for initialization. The listing below disables linker relaxation,
initializes the GP register and then re-enabled relaxation.

Listing 3-8 Further example of linker relaxation use

/*Listing 3-8 Basic read (load) and write (store) memory operation, the program defines
four bytes, and copies them to a defined memory location (bufferspace), illustrating
load and store operations. This version uses linker relaxation, thus saving an
instruction using the gp register.*/

.section .text
.global start
_start:
.option relax
.option push # Save the options state
.option norelax # Turn off relaxation to get the global Pointer value
la gp, _ global pointer$
.option pop # Restore the options state, with relaxation enabled
la t0, wordl
1w tl, 0(t0) # tl = Oxffffffffabcdl234

/*Reads in the value Oxabcd into register tl, note that 1w sign extends and lwu is
zero filled*/

lwu t2, 0(t0) # t2 = Oxabcdl234
la t3, bufferspace # Load the address of bufferspace into t3

sd tl, 0(t3) # Store the value of the doubleword held in register tl into the
memory location pointed to by register t3 plus an offset of 0.

sd t2, 8(t3) # Store the value of the doubleword held in register t2 into the memory
location pointed to by register t3 plus an offset of 8.

addi a7, x0, 93
ecall
.data
wordl: .4byte Oxabcdl234

bufferspace: .space 40
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0=0 o]
sp Ox3fff£ff£480 Ox3ff£f£ff480

OxZaaaacf448

Ox3f£f£fTe0eTED O0x3f£ffTeleTED 0Ox524f4c4f435f53 23]
OxZaaaadcl3c 183252140348 Ox3f£f7fdkba46 274
OxZaaabdd280 OxZaaabdd280 OxZaaabdd230 183
ox0 0 OxZaaakdd230 183
OxZaaakdac30 183253183536 ox0 a
0x0 L] o=0 a
ox0 0 O=dd 221
OxZaaakdd2Z80 183253153344 OxZaaabddzZ30 183
Ox3ff7ffdcks 274743680184 o=0 a
OxZaaakdac30 183253183536 OxZaaabcZ3al 183
0=0 o] OxZaaabcZ3ac 183
OxZaaak34dd2 183252504018 OxZaaab362cl 189
0x3ffTebacsTc 2T74T42Z35TEZE OxZaaabdb 447
oxg g

Ox104

la gp, _ global pointer$

.opt pop ¥ Restore the options state, witl relaxation enabkled

= 11
1z 1w tl, 0(td) # tl = Oxffffffffabodl
13 /*Reads in the walue Oxakcd into register Fl, nmote that lw sign extends and lwu ifg
14 lwa t2, 0(td) # t2 = Oxabcdl234
15 la t3, bufferspace # Load the address off bufferspace into t©3
16 sd tl, O(c3) # Store the walue off the doubleword held in register tl into f
17 sd t2, 8(t3) # Store the wvalus of the floubleword held in register t2 into the men
g addi a7, =0, =3
159 ecall
20

|

Oxabcdl234
. Space 40

[SST SN SR N )
oW

native process
Feading symkols from
{gdk) b 1

Ereakpoint 1 at 0x100e8:
(gdk) run

Ftarting program: /Shome/
Breakpoint 1, ()} at
(gdk) i reg gp

=yl 0xZaaabc2b94
(gdik) n

(gdk) 1 reg gp

=y} Ox11914 0Ox11514
(gdk) p /x & start

1 = 0Ox100e8

(gdb) p /x &'_ global_pointers$®
= = 0xl11914

The assembler can be modified to generate non-relaxed code with the -mno-relax option. To modify
the make file to include it edit the makefile to read —

TARGETFILE = $(targetfile)

print: $(TARGETFILE) .o

1d -o $(TARGETFILE) $ (TARGETFILE) .o
$ (TARGETFILE) .0: $(TARGETFILE).s

as -mno-relax -g -o $(TARGETFILE) .o $(TARGETFILE).s
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For the remaining programs in the book the makefiles® (unless stated otherwise) will include the -mno-
relax option.

3.5.2.Enhancements to GDB

GDB can be used in default mode for analyzing code. Entering the following commands into the file
~/.gdbinit will give a better (TUI) layout experience.

layout split

layout regs

set history save on

set history filename ~/gdbhistory

set logging enabled on

Note that if using the GDB TUI then the up and down arrows are no longer
available for command history; use Ctrl-P(revious) and Ctri-N(ext) instead.

38 For reasons already discussed linker relaxation can be helpful in performance-oriented applications and then a different makefile would be
used.
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Figure 3-3 GDB using TUI

Usali2s 01 1no 1T 1nd// oO# T
1189 walsAs a3TJM 8yl ST STUL// vO# ‘8M 9T
sd210evJeyd €T 1UTJId// ET# 'ZX ST
ThuTulsS= 'TX +T
0%xe 0x0 zpTdl 0%0 0X0 pTdy
[ o=apoWy e©=2pT.I3s o=uUaT ] %0 Jody [1] %0 dsdy
[ sgss ©=3dAlg 0=13 ] 0OOTX0 Jsdo <1JB1S> QUEEOTXE 04EEOYXE ad|
02494444441/ %0 0249443444147/ %0 ds 0 0xe 0EX
0 0x0 62X 0 oxe gzx
0 0x0 1zx 0 0xe 9ZX
0 0%x0 SZX 0 0%x0 X
0 0%x0 £ZX 0 0xe zex
0 0x0 Tex 0 0xe oA
0 ox0 6TX 0 oxe gTX
0 0x0 LTX 0 0xe 9TX
0 0x0 STX 0 0xe #TX
0 0%x0 £TX 0 0xe ZTX
0 0%x0 TTX 0 0xe o
0 0%x0 6% 0 0xe gx
0 0x0 L% 0 oxe 9%
0 0x0 5% 0 0xe X
0 0%x0 X 0 0xe X
0 0%x0 X 0 0xe 0%

1edauab :dnoiab aajsthay—
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Exercises for chapter3

1. Write a program that takes a user inputted string, printing out hexadecimal codes for each
character in the string, for example —

“This is the input string”

character Hex value

T 54

h 68

2. Describe the purpose of linker relaxation.
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| RISC-V instructions covered in chapter 3

Load Instructions:

Ib — Load byte

Ibu — Load byte unsigned

lh — Load halfword

lhu — Load halfword unsigned

lw — Load word

Iwu — Load word unsigned (64-bit systems)

Id — Load doubleword

Store Instructions:

sb — Store byte

sh — Store halfword

sw — Store word

sd — Store doubleword

System Call and Immediate Instructions:

li — Load immediate (pseudo-instruction)

la — Load address (pseudo-instruction)

ecall — Environment call (used for invoking syscalls)
Addressing & Assembler-Related:

auipc — Add upper immediate to PC (used in PC-relative addressing)

Assembler modifiers like %lo(symbol) and %hi(symbol) are also discussed to support absolute
addressing.
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Chapter 4. Arithmetic operations (First Pass)

Overview of the chapter

Chapter 4 focuses on arithmetic and logical operations in RISC-V assembly. It builds upon the memory-
handling concepts of Chapter 3 by introducing how to perform calculations, data manipulation, and
conditional logic using registers. Floating-point operations are deferred until page 8-1.

4.1.Data Sizes

RISC_V uses the data sizes listed in Table 4-1.

Table 4-1 Data Types

# of bits Definition

8 Byte

16 Halfword
32 Word

64 Doubleword

Load and Store instructions designate variants of these data sizes with the following abbreviations:
e W:Word
e H: Halfword
e HU: Halfword unsigned
e B:Byte

e BU: Byte unsigned

4.2.Integer Instructions

| 4.2.1.Register ADD

The first listing shows the ADD instruction which has the format add rd(estination), rs(ource)i,
rs(ource)2. In this case the addition of source register t0 and source register t1 are sent to the destination
register t3.

The instruction ADDW is an example of a 64-bit instruction operating on 32-bit values. which gives a 64-
bit result of Oxffffffffffdc9999. The result is sign-extended by propagating the sign-bit to preserve the
sign. If the value was positive, then the result would be 0x00000000ffdc9999 or simply 0xffdc9999.
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Sign extension is used when converting signed smaller numbers to signed larger values. Essentially the
upper part of the larger number is padded with the sign-bit (bit 31 when using addw).

Listing 4-1 ADD and ADDW instructions
/* Listing 4-01 Simple addition (register)instruction
64-bit (add) and 32-bit (addw) are shown */
.section .data
.equ wordnumberl, O0xffdc5678 # four digit hex value
.equ wordnumber2, 0x4321
.equ wordnumber3, O0xfffdc5678 # nine digit hex value
.section .text
.global start
_start:
1i t0, wordnumberl
11 tl, wordnumber?2
add t3,t0,tl #64-bit addition # t3=0xf£fdc9999
addw t4,t0,tl #32-bit addition #t4=0xffffffffffdc9999
1i t0, wordnumber3
add t3,t0,tl #64-bit addition t3=0xfffdc9999
addw t4,t0,tl #32-bit addition t4=0xffffffffffdc9999
# no difference in addw as upper 32 bits are not used
1i a7, 93

ecall
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Figure 4-1 ADD and ADDW instructions

Bx2aaab95408 0x2aaab95408
@x4321 17185

@x2aaabb2610 183253018128
Ox2aaabaf7i@ 183253006320

@x0 0

@x2aaabb2660 183253018208
Bx3ff7ffddde 274743680320 k
@x0 0

#x2aaab9do1e 183252930576
#x2aaabhtd 44738504

tp Bx3ff7e59780 Bx3ff7e59780
t2 x4 4

al 00 0

a3 00 0

ab #x10 16

53 00 0

s6 Bx2aaabaf7f0 183253006320
59 0x0 0

t3 Bxffdc9999 4292647321
th Bxab692726A9246588

ADDW iz an RV64i instruction sign-extending the low 32 bits to 64 bits

P

-6887720002919307896 ]

0 0xffdc5678 4292630136

p 0x22aabb2660 Bx2aaabb2660

al 0x2aaabb2610 183253018128

ad 0x0 0

54 0x2aaabb2610 183253018128

57 0x2aaah94e60 183252897376

510 0x63 99

td OxFFFFFFfffdc8999 -2319975

11 t0, wordnumberl
1i t1, wordnumber2

#32-bit addition

addi a7, x@, 93

el

addw t4, t0,t1 #64-bit addition, (adds two 32 bit number not 64 bits)

The instruction ADD gives a 64-bit result of Oxffdc9999
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The instruction ADDW operates on the low order 32 bits of each register and sign-extends to give a 64-
bit result.

Note the difference between ADD and ADDW.

. ADDW takes bits 0-31 of each register and gives a sign-extended 64-bit result
e Itis not valid for RV32.
o ADD takes bits 0-63 of each register and generates a 64-bit result.

The figure below shows that sign extending® a 32-bit result ensures that the results are consistent.

39 Sign extending is a technique of extending the most significant bit to preserve the sign and value of the number. Unsigned arithmetic will zero
extend the high order bits so zero extending 16 bits to 32 bits gives 0X0045 = 0x00000045.

4-4


http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Table 4-2 Sign extension example

31
Oxffdc9999 1111
One's complement 0000
Two's complement 0000
Result 0x236667
32-hit operation
3231
Oxffffffffffdc9999 1111 1111 1111 111
One's complement 0000 0000 0000 000
1
Two's complement 0000 0000 0000 000
Result 0x236667
64 Bit Operation

# # )
1100 1001 1001
0011 0110 0110

1
0011 0110 0111

add t3, t0,t1#32-bit addition

0
1 1100 1001 1001
0 0011 0110 0110
1
0 0011 0110 0111

addw t4, t0,t1 #64-bit addition

The disassembly for the .text section is as follows

.text

Disassembly of section
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00000000000100b0 < start>:

100b0: 001002b7 lui t0,0x100

100b4: dc52829b addiw t0,t0,-571 # ffdcb
<_global pointer$+0xee4d5>

100b8: 00c29293 slli t0,t0,0xc

100bc: 67828293 addi t0,t0,1656

100c0: 00004337 lui tl,0x4

100c4: 3213031b addiw tl,t1,801 # 4321 <wordnumber2>

100c8: 00628e33 add t3,t0,tl

100cc: 00628ebb addw t4,t0,tl

100d0: 010002b7 lui t0,0x1000

100d4: dc52829b addiw t0,t0,-571 # f£fffdc5
<_global pointer$+0xfeedd5>

100d8: 00c29293 slli t0,t0,0xc

100dc: 67828293 addi t0,t0,1656

100e0: 00628e33 add t3,t0,tl

100e4: 00628ebb addw t4,t0,tl

100e8: 05400893 1i a7,93

100ec: 00000073 ecall

The 11 t0, 0xffdc5678 instruction breaks down into:
lui t0, 0x100

lddiw t0, t0, -571

slli t0, t0, Oxc

addi t0, t0, 1656

This results in t0 being equal to OXFFDC5678 as shown in Figure 4-2.

Figure 4-2 Calculating LI to, Oxffdc5678 non-aliased steps

TO 31 20 11 0
LUI t0, 0x1' 0x100000 000000000001 0000000O0O000OOO0OO0OO0OOOO0OOGO 0O
ADDIW t0, Oxffdc5 111111111111 11111111 110111000101
SLLI t0, t0, Oxffdc5000 11111111110111000101000000000000
ADDI 1656 0xffdc5678 111111111101 11000101011001111000

The instruction snLi has not been met before. This instruction performs a left shift by the number of
places in the immediate operand which means shift the value currently in t0 12 places to the left.
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‘ 4.2.2.ADD Immediate ‘

The ADDI (add immediate instruction) has the form addi rd, rs, imml2. The source register is added
to a 12-bit immediate value, and the result is placed in the destination register. The format of this
instruction has already been described on page 2-7.
The ADDI instruction is straightforward —
Listing 4-2 ADDi example
/* Listing 4-2 Simple addition (immediate) instruction */
.section .data
.equ wordnumberl, Oxffdc5678
.equ wordnumber2, 0x87654321
.equ myfirstconstant, Ox1ff
.equ mysecondconstant, 0x321
.section .text
.global start
_start:
1i t0, wordnumberl
1i tl, wordnumber?2
addi t3, tO0,myfirstconstant #t3=0xffdc5877
addiw t4, tl,mysecondconstant#td= Oxfffffffff7654642
1i a7, 93
ecall
The addi and addiw instructions are shown below.

Figure 4-3 Illustrating the add and addiw instructions

addiw t4, tl, mysecondconstant
addi t3, t0, myfirstconstant Registertl 12 bit immediate data

Register t0 12 bit immediate data
+
ey T o
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| 4.2.2.1. RV32 Vs RV64 ADDI Behavior

The ADDI instruction on uses the full native XLEN architecture

The ADDIW instruction is not valid on RV32 systems and adds the low-order 32 bits of rs
to the 12-bit immediate field and then sign-extends the result to rd.

The apDpIW instruction adds the sign extended immediate value to rs1 and then writes the result which is
sign extended to rd as shown in the snippet below.

/* Sign extension with ADDIW, note how ADDI is different on 32-bit and 64-bit systems.

Compare ADDI on a 64-bit to ADDIW on a 64-bit system */
.section .data

.equ wordnumberl, Oxfffffffl
.equ myfirstconstant, O0x7ff

.section .text

.global start

_start:

1i t0, wordnumberl

addi tl1l, t0, myfirstconstant # result =

= 0x1000007f0, addi is 64 bit native
t0,myfirstconstant # result =0x7f0,

addi a7, x0, 93

addiw t2, addiw (ord) is sign extended

ecall

Note the GDB trace following.

4-8


http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Figure 4-4 GDB trace comparing ADD (64-bit) with ADDIW (64-bit)

ZEero 0x0 a
s Ox3Lfff£ff2e0
=] 0x3££7212780
E1 0x1000007£0
o Ox3LLTTg@es0
al 0x0 W
22 Ox2azaabcg@oT0
ad ox0 0
a6 0x0 L
52 OxZaaabe|gfdl
=4 ox0 [
14 OxZaaabeg@T0
38 ox0 [
s10 Ox2aazb4Ee?
t3 0x3ff7eb o0

ts x5

tutorial4-03.

Or3ELfLEff2e0
Ox3££7e212780
4294969328

OxR3LfLfffecE0

183253258352

183253258192

183253258352

183252564194
2747423265928

Ira

t0
t2
sl
al
a3

OxZaaaafllc4
OxZ2aaakdlbog
Oxff£fffEf]

Qx7TL0 2032

OxZaaaked0lz0

OxZaaabecfdld
0
4]
O0x5d 1
OxZaaakedl2
OxZ2aaabecfdld
Ox3f£7££4dos
0x0 [a]

OxZaaabds798
0x0 0

O0x3fffffeess0

ox0

OxZaaaafllc4
Ox2aaakdlbs4
42045967281

183253258272
183253258182

183253258272
1832532581852
274743680264
183253178264

274877902416

B+ 10 1i t0O,
11 addi g

12 addi
13 addi a

. -

Drdnumberl

tl, myfirstconstant # result = 0x1000007f£0,

r
2, tO,myfirstconstant

7, %0, 93

# result =0x7£0,

addiw(oxd)

addi is €4 kit
is sign ex

Now compare the result of the ADDI instruction running on a 32-bit system to the App1w result obtained

in the previous program.

Running on RV32 with CPUlator sh

Oows:
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Figure 4-5 Comparing ADDI on a 32-bit system to ADDIW on a 64-bit system

Step Into Step Over Step Out Continue Stop Restart Reload -

=

Refresh - Compile and Load (F5) Language:| RV32 v| untitled.s [changed since save]

pc| eeeeerdc

zerox0 | 2OE0ROGO
ra xi BEEEREEE
spx2 BEEEREEE
Ep¥3 | EOREEEES
tpxd BEEEREEE
toOx5 | fFFFffffl
t1 x6 BERERT e
12 x7 BEEEREEE
SO x8 BEEEREEE
s1 x9 BEEEREEE
a0 x10 BEEEREEE
al x11 efclclciclcyclc]
a2zxl2 efclclciclcyclc]
a3ixi3 efelclclclclclc]
a4 x14 efelclclclclclc]
asx15 BEEEEEEE

.section .data

.equ wordnumberl, @xfffffff 1
.equ myfirstconstant, Ox
.section .text
.global _start = =
Ceare: Note Overflow is ignored!
14 t@, wordnumberl
addi t1, t@, myfirstconstant # result = @xlee0ee7fe®, addi is 64 bit nati

The instruction aApDIw is not valid for 32-bit since W(ord) is the default data width. In this instance the
addition has caused a negative number to go positive. This is not flagged! Overflow with the same
operands on a 64-bit system did not occur.
Finally, the next addition example shows another pitfall —
/* Sign extension with ADDIW, note how ADDI is different on 32-bit and 64-bit systems.
Compare ADDI on a 32-bit to ADDIW on a 64-bit system */
.section .data
.equ wordnumberl, 0x£f00000001
.equ myfirstconstant, Oxf
.section .text
.global start
_BEarts
1i t0, wordnumberl

addi tl, t0, myfirstconstant # result = 0x1000007f0, addi is 64 bit native

/* Using ADDIW with the same parameters gives 0x10; the 64-bit value 0xf00000001 was
truncated to the 32-bit

value of 0x00000001. The truncated value and the constant 0xf were added together,
placing the reult in register

t2x/

addiw t2, tO,myfirstconstant # result 0x10
addi a7, x0, 93

ecall
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Note. In many cases the numerical values encountered during day-to-day coding easily fit into
the XLEN registers without any issues. Rather than check for overflow conditions after each
arithmetic operation, it may be opportune to only check if there are reasons to believe that
the number bounds may have been exceeded. This was historically more of an issue for 8-bit systems.

See further discussion on page 4-13

4.2.3.MV instruction

The MV instruction is aliased to ADDI. The formatismv rd, rs asshown in Listing 4-3. After execution
the contents of t0 will have been copied® to t1.

Listing 4-3 MV instruction

/* Listing 4-3

Move instruction, actually a pseudo instruction
mv rd, rs --> addi rd, rs, 0*/

.section .data

.equ numberl, 0x12345678

.section .text

.global start

_BEarts

1i t0, numberl

mv tl, tO

addi a7, x0, 93

ecall

The unaliased listing is

-<_start>:

100b0: 123452b7 lui t0,0x12345

100b4: 6782829b addiw t0,t0,1656 # 12345678 <numberl>
100b8: 00028313 addi tl,t0,0

100bc: 05400893 addi a’l,zero, 93

100c0O: 00000073 ecall

SUB instruction

The available subtraction instructions are SUB and SUBW, there is no subtract immediate variant since
this can be achieved through addition, by adding a negative number.

40 The Move instruction is really a copy function, in that the source register’s contents are preserved.
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Listing 4-4 Use of SUB and SUBW instructions

# Listing 4-4

# Subtraction operations 32-bit (subw) and 64-bit (sub) are shown
.section .data

.equ wordnumberl, Oxffdc5678

.equ wordnumber2, 0x4321

.equ negativenumber, -4

.section .text

.global start

_start:

1i t0, wordnumberl

11 tl, wordnumber?2

sub t3, t0, tl # 0x00000000ffdcl357; positive result

sub t4, tl, t0 # Oxffffffff0023eca9; negative result

subw t5, t0, tl # Oxffffffffffdcl357; Sign extended negative result, invalid for RV32
addi t2, tl, negativenumber #0x431d; subtracts 4 from tl result --> t2
addi a7, x0, 93

ecall

Note the results obtained by using suB and suew with the same operands.

4.3. Condition Codes

Many processors incorporate a condition code register (CCR) or status register to detect conditions such
as

e Negative (N) True when signed number is negative, false if positive.

o Zero (Z) True if result such as comparison of values are equal, false if not equal.
e Carry (C) True If carry or no borrow condition occurs, shifted out bit

e Overflow (V) True if and overflow condition occurs.

This is important for processors that have limited register sizes. Checking for these conditions takes time
and for many programs conditions such as overflow and carry will never occur. This is the case where
there is a finite number of elements well below the maximum register data width size. A 32-bit register
can hold over 4 billion positive integers which will not be exceeded when dealing with real-world objects
such as inventory, staff, weather temperatures etc. Clearly it would be wasteful to check for additive
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carry conditions when new personnel are hired. There are, however, situations where these situations
can occur and in the case of RISC-V this can be checked.

4.3.1.Detecting an oVerflow condition

An example of an overflow condition occurs when the data is too large to fit into a register. Consider a
small eight-bit register which can hold signed values ranging from -128 to +127. Adding two positive
numbers, such as 0x50 and 0x40 results in 90 which is a negative number in signed eight-bit arithmetic.

Table 4-3 Detecting an overflow condition (signed)

0 (Sign bit+) 1
40:6 = 0 (Sign bit+) 1 0 0 0 0 0 0
+=90 1 (Sign bit-) 0 0 1 0 0 0 0

For unsigned the result of an addition should not be a number smaller than either of the operands.

Table 4-4 Detecting an overflow condition (unsigned)

Note the 9" bit has been discarded (fallen into the bit bucket)!

In general -

e Forsigned arithmetic - If the operands have the same sign but the result is a different sign, then
overflow has occurred.

e For unsigned the addition should not be smaller than either of the operands

Other conditions such as Negative, Carry and Borrows can also be checked for by software rather than
implementing dedicated registers.

‘ 4.3.2.RVM Instructions ‘

The ADD and SUB instructions are part of the Base Integer Set (RVI). Multiply and Divide instructions
belong to the optional Multiply/Divide instruction set (RVM).

‘ 4.3.3.Multiply Instructions ‘

The MUL instruction has the format mul rd, rsl, rs2.

First of all, run the multiply instruction and variants on an RV32 machine.
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Listing 4-5 Multiply instructions on RV32

/*Listing 4-5 32-bit Multiplication operations

This system ran on RV32 Simulation (CPUlator) */

.section .data

# Define four 32-bit words

wordl: .word Oxffffffff

word2: .word OxOfffffff

word3: .word Oxffffffff

word4: .word 0x8

.section .text

.global start

_start:

lw t0, wordl

1w tl1, word2

lw a0, word3

lw al, word4

#RISC-V documents state to execute in the order of MULH, MULHU, MULHSU first then MUL
# Unsigned multiply

mulhu t3, t0, tl # t3 = 0x0ffffffe Upper 32 bits (63:32) # values are unsigned
mul t2, tO0,tl # t2 = 0xf0000001 lower 32 bits (31:0) # ignores overflow
# Overall 64 bit result is 0x OxO0ffffffef0000001

mulhu a2, a0, al # a2 = 0x7

mul a3, a0, al # a3 = Oxfffffffs

# Overall 64 bit result is Ox7fffffffs8

mulhu a2, a0, al # a2 = 0x00000007

mul a3, a0, al # a3 = Oxfffffff8

# Overall 64 bit result is Ox7fffffffs8

# First operand is signed, second operand is unsigned
mulhsu a2, a0, al # a2 = Oxffffffff

mul a3, a0, al # a3 = Oxfffffffs

# Overall result is Oxfffffffffffffff8

addi a7, x0, 93

ecall
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Next run on a 64-bit system
Listing 4-6 64-bit multiplication
/*Listing 4-6 This system ran on RV64M*/
.text
.globl start
_start:
# Load operands (RV64): Oxffffffff and 0x2000000000
# This product does not fit in 64 bits, it requires 128 bit space
# MUL instruction
1i t0, Oxffffffff # zero-extended to 64
1i tl, 0x2000000000
# 128-bit product: (t0 * tl) =(al:high, al:low)
mulh a0, tO0, tl # High 64 bits = 1f
mul al, t0, tl # Low 64 bits = Oxfff£££fe000000000
/* Full 128-bit result = Ox1FFFFFFFE000000000*/
addi a7, x0, 93

ecall
A GDB trace -
zero 0x0 Qg Ta OxZaaaacf448 OxZaaaacf448
Sp Ox3ffEfffFf480 Or3E£fffff480 =)} OxZaaabc2b94 OxZaaabcZb94
tp 0x3£fT7e0e780 0x3££T7e0e780 t0 OxfEffffFE 4294987295
1l 0x2000000000 137438853472 tz Ox3ff7fdbade 274743540294
o Ox2aaabdd2c0 Ox2aaabdd2cO =1 Ox2aaabdd270 3253193328
a0 0x1f 31 a1l OxfEffffel
a2 OxZaaal 40 183253183552 ald 0x0 ]
a4 0x0 a5 0x0 0
cL3 0x0 Qg a7 Oxdd 221
=2 0x2aaabddZc 183253193408 =3 0xZ#abdd270 183253193328
=4 0x3ff7ffdckE 274743680184 =5 o=y )
12 OxZaaabdac40 53253183552 =7 Oxjeaabcz3al 183253083040
S8 0x0 Q 39 OximaabcZ3ac 53083052
510 OxZaaab34ddz 15 N@E2504018 511 O aaab362cl 183252508376
t3 0x3ffTebacTc 2747 57628 td > aaabdb 44739547
5 0x104 260 tE s 8
pc 0x100cc 0xl00cc < start+ 3>
1i tl, Oxffffffff # zero-extended to 64

9 1i tl, 0x2000000000

10

11 # 128-bit product: (t0 * tl) =(al:high, al:low )]

12 muln a0, to, tl # High €4 bits = 1f

13 mul al tl, tl # Low €4 bits = Oxffffffe000000000

14 /* Full 128-bit result = Ox1FFFFFFFEQ00000000%/
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Listing 4-7 Further Multiply instructions on RV64
/* Listing 4-7 Multiplication operations

This system ran on RV64M*/
.section .data

.section .text

.global start

_start:

11 t0, Oxffffffff

1i t1, 0x2000000000

11 a0, O0x7ff

1i al, 0x600

#RISC-V documents state to execute in the order of MULH, MULHU, MULHSU first then MUL

/*64-bit x 64 bit multiplication example giving a 128-bit result
Reg t2 holds bits 63-0

Reg t3 holds bits 127-64%*/

mulh t3, t0, tl # t3 = Ox1f Upper 64 bits *127-64)

mul t2, tO,tl # t2 = Oxffffffe00000000 lower 64 bits (63:0)
# Overall 128 bit result is Ox1lf ffffffe00000000

mulh a2, a0, al # a2 = 0x0

mul a3, a0, al # a3 = 0x2ffa00

# Overall 128 bit result is 0x0x2f£fa00

# Unsigned multiply

mulhu a2, a0, al # a2 = 0x00000000

mul a3, a0, al # a3 = 0x2f£fa00

# Overall 64 bit result is 0x2ffa00

# First operand is signed, second operand is unsigned
mulhsu a2, t2, t2 # a2 = Oxffff£ffe000000400
addi a7, x0, 93

ecallting 4-7 Multiplication operations */
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MULH is used to get the upper half of the product and in conjunction with MUL can generate an XLENx2
value. So with RV64, two registers can be used to form a 128-bit result which is held in two registers, one
register holding bits 63:0 and the other holding bits 127:64.

The instruction MULW is a 64-bit instruction, multiplying the lower 32 bits of the source registers and
sign extending bit 31 as shown in Figure 4-6. Combining the upper 32 bits from MUL and the lower from
MULW gives the result 0x01ffffffd0000001

Figure 4-6 MULW instruction

332222222222 111
10987654321098765432109876543210
000111111111111110011111121111111|Regt0
0000111111111111111111110111111 1|Regtl
11010000000000000000HO0O0000000O0O0O0 1{Multiply

1 1/1110100000000000 000000000O0OODO 1|Regt3

Multiplyt0 xt1=0xd0000001 resultin t3
Sign Extend lwr 32 bits (bit31=1)
t3 = Oxffffffffd0000001

Bits 63:32 allsetto 1's

In this case the product was sign extended. The next instruction where t0 has the value Oxfff and t1 has
the value 0x8 gives a result of 0x7fff8 since the upper 32 bits from the MUL instruction equaled 0x0 and
the lower 32 bits from the MULW instruction equaled 0x0007fff8.

4.3.4.Illustrating the mechanics of 64-bit multiplication going to 128 bits

Evaluating mulh t3,t0,t1 -
Assume t0 = OxFFFFFFFF and t1=0x200000000

Step1 The instruction mulh writes bits 127-64 of the 64-bit x 64-bit product to rd, so mulh t3,t0,tl
will multiply t0 by t1 placing bits 127-64 into register t3.

Step 2 The instruction mul handles the operands as signed 64-bit. It computes the 128-bit product and
writes the low 64 bits of the product to rd, somul t2, t0,t1 places bits 63-0 of the 128-bit product into
t2.

Step 3 Combine the two 64-bit registers together to show the 128-bit result >
T3 = 0x1F

T2 = OxFFFFFFEO00000000

T3,T2= Ox1FFFFFFFEO00000000
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A non-computer method using long multiplication is shown in Figure 4-7

Figure 4-7 Using a manual long multiplication method to multiply two 64-bit hex numbers

Long Multiplication in hexadecimal
mulh t3, tO0,tl
t0 = OxXFFFFFFFF
£1=0x2000000000

Bits 127-64 |Bits 63 -32 Bits 31-0
00 O0OOO=2Q00O0O0OO0OO0OTGO0OCO0TOU
f ff f f fff
1 E 0 0O0O0OUOOO0 0OX
1 EOO0OOOOGOO0O0O
1 EO0OOO0OOOOOOO0O
1 EO0OO0OUOOOOOOOO0TGO
1 EO0OO0OOOUOOOOOOOO0TGO
1 EOOOOOUOOOOOOTGOO0TGO
1le EO0O OO0 OOOOOOOOTGOO0O
1E| 0 0 0 0O OO O OOOOOGOOO0 Of+
1F|F FFFFFEOOOWOUOUOUOODO

Value of ox1F goes into high 64-bit register t3
mul t2, t0, tl
t0 = OxXFFFFFFFF
t1=0x2000000000
Value of OxFFFFFFEO0000000 goes into low 64-bit register t2
128 bit result is:
|1F FFFFFFEOOOGOGOOO0O0 O

To summarize multiplication -

Table 4-5 Summary of RVM Multiply Instructions

Instruction Description Data Polarity
MUL Multiplies rs1 by rs2, result into rd, ignores
overflow
MULH Multiplies the signed values of rs1 by rs2, upper Both operands are Signed

half of the product going into rd

MULHU Multiplies the unsigned values of rs1 by rs2, Both operands are Unsigned
upper half of the product going into rd

MULHSU Multiplies the signed values of rsl by the First operand is Signed, the
unsigned value of rs2, upper half of the product second is Unsigned
going into rd
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MULW Lower 32-bits of the product and sign- extend  Sign-extends to 64-bits

‘ 4.3.5.Divide Instructions

Division is simpler than multiplication, the instructions are DIV(W) (Divide Signed) , UDIV(W) (Divide
Unsigned), REM (Remainder Signed) and REMU (Remainder unsigned). A basic example follows —

Listing 4-8 Division example

/*Listing 4-8 Division operations*/
.section .data

# Define two 32-bit words
wordl: .word 1025

word2: .word 4

.section .text

.global start

_start:

1w t0, wordl

lw t1l, word2

# Operandl is the numerator

# Operand2 is the denominator

div t2, tO0,tl # t2 = 0x100

divu t3, t0,tl # t3 = 0x100

rem t4, t0,tl # td4 = 0x1

remu t5, t0, tl # t5 = 0x1

addi a7, x0, 93

ecall

There are wide variants - DIVW and DIVUW are 64-bit instructions. These instructions divide the lower
32 bits of operandl by the lower 32 bits of operand2. DIVW is for signed numbers and DIVUW are for
unsigned. The result is sign-extended. The remainder instruction counterparts are REMW and REMUW
also sign-extending to 64 bits.

4.3.5.1. Division by zero

Division by zero will generate all 1's result (all bits are set) and is not trapped. The remainder is equal to
the dividend. A further example is shown below:

Listing 4-9 Further Division examples
/*Listing 4-9 Further division operations*/

.section .data
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# Define two bytes and a 32-bit word
wordl: .word Oxfffffffl

bytel: .byte 1

byte2: .byte 4

.section .text

.global start

_start:

lw t0, wordl

1b t1, bytel

1b t2, byte2

mv t6, zero # Use for division by zero
# Operandl is the numerator

# Operand2 is the denominator

divw t3, t0, tl # t3 = Oxfffffffffffffffl
remw t5, t0, tl # t5 = 0x0

divuw t4, t0, t2 # t4 = 0x3ffffffc
remuw a0, t0, t2 # a0 = 0Ox1

# Divide by zero

div al, t0, t6 # al

(Ol i i o i i i s s i i i
rem a2, t0, t6 # a2 = Oxfffffffffffffffl

divw a3, t0, t6 # a3 = OxffffffffffFffef

remw a4, t0, t6 # ad = Oxffffffffffffffl

addi a7, x0, 93

ecall

Since division by zero gives the combination of all ones and the original dividend it can be checked after
the division has taken place when necessary. The order given of DIV followed by REM in the listing is
recommended for microarchitecture efficiency.

4.4. Shift Operations

RISC-V offers several shift instructions. Left shifts can be register or immediate. Shift Right instructions
are similar except that they also offer a shift right arithmetic variant. This is summarized in Table 4-6.
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Table 4-6 RV32 Shift Instructions

Instruction Description

sl

slli

srl

srli

sra

srai

Shift Left Logical, shifts rsl bits
leftwards by count in rs2 fills
moved empty bit positions with
zeros, result in rd.

Shift Left Logical Immediate, shifts
rs1 bits leftwards by count in
immediate field, fills moved empty
bit positions with zeros

Shift Right Logical, shifts rs1 bits
rightwards by count in rs2 fills
moved empty bit positions with
zeros, result in rd

Shift Right Logical Immediate,
shifts rs1 bits rightwards by count
in immediate field fills moved
empty bit positions with zeros,
result inrd

Shift Right Arithmetic, shifts rsl
bits rightwards by count in rs2 fills
moved empty bit positions with
the value of rs1’s most significant
bit, result in rd

Shift Right Arithmetic Immediate,
shifts rs1 bits rightwards by count
in immediate field fills moved
empty bit positions with the value
of rs1’s most significant bit, , result
inrd

Syntax
sll rd, rsl, rs2

slli rd, rsl, imm

srl rd, rsl, rs2

srli rd, rsl, imm

sra rd, rsl, rs2

srai rd, rsl, imm

Example
s11 t2, t0, tl

s1lli t3, t0, 18

srl t4, t0, tl

srli t5, t0, 10

sra te6, t2, tl

srai to6,t2, 18

RV64 features wide variants of the shift instruction which sign-extends to 64-bits — s11iw, srliw and
sraiw.

RV32 uses the five least significant bits (4:0) for the shift amount and RV64 will use the six least significant
bits (5:0)*!. Figure 4-8 shows a five-bit shift to the left, note that bits 4:0 are replaced by incoming zeros.
As discussed earlier each move to the left is equivalent to multiplying by two. In this example the value

Oxffffff1 has been multiplied by 32 (2°).

41 Using a larger value such as sr1i t5, t0, 64 givesan error message such as “Error: improper shift amount (64)” by the GNU assembler.
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Figure 4-8 shows how the instruction s11 t2, t0, t1is handled. Here t1=5 and t0 =OxFFFFFFF1.

Figure 4-8 SLL instruction sl t2, t0, t1

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

T0 OXFFFFFFF1 11111111111111111111111111110001
T1 Move 5 places to the left 101
T2 Ox1FFFFFFE2 1111111111111111111111111111000100000

Listing 4-10 Shift instructions
/*Listing 4-10 Shift operations*/
.section .data

# Define data

.equ wordl, OxOffffffl
.equ bytel, 0x5
.section .text
.global start
_start:

11 t0, wordl

1i t1, bytel

# Shift Left

sll t2, t0, tl # t2 = 0x1fffffe20
slli t3, t0, 18 # t3 = 0x3f£f£££c40000
# Shift Right

srl t4, tO0, tl # t4 = Ox7fffff

srli t5, t0, 10 # t5 = Ox3ffff

# Arithmetic shift right

sra t6, t2, tl # t6 = Oxffffffl

srai t6,t2, 18 # t6 = Ox7fff

addi a7, x0, 93

ecall

Currently there is no rotate instruction. A GDB trace is shown below:
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Figure 4-9 GDB trace of Listing 4-10

0x0 Q
Ox3f£f££F470
0x3ff7e0eTEO
0x5 5
Ox2aaabdd2cO
ox0 Q
OxZaaabdac40
Ox0 Q

0x0 a
Ox2aaabdd2c0
Ox3ff7ffdcke
OxZaaabdac40
0x0 Q
OxZ2aaab34ddz2
Ox3fEfffc40000
Ox3ffff 262143
Ox100d4 0x100d4

—tutorial4-10.

ra
Ox3ffEEFF470 gp
0x3ff7e0e780 ]
t2
OxZaaabdda2co 51
al
183253183552 a3
ab
a7
183253193408 =3
274743680184 55
183253183552 =7
=9
183252504018 =11
TO368740245504 t4

OxZaaaasf44s
OxZaaabcib54
OxfffEffl
Ox1ffEfffe20
OxZaaakdd2To
OxZaaabdd270
0x0 0
0x0 0
Oxdd 221
Ox2Zaaakbdd270
ox0 Q
OxZaaabcd3al
OxZaaabci3ac
Ox2Zaaak3e2cl
OxTEEEEEf 8388

OxTEEE : 67

a7

OxZaaaasf448
OxZaaabcZbs4
268435441
85895834112
183253193328
183253193328

183253193328

183253083040
183253083052
183252509376

B+ S 1i t0, wordl
10 1i tl, bytel
11 # Shift Left
12 =11 t2, t0, tl $Fc

2 = 0mlfffffezO

13 =11i t3, o0, 1% $# £3 = 0x3fL££fffc40000
14 # Shift Right

15 srl t4, 0, tl # t4 = OxTELfEfEEEEEE
16 srli t5, ©o0, 10 # t5 = Ox3ffff

17 # Arithmetic shift right

18 =sra te, t2, tl $ te = OxELLfffl

18 =srai te,t2, 18 $ te = OxTELFFF

4.5. Logical Instructions

RISC-V includes the following family of logical instructions:

e AND
e OR

e XOR
e NOT

These instructions are summarized in Table 4-7.
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Table 4-7 RISC-V Logical Instructions

Instruction

AND

ANDI

OR

ORI

XOR

XORI

NOT

Description

Performs rsl and rs2 bitwise AND
operation, placing result in rd

Performs rs1 and sign-extended
immediate field bitwise AND operation,
placing result in rd

Performs rsl and rs2 bitwise OR
operation, placing result in rd

Performs rs1 and sign-extended
immediate filed bitwise OR operation,
placing result in rd

Performs rs1l and rs2 bitwise XOR
operation, placing result in rd

Performs rsl and  sign-extended
immediate field bitwise XOR operation,
placing result in rd

Performs bitwise inversion of bits in rsl
placing result in rd

Syntax

and rd, rsi, rs2

andird, rs1, imm

orrd, rsi, rs2

orird, rs1, imm

xor rd, rs1, rs2

xorrd, rs1, imm

not rd, rs1

Example

and a0, t0, t1

andi al, a0, Oxf

ora2, to, t1

ori a3, a2, 0x000

xor a4, to, t3

xori a5, a2, Oxa

not a5, a5

Listing 4-11 shows the result of the various logical instructions on RV64

Listing 4-11 Logical Instructions (RV64)

/*Listing 4-11
.section .data

# Define data

Logical operations (RV64 system)*/

.equ wordl, Oxaa55aab5

.equ
.equ
.equ xormaskl,
.equ xormask2,
.section .text
.global start
_start:

1i tO,

1i t1,

1i t2,

maskupper,

masklower,

Oxfff
0x0
Oxaaaaaaaa

0x55555555

wordl
maskupper

masklower
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1i t3, xormaskl # t3 sign-extended = Oxffffffffaaaaaaaa

1i t4, xormask2

# AND

and a0, tO0, t1l # a0 = 0xab5, note Boolean algebra X AND 1 = x, X AND 0 = 0
and a0, t0, t2 # a0 = 0, note X AND 0 = 0
andi al, a0, Oxf # al = 0, since X = a0 = 0

# OR
or a2, t0, tl # a2 = Oxaabbafff, note Boolean or X or 1 = 1, X or 0 = X
or a2, t0, t2 # a2 = 0Oxaabbaab5, X or 0 = X
ori a3, a2, 0x000 # a3 = Oxaab55aab5

# XOR
xor a4, t0, t3 # a4 = 0x00ff00ff, Note x XOR x = 0, x XOR Xinverse = 1
xor a4, t0, t4 # a4 = 0xff00££00
xori a5, a2, 0Oxa # a5 = Oxaabb5aabf

# NOT

not a5, a5 # a5 = Oxffffffff55aa55a0
addi a7, x0, 93

ecall

4.5.1.Logical function observations

e The AND function can be used to clear bits by anding the corresponding bit position with a binary
zero.

o Bits can be tested to see if they are high or low by anding with a binary one.
= A non-zero value denotes that the corresponding bit tested was a binary one
= A zerovalue denotes that the corresponding bit tested was a binary zero
e Bits can be set by oring the corresponding bit position with a binary one
o Bits can be tested to see if they are high or low by oring with a binary zero
= A non-zero value denotes that the corresponding bit tested was a binary one
= A zerovalue denotes that the corresponding bit tested was a binary zero
e Exclusive or can check to see if the corresponding bit has equal polarity
o A non-zero value indicates that the bit was of the opposite polarity

o Azerovalue indicates that the bit was if the same polarity
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o Applying the exclusive or function using the same bit pattern as the number itself will
clear the bits
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Exercises for chapter 4

1. Write code to perform multiplication by 24 using shift instructions, do not use RISC-V multiply
instruction variants
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| RISC-V instructions covered in chapter 4

Arithmetic Instructions (Base ISA)

Multiply and Divide Instructions (RVM Extension)

add — Add (32-bit)

addw — Add word (sign-extended to 64-bit)

addi — Add immediate
sub — Subtract (32-bit)

subw — Subtract word

mul — Multiply

mulh — Multiply high (signed x signed)

mulhsu — Multiply high (signed x unsigned)

mulhu — Multiply high (unsigned x unsigned)

mulw — Multiply word (32-bit)
div — Divide (signed)

divu — Divide unsigned

rem — Remainder (signed)
remu — Remainder unsigned
divw — Divide word

remw — Remainder word

Shift Instructions

sll — Shift left logical

srl — Shift right logical

sra — Shift right arithmetic
sllw — Shift left logical word
srlw — Shift right logical word

sraw — Shift right arithmetic word

Logical Instructions
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e and - Bitwise AND

e or—Bitwise OR

e xor — Bitwise XOR

e andi— AND immediate
e ori—OR immediate

e xori —XOR immediate

e not - Bitwise NOT (pseudo-instruction)
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Chapter 5. Loops, Branches and Conditions

Overview of the chapter

Chapter 5 introduces control flow mechanisms in RISC-V assembly. It explains how to make decisions,
repeat code (loops), and redirects program execution using conditional and unconditional branches.

5.1.J-Type and B-Type instructions

Paragraphs 2.2.1.3.4 and 2.2.1.3.5 discussed the control transfer J and B type instructions. Recall that
unconditional jumps are J-type and conditional branches are B-type. The ability to vary the program flow,
based on conditions such as greater than (>), less than (<) or equality greatly enhances the power of
computing devices. RISC-V can perform conditional branches with a single instruction. Other instruction
sets may use two instructions, by first performing a comparison and then deciding whether to branch by
the status of a condition code register flag.

Comparison using two instructions -

cmp rl, r2 # Compare two registers

bgt <label> # Branch if the value of registerl is greater than the value of register2

RISC-V only uses a single instruction -
bgt t0, tl, <label> # Branch if t0 is less than tl

This can result in more economic code.

5.1.1.B-Type instruction details

Consider the instruction b1t t0, t1, exit where the branch instruction is located at 0x100c0 and the
label <exit> is located at location 0x100c8. When t0 is less than t1 then the flow will branch to the address
at <exit>. The opcode in this case is 0x0062c463.

Referring to Figure 5-1 the diagram shows that the offset has a value of 8 which is the number of places
that the program will branch to (0x100c8 minus 0x100c0). Recall that bit zero need not be encoded in
the immediate value which specifies the offset and is always implicitly set to zero. This means that the
offset is always even. The reason that the offset is a multiple of two rather than four is to accommodate
RISC-V 16-bit implementations. The register operands use the X register number showing the values 5
and 6 which correspond to registers t1 and t0.
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Figure 5-1 Breakdown of blt instruction

blt t0, tl,exit
[12] Imm (10:5) rs2 rsi funct3  imm(4:1) [11] Opcode
3130292827 2625242322212019181716151413121110 9 8 7 6 5 4 3
0000000001100010110001I0001100

WA '

12111098765*4*3*2
000O0O0OO0OOOO0OTTO

!

Immediate field breaks down into 8 Bit 0 always =0, allowing its bit position to be used as bit 11 of imm field)
rs2=x6=T1

rsl=x5=T0

Opcode = 0x63

o N

A\

o
o o

Table 5-1 shows the available branch instructions which includes the additional pseudo instructions.

Note that comparisons can be made with signed and unsigned values.

e

Table 5-1 Conditional branch instructions

Instruction  Description Example

blt Branch if less than blt rs1, rs2, imm blt t0, t1, exit*?

bltu Branch if less than unsigned bltu rsi, rs2, imm bltu t0, t1, exit

bltz Branch if less than zero* bltz rs1, imm bltz t0, exit

ble Branch if less than or equal to zero* ble rsi, rs2, imm ble t0, t1, exit

bleu Branch if less than or equal bleursl,rs2,imm bleu t0, t1, exit
unsigned*

blez Branch if less than or equal to zero* blez rs1, imm blez t0, exit

bge Branch if greater than or equal bge rs1, rs2, imm bge 10, t1, exit

bgt Branch if greater than* bgt rs1, rs2, imm bgt t0, t1, exit

bgtu Branch if greater than unsigned* bgtu rs1, rs2 bgt t0, t1, exit

bgtz Branch if greater than zero* bgtz, rs1, imm bgtz t0, exit

42 This is a memory location pointed to by the label “exit”
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Instruction  Description Example

bgeu Branch if greater than or equal to bgeursl, rs2, imm bgeu t0, t1, exit
zero unsigned

bgez Branch if greater than or equal to bgezrsl, imm bgez t0, exit
zero*

beq Branch if equal beqrsl, rs2,imm beq t0, t1, exit

beqz Branch if equal to zero* beqz rs1, imm beqz t0, exit

bne Branch if not equal bne rsi, rs2, imm bne t0, t1, exit

bnez Branch if not equal to zero* bnez rsl, imm bnez t0, exit

*=Pseudo instruction

5.1.2.)-Type instruction details

5.1.2.1. JAL

The format of the Jump and link instruction (JAL) is JAL rd, <label>.

The instruction jal makesquare is equivalent to the pseudo instruction j§ makesquare which
disassembles to the non-aliased instruction jal ra,<makesquare>. It has a 20-bit immediate value
specifying bits 20:1. Bit 0 of the immediate value is not coded and always set to zero to give even values.
This gives a total of 21 signed bits which is equivalent to a range of minus one MB through to plus one
MB.

By convention the destination register (rd) is register X1 (ra), if no destination register is specified then
ra is automatically used. An instruction such as jal ra, makesquare will use an offset to the address
located at the label <makesquare>. The return address register (ra) will hold the address of the next
instruction following the current jal ra, makesquare instruction (current PC+4 = 0x100bc).

An instruction such as jal zero, mylabel Will not store the return address® and is an unconditional
jump. The aliased instruction J actually expands to jal x0, offset.

Referring to Figure 5-2 the immediate value is Oxc so adding this value to the address of the JAL
instruction (here 0x100b8) gives a jump address of 0x100c4 which is where the makesquare routine is
located. When the routine has finished the program flow returns to the address stored in the ra register
(0x100bc). This is achieved by the pseudo instruction ret which is an alias for jalr, zero,0 (ra).

43 Since the zero register is not writable.
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Figure 5-2 Bit breakdown of JAL instruction

imm[20] imm[10:1] imm[11] imm[19:12] Rd Opcode
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
000O0O0OO0OO0OO1100O0O0OO0OO0OOO0OOOOOOOT1I11011111
100b8 jal ra, Makesquare 00c000ef
Makesquare is at 100c4

rd=xl=ra
2019181716151413121110 9 8 7 6 5 4 3 2 1 0
imm= 000000O0O0OOOOO0O0O0O0O0T1100
=0xc (Offset)
+ 0x100b8 (Current PC)
=0x100c4
5.1.2.2. JALR

The jump and link register instruction (JALR) gets its target address by adding a sign-extended 12 -bit
value to the source register rs1, setting the least significant bit to zero. The destination register will be
loaded with the address of the instruction following the JALR instruction address.

JALR zero, 0 (ra), willreturntothe address in the ra register, the ra register is not updated in this case
since the X0 register has been specified as rd. The pseudo instruction for jalr rd, offset (rsl) is jr.

The ret instruction is the pseudo instruction for jalr x0,0(x1) .

5.1.2.3. Difference between Jr and ret

The pseudo instruction ret will map to jalr x0,0(ra) but jalr is free to use different registers since
it has the form jalr rd,offset (rsl) so aninstruction such as jalr, offset (t0) is acceptable

5.2.Implementing a loop counter to square numbers

The first example is that of a simple loop counter. The program uses a sub-routine to compute squares
of numbers from 1 to 20. The results are stored in consecutive halfword locations. The listing features
one unconditional branch (b1t) and one unconditional jump (5a1). After the sub-routine has completed
the jalr instruction will jump to the instruction (addi a7, zero,93) immediately following the
instruction (jal squareit) that called the sub-routine. When tracing the program flow with GDB use
S(tep) rather than N(ext), since “N” will skip a function** such as squareit.

Listing 5-1 Squaring numbers from 1 to 20
# listing5-1

4 There is a small, subtle difference between a function and a sub-routine, typically a function returns a value whereas a sub-routine might not.
In practice, the terms may often be used interchangeably, although purists may object.
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Figure 5-3 Program flow of makesquares listing

jJal sauareit 0
—» .
addi a7, zero, 93 e

squareit sub-routine ¢

a7,zero,93
E — 1 jalr zero,0(ra)
1. Call sub-routine <squareit>
2. Return from sub-routine
3. Resume code execution

J-Type (Unconditional Jumps)
jal Jump and link

jalr Jump and link register

5.2.1.Summary of jump instructions

jris ajump instruction
and is a pseuo instruction for:
jalr x0, rsl, O
which is:
e Jumptothe addressinrsl
e Do not write a return address (because rd = x0)

ret is a pseudo instruction for returning from a function, expanding to:

ret = jalrx0,ra, 0
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which is:
e Jump to the address stored in ra (x1)

e Do not write a return address

So ret is a special case of jr where the register is fixed to x1 (ra).
jalr x0, rsl, O Jump to arbitrary register

jr rsl

ret jalr x0, ra, 0 Return from function
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Exercises for chapter 5

1. Write a program that takes as its input a number less than 1000 and then calculate the number of
primes below that number.

2. The program crashes after executing the jalr zero,0 (ra
below — why?

instruction highlighted in the GDB trace

B+

—listing5-2.s

Bx8 2] ra BxZ2aaaaefTii4B Bx2aaaaeT44B
Bxleetc @xledfc <_start+28> ap Bx2aaabcZb94 Bx2aaabcZb?4
Bx3ff7ebe780 Bx3ff7eBe?B0 ta Bxé &
Bxb & t2 Bx19 25
Bx2aaabdeBdfe BxZaaabde8re sl BxZaaabdeBa@ 183253199088
Bx11136 699264 al Bx2aaabdeB8afd 183253199088
Bx2aaabdc198 183253189088 a3 Bx@ a
Bxe 4] ab Bx@ a
Bx8 2] a7 Bxdd 221
Bx2aaabde8fH 183253199088 53 Bx2aaabdeB8ad 1832531990688
Bx3ff7ffdchl 274743680184 sh axe a
Bx2aaabdc198 183253189088 s7 Bx2aaabc23al 183253083048
Bx8 5] s9 BxZaaabc23ac 183253083852
Bx2aaab34dd2 183252504018 511 Bx2aaab362ch 183252509374
Bx3ff7ebae’c 274742367628 th Bx3FF7TB30cH 274743179728
Bx4A G4 té BxPbcB4a3bb?bEEEdL —7223¢

5] addi t@,zero, & # Set up counter

6 addi t1,zero,1 # Start at 1

7 la a®, storesquares

8 jal x2,squareit # Jump to routine at <sguareit:, saving return address

9 addi a7,zero, 93 # Routine finished, time to leave

18 ecall

11 squareit:

12 mul t2,t1,t1 # Square the contents of tl and put the result im t2

13 sh t2,0(a@)

14 addi a@, a@,2? # Point to the next halfword location (2 bytes on)

15 addi t1,t1,1 # increment the number to be squared

16 blt t1,t8,sguareit # If 28 numbers have been squared then return from routine

jalr zero,@(ra) # Can also use the pseudo instruction ret
18 .section .data
19 storesquares: .space &4

native process 11273 (regs) In: squareit

Breakpoint 1, _start () at listing5-2.s:5

(odb)
{gdb)
(gdb)
{gdb)

3
s
k1
3

squareit () at listing5-2.s:12

(gdb)
(odb)
{gdb)
(gdb)
{gdb)
{gdb)

Warning:

k1

WM oW om W

Cannot insert breakpoint @.
Cannot access memory at address @x2Zaaaaef4d4B
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RISC-V jump and branch instructions covered in chapter 5

B-Type (Conditional Branches)

blt — Branch if less than

bltu — Branch if less than unsigned

bltz — Branch if less than zero (pseudo-instruction)

ble — Branch if less than or equal (pseudo-instruction)

bleu — Branch if less than or equal unsigned (pseudo-instruction)
blez — Branch if less than or equal to zero (pseudo-instruction)
bge — Branch if greater than or equal

bgt — Branch if greater than (pseudo-instruction)

J-Type (Unconditional Jumps)

jal = Jump and link

jalr —Jump and link register
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Chapter 6. The Stack, Macros and Functions

Overview of the chapter

Chapter 6 focuses on modularizing code in RISC-V assembly using functions, macros, and the stack. It
introduces structured programming principles in low-level development and shows how to organize code
effectively.

6.1. Overview

The concepts between macros and functions are similar but the way that the programs are assembled
leads to tradeoffs behind performance and code size. The previous chapter used a sub-routine called
<squareit>. The routine can be a separate piece of code outside of the main listing which means that
routines can be used as functions that other programs can call on rather than having to keep writing the
additional code enhancing clarity and manageability.

6.1.1.The Stack

Functions will make use of the stack. In general, the stack is a data structure which stores data in a
structured manner. As an example, a register’s contents can be Pushed on to the stack and can be
restored by Popping the data from the stack back to the register again. Push and Pop operations are
performed in a Last in First out (LIFO) manner, in that if multiple items were pushed on to the stack the
last item pushed would be the first one restored. The stack is a location in memory. The stack pointer will
show where in memory the lowest address of the stack is situated. When data is pushed the stack pointer
will be decremented to a lower memory location and when data is popped, the stack pointer will be
incremented.

There are some subtle differences in the RISC-V stack implementation -

Note that RISC-V does not use actual push and pop instructions that are found in other processor
architectures. A push to the stack is accomplished using the store instruction and a pop is accomplished
using the load instruction. This means that the stack can be randomly accessed.

Both these load and store instructions are familiar, the only difference being that the stack pointer is
used as the operand rather than a normal register. With RISC-V the convention is to use register X2 as
the stack pointer, its ABl name is sp. RV64* architectures require that the stack must be 16-byte (128-
bits) aligned. The stack by default with RISC_V grows downwards and is termed a full descending stack.

4 Also RV 32
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Figure 6-1 Stack contents operations

Stack
Values Address
AB12 Ox3FFFFFF1EO
3400 Ox3FFFFFF1DC
a0 Ox3FFFFFF1D8
0 OX3FFFFFF1D4
FF3DA2 Ox3FFFFFF1D0
FO OX3FFFFFF10C
5533 Ox3FFFFFF1C8
AAA5 OX3FFFFFF1C4
(Top of stack) BAC Ox3FFFFFF100
Stack Pointer

Grows downwards towards lower memory addresses
The Stack pointer will show the lowest address of the
stack frame. This is the top of the stack

The example program shows how to allocate stack space, followed by pushing (store) and popping (load)
items using the stack.

Listing 6-1 Allocation and deallocation of the stack
.section .text

.global start

_start:

# Allocate 256 Bytes for the stack
addi sp, sp, -256

1i t0,1

1i t1,2

1i t2, 3

1i t3, 4

#Push registers

sd t0, 24 (sp)

sd tl, 16(sp)

sd t2, 8(sp)
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sd t3, (sp)

#Pop registers, in a LIFO fashion

1d t3, (sp)

1d t2, 8(sp)

1d t1, 16(sp)

1d t0, 24(sp)

# Clean up stack

addi sp,sp,32

exit:

1i a7, 93

ecall
» Stack pointer initially = Ox3FFFFFF1FO
*  After addi sp,sp,-256= Ox3FFFFFFOFO

GDB can be used to view the stack pointer —

(gdk) = f4g Ssp

OxSffffffOfO: 4 3
OxSffffff100: 2 1

Note use /g rather than /d with gdb
Each location shown is a quadword

X /d in GDB causes issues with RV64

6.1.2.Functions

Functions are used to promote coding efficiency and clarity. They are sections of code that can be
included in a program and shared with others as libraries. Over time a coder will usually generate their
own functions for use in their code. When using external functions, registers can be saved on the stack
prior to calling the function, thus ensuring that on return from the function code everything has been
restored, and coding will continue from where it left off. The Program Counter (PC) keeps track of the
location in memory where the code is next to be executed. When a portion of code calls a function, it is
termed the caller. The code that was called (the function itself) is termed the callee. When calling a
function there are several tasks that the caller must perform and similarly the callee has its own
responsibilities. When a function calls another function then the ra register must be preserved otherwise
the original return address used by the first calling routine will be lost.

The registers follow certain conventions which are described below:
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1. There are eight argument registers a0-a7

2. Additional arguments are pushed onto the stack and popped by the called routine.

3. Two registers are used for return values — A0 and Al

4. More values will use a reference to an address (call by reference) where the additional data is stored.

5. Values equal to double the XLEN bits can be passed using two registers. The low order XLEN bits are
passed the lowest number register such as a0 and the high order XLEN bits passed in the higher
register such as al

6. The value can be passed on the stack.

7. If there is only one register available then it can be used, in conjunction with the stack.

8. Nested functions must preserve the ra register,

9. Leaf functions*® do not need to save the return address to the stack,

10. When functions are called without knowing the register usage then the rules shown in Table 2-2 must
be respected?”.

6.2. Calling nested routines

This program uses two routines, the first routine calls the second routine which simple returns flow back
to its caller, which then in turn returns flow back to the main program. The program outputs text to
illustrate the location. Note the parent routine must save the ra register prior to calling the child routine
as the jump will cause its value to be overwritten. This is not the case for the child routine as it is a leaf
function.

The main routing saves the arguments register for printing a second time when it has returned from the
parent and child routines.

Listing 6-2 Nested routines example.

.data

# This program shows nested functions where the main routine calls a routine, which
in turn calls another routine

4 A leaf function is a function that has been called but does not call any other functions.
47 A summary of the rules —

Zero register (x0) is immutable,

ra must be preserved,

t0-t7 If needed should be saved by the calling routine,

s0-s11 Saved by the callee if used via the stack,

a0-a7 If needed should be saved by the calling routine,
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la al, parentmessage
1i a2, parentlen

1i a7,64

ecall

sw ra, 24(sp)

jal ra, child

lw ra, 24 (sp)

ret

child:
# child is a leaf function as it does not call any other routines
1i a0, 1 # Set start value of 1
la al, childmessage
1li a2, childlen
11 a7, 64
ecall

ret

6.2.1.Combining separate programs

The next program (maina.s) calls an external program (squareit.s) to calculate the squares.
Listing 6-3 main.s
.section .data

message: .ascii "\nPlease enter a sequence of digits (up to 4 characters) to be
squared\n"

.equ messagelength, 70

errormessagel: .ascii "\nIllegal character(s) found, please enter only basel0
numbers\n"

.equ errormessagellength, 63

errormessagez: .ascii "\nIncorrect number of digits, please enter 1,2,3 or 4
digits\n"

.equ errormessage2length, 60

inputbuffer: .space 16 # Holds user input
numberbuffer: .space 16 # Holds the converted ASCII to integer numbers
asciioutputbuffer: .space 16

successmessage: .ascii "\nThe result is "

.equ successmessagelength, 16
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tidyupchars: .ascii "\n\n"

.equ tidyupcharslength, 2

.equ linefeed, 10

.section

.text

.global start

_start:

# Prompt

1i
la
1i
1i

ao,
al,
az,

a7,

ecall

for number

1 #<stdout>
message
messagelength

64

# Read in number from keyboard

1i
la
1i
1i

ao,
al,
az,

a7,

ecall

0 # file descriptor 0 (stdin)
inputbuffer # address of the buffer
5 # Max number of bytes to read

63 # Read syscall

# Convert inputted ASCII number to decimal

# Load the address of the ASCII number string

la
1i
1i
1i
1i
1i
1i
la

ao,
al,
to0,
a3,
a4,
a5,
ao,

t5,

inputbuffer # a0 = address of "string"
0 # al = result (initialize it to 0)

linefeed # Linefeed character

48 # Ascii number is actual number +48 so need to subtract this value
10 # used in convert loop to multiply input character to correct position
57 # upper bound (entered digit can't be > 9)

48 # lower bound (entered digit can't be < 0)

inputbuffer+5 # Check for too many digits entered

convert loop:

# Load the next ASCII character

1b

a2,

0(a0) # a2 = *a0 (current ASCII character)

beqg t0, a2,skip valuechecks #(if <LF> then skip the checks for legal decimal number)

bgt a2,a5,illegalcharacter # (too high)

ble a2,

a6,illegalcharacter # (too low)
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skip valuechecks:
# Check if we've reached the <LF> character (end of input string)
beqg t0, a2, conversion done # If character is <LF> then all numbers have been processed
# Convert ASCII to integer:
1i a3, 48 # Load 'O' ASCII value
sub a2, a2, a3 # Convert ASCII character to integer
mul al, al, a4 # shift left by one decimal place
add al, al, a2 # Add the digit to result
# Move to the next character in the string
addi a0, a0, 1 # Increment the pointer
beqg t5,a0, toomanydigits # More than 4 digits have been entered
j convert loop # Next character
conversion done:
mv a0,al
jal squarenumber
# The number has been squared, time to convert back to ASCII format
la al, asciioutputbuffer +11 # Point to the end of buffer
sb zero, 0(al) # Null-terminate the string
1i 3, O
convertbacktoascii:

addi t3, t3, 1

1i t1, 10 # Load divisor (10)

rem t2, a0, tl # Get last digit (a0 % 10)

div a0, a0, til # Remove last digit (a0 / 10)

addi t2, t2, 48 # Convert digit to ASCII (for printing)
addi al, al, -1 # Move buffer pointer back one place

sb t2, 0(al) # Store ASCII character in buffer

bnez a0, convertbacktoascii # Repeat if number is not zero

printsuccess:
1i a0, 1 # syscall for print string
la al, successmessage # Address of ASCII string

1i a2, successmessagelength
1i a7, 64 # Syscall number for printing string
ecall # Make syscall
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./maina
Please enter a sequence of digits (up to 4 characters)to be squared
23146

Incorrect number of digits, please enter 1,2,3 or 4 digits

Note that the called program <squareit.s> has declared <squarenumber> as a
global, this is to allow it to be shared and used by other files. Declarations
without the .global directive are treated as /ocal to the file that they were declared
in and not accessible by other programs.

When tracing the program flow with GDB set the first breakpointtob start ratherthanb 1.
The programs are named maina.s and squareit.s.

The program flow is:

1. Prompt the user to enter a number

2. Get the number from keyboard entry, storing it in inputbuffer

3. Convert the number from ASCIl representation to integers, storing it in numberbuffer

4

Validate the number to be in the range <0-9> unless the ASCII character is Linefeed*®, If not valid then
print out an error message (errormessagel) and exit.

5. Validate the quantity of digits entered, only 1,2,3 or allowed, if invalid then print out an error
message (errormessage2) and exit.

6. The convert_loop routine will place the converted integers in the correct buffer location, the
multiplication by ten shifts the digit to the correct magnitude value.*

7. Once the <linefeed> character has been encountered then all digits have been converted.

8. The number is passed to the squarenumber routine in the program squareit. The squared number
will be returned via register a0,

9. The next step is to display the result by converting the squared integer back to ASCIl format which is
performed by the routine convertbacktoascii.

10. Finally, the result is printed on the screen and the program exits.

48 Pressing enter on the keyboard will store the linefeed character (Oxa) in the buffer
49 For example, the number 6543 will be processed in stages as 6, 60, 65, 650, 654, 6540, 6543 by the multiply and add instructions in convert_loop

0 |t has not been necessary to store values on the stack in this particular example. If the called routine were to overwrite any register that would
need to be preserved then the caller/callee conventions would be respected.
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The program should be stepped through with GDB; ensure that the routines - convert loop: and
conversion done: are fully understood.
Further example —
Listing 6-6 Callerprogram
# This is the caller program (callerprogram.s) that passes the address of a string
# to be printed to another program (calledprogram.s)
.section .data
message:
.asciz "This string was defined in the calling program!\n"
.section .text
.global start

.extern print str # Not defined here, defined externally

_start:
la a0, message # a0 = address of string
call print str # call external routine
# exit (0)
11 a0, 0 # Return success, check in linux with echo $?
1i a7, 93 # exit syscall
ecall

Listing 6-7 Called program
# Callee program (calledprogram.s)
.section .text
.global print str
print str:
# Allocate and push stack items
addi sp, sp, -16
sd ra, 8(sp)
sd s0, O(sp) # Callee has the burden to save the S registers
mv s0, a0 # save pointer to the string which was loaded into a0
# find string length

mv t0, sO

lbu t1, 0(t0) # Put current character of string into tl

begz tl1, 2f # If tl equals zero then we have reached the end of the string

6-12



Chapter 6 The Stack, Macros and Functions

addi t0, t0, 1 # if not get the next character string
3 1b # Jump backwards to label 1:
2: # OK we now have reached the end of the string as ised with .asciz
sub a2, t0, sO # length is now computed from tO
mv al, sO # buffer address loaded into al
1i a0, 1 # stdout
1i a7, 64 # write syscall
ecall
# Unwind the stack
1d ra, 8(sp)
1d s0, O (sp)
addi sp, sp, 16

ret # Our work is done here!

Build with:
as —g -o callerprogram.o callerprogram.s
as —-g -o calledprogram.o calledprogram.s

1d -o printstring callerprogram.o calledprogram.o

6.3.Macros

Macros, like functions can be used to promote coding efficiency and clarity. Macros can be included inline
within a program or defined separately using the .include directive. Macro code is encased between
the directives .macro and .endm. They are used to repeat frequently used instructions using different
parameter values. The format of a macro is macroname argumentl, argument2, . . . Inside the macro
code, these arguments have a backslash \ character in front of them. Macros differ importantly from
functions in that the actual macro code is substituted inline within the main code, this means that 100
calls to the same macro will generate 100 copies of the macro code. The use of Macro’s can increase
performance since there is no need to deal with return addresses as is the case for functions.

Listing 6-8 Macro example (callmacro.s)

# This code calls a macro to print strings to stdout

# The input parameters are the string's location and its length

.section .data

stringl: .ascii "\nThis string was printed using a macro call"

string2: .ascii "\nAnd so was this\n"

.equ stringlengthl, 43

.equ stringlength2, 17
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.section .text

.include "printmacro.s"
.global start

_start:

11 a0, 1 #stdout

# Save a0 on to the stack, would have been simpler to just load it again after the
macro call

# however this illustrates an example

# Allocate space on the stack

addi sp, sp, -16

sw a0, 12 (sp)

print stringl, stringlengthl

1w a0, 12 (sp)

# No need to preserve a0 this time since we no longer need to restore it
print string2, stringlength2

# Exit program

11 a7, 93 # Syscall number for exit
ecall # Make syscall

Listing 6-9 called macro program (printmacro.s)

.macro print location, length

la al, \location

1i a2, \length

1i a7, 64

ecall

.endm

The disassembly (below) shows that the macro has been placed in line, GDB shows that the address of
stringl is located at 0x11128 and that string2’s address is at 0x11153.
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(gdb) info wariables

211 defined wariables:
Non—-debugging symbols:
0x0000000000011128 _ DATZA BEGIN_
0x0000000000011128 stringl
0x0000000000011153 string2
0x0000000000011164 _ SDATA BEGIN
0x0000000000011164 _ bss start
0x0000000000011164 _=data
0x0000000000011168 _ BSS_END___
0x0000000000011168 _end

(gdb) []

The next part of the macro is the 11 instruction which loads the string length into register a2, finally the

syscall is invoked.

-]

5 7
2

00000000000100e8 < start>:

100e8: 00100513 1i
100ec: ££010113 addi
100£f0: 00al2623 SW
100£f4: 00001597 auipc
100£8: 03458593 addi
100fc: 02b00613 1i
10100: 04000893 11
10104: 00000073 ecall
10108: 00c12503 1w
1010c: 00001597 auipc
10110: 04758593 addi
10114: 01100613 11
10118: 04000893 1i
10120: 05400893 11
10124: 00000073

The next macro is part of the same program and does not call the macro externally

Note unlike functions there are no return calls since the macro code is inline.

a0,1
sp,sp,-16
al0,12 (sp)
al, Ox1

al,al,52 # 11128 < DATA BEGIN >

az2,43
a’,64

al0,12 (sp)
al,Ox1
al,al,71 # 11153 <string2>
a2,17
a7,64
a7,93

ecall

Listing 6-10 Internal Macro used to print newline character for the squares program

.section .data

.equ begincount,1
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# Convert and Print Square
mv a0, s2

jal ra, print integer

addi s0, s0, 1 # count++
j forloop
exit:
1i a0, O # Return 0 status
1i a7, 93 # sys_exit
ecall

print integer:
addi sp, sp, - 32 # Allocate 32 bytes on stack
addi t0, sp, 31
1i t1, 10 # Divisor in decimal system

# Count the number of characters before returning zero when dividing, convert to
ASCII and set up syscall write parameters in A registers

conv_to ascii:

rem t2, a0, tl # Get digit

addi t2, t2, 48 # Convert to ASCII

addi t0, t0, -1 # Move pointer back BEFORE storing

sb t2, 0(t0) # Place ascii char in the bottom of the stack

div a0, a0, tl
bnez a0, conv_to ascii

addi tl1l, sp, 31

sub a2, tl, tO # length in a2

mv al, tO # buffer address in al
1i a0, 1 # stdout

1i a7, 64 # sys_write

ecall

addi sp, sp, 32 # Free up stack

ret

6.3.1.Using the Stack — further examples

This program uses the stack as a buffer to calculate the squares of the first twenty integers. It prints out
the number to stdout.
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Listing 6-11 Using the stack with the squares program
.section .data

newline: .asciz "\n"

.equ begincount,1

.equ endcount, 21
.section .text

.global start

_start:

1i s0, begincount # for 1 = 1 to 20

1i sl1l, endcount # if we reach 21 we need to leave!
forloop:

beg s0, sl, exit # if 1 == 21, exit

mul s2, s0, sO # Square the number in the counter s2 = i * i

# Convert and Print Square
mv a0, s2

jal ra, print integer

# Print Newline

1i a0, 1 # stdout

la al, newline

1i a2, 1
1i a7, 64 # sys write
ecall
addi s0, s0, 1 # count++
j forloop
exit:
1i a0, 0 # Return 0 status
1i a7, 93 # sys_exit
ecall

# Could have used memory as buffer but using the stack is more educational
print integer:

addi sp, sp, - 32 # Allocate 32 bytes on stack

addi t0, sp, 31 # TO points to the bottom of the stack

1i t1, 10 # Divisor in decimal system

# Count the number of characters before returning zero when dividing, convert to
ASCII and set up syscall write parameters in the argument registers
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100.00 0.002101 51 41 total

The program flow with annotations is shown with Figure 6-2 and Figure 6-3. Register transitions are
highlighted. The trace is divided into two parts, the first part shows the flow for the square of the first
integer, and the second part shows the flow when the counter has reached its terminal value (20).

Note: The repeated remainder algorithm that converts from binary to decimal is described in chapter
one of the book.
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Figure 6-2 Part one of Listing 6-11’s program flow
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Tutorial 6-1 Program Flow Notes: print_integer is at 0x Register transitions are highlighted

{ Register sO/FP Register s1 Register s2 Registera0  Registeral  Registera2 Registert0  Registertl  Registert2 Registerra Register sp Stack
Ox3FFFFFF1EQ
s0, begincount - - - - - - - - - - Ox3FFFFFF1EQ Ox3FFFFFF1DC
lis1, endcount 0x1 - - - - - - - - - Ox3FFFFFF1EQ Ox3FFFFFF1D8
beq s0, a1, exit 0x1 0x15 - - - - - - - - Ox3FFFFFF1EQ Ox3FFFFFF1D4
mul s2, s0, s0 0x1 0x15 - - - - - - - - Ox3FFFFFF1EQ Ox3FFFFFF1D0
mvao, s2 0x1 0x15 0x1 - - - - - - - Ox3FFFFFF1EQ Ox3FFFFFF1CC
jalRA, print_integer 0x1 01x15 0x1 ox1 - - - - - - Ox3FFFFFF1EQ Ox3FFFFFF1C8
addi sp, sp, -32 0x1 0x15 0x1 0x1 - - - - - 0x10100  Ox3FFFFFF1EQ Ox3FFFFFF1C4
addit0, sp, 31 0x1 0x15 0x1 0x1 - - - - - 0x10100  Ox3FFFFFF1CO Ox3FFFFFF1C0
(It1, 10 0x1 0x15 0x1 ox1 - - Ox3FFFFFF1DF - - 0x10100  Ox3FFFFFF1C0
remt2,a0, t1 0x1 0x15 0x1 0x1 - - Ox3FFFFFF1DF 10 - 0x10100  Ox3FFFFFF1C0
addit2,12,48 0x1 0x15 0x1 0x1 - - Ox3FFFFFFIDF 10 1 0x10100 OX3FFFFFF1CO Note Converts to ASCII
addit0,10,-1 Ox1 0x15 0x1 0x1 - - Ox3FFFFFFIDF 10 49 0x10100  Ox3FFFFFF1C0
sh 2, 0(t0) 0x1 0x15 0x1 0x1 - - Ox3FFFFFFIDE 10 49 0x10100 Ox3FFFFFF1C0 Note Loads Stack location Ox3FFFFFFADE with 49 (0x31)
diva0, a0, t1 0x1 0x15 0x1 0x1 - - Ox3FFFFFF1DE 10 49 0x10100  OX3FFFFFF1C0
bnez a0, conv_to_ascil 0x1 0x15 Ox1 0x0 - - Ox3FFFFFF1DE 10 49 0x10100 Ox3FFFFFF1C0 Note a0is equal to zero so this time, we do not have to jump back t conv_to_ascii
additl, sp, 31 0x1 0x15 0x1 0x0 - - Ox3FFFFFF1DE 10 49 0x10100 Ox3FFFFFF100 Load t0with the location before the stored ascii character
sub a2, t1,t0 0x1 0x15 0x1 0x0 - - Ox3FFFFFF1DE OX3FFFFFFIDF 49 0x10100 Ox3FFFFFF1C0 Now we get the length by subtracting the stack value of t0 from t1
mval, to 0x1 0x15 0x1 0x0 - 1 Ox3FFFFFF1DE OX3FFFFFFIDF 49 0x10100 Ox3FFFFFF100 Now we have already for printing with the character's buffer address
0x1 0x15 0x1 0x0 Ox3FFFFFF1DE 1 Ox3FFFFFFIDE OX3FFFFFFIDF 49 0x10100 Ox3FFFFFF1C0 a0=<stdout>
0x1 0x15 0x1 0x1 Ox3FFFFFF1DE 1 Ox3FFFFFF1DE OX3FFFFFFIDF 49 0x10100  Ox3FFFFFF1C0
0x1 0x15 0x1 0x1 Ox3FFFFFF1DE 1 Ox3FFFFFF1DE OX3FFFFFFIDF 49 0x10100 Ox3FFFFFF1C0 Execute write syscall
addi sp, sp, 32 0x1 0x15 0x1 ox1 Ox3FFFFFF1DE 1 Ox3FFFFFF1DE OX3FFFFFFIDF 49 0x10100 Ox3FFFFFF1C0 Setsp back to original value; tidy up!
ret 0x1 0x15 0x1 0x1 Ox3FFFFFF1DE 1 Ox3FFFFFF1DE Ox3FFFFFF1DF 49 0x10100 Ox3FFFFFF1EO Back to the instruction immediately following the JALRA, print_integer command
lia0,1 0x1 0x15 0x1 0x1 Ox3FFFFFF1DE 1 Ox3FFFFFFIDE OX3FFFFFFIDF 49 0x10100  Ox3FFFFFFIEO Tidy up with a newline character
la a1, newline 0x1 0x15 0x1 0x1 Ox3FFFFFF1DE 1 Ox3FFFFFFIDE OX3FFFFFFIDF 49 0x10100 Ox3FFFFFFIEO Setup syscall write registers
lia2,1 0x1 0x15 0x1 0x1 0x11170 1 Ox3FFFFFFIDE OX3FFFFFFIDF 49 0x10100  Ox3FFFFFF1EQ
lia7,64 0x1 0x15 0x1 0x1 Ox3FFFFFF1DE 1 Ox3FFFFFF1DE OX3FFFFFFIDF 49 0x10100  OX3FFFFFF1EQ
ecall 0x1 0x15 0x1 0x1 Ox3FFFFFF1DE 1 Ox3FFFFFFIDE Ox3FFFFFFIDF 49 0x10100 Ox3FFFFFF1E0 Write out newline
addi s0,s0,1 0x1 0x15 0x1 0x1 Ox3FFFFFFIDE 1 Ox3FFFFFFIDE OX3FFFFFFIDF 49 0x10100  Ox3FFFFFFIEO Incrementindex for the next square
Jforloop 0x2 0x15 0x1 0x1 Ox3FFFFFF1DE 1 Ox3FFFFFF1DE OX3FFFFFFIDF 49 0x10100 Ox3FFFFFF1EQ Process nextsquare
0x2 0x15 0x1 0x1 Ox3FFFFFFIDE 1 Ox3FFFFFFIDE OX3FFFFFFIDF 49 0x10100  Ox3FFFFFF1EQ

Resume when index in s0 reaches 20 . Use break forloop if $30==20in GDB
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Figure 6-3 Part two of Listing 6-11’s program flow

i Register sO/FP Register s1 Register s2 Register a0 Register al Register a2 Register t0 Register t1  Registert2 Register ra Register sp _
beq s0, s1, exit Index has reached 20 decimal
muls2, s0,s0 0x14 0x15 0x169 ox1 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 51 0x10100  Ox3FFFFFF1EQ
mva0,s2 0x14 0x15 0x190 ox1 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 51 0x10100  Ox3FFFFFF1EQ Square of 20is 400
jalra, print_integer 0x14 0x15 0x190 0x190 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 51 0x10100  Ox3FFFFFF1EO
addi sp, sp, -32 0x14 0x15 0x190 0x190 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 51 0x10100  Ox3FFFFFF1EO
addi t0, sp, 31 0x14 0x15 0x190 0x190 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 51 0x10100  Ox3FFFFFF1CO
1, 10 0x14 0x15 0x190 0x190 0x11170 1 Ox3FFFFFF1DF Ox3FFFFFF1DF 51 0x10100  Ox3FFFFFF1CO
remt2,a0, tl 0x14 0x15 0x190 0x190 0x11170 1 Ox3FFFFFF1DF 10 51 0x10100  Ox3FFFFFF1CO
addi t2, 12,48 0x14 0x15 0x190 0x190 0x11170 1 Ox3FFFFFF1DF 0x10 0 0x10100 Ox3FFFFFF1CO Remainderis 0
addi t0, 10,-1 0x14 0x15 0x190 0x190 0x11170 1 Ox3FFFFFF1DF 0x10 48 0x10100 Ox3FFFFFF1C0 Convertto ASCI
sb t2, 0(t0) 0x14 0x15 0x190 0x190 0x11170 1 Ox3FFFFFF1DE 0x10 48 0x10100  Ox3FFFFFF1CO
divao, a0, t1 0x14 0x15 0x190 0x190 0x11170 1 Ox3FFFFFF1DE 0x10 48 0x10100 Ox3FFFFFF1CO Stores
bnez a0, conv_to_asci 0x14 0x15 0x190 0x28 0x11170 1 Ox3FFFFFF1DE 0x10 48 0x10100  Ox3FFFFFF1CO 400 divided by 10is 40
remt2, a0, t1 0x14 0x15 0x190 0x28 0x11170 1 Ox3FFFFFF1DE 0x10 48 0x10100 Ox3FFFFFF1CO Still more digits since quotientis non zero
addi t2,t2, 48 0x14 0x15 0x190 0x28 0x11170 1 Ox3FFFFFF1DE 0x10 0 0x10100 Ox3FFFFFF1CO Back in convertloop, remis 0
addi t0, 10,-1 0x14 0x15 0x190 0x28 0x11170 1 Ox3FFFFFF1DE 0x10 48 0x10100 Ox3FFFFFF1C0 Convertto ASCI
sb t2, 0(t0) 0x14 0x15 0x190 0x28 0x11170 1 O0x3FFFFFF1DD 0x10 48 0x10100  Ox3FFFFFF1CO
divao, a0, t1 0x14 0x15 0x190 0x28 0x11170 1 O0x3FFFFFF1DD 0x10 48 0x10100 Ox3FFFFFF1CO Both digits "0" and "0" stored
bnez a0, conv_to_asci 0x14 0x15 0x190 x4 0x11170 1 O0x3FFFFFF1DD 0x10 48 0x10100 Ox3FFFFFF1CO vided by 10is 4
remt2, a0, t1 0x14 0x15 0x190 0x4 0x11170 1 O0x3FFFFFF1DD 0x10 48 0x10100 Ox3FFFFFF1CO Still have a non zero quotient
addit2, 12,48 0x14 0x15 0x190 0x4 0x11170 1 O0x3FFFFFF1DD 0x10 4 0x10100 Ox3FFFFFF1CO Remainderis 4
addi 10, 10,-1 0x14 0x15 0x190 0x4 0x11170 1 O0x3FFFFFF1DD 0x10 52 0x10100 Ox3FFFFFF1C0 Convertto ASCI
sb t2, 0(t0) 0x14 0x15 0x190 0x4 0x11170 1 O0x3FFFFFF1DC 0x10 52 0x10100  Ox3FFFFFF1CO
divao, a0, t1 0x14 0x15 0x190 0x4 0x11170 1 O0x3FFFFFF1DC 0x10 52 0x10100  Ox3FFFFFF1CO
bnez a0, conv_to_asc 0x14 0x15 0x190 0 0x11170 1 O0x3FFFFFF1DC 0x10 52 0x10100  Ox3FFFFFF1CO Now we are equal to zero so don’t loop back
addi t1, sp,31 0x14 0x15 0x190 0 0x11170 1 O0x3FFFFFF1DC 0x10 52 0x10100  Ox3FFFFFF1CO
sub a2,t1,t0 0x14 0x15 0x190 0 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1CO
mval, to 0x14 0x15 0x190 0 0x11170 3 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1CO
lia0,1 0x14 0x15 0x190 0 Ox3FFFFFF1DC 3 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100 Ox3FFFFFF1CO  All argumentregisters are ready for Write syscall
lia7,64 0x14 0x15 0x190 1 Ox3FFFFFF1DC 3 Ox3FFFFFF1DC 0x3FFFFFF1DF 52 0x10100 Ox3FFFFFF1CO
ecall 0x14 0x15 0x190 1 Ox3FFFFFF1DC 3 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1CO
addi sp,sp,32 0x14 0x15 0x190 3 Ox3FFFFFF1DC 3 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1CO
ret 0x14 0x15 0x190 3 Ox3FFFFFF1DC 3 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EO
lia0,1 0x14 0x15 0x190 3 Ox3FFFFFF1DC 3 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EQ
la a1, newline 0x14 0x15 0x190 1 Ox3FFFFFF1DC 3 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EQ
lia2,1 0x14 0x15 0x190 1 0x11170 3 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EQ
lia7,64 0x14 0x15 0x190 1 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EO
ecall 0x14 0x15 0x190 1 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EO
addi s0,s0,1 0x14 0x15 0x190 1 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EO
j forloop 0x15 0x15 0x190 1 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EQ
beq s0,s1 exit 0x15 0x15 0x190 1 0x11170 1 O0x3FFFFFF1DC OX3FFFFFF1DF 52 0x10100 Ox3FFFFFF1EQ
lia0,0 0x15 0x15 0x190 1 0x11170 1 O0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100  Ox3FFFFFF1EO
lia7,93 0x15 0x15 0x190 0 0x11170 1 O0x3FFFFFF1DC 0x3FFFFFF1DF 52 0x10100 Ox3FFFFFF1EQO Return a zero status
ecall 0x15 0x15 0x190 0 0x11170 1 0x3FFFFFF1DC Ox3FFFFFF1DF 52 0x10100 Ox3FFFFFF1EO ExitProgram
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The next program uses an external macro to print a user defined string. The main program calls the macro
COdeprint_stL

Listing 6-12 Main program passing a sting to be printed
#This is the main program
section .data
mystring: .ascii "This was printed by a macro\n"
msglength= 28
.include "print str.s"
.section .text
.global start
_start:
# Call the macro (PRINT STR ) to print the above text
PRINT STR 1, mystring, msglength
exit:
1i a7,93
ecall
Listing 6-13 Macro program to print string
# This is the macro program print str.s
.macro PRINT STR filedescr, msgaddr, msglength
# Macro to print a user supplied string
# Save all argument registers that are being used by the macro
addi sp,sp,-32
sd a0, 24 (sp)
sd al, 16 (sp)
sd a2, 8(sp)
sd a7,0(sp)
1i a0, \filedescr # stdout
la al, \msgaddr # User defined string
1i a2, \msglength # Length of string
1i a7, 64 # sys_write
ecall
1d a7, (sp)
1d a2,8(sp)
1d al, 16 (sp)
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1d a0,24 (sp)

addi sp,sp,32

.endm

6.3.1.1. Macros Vs Routines

*  Modifying the main program to call the macro three times

*  Will result in three copies of the inline code which can be verified by objdump

_start:

# Call the macro
PRINT STR 1, mystring, msglength
PRINT STR 1, mystring, msglength

PRINT STR 1, mystring, msglength

(PRINT STR )

$ objdump -d -S main

PRINT STR 1, mystring, msglength

100e8:
100ec:
100£0:
100f4:
100£8:
100fc:
10100:
10104:
10108:
1010c:
10110:
10114:
10118:
1011lc:
10120:
10124:

PRINT STR 1, mystring, msglength

10128:
1012c:

fe010113
00al3c23
00b13823
00cl13423
01113023
00100513
00001597
0b058593
01c00613
04000893
00000073
00013883
00813603
01013583
01813503
02010113

fe010113
00al3c23

addi
sd

sd

sd

sd

1i
auipc
addi
1i

1i
ecall
1d

1d

1d

1d
addi

addi
sd

6-25

to print the above text

sp,sp, 32

a0, 24 (sp)

al,16(sp)

a2,8(sp)

a7,0 (sp)

a0,1

al,Ox1

al,al,176 # 111b0 < DATA BEGIN >
a2,28

a7,64

a7,0 (sp)
a2,8(sp)
al,16(sp)
a0, 24 (sp)

Sp,sp, 32

sp,sp, 32
a0, 24 (sp)
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10130: 00013823 sd al,16(sp)
10134: 00c13423 sd a2,8(sp)
10138: 01113023 sd a7,0 (sp)
1013c: 00100513 1i a0,1
10140: 00001597 auipc al,0x1
10144: 07058593 addi al,al,112 # 111b0 < DATA BEGIN >
10148: 01c00613 1i az,28
1014c: 04000893 1i a7,64
10150: 00000073 ecall

10154: 00013883 1d a7,0 (sp)
10158: 00813603 1d az, 8 (sp)
1015c: 01013583 1d al,1l6(sp)
10160: 01813503 1d a0, 24 (sp)
10164: 02010113 addi sp,sp, 32

PRINT STR 1, mystring, msglength
10168: fe010113 addi sp,sp, —-32

Converting the program to use a function instead results in one copy
.section .data
mystring: .ascii "This was printed by a function\n"
msglength= 31 #
.include "print str.s"
.section .text
.global start
_BEarts
# Call the function (print str ) to print the above text
jal print str
jal print str
jal print str
J exit
print str:
# This function is used to print a string
# Save all argument registers that are being used by the function

addi sp,sp,-32
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sd
sd
sd
sd
1i
la
1i
1i

a0, 24 (sp)

al,16(sp)

az, 8(sp)

a7,0 (sp)

a0, 1 # stdout

al, mystring # Message string
az, msglength # Length of string

a7, 64 # sys write

ecall

1d
1d
1d
1d

a’l, (sp)

a2, 8 (sp)
al,1l6(sp)
a0, 24 (sp)

addi sp,sp,32

ret

objdump shows -

Disassembly of section .text:

00000000000100e8 < start>:

100e8: 010000ef jal
100ec: 00c000ef jal
100£f0: 008000ef jal
100£f4: 0480006£ 3

00000000000100£8 <print str>:

100£8: fe010113 addi
100fc: 00al3c23 sd
10100: 00b13823 sd
10104: 00c13423 sd
10108: 01113023 sd
1010c: 00100513 1i
10110: 00001597 auipc
10114: 03458593 addi
10118: 01£00613 1i
101l1lc: 04000893 1i
10120: 00000073 ecall
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100£8 <print str>
100f8 <print str>
100£8 <print str>

1013c <exit>

sp,sp, 32

a0, 24 (sp)

al,l6(sp)

a2,8 (sp)

a7,0 (sp)

a0,1

al,Ox1

al,al,52 # 11144 < DATA BEGIN_ >
a2,31

a7, 64
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10124: 00013883 1d a7,0(sp)
10128: 00813603 1d a2,8 (sp)
1012c: 01013583 1d al, 16 (sp)
10130: 01813503 1d a0, 24 (sp)
10134: 02010113 addi sp, sp, 32
10138: 00008067 ret

000000000001013c <exit>:
1013c: 05400893 1i a’l,93
10140: 00000073 ecall

6.3.2.Macros and routines — numeric labels

Some of the programs here have used numeric labels such as 1:,2: .. . These are local labels. If regular
labels are used within the macro, errors will occur during assembly. This is because the label appears
multiple times and a global can only occupy a single location, so this cannot be reconciled.

.macro PRINT STR filedescr, msgaddr, msglength
# Macro to print a user supplied string
# Save all argument registers that are being used by the macro
savestack:
addi sp,sp,-32
sd a0, 24 (sp)
sd al, 16 (sp)
sd a2, 8(sp)
sd a7,0 (sp)
1i a0, \filedescr # stdout
la al, \msgaddr # User defined string
1i a2, \msglength # Length of string
11 a7, 64 # sys_write
ecall
restorestack:
1d a7, (sp)
Assembling causes errors —
as -g -o main.o main.s
maine.s: Assembler messages:
maine.s:4: Error: symbol “savestack' is already defined

maine.s:10: Info: macro invoked from here
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maine.s:15: Error: symbol ‘restorestack' is already defined
maine.s:10: Info: macro invoked from here
maine.s:4: Error: symbol “savestack' is already defined

maine.

0]

gllilg Info: macro invoked from here

Numeric labels behave differently.
o They will not encounter name collisions.

e Defined by a single digit followed by a colon :

e Eventhough they are defined by a single digit, this is not a constraint as they can appear multiple

times in the same program
e Use b(ackward) or f(orward) to specify the nearest label

An example follows

sd s0, O(sp) # Callee has the burden to save the S registers
mv s0, a0 # save pointer to the string which was loaded into a0
# find string length

mv t0, sO

lbu t1, 0(t0) # Put current character of string into tl

begz tl, 1f # If tl equals zero then we have reached the end of the string
addi t0, t0, 1 # if not get the next character string

3 1b # Jump backwards to label 1:

1: # OK we now have reached the end of the string as used with .asciz

sub a2, t0, sO # length is now computed from tO
mv al, sO # buffer address loaded into al
1i a0, 1 # stdout

Key points are:
* Numeric labels are resolved during assembly not during linking
* Aninstruction such asbnez t0, 1bisreconciled to an instruction such as bnez 0x11008
* Consequently, they will not show up as symbols.

Note the disassembly below:
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Disassembly of section .text:

00000000000100e8 < start>:

100e8: 00001517 auipc a0, 0x1

100ec: 06050513 addi a0,a0,96 # 11148 < DATA BEGIN >
100£0: 010000ef jal 10100 <print str>

100£f4: 00000513 1i a0, 0

100£8: 05d00893 1i a7,93

100fc: 00000073 ecall

0000000000010100 <print str>:

10100: ££f010113 addi sp,sp,-16

10104: 00113423 sd ra, 8 (sp)

10108: 00813023 sd s0,0 (sp)

1010c: 00050413 mv s0, a0l

10110: 00040293 mv t0,s0

10114: 0002c303 1lbu t1l,0(t0)

10118: 00030663 beqgz t£1,10124 <print str+0x24> Note address
substituted for label 1f

101llc: 00128293 addi t0,t0,1

10120: f£f5£f06f J 10114 <print str+0x14> Note address
substituted for label 1b

10124: 40828633 sub az,t0,s0

10128: 00040593 mv al,sO

1012c: 00100513 1i a0, 1

10130: 04000893 1i a7, 64

10134: 00000073 ecall

10138: 00813083 1d ra, 8 (sp)

1013c: 00013403 1d s0, 0 (sp)

10140: 01010113 addi sp,sp,16

10144: 00008067 ret

6.3.3.Push and Pop Macros

We have seen that saving values to the stack requires :
e Allocation of space by adjusting the stack pointer
e Saving the registers into the memory location pointed to by the stack with an offset

e Restoring the registers
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e Deallocation of stack space by adjusting the stack pointer
Many programmers are more familiar with stack manipulation by using push and pop instructions.
The next two listings show macros that implement single register push and pop instructions.
Listing 6-14 Push Macro
.macro PUSH pushregister
addi sp, sp, -8
sd \pushregister, 0 (sp)
.endm
Listing 6-15 Pop Macro
.macro POP popregister
1d \popregister, 0 (sp)
addi sp, sp, 8
.endm
The next listing shows push and pop in action.
* The next example shows the temporary registers being saved and restored across calls:
Listing 6-16 Using the push and pop macros
.section .text
.global start
.include "pushmacro.S"
.include "popmacro.S"
_start:
1i t0, 10
1i t1, 20
1i t2, 30
push tO0
push tl
push t2
call nonleaf # call nonleaf function, which calls a leaf function
pop t2
pop tl
pop tO
# exit (result held in register AO0)

1i a7, 93 # sys _exit
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‘ 6.3.4.Macros and routines — POP and PUSH Caveats

e The implementation shown is ABl compliant but uses 128 bits to store a single register.
o With RV64 only 64 bits are needed

e |tis possible to use 64-bits for single register allocation on RV64 but it breaks ABI alignment rules.
o Allocating 128 bits is clean and compliant

e The macros can be easily modified to store two or more registers on the stack.

e The lack of native push and pop instructions, is not an oversight, instead it is part of the design
philosophy of RISC-V.

e Since the push and pop macros are made up of multiple instructions, they are not Atomic and
could conceivably cause issues with autonomous events.
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Exercises for chapter6

N v ks~ w N

%

10.

What is the purpose of the RA register?

Modify the program maina.s to keep running after an error message or successful result has been
printed by asking the user if they would like to input another value (or not)

Why is there an offset of 12 in the instruction sw a0, 12 (sp)?
Explain the difference between a function and a macro

Which directives signify the start and end of a macro?

When is the .include directive used?

Modify on eor more of the programs to make better use of functions, and macros. Compare the
results using strace.

Explain why leaf routines do not need to save the RA register.
Modify the push and pop macros to function with two registers at a time.

Check the program below to find the error. This is a common real-world error that could go
unnoticed/ If you cannot see the error then use GDB to trace the register contents.

.section .text

.global start

.include "pushmacro.S"

.include "popmacro.S"

_start:

# Put values in the temp registers to check out macros

1i t0, 10

1i t1, 20

1i t2, 30

push tO

push tl

push t2

call nonleaf # call nonleaf function, which calls a leaf function
pop t2

pop tl

pop tO

# exit (result held in register AQ)
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| Summary of instructions used in chapter 6

Stack Management Instructions

addi — Used to adjust the stack pointer (sp)

Example: addi sp, sp, -32 (allocate stack space)
sd — Store doubleword (store register onto stack)

Id — Load doubleword (retrieve register from stack)

Control Transfer / Function Support
jal —Jump and Link (used to call functions)
ret — Return from function (pseudo-instruction for jalr x0, ra, 0)

jalr — Jump and Link Register (used indirectly via ret)

Macros and Utilities

.macro / .end_macro — Assembler directives for defining macros (not instructions but critical to macro
usage)

6-36



| Chapter 7 Intermingling Assembly and C

Chapter 7. RISC_V assembly and C together

Overview of the chapter

Chapter 7 explores how assembly language and C code can work together, bridging low-level and
high-level programming. It's highly practical for system developers who want to embed
performance-critical routines in C-based applications. This chapter will show how to combine RISC-V
assembly language with the C programming language. Embedded application developers often have
to have to resort to development using pure machine code, but as we have seen in the earlier
chapters tutorials we have the benefit of development under the Linux operating system. We realize
the advantages of using system calls especially in the area of screen output and keyboard input. This
is best illustrated for those using real hardware such as the platforms described earlier. An operating
system such as Linux allows us to use C code which can be compiled together with RISC-V assembly.

7.1.Example C code

Consider the basic C program shown below:
Listing 7-1 Basic C program
// Addprog.c
# include <stdio.h>
int main () {
int first=10, second=20, sum;
// Calculate the sum
sum = first + second;
/ / Display the result
printf ("$d + $d = %d\n", first, second, sum);
return O;

}

Compile and run

$ gcc addprog.c
$ ./a.out

10 + 20 = 30

$
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Compiling generates intermediate files and by default, the compiler will delete these intermediate
files once the executable program has been generated. To retain the generated assembly files, use
the -s option

$ gcc -S addprog.c
S 1s

addprog.c addprog.s

Print the intermediate assembly code.
$ cat addprog.s
.option pic

.attribute arch,
"rved4i2pl m2p0 a2pl f2p2 d2p2 c2p0 zicsr2p0 zifencei2pO zbalpO zbblpO zbclpO zbslp
Oll

.attribute unaligned access, 1
.attribute stack align, 16
.text

.section .rodata

.align 3

.LCO:

.string "%d + %d = %d\n"
.text

.align 1

.globl main

.type main, @function
main:

.LFBO:

.cfi_ startproc

addi sp, sp,-32

.cfi def cfa offset 32
sd ra, 24 (sp)

sd s0,16(sp)

cfi offset 1, -8

.cfi offset 8, -16

addi s0,sp,32

.cfi def cfa 8, 0
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1i a5,10

sw a5,-28(s0)

1i a5,20

sw a5,-24 (s0)

1w a5, -28(s0)

mv a4,ab

1w a5,-24(s0)

addw a5,a4,ab

sw a5,-20(s0)

1w a3,-20(s0)

1w a4,-24(s0)

1w a5,-28(s0)

mv a2,ad

mv al,ab

1lla a0, .LCO

call printf@plt

1i a5,0

mv a0, ab

1d ra, 24 (sp)

.cfi restore 1

1d s0,16(sp)

.cfi restore 8
.cfi def cfa 2, 32
addi sp,sp,32

.cfi def cfa offset O
jr ra

.cfi endproc

o ILITIE(0) g

.size main, .-main
The stack pointer has been set up with the instruction addi sp, sp,-32. You can see how the

variables first and second are assigned in the highlighted instructions 11 a5,10 and 1i a5, 20.In
between and after the load immediate instructions there is a stack push to save register a5. A copy
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of register a5 is loaded into register a4 via the move instruction. Both registers are added together
using addw a5, a4, a5 and the result is stored on the stack.

Following this the output print parameters are set up via the argument registers a0, al and a2.

7.1.Optimizing code with GCC

Table 7-1 shows the main levels of code optimization that the compiler can generate. The assembly
code that was generated by the compiler uses the default optimization level. Generally, optimization
level 2 is considered a good compromise®. Level 3 can use inline code like macros but can the
optimization at the expense of size.

7.2.C optimization techniques

If the file has been compiled with the -g option then the optimization level may be included in the
executable. The grep utility can be used for this with the dash a switch denoting that the file is an
executable file. The extract shows that level 3 optimization was used with this binary.

$ grep -a "\-0" a.out

? first fmtlong unsigned intunsigned charmainlong intshort unsigned
intprintfsecond printf chkshort intGNU C17 14.2.0 -mtune=spacemit-x60 -mabi=lp64d
-misa-spec=20191213 -mtls-dialect=trad -
march=rvé64imafdc zicsr zifencei zba zbb zbc zbs -g -03 -fstack-protector-
strongaddprog.c/home/alan/c/usr/include/riscv64-linux—-gnu/bitsstdio2.hstdio2-
decl?h

>1 It is recommended to stay with the default levels of optimization until the testing and debugging phases have been carried out.
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Table 7-1 C optimization levels

Optimization level Description

(0]0) No optimization Default, easier to debug

o1 Basic optimization Small optimization, not significantly
increasing compilation time

02 Recommended Perform optimizations that do not
involve space to speed tradeoffs such
as inlining bloat — a good compromise,

safe!

03 Aggressive Uses O2 optimizations and use
inlining for loops, can slow down
compilation

Ofast Aggressive, disregards strict Uses O3 and optimizations that are

standards compliance not valid for all standard compliant
programs

Oz Smaller size Uses 02, excluding optimizations that

may increase size

7.2.1.Compile-time optimization

The same program (addprog.c) that we saw earlier has been compiled with level 3 optimization. You
may notice that it does not use the addw instruction, instead it eliminates the variables first, second
and sum and calculates the result first. The only reason that the values 10 and 20 are retained is for
the print string. The compilation command is:

$ gcc -03 addprog.s

The resulting program is much smaller in size. With optimization level 3 the compiler pre-calculates
the addition since the values of first and second are constant and do not change. This eliminates the
addw instruction. In addition, the stack handling has been reduced. It is important to note that the
optimized code may be harder to debug since it has performed optimization that may be harder to
spot since there is not necessarily a one-to-one correspondence.

7.2.1.1. Constant folding and copy propagation

These techniques are known as constant folding and copy propagation. Constant folding occurred
here by evaluating 10+20 and just using a single variable to store the result. In the code shown it was
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achieved with the instruction li a4,30. In C terms it would simply look like sum=30 without using the
variables first and second. Constant propagation will replace the variables with their values so it can
replace the variables first and second with the constants 10 and 20, so instead of a statement like
sum = first + second, the compiler can directly use sum = 10+20.

# cat addprog.s
.file "addprog.c"
.option pic

.attribute arch,
"rved4i2pl m2p0 a2pl f2p2 d2p2 c2p0 zicsr2p0 zifencei2pO zbalpO zbblpO zbclpO zbslp
Oll

.attribute unaligned access, 1
.attribute stack align, 16
.text

.section .rodata.strl.8,"aMS",(@progbits,1
.align 3

.LCO:

.string "%d + %d = %d\n"
.section .text.startup,"ax",@progbits
.align 1

.globl main

.type main, @function

main:

.LFB23:

.cfi_ startproc

addi sp,sp,-16

.cfi def cfa offset 16

1i a4, 30

1i a3,20

1i a2,10

1lla al, .LCO

11 a0,2

sd ra, 8 (sp)

.cfi offset 1, -8

call printf chk@plt

1d ra, 8 (sp)
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.cfi restore 1

1i a0,0

addi sp,sp,16

.cfi def cfa offset 0
jr ra

.cfi endproc

.LFE23:

.size main, .-main

7.2.2.Run-time optimization

Consider the basic C program shown below. This program does not know the variable’s values at
compile time.

Listing 7-2 C program with user input

# include <stdio.h>

int main() { int first, second, sum;
printf ("Enter two integers: "); // Read two integers from the user
scanf ("$d %d", &first, &second); // Calculate the sum sum = first + second; //

Display the result

printf ("%$d + $d = %d\n", first, second, sum); return 0; }
Compile and run

$ gcc addprogl.c

$ ./a.out

Enter two integers: 4

Compile and run
$ gcc addprogl.c
$ ./a.out

Enter two integers: 4
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The programs ask the user for input so the values of the variables first and second is not known until
runtime. Consequently, constant folding and copy propagation will not apply. Compile time
optimization is a static process, unlike run time optimization which responds to dynamic conditions.
Some of the techniques used in run time optimization include Caching which remembers the result
of a lookup function and Adaptive Inlining which decides which of the functions should be inlined by
monitoring execution frequency.

7.3.Calling assembly functions from a high-level language

The next example creates two source programs, one written in C°? code and the other in RISC_V
assembly. The C program (Listing 7-3) shown declares an external function (getproduct), located in
the assembly program (Listing 7-4) and calls it passing the two arguments via a0 and al. It then calls
the print£ function to output the result. The assembly program is executed in the normal fashion
generating an object file. The gcc program> generates the C object file and links it with the
previously generated object file.

Listing 7-3 C program calling an external assembly routine
/* This code shows how to call an assembly language program from C

Listing 7-3.c*/

#include <stdio.h>

// Declare the assembly function
extern int getproduct (int a, int b);
int main () {

int x = 100, y = 200;

// Call RiscV assembly function

int result = getproduct(x, Vy);
printf ("The product of %d and %d is %d\n", x, y, result);
return O;

}

Listing 7-4 RISC-V multiply function called from C

S cat listing7-4.s

.text

52 None of the c code presented here is overly complex, however if the reader is not familiar with C, there is a wealth of on-line tutorials to
be consumed that will cover the basics for what is needed here.

>3 An alternative ¢ compiler is c1ang which can be installed by sudo apt install -y clang.
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.global getproduct
getproduct:
mul a0, a0, al # Add the two input registers (a0 and al) and store in a0

ret # Return

The commands to generate the output file are:
$ as -g -o listing7-4.0 listing7-4.s
$ gcc listing7-3.c listing7-4.0 -o outputfile

Here gcc (GNU complier collection) is used instead of the 1d command that was previously used to
perform the linkage.

The generated assembly files from the .c listing can be saved during compilation with the option -
save-temps. Alternatively, as we saw earlier, to just generate the RISC_V assembly code use the
command gce -S <filename.c> Which generates <filename.s>

The command line is:

$ gcc -save-temps listing7-3.c listing7-4.0 -o outputfile

$1ls -1 outputfile*

-rwxrwxr-x 1 alan alan 9584 Jan 28 11:49 outputfile

-rw-rw-r-— 1 alan alan 21460 Jan 28 11:49 outputfile-listing7-3.1

-rw-rw-r-— 1 alan alan 2408 Jan 28 11:49 outputfile-listing7-3.0

-rw-rw-r-—- 1 alan alan 1024 Jan 28 11:49 outputfile-listing7-3.s

This generates the assembly .s file shown above. The bolded and italicized comments have been
added to help with explanation and were not part of the -save-temps output.

.option pic

.attribute arch, "rv64i2pl m2p0 a2pl f2p2 d2p2 c2p0 zicsr2p0 zifencei2pO"
.attribute unaligned access, 0

.attribute stack align, 16

.text

.section .rodata

.align 3

.LCO:

.string "The product of %d and %d is %d\n" # String as defined as part of the
C source

.text
.align 1

.global main
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.type main, @function

main:
addi sp,sp,-32 # Allocate space on the stack
sd ra, 24 (sp) # Store a double word (64 bits, our architecture is RV64) from

the ra register with an offset of 24 from the stack pointer

sd s0,16 (sp) # Store a double word from the sO(fp) register with an offset
of 16 from the stack pointer

addi s0,sp,32 # Store stack pointer with an offset of 32, from the current
stack pointer

11 ab5,100 # First factor

sw a5,-20(s0) # Store first factor

11 ab5,200 # Second factor

SwW ab,-24 (s0) # Both factors stored in addresses pointed to by sO0 (s0 -20, sO
024)

1w ad,-24(s0) # Load a4 with second factor

1w ab5,-20(s0) # Load a5 with first factor

mv al,a4d # Move second factor to al

mv a0, a5 # Move first factor to al

call getproduct@plt # Call function with parameters held in a0 and al
mv a5,al # Move first factor into ab

sSwW a5,-28(s0) # Store first factor into location pointed to by sO with an
offset of -28

1w a3,-28(s0) # Load first factor into a3
1w a4,-24(s0) # Load second factor into a4
1w a5,-20(s0) # Load first factor into ab
mv az2,a4d # Load second factor into a2
mv al,ab # Load first factor into al

1la a0, .LCO

call printf@plt # call printf function using the procedure linkage table>“

1i a5,0

mv a0, a5

1d ra, 24 (sp) # Pop ra register back to original value
1d s0,16 (sp) # Pop frame pointer back to original value

>4 Refer to RISC-V ABlIs Specification (https://lists.riscv.org/q/tech-psabi/attachment/61/0/riscv-abi.pdf) section 8.5.6 for more information
on the procedure linkage table.
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.cfi offset 1, -8

call getproduct@plt
mv a4, a0

1i a3,200

1i a2,100

1la al, .LCO

1i a0,2

call __printf chk@plt
1d ra, 8 (sp)

.cfi restore 1
1i a0,0
addi sp,sp,16
.cfi def cfa offset 0O
jr ra
.cfi endproc
> LIFEIL3 g
.size main, .-main
.ident "GCC: (Bianbu 14.2.0-19%9ubuntu2bb3) 14.2.0"

.section .note.GNU-stack,"", @progbits

$ 1s -1 outputfileO0-listing7-3.s outputfileOz-listing7-3.s

-rw-rw-r—-— 1 alan alan 1024 Jan 28 11:58 outputfileOO0-listing7-3.s

-rw-rw-r-- 1 alan alan 830 Jan 28 12:00 outputfileOz-listing7-3.s

The clang compiler uses similar optimization options. A comparison of the assembly file size using
the wc utility>® is shown following:

$ clang with -00

52 182 1463

$ clang with -0z

39 124 1015 Using in-line code

The next program uses in-line code to execute assembly language instructions from a single C source
program. The GNU assembler keyword asm is used to denote the operands using C syntax.

5> wc counts lines, words and bytes so an output of 52 182 1463 refers to 52 lines, 182 words and 1463 bytes; using wc —1 will only return
the line count
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There are two forms of ASM— Basic and Extended. In-line assembly code is a bridge for interfacing
the high-level convenience of C/C++ to the low-level functionality of RISC-V assembly code

7.3.1.Basic ASM

Basic ASM is a set of assembly instructions. With inline code the asm keyword is not an actual C
keyword>® but it is understood by the assembler. Note that non-GNU assemblers may use an
alternative keyword. Basic ASM is simpler than extended ASM and can be used when no operands
are involved. The next listing shows an example of in-line Basic ASM used with C code; in practice
Extended ASM is used more often with in-line assembly code.

Listing 7-5 Basic ASM example

# include <stdio.h>

const char message[] = "Hello - RiscV Basic ASM!\n";

int main ()

{

asm (
"la a0, message\n" // load address of msg into a0 (lst argument to puts)
"call puts\n" // call puts (message)

"1li a7, 93\n"
"ecall\n"

) ;

return O;

}

As an exercise you may wish to run the program with optimization and note the most significant
changes.

7.3.1.Extended ASM

Extended ASM can use variables from the C/C++ source code. Extended ASM cannot be used outside
of these functions. The assembler template consists of:

asm(code template : output operand(s) : input operand(s) : clobber list);

Table 7-2 gives an explanation.

6 This is not the case with C++.
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Table 7-2 Inline assembly template

Template

Example
Code - Assembler "mul %0, 31, 32"
Instruction

Code Template parameters =~ adds[inputa], %[inputb]

Output Operand(S) List 2 "=r" (result)
Can be left empty using

Input Operands List [inputa] "r" (a),
[lnputb] "y (b)
Clobber List “t0”, “tl1”

Description

Regular assembly instruction

Using parameters passed as
inputs to the code template

List of output operand(s)
[answer] is a symbolic name, ris
a constraint string meaning
register and (result) is returned
to the Calling code.

Similar syntax to operand list

Optional list of registers, that
may not be preserved

An example of in-line assembly code in a C program using Extended ASM is shown in Listing 7-6

Listing 7-6 Extended ASM example
cat listing7-4.c
#include <stdio.h>
int main () {
int numberl = 15, number2 = 27, result;
// Using extended ASM to add a and b
asm volatile (
"add %0, %1, %2"
"=r" (result) // Output operand
"r" (numberl), "r" (number2) // Input operands
// No clobbered registers
)i

printf ("Result of adding %d to %d is: %d\n", numberl,number?2,result);

return 0;

1}

e This instruction adds two registers indicated by the input operands %1 and %2,
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e %0 represents the output operand.
e "=r"indicates that the result (sum) will be stored in a register.
e "r"(numberl), "r"(number2) indicates registers.
The intermediate assembly file generated by the C compiler is shown below:

Note the comments are not generated by gcc but edited in for clarity.

.option pic

.attribute arch, "rv64i2pl m2p0 a2pl f2p2 d2p2 c2p0 zicsr2p0 zifencei2pO0"
.attribute unaligned access, 0

.attribute stack align, 16

.text

.section .rodata

.align 3

.LCO:

.string "Result of adding %d to %d is: %d\n"
.text

.align 1

.globl main

.type main, @function

main:

addi sp, sp, —32

sd ra, 24 (sp)

sd s0,16 (sp)

addi s0,sp,32

1i a5,15 //numberl is stored in register ab

Sw a5,-20(s0) // It is then pushed onto the stack

1i a5,27// number2 is stored in register a5

sw ab5,-24(s0) // It is then stored onto the next stack location

1w a5,-20(s0) // numberl is retrieved from the stack and stored in register a5
1w ad,-24(s0) //number2 is retrieved from the stack and stored in register a4
#APP
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add a5, a5, a4 // Numberl is added to number2 storing result in register a5

# o " 2

#NO_APP

SW a5,-28(s0) // Result is stored onto the stack
1w a3,-28(s0) // Result is popped form the stack and loaded into register a3
1w a4,-24(s0) // Restore number2 into register a4
1w a5,-20(s0) // Restore numberl into register a5
mv a2,ad4 // Store numbers into registers al and a2
mv al, a5

1lla a0, .LCO // Set up print output

call printflplt

1i a5, 0

mv a0, a5

1d ra, 24 (sp)

1d s0,16 (sp)

addi sp,sp, 32

Jjr ra

.size main, .-main

.ident "GCC: (Debian 12.2.0-14) 12.2.0"

.section .note.GNU-stack, "", @progbits

7.3.1.1. Further Basic ASM example

The C program presented here shows another example of Basic ASM. The C variables are matched
to the RISC-V registers TO through T2 using the register keyword The addition is performed with the
instruction add t2, t0, t1 enclosed within the asm block. On entry It is actually in the text section, after
this the .rodata section is defined and then the last part of the asm block is to return to the text
section. This is important as the program needs to exit the data section. The printing is performed
by the C code. The alternative is to save the section state and then restore it as shown in the listing
below.

Listing 7-7 Further BASIC asm example
# include <stdio.h>

//Declare the assembly message as an external variable since it is defined in
assembly block

extern char assembly msg[];

int main () {
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int numberl 42;
int number2 = 569;
int result; //Assign registers to C variables
register int numl asm("t0") = numberl;
register int num2 asm("tl") = number2;
register int output asm("t2");

asm (

"add t2, t0, tl \n\t"

".section .rodata\n\t"

".global assembly msg\n\t"

" assembly msg:\n\t"

" .asciz \"The result of adding 42 and 569 (calculated using basic ASM) is:

".section .text\n\t" // Now back in the text section
)i
// Get the result from the register

result = output;

printf ("$s %d\n", assembly msg, result);

return O;

./a.out

The result of adding 42 and 569 (calculated using basic ASM) is: 611

\"\n\t"

7.4. Format Specifiers

Earlier programs in this chapter have already used printf to output results. The C standard library
function printf£ is defined within <stdio.h> as int printf (const char *format,..) Itisa variadic
function which means that it can take a variable number of arguments. This is conveyed by the
ellipsis... in the prototype. The function takes a minimum of one argument which is a pointer to the
location of the starting character of the text. The text itself can embed formatting tags which specify
how the arguments that are passed are to be printed — for example a variable using “%d” will be

formatted as a signed base 10 integer.

A non-exhaustive list of format specifiers is shown in Table 7-3.
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Table 7-3 printf format specifiers

Format specifier
%d
%u
%s
%cC

%X

%X

%%
%e

%f

interpretation

Signed decimal number.
Unsigned decimal number.
Pointer to an array of characters.
Outputs a single character.

Represents an unsigned integer in lower case hexadecimal
form.

Represents an unsigned integer in upper case hexadecimal
form.

Outputs a literal “%” character.
Represents floating point as decimal exponent notation.

Represents floating point as decimal.

Using the print £ specifiers helps immensely when using assembly code, although it should be noted
that some systems will not have printf available®’. Listing 7-5 Listing 7-8 shows examples. Here the
registers a0 through a3 are used as function parameters to printf as specified in the ABI calling
convention. The use of printf could conceivably slow down execution in time-dependent code
whereas the direct assembly printing methods are faster. The printf function expects the first
parameter to be a null-terminated string, which uses the .asciz assembler directive.

Listing 7-8 Using the printf function with assembly code

$ .extern printf

.section .rodata

stringl: .asciz "The square of decimal number 42 = %d (Base 10)\n"
string?2: .asciz "The square of number

string3: .asciz "The square of number 42 decimal =%X

.equ numberl, 42

.section .text

.global main

57 Typically, this would apply to bare-metal embedded implementations with limited resources.
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main:
#Prologue
addi sp, sp, -16 # allocate stack (1l6-byte aligned)
sd ra, 8(sp) # save return address

1i al, numberl

mul al,al,al

la a0, stringl # a0 = pointer to format string

call printf # call printf

1i al, numberl
mul al,al,al
la a0, string2

call printf

11 al, numberl
mul al,al,al
la a0, string3

call printf

# Epilogue

1d ra, 8 (sp) # restore return address
addi sp, sp, 16 # restore stack

11 a0, 0 # return 0 from main

ret

The program was built with gcc. Using gcc ensures that the program is linked with the C standard
library (1ibc) which is necessary for invoking print£.

gcc -o test listing7-7a.s

./test
The square of decimal number 42 = 1764 (Base 10)

The square of number 42 decimal = 6e4 (Base 16)

The square of number 42 decimal =6E4 (Upper Case hex)
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We can see that using print £ is much simpler than printing with pure assembly.Building with the -g
option lets us run with GDB.

Figure 7-1 Using GDB with GCC

0x0 o 0x3ff7e5das5a 0x3ff7e5dasSa <_ libc start call main+36>
Isp O0x3fffffeee0 O0x3fffffeecl gp Ox2Zaaaaac800 0x2aaaaacs800
tp 0x3ff7fbb40d0 0x3ff7fbb400 td 0xf7803b 16220219
28 0x3ff7eSd4bc 274741974204 t2 OxfEfFFFFFFFFfqrsases -1

Ox3fEEEFF020 s1 Ox3fffEFFO8E 2743877902884

Ox3fFEEFF020

1 04 =1 Oxged 1764
Ox3££££££0S: a3 0x3££7fb3178 274743374200
Ox3FEEFFefl0 274877902608 a5 OxZazaaaa’liz 183251937026
ae 0x3ff7faddss 274743352664 a7 OxfLLEFFFEFFFFFFOQ00 -409¢
=2 o0x1 1 53 oxd a
IS4 Ox2aaaaabda? 183251942824 =5 Ox2aaaaaa702 183251937028
s6 ox3ffEEFF0S8 274877903000 57 0x3ff7ffdeccO
=8 0x3ff7££=00 274743681032 =9 OxZaaaaabdag
=10 0x2aaab44ds 183252569476 =11 Ox2aaab3bS9a
t3 Ox3ffTfetece 274743586542 L= 0x3££7e43a70 274741869168
0x1 té ox7 7

.asciz umber 42 = %¥d (Base 1
.asciz 42 decimal = $x (Base
.asciz decimal =%X (Upper n"

u numberl, 42
ion .text
bal main

#Prologue

addi sp, = # allocate stack (1€ = aligned)
sd  ra, 2(sp) # save return address

1i al, numberl

mul al,al,al

S Zsinter £o femmar string Contents of address pointed to be register A0 prior
: " to the first printf call

stringl
£

(gdi)
The program being debugged has been started already,
Start it from the beginni
Starting program:
[Thread debugging us

run

Breakpoint 1,
(gdk) =

(gde) = /s Sa0
0x2aaaaaa7so:

decimal number 42 = %d (Base 10)\n"

"The square of
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Exercises for chapter 7

1. Write a program that could benefit from optimization; include redundant instructions to see how
it is handled by the disassembled code

2. Generate compute-intensive code and see if optimization can reduce run-time.

3. List the parameters and their locations, expected by printf.
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| Summary of RISC-V instruction used in chapter 7

Function Calling and Stack Use

sd — Store doubleword (save registers to stack)

Id — Load doubleword (restore registers from stack)
jal —Jump and link (function calls)

ret — Return from function (pseudo-instruction for jalr)

Inline ASM Tools

e While these are not actual RISC-V instructions, the chapter discusses basic and extended
inline assembly syntax in GCC using:

o asm("...")or _asm__ volatile ("...") blocks
o Constraints like r, m, =r, 0, etc.

o Clobber lists and output/input operands
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Chapter 8. Floating-Point

Overview of the chapter

Chapter 8 introduces floating-point operations in RISC-V, based on the IEEE 754 standard. It explains how
floating-point numbers are represented, manipulated, and evaluated in assembly, highlighting both
single and double precision.

8.1. RISC-V floating-point capability

Not all RISC-V systems can handle floating point; recall that only some RISC-V systems have floating-point
support as evidenced from their identification string (the F extension), as discussed on page 2-2.

‘ 8.1.1.Floating-point register set

Capable systems have 32 (f0 = f31) floating-point registers shown in Figure 8-1, while the register width
(FLEN) is determined by the RV extension shown in Table 8-2.
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Figure 8-1 Floating-point registers

Floating-Pointregisters

127-64 63-32 31-0 Register Name ABI Name Saverresponsibity
fO fto Caller
f1 ftl Caller
f2 ft2 Caller

< > 3 3 Caller
fa ft4 Caller
5 ft5 Caller
< > f6 fte Caller
7 ft7 Caller
f8 fsO Callee
> fo fs1 Callee
f10 fao Caller
f11 fal Caller
f12 fa2 Caller
f13 fa3 Caller
f14 fad Caller
f15 fab Caller
f16 faé Caller
f17 fa7z Caller
f18 fs2 Callee
f19 fs3 Callee
f20 fs4 Callee
f21 fs5 Callee
f22 fs6é Callee
23 fs7 Callee
f24 fs8 Callee
25 fs9 Callee
26 fs10 Callee
27 fs1l1 Callee
f28 ft8 Caller
f29 fto Caller
f30 ft10 Caller
f31 ft1l Caller
Bit127 Bit O

32 floating -point registers, data width is determined by RV extension
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Table 8-2 indicates the number of bits that are used by floating-point numbers in the RISC-V architecture,
for reference a single precision number is referenced as a float in the C language and a double precision
number as a double.

This chapter will only discuss single and double precision numbers not half or quad.

Recall from chapter one:

e Single precision numbers are divided into three fields with a single sign bit, eight bits for a biased
exponent and 23 bits for the significand.

e Double precision numbers are divided into three fields with a single sign bit, eleven bits for a
biased exponent and 52 bits for the significand.

e  With normalized numbers the leading 1.XXX... is implicit and not coded.

Table 8-1 Bit fields of single and double precision floating-point numbers

Format Bits Significand  Unbiased Exponent Decimal Precision
Single 32 24 (23+1) 8 6-9 digits
Double 64 53 (52+1) 11 15-17 digits
Table 8-2 Floating-point register width
Optional extension Register width
H Half precision 16 bits (FLEN)
F Single precision 32 bits (FLEN)
D Double precision 64 bits (FLEN)
Q Quad precision 128 bits (FLEN)

8.2.Instruction types

Floating-point instructions can be broadly categorized into the following areas.

‘ 8.2.1.Arithmetic instructions

Floating-point arithmetic operations include —

e Add

e Subtract
o Multiply
e Divide
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e Square root
e  Minimum

e Maximum

8.2.2.Load and store instructions

e |oad

e Store

8.2.3.Convert instructions

e Convert from float to unsigned integer
e Convert from unsigned integer to float
e Convert from single precision float to double precision float

e Convert from double precision float to single precision float

‘ 8.2.4.Categorization instructions

These are used to ascertain the type of value such as minus infinity -eo, -0, NaN, . . . The fclass
instructions are used to store a value corresponding to the type in a destination.

‘ 8.2.5.Comparison instructions

This covers the usual comparisons — less than or equal, equal,

‘ 8.2.6.Miscellaneous instructions

e Sign-injection which copies from a source to a destination with sign-bit manipulation.

8.3. Instruction format

The format of a floating-point instruction is F<instruction>.<precision> rd, rsl, rs2 where
<instruction> is an operation such as <app>, <MUL> or <DIV> and <precision> is the floating-point
precision such as <S> or <D>, so the instruction FsuB.s refers to a single precision floating-point
subtraction operation. An arithmetic instruction — Fapp.s fo, £1, £2 will add the contents of registers f1
and f2 placing the result in register f0. The field breakdown of this instruction is as follows:
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Table 8-3 Field meaning of FADD.s instruction

Field Value Notes
Opcode 1010011 (53) Used with funct5 to determine operation
rd 00010 (2) Destination register (F2)
rm 111 (7) Select the dynamic rounding mode held in frm (rounding mode
field) which is the default mode if not specified in the instruction
rsl 00000 First source register (F2)
rs2 00001 Second source register (F1)
fmt 00 S (32-bit) Single precision see
funct5 00000 FADD instruction
Figure 8-2 FADD bit fields
Instruction - 00107153 fadd.s ft2,ft0,ft1
3 2|2 2 211 1 1

1 6[5] |4 0|9 A :l |:
00000000000100000111-1010011

funct5 fmt rs2 rsl rm rd Opcode

8.3.1.
Floating point control and status register

The floating-point control and status register (FCSR) is a 32-bit register that is used to flag exceptions and
the rounding mode that is used with floating point operations. The exception flags occupy bits 4:0 and
the rounding mode occupies bits 7:5 as shown in Figure 8-3.

Figure 8-3 FCSR bit definitions

3
1 7 5 4 0
NDOUN
ZZFFX
Reserved Rounding Accrued Exception
Mode Flags field (fflags)
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‘ 8.3.2.Rounding Modes

There are two types of rounding modes - dynamic and static. Static rounding modes are specified in the
floating-point instruction such as fadd.s ft2, ft0. ftl, rtz where rtz stands for round towards

zero. Static rounding modes are fixed.

The bit field breakdown for fadd.s ft2, ft0. ftl, rtz isshownin Figure 8-4

Figure 8-4 Field breakdown of FADD.s f2,f0,f, rtz instruction

3 2|2 2 2|1 1 1
1 6|5 4 0|9 4 2
0 00 0O 0]O OJO O 00100O0CO0CO

funct5 fmt rs2 rsl rm rd

o o

1010011

Opcode

Dynamic rounding modes can be changed during code execution; the current rounding mode is specified

within the fcsr register.

Table 8-4 defines the various encoding modes:

Table 8-4 Rounding mode bits

Mode Mnemonic Notes
000 RNE Round to nearest (even values are preferred)
001 RTZ Round towards zero
010 RDN Round down towards -infinity
011 RUP Round up towards +infinity
100 RMM Round to nearest (max magnitude)
101 Reserved
110 Reserved
111 DYN Dynamic rounding
8.3.3.

Accrued Exception bits

The meaning of the exception bits are:
e NZ Invalid
e OF Overflow
e UF Underflow
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e DZ Divide by zero
o NX Inexact

The frcr rd command can be used to read the register placing the result into a general-purpose (integer)
register and the fscsr rsi instruction is used to set bits from a source general-purpose register.

Note that the accrued exception bits must be cleared by the software once they
have been set!

The first listing in this section adds two double precision floating-point numbers and uses printf>® to print
the result. The address of the numbers pi and e are first placed in the integer registers a0 and al. They
are then loaded into floating-point registers fa0 and fal. They are added together, placing the result in
fa2 by the fadd.d instruction. After this the floating-point values are placed back into the integer
registers so that they can be displayed using print£.

Listing 8-1 Adding two double-precision floating-point numbers

# Double-precision floating-point addition example

.data
pi: .double 3.141592653589793 # First double-precision number
euler: .double 2.718281828459045 # Second double-precision number

[)

displayresult: .string "Pi $.15f added to e $.15f = $.15f\n" # Format string for printf
.text

.global main

main:

# Load double-precision floating-point numbers

la a0, pi # Load address of pi

f1d fa0, 0(a0) # Load pi value into faOl
la a0, euler # Load address of e

fld fal, 0(a0) # Load e value into fal

fadd.d fa2, fa0, fal # Double-precision addition, result in fa2
# set printf arguments

# Move Floating-point numbers into integer registers

fmv.x.d al, fa0 # pi goes to al

fmv.x.d a2, fal # e goes to a2

58 Use double-precision with printf. See assembly - How to print a single-precision float with printf - Stack Overflow
(https.//stackoverflow.com/questions/37082784/how-to-print-a-single-precision-float-with-printf) for elaboration.
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fmv.x.d a3, fa2 # Result to a3
# Load string
la a0, displayresult # printf a0 for string, al,a2,... for other parameters
# Print the result
call printf
# exit
1i a7, 93
ecall

The compilation string used was:

$ gcc -g -listing8-1.s -o listing8-1

and the output shows:

./listing8-1
Pi 3.141592653589793 added to e 2.718281828459045 = 5.859874482048838

After the floating-point registers have been added their contents shows:

fal {float = 3.37028055e+12, double = 3.1415826535897931} (raw 0x400521fb54442d18)
fal {float = -2.85695233e-32, dc e = 2.7182818284590451} (raw 0x4005bf0atbl45769)
faz {float = -1.06623026e+28, double = 5.8558744820488378} (raw 0x40177082efac4240)

After the floating-point values have been moved back into the integer registers, their contents are:

al OxZaaaaacllD 183251943440

al 0x400921fb54442d18 4¢1425665655204584¢8
az 0x4005bf0a8bl4a5769 4613303445314885481
a3 0x40177082efacd4240 46182836505608361c0
To verify:

Convert 40177082efac4240 to binary

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
01000000000101110111000010000010111 0111101011000100001001000000

e  Extract sign bit (bit 63) = 0 = Positive

e Extract Exponent field (bits 62:52) = 1025 decimal, double precision range is -1022—> +1023,
biased exponent is 1025-1023 = 2

e Extract significand field bits 51:0), adding explicit leading 1 to get
1.0111011100001000001011101111101011000100001001000000
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= (1% 20)+ (0 27) + (L 272) + (1% 27%) + (1 x 27%) + (0% 275) + (1 x 27%) + (1 x 27) + (1 x 2°%) + (0 x 2°?)

4. +(0x2)+(0x2M+(0x2")+(1x2P)+(0x2™)+(0x2)+(0x27") +(0%x277) + (0 x
2—18) + (1 X 2—19)
5. +(0x229)+ (1x2)+(1x22)+(1x228)+(0x2) +(1x2725) + (1x2726) + (1 x 27%) + (1 x

2—28) + (1 X 2—29) + (0 X 2—30) + (1 X 2—31) + (0 X 2—32) + (1 X 2—33) + (1 X 2—34) + (0 X 2—35) + (0 X 2—36) + (0 X 2—37)
+(1x238)+(0x239)+(0x2) + (0x 2™+ (0x2™) + (1 x27) + (0 x 27**) + (0 x 27%°) + (1 x 27%8) +
(0x27%7) + (0% 27*%) + (0% 27%%) + (0 x 27°°) + (0 x 27") + (0 x 27°?)

6. =(1.46496862051220944068)10
e Multiply by exponent (obtained earlier) = 1.46496862051220944068 * (1*22) = ~5.86

The next section of code introduces the floating-point multiply and divide instructions along with integer
conversion with different types of rounding. Two numbers are multiplied together and then this result is
divided by one of the original numbers to see if there are any errors due to precision.

Listing 8-2 Floating-point rounding using static modes

.data

numberl : .double 123.141592653589793 # First double-precision number
number? : .double 422.718281828459045 # Second double-precision number
displaymresult: .asciz "\n The result of %.15f multiplied by %.15f = %$.15f\n"
# Format string for printf

displaydresult: .asciz "\n The result of %.15f divided by %.15f = $.15f\n"
displayrne: .asciz "\n The integer result rounded to nearest (ties to even)
is %d\n"

displayrup: .asciz "\n The integer result rounded up is %d\n"

displayrdn: .asciz "\n The integer result rounded down is %d\n"
displayrmm: .asciz "\n The integer result rounded to nearest (max magnitude)
is %d\n"

.text

.global main
main:

# Load double-precision floating-point numbers

la a0, numberl # Load address of first number
fl1d fa0, 0(a0) # Load numberl value into fa0
la a0, number2 # Load address of second number
fl1d fal, 0(a0) # Load number2 value into fal

fmul.d fa2, fa0O, fal # Double-precision multiplication, result in fa2
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fdiv.d fa3, fa2, fal # Now divide (numberl*number2)by numberl result in fa3
fecvt.lu.d t0,fa2, rne
fevt.lu.d tl, fa2, rup
fevt.lu.d t2, fa2,rdn
fecvt.lu.d t3,fa2, rmm
# Set up stack space and push registers t0-t3
addi sp,sp,-48 #Allocate space
sd t0, 8(sp)
sd tl,16(sp)
sd t2,24 (sp)
sd t3,32 (sp)
# set printf arguments for fa2 value

# Move Floating-point numbers into integer registers

fmv.x.d al, fa0 # numberl goes to al
fmv.x.d a2, fal # number2 goes to a2
fmv.x.d a3, fa2 # Result to a3

# Load multiplication string

la a0, displaymresult # printf a0 for string, al,a2,... for other parameters
call printf

# Print the division result

la a0, numberl

f1d fa0, 0(a0)

fmv.x.d al, fa2 # multiplication result goes into parameterl

fmv.x.d a2, fa0 # Numberl is parameter?2

fmv.x.d a3, fa3 # derived number2 is parameter3

# Load division string

la a0, displaydresult

call printf

# Now show rounding values and pop stack values
1d al, 8(sp) # Pop tO to al

la a0, displayrne

call printf
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Output:

1d al, 16(sp) # Now pop tl onto al
la a0, displayrup

call printf

1d al, 24 (sp) # Pop t2
la a0, displayrdn

call printf

1d al, 32 (sp) # Pop t3
la a0, displayrmm

call printf

# Restore stack pointer
addi sp,sp,48

# exit

1i a7, 93

ecall

$ ./listing8-2

The

result of 123.141592653589797 multiplied by 422.718281828459055

52054.202468145471357

The

result of 52054.202468145471357 divided by 123.141592653589797

422.718281828459055

The integer result rounded to nearest (ties to even) is 52054

The integer result rounded up is 52055

The integer result rounded down is 52054

The integer result rounded to nearest (max magnitude) is 52054

Listing 8-3 Using dynamic rounding mode

# listing 8-3, use of dynamic rounding

.section

.data
pi: .float 3.141
formatrup: .asciz "\n Pi Rounded up result (RUP) is %d\n"
formatdn: .asciz "\n Pi Rounded down result (RDN) is %d\n"
.equ roundingmask, 0xe0
.equ rup, 0x60
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fevt.w.s al, fO # Result goes to al (first int argument)
# Load format string into a0 (first arg for printf)

la a0, formatdn

call printf

# Return 0 from main

#1i a0, 0

#ret

1i a7, 93

ecall

Output
$ ./listing8-3
Pi Rounded up result (RUP) is 4
Pi Rounded down result (RDN) is 3
Before looking at floating-point compare instructions Listing 8-4 generates the square root of two

numbers. The first number (2) does not have an exact® square root whereas the second number (9)
does.

Listing 8-4 Use of sqrt instruction and reading the FCSR register
# Listing 8-4.s square root function and reading the fcsr register

# This code could be improved on greatly by showing the actual instruction that flagged
the condition

.section .data

messagel: .asciz "\n The square root of the number 9 and 2 when squared is
approximately %$.14f and %.14f\n"

fcsrerrormsg: .asciz "\n Warning fcsr flags set; the hex value read is %d\n"

accexceptbitsmsg: .asciz "\n 1 = NX (Inexact)\n 2 = UF (Underflow)\n 4 = OF (Overflow) \n
8 = DZ (Divide by zero)\n 10 = NV (Invalid)\n"

squarel: .double 9.0
square?2: .double 2.0
.equ flagmask, 0x1f

.section .text

.global main

59 The square root of 2 is irrational
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8 = DZ (Divide by zero)
10 = NV (Invalid)

Note that after the instruction fsqrt.d fa2, fa0 (square root of 9) has been executed
‘}- the FCSR register looks like:
‘0

24 fsqrt.d fa2, fal
fsqrt.d fa3, fal
26 fmul.d fa4, fa2, fa2
27 fmul.d fab, fa3, fa3
28 la a@, messagel
29 fmv.x.d al, fad
30 fmv.x.d a2, fab
31 call printf
32
33 1i t2, flagmask # Mot interested in the rounding bits
34 frecsr tO # read fcsr register
35 and t0O, tO,t2

hre Thread Ox3ff7fc3c60 (regs) In: main

B symbols from listing8-4...

b 1

pint 1 at 0x714: file listing8-4.s, line 20.

Fun
hg program: /home/alan/asm/chapter@8/listing8-4

i debugging using libthread db enabled]

nost libthread_db library "/lib/riscv64-Llinux-gnu/libthread db.so.1".

bint 1, () at listing8-4.s5:20
n Mo fcsr bits set after the square root
n /ofg has been calculated
i reg fcsr
Ox0 NV:0 DZ:0 OF:0 UF:0 NX:@ FRM:@ [RNE (round to nearest; ties to even)]

After the instruction fsqrt.d fa3, fal (square root of 2) has completed GDB shows that the Inexact
bit has been set. This will normally indicate that rounding had to be invoked.

8-15


http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

fmul.d fad, faz2, fa2
27 fmul.d fab, fa3, fa3
28 la a@, messagel
29 fmv.x.d al,fad
30 fmv.x.d a2, fab
31 call printf
32
33 1i t2, flagmask # Not interested in the rounding bits
34 frcsr tO # read fcsr register
35 and t0O, tO,t2
multi-thre Thread @x3ff7fc3cbl (regs) In: main
Reading symbols from listing8-4...
(gdb) b 1
Breakpoint 1 at 0x714: file listing8-4.s, line 20.
(gdb) run

Starting program: /home/alan/asm/chapterf8/1listing8-4
[Thread debugging using libthread db enabled]
Using host libthread db library "/lib/riscv64-linux-gnu/libthread db.so.1".

Breakpoint 1, main () at listing8-4.5:20 :
(gdb) n fesr bit now set gfter the square root

of 2 has been calcfilated

(gdb) n

(gdb) i reg fcsr

fcsr Ox0 NV:0 DZ:0 0OF:0 UF:0 NX:0 FRM:0 E (round to nearest; ties to even)]
(gdb) n

(gdb) i reg fcsr

fcsr Ox1 NV:@ DZ:0 OF:0 UF:0 NX:1 FRM:0 [RNE (round to nearest; ties to even)]
(adb)

Care must be taken when making comparisons between floating-point numbers. After a flag has been
set in the FCSR register, it is important to note that it must be cleared implicitly by the code. Usually, it is
not necessary to check the state of the FCSR register after each floating-point computation has been
executed as the boundaries are usually finite and known in advance.

8.4. Floating-Point comparison instructions

The floating-point comparison instructions are shown in Table 8-5.

Table 8-5 Floating-point comparison instructions
Instruction Example Explanation

feq.s|d® feq.d rd, rsl,rs2 Write the value 1 to the integer register rd, if the double
precision number in rsl is equal to the double precision

number in rs2, else write the value 0 to the integer register
rd.

flt.s|d flt.s rd, rsl, rsZ  \Write the value 1 to the integer register rd, if the single
precision number in rsl is less than the single precision

% Here “|” means or so the instruction could be feq.s or feq.d
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fle.s|d fle.d rd, rsl, rs2  \Write the value 1 to the integer register rd, if the double

number in rs2, else write the value 0 to the integer register
rd.

precision number in rsl is less than or equal to the double
precision number inrs2, else write the value 0 to the integer
register rd.

8.5. Floating-point classification instructions

The classify instructions are used to signify the properties of a floating-point number. There are ten bits
available to specify a number’s class only one of these bits set at any given time. Some of these
classifications require further explanation as they were not discussed in chapter one —

Subnormal A subnormal number or a denormalized number is a number that is smaller than
can be expressed in normal format (1.000...) as described in the IEEE 754 standard. Subnormal
numbers are closer to zero than can be expressed in normal format and have less precision.

Signaling NaN  An exception can be raised when NaN is encountered.

Quiet NaN A quiet NaN does not signal an exception.

Table 8-6 lists the classification bits and their definitions.

Table 8-6 Floating-point classes

Bit
0(1)
1(2)
2(4)
3(8)
4(10)
5 (20)
6 (40)
7 (80)

8 (100) Signaling NaN
9(200) AQuiet NaN

Interpretation when set

7. Negative infinity -oo
Negative normal

Negative subnormal
Negative zero -0

Positive zero +0

Positive subnormal

Positive normal

Positive infinity +oo
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The next program generates two classes of number — Subnormal and a quiet NaN. The annotated stages
to generate the subnormal number are shown in Figure 8-6.

Listing 8-5 Classification of numbers - subnormal and quiet NaN
.section .data
minusone: .double -1
.section .text
.global start
_start:
# Generate a subnormal number by applying division to two normal number
# For RV64D systems (64-bit registers)
# First Generate a 64-bit tiny number across t0 and tl
1i t0, 0x00100000 # Upper 32 bits of smallest normal double (27-1022)
1i t1, 0x00000000 # Lower 32 bits
# Set up divisor
1i t2, 0x40000000 # Upper 32 bits of 2.0
1i t3, 0x00000000 # Lower 32 bits
# Consolidate into 64-bit values
slli tO0, t0, 32
or t0, tO0, tl # t0 = 27-1022 (smallest normal double)
slli t2, t2, 32
or t2, t2, t3 # t2 = 2.0
# TO and T2 now have full 64 bit values
# Store them over to Floating-point registers

fmv.d.x £0, tO # £0 27-1022

fmv.d.x f1, t2 # fl 2.0

# Divide them - produces 27-1023 (subnormal)

fdiv.d f2, £f0, f1 # f2 = (27-1022)/2 = 27-1023
# Verify the result is subnormal (exp=0, mantissa#0)
fmv.x.d t4, f2 # Get bit pattern

fclass.d t0, f2

# Expected result: 0x0008000000000000

# Exponent bits (62:52) = 0

# Mantissa bits (51:0) = 0x800000000000
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la t5, minusone
f1d f4, 0(t5)
fsqrt.d f£4, f4 # Square root of -17?
fclass.d tl, f4
# Exit
1i a7, 93 # Exit syscall number
ecall
GDB shows the classification of the f2 and f4 registers after computation. Register f2 holds a value smaller

than can be represented by normal numbers and is therefore classified as subnormal. Register f4 was
used to calculate the square root of minus one which is a complex number and is categorized NaN.

Figure 8-5 GDB showing floating-point number classification

36 TT, O]
37 .d f4, f4 # Square root of -17
38 fclass.d tl, T4
39 # Exit

> # Exit syscall number

41 ecall

s 47226 (regs) In:

{gdb) n

{gdb) n

(gdb) n Smallest double precision floating

EQ:E; n point decimal value is ~ 2.25 -308
g n

(gdb) n
(gdb) n
(gdb) n

(gdb) i reg f2

f2 {float = 0x0, double = Ox8000000000000} {float = 0, double = 1.11253692925360072-308}
(gdb) i reg f4
4 {float = 0x0, double = Ox7ff8000000000000} {float = 0, double = nan(0x8000000000000)}

(gdb) 1 reg t@

0 0x20 3?7 #——  0x%20 = Positive subnormal
(gdb) i reg tl
tl Ox200 512 = 0x200 = Quiet NaN
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Figure 8-6 Annotated instruction steps to generate a subnormal number

Step11i t0, 100000
33222222222211111111110000000000
10987654321098765432109876543210
00000000000100000000000000000000 TO
0 0 1 0 0 0 0 0
Step 21it1,0
33222222222211111111110000000000
10987654321098765432109876543210
00000000000000000000000000000000 T1
0 0 0 0 0 0 0 0
Step 31i t2, 40000000
33222222222211111111110000000000
10987654321098765432109876543210
01000000000000000000000000000000 T2
4 0 0 0 0 0 0 0
Step 41it3,0
33222222222211111111110000000000
10987654321098765432109876543210
00000000000000000000000000000000 T3
0 0 0 0 0 0 0 0
Step 5slli t0, t0, 32
6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0000000000010000000000000000000000000000000000000000000000000000
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 6 0r t0, t0, t1
6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0000000000010000000000000000000000000000000000000000000000000000
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 7slli t2, t2, 32
6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0100000000000000000000000000000000000000000000000000000000000000
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 8ort2,12, T3
6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0100000000000000000000000000000000000000000000000000000000000000
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 9 fmv.d.xf0. TO
6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0000000000010000000000000000000000000000000000000000000000000000
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 10 fmv.d.x f1, T2
6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0000000000010000000000000000000000000000000000000000000000000000
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 11 fdiv.d f2, f0, f1
6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
0000000010000000000000000000000000000000000000000000000000000000
0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0

T0

T0

T2

T2

fo

f1

2
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8.6. Exercises for chapter 8

1. Write a program to generate different classes of floating-point numbers, print out the class of
number that was produced.

2. Explain Bias as described in IEEE 754

8.7.Summary of RISC-V instructions used in chapter 8

Floating-Point Arithmetic Instructions

FADD.S - Floating-point add (single precision)

FSUB.S — Floating-point subtract (single precision)

FMUL.S - Floating-point multiply (single precision)

FDIV.S — Floating-point divide (single precision)

FSQRT.S — Square root (single precision)

FMIN.S / FMAX.S — Minimum / maximum (single precision)
(There are .D variants for double precision, e.g., FADD.D, FSUB.D.

Floating-Point Load/Store Instructions
FLW — Load single-precision float
FLD — Load double-precision float
FSW — Store single-precision float

FSD — Store double-precision float

Conversion Instructions

FCVT.W.S / FCVT.S.W — Convert between float and integer (single)
FCVT.WU.S / FCVT.S.WU — Convert unsigned integer <> float
FCVT.D.S / FCVT.S.D — Convert between single and double precision

Classification Instructions

FCLASS.S / FCLASS.D — Classify a floating-point value.
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(Identifies if a value is NaN, infinity, subnormal, etc.)

Comparison Instructions

FEQ.S / FEQ.D — Compare for equality
FLT.S / FLT.D — Compare less than

FLE.S / FLE.D — Compare less than or equal

Miscellaneous Instructions
FSGNJ.S / FSGNJN.S / FSGNJX.S — Sign manipulation (sign-inject, negate, xor)
FMV.X.W / FMV.W.X — Move between integer and float registers

Control & Status

Floating-Point Control and Status Register (FCSR) — Read/set via CSRs

Includes: Rounding mode (frm), exception flags (fflags), etc.
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Chapter 9. Vector operations

Overview of the chapter

Chapter 9 introduces vector processing in RISC-V using the Vector Extension (V-extension). It explains
how to perform SIMD-style operations (Single Instruction, Multiple Data), enabling parallel computation
for tasks like matrix math, signal processing, or scientific computing. Vector programming is a complex
topic and many areas are beyond the scope of this document. More details can be found in section 31 of
the unprivileged instruction set manual volumel.

At the time of writing the current version is 20240411 and the document can be found by following the
link at https://riscv.org/specifications/ratified/

9.1.Vector system support

The examples shown here were performed on a physical BananaPi BF3 system. The BananaPi has support
for vectors®! as shown by the Linux command below:

$ cat /proc/cpuinfo

processor : 0

hart : 0

model name : Spacemit (R) X60
isa

rv6d4imafdcv_zicbom zicboz zicntr zicond zicsr zifencei zihintpause zihpm zfh zfhmin z
ca_zcd zba zbb zbc zbs zkt zve32f zve32x zveb64d zveb64f zve64x zvfh zvfhmin zvkt sscof
pmf sstc_svinval svnapot svpbmt

mmu : sv39

uarch : spacemit,x60
mvendorid : 0x710

marchid : 0x8000000058000001
mimpid : 0x1000000049772200
processor H

hart H

model name : Spacemit (R) X60
isa

rv64imafdcv _zicbom zicboz zicntr zicond zicsr zifencei zihintpause zihpm zfh zfhmin z

51 At the time of writing the default GDB debugger on the BananaPi Bf3 Armbian O/S did not show the vector registers during a debug session.
The link https://forum.spacemit.com/t/topic/319?u=alice provided a fix.
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ca_zcd zba zbb zbc zbs zkt zve32f zve32x zve64d zve64f zve64x zvfh zvfhmin zvkt sscof
pmf sstc svinval svnapot svpbmt

mmu ¢ sv39

uarch : spacemit, x60
mvendorid : 0x710

marchid : 0x8000000058000001
mimpid : 0x1000000049772200

The command string to assemble the vector capable programs used in this chapter is:

as -—-mno-relax -march=rv64gcv -g -o <filename>.o <filename>.s
(indicating that the architecture has RV64gcv capability)
Followed by:

1d -o <filename> <filename>.o
to perform the linking.

If physical hardware is not available there are simulators available®.

9.2.Vector registers overview

9.2.1.General purpose vector registers

There are 32 vector registers (v0...V31). Vectors can hold scalar values® or vector values. The number of
elements® associated with the vector registers is variable and is defined by the total amount of memory
available for the vector registers. The number of elements in a vector register is held in the vector length
register. Arithmetic and logical tasks can be performed including multiply/divide, floating-point and shift
operations.

Vector registers can be combined into vector register groups, allowing a single instruction to operate
across multiple vector registers. The vector length multiplier, viMuL, represents the number of registers
that collectively form a vector register group.

VLMUL has integer values of 1, 2, 4, and 8.

9.2.2.Vector CSR’s

There are seven vector associated CSR registers shown in Table 9-1%

62 See https://qithub.com/riscvarchive/riscv-v-spec for references to simulation.

63 Integers or floating point.
54 An element is an independent data entity such as the numerator in a division operation.

65 See Vector Extension Programmer’s model in volume 1 of the RISC-V instruction set manual for further information
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Table 9-1 Vector CSRs

Address
0x008
0x009
0x00A
Ox00F
0xC20
0xC21
0XC22

Privilege level
Unprivileged (Read/Write)
Unprivileged (Read/Write)
Unprivileged (Read/Write)
Unprivileged (Read/Write)
Unprivileged (Read)
Unprivileged (Read)
Unprivileged (Read)

CSR Name
vstart
vxsat
vxrm

vesr

vl

vtype

vlenb

Meaning

Vector start position

Fixed-point saturate flag
Fixed-point rounding mode
Vector control and status register
Vector length

Vector data type

Vector register byte length

| 9.2.2.1. VSTART register

The vector start position register (vstart) is used to specify the index of the first element to be executed

by vector instructions. Listing 9-2 references vector element indices.

9.2.2.2. Vl register

The vector length register (vl) contains an unsigned int specifying the number of elements. It is set with
e32 where t0 holds the number of elements

the instruction vset (i) vl (i) such as vsetvli t1, tO,

and e32% indicates the elements are 32-bits in size. VL is the number of elements involved in a vector

operation.

9.2.2.3. VTYPE register

The vector data type register (vtype) indicates the encoding for the selected element width (SEW), it
occupies bits 5:3 of the vtype register. The SEW bits are defined as shown in Table 9-2. SEW is the bit size

of each individual element withing a vector register.

Table 9-2 Vtype SEW bit meaning

VSEW bits
0 0
0 0
0 1
0 1

SEW

% Additionally, e8 corresponds to 8 bits, e16 corresponds to 16 bits and e64 corresponds to 64 bits.
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Bits2:0 represents the vector register group multiplier setting collectively termed LMUL. LMUL has mandatory integer values of
1, 2, 4 and 8. Refer to Table 9-3 for bit definitions. The register layout is shown in

Figure 9-1. Fractional values are also supported such as % or %%,

Figure 9-1 Vtype register bit fields

vill vta vmul(2:0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

vma xsew(5:3)

The other bitfield definitions (VILL, VMA and VTA) in the vtype register are discussed later in this chapter.

9.2.2.4. VLENB register

The vector byte length (vlenb) register has the value VLEN/S, thus representing values in bytes. It is
design-implementation, dependent so could vary by manufacturer. The BananaPi -BF3 (used here)
utilizes the SpacemiT K system which has a fixed VLENB value of 32,

= VLEN=VLENB*8,
= VLEN =32*8 =256

VLMAX is defined as LMUL * (VLEN/SEW). It represents the maximum length of the number of elements
that are involved in a single instruction.

Vector instructions use the .vv suffix such as vadd.vv to indicate vector operands and the .vs suffix to
indicate vector and scalar operands. Instructions with three operands would use suffixes such as .vvv.

Figure 9-2 shows the vector control and status register state after the vsetvli instruction has been
executed, here register TO has been set with the value = 8.

67 See the specification for further information and rules.

8 The instruction csrr rd, vlenb can be used to return the vlenb value in register rd. The instruction csxr is the control and status read
comma
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Figure 9-2 Using the CSRR instruction to view Vector CSR values

Initial state of Vector CSR registers
csrr a4, vlenb
csIr a5, vtype

csrIt ab, vl
a4 0x20 32 ab 0=0 u]
=13 0x=0 v] a7 O=dd 221

State of Vector CSR registers after execution
of wvsetvlitl, t0, el6 instruction

csrr a4, vlenb
csIr a5, vtype

csrIt a6, vl
a4 0x20 32 as 0x8 g
a7 Oxdd 221

Note:

Vlenb is unchanged (since vlenb is a constant),

Vtype has changed to 1000 (binary) SEW =8

VI has changed to 1000 (binary) there are eight elements in each vector register

The instruction vsetvli t1,t0, e64% causes the vtype register to change its value to 11000 (binary)
and the vl register to change its value to 100 (tO has been set to 4).

e Vtype (SEW bits = 011b = 64 as the standard element width)
e VI (100b =4 elements)
e VLEN/SEW = 256/64 = 4 elements per vector register
To summarize:
VLENB: The amount of bytes in a vector register
VLEN: Related to VLENB, being the amount of bits available in a vector register, must be a power of two
ELEN: The maximum element size for a single vector element, must be a power of two
VL: The number of elements involved in a vector operation
SEW: Defined as the standard element width, (set by vsetvl instruction).

LMUL: The vector register grouping value, (2,4 or 8)

%9 The instruction vsetivli allows an immediate value rather than using a register, for example vsetivli t1, 4, e64
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9.3.Vector addition/ subtraction example

The first example adds and then subtracts two vector registers, each register contains a total of 8
elements.

e Vector registerl contains the values

e Vector register2 contains the values

e Vector register3 contains the additive results.

e Vector register4 contains the subtraction results

From the programmer’s’ perspective, the operation takes place in parallel effectively operating on all
the elements of two arrays simultaneously - datal[0], datal[1], .. data[i] to data2[0], data2[1], ...data2[i]
and placing the result in result[0], result[1],..., result[i]. This is shown in Figure 9-3.

Figure 9-3 Simultaneous addition of multiple array elements

-------- Addend 1

-------- Addend 2
L A

(5 O (S [ (RS R R EE  resu

Listing 9-1 Vector to vector addition/subtraction

# Listing9-la.s

# RISC-V Vector Addition and subtraction example
# Adds two vectors with 8 elements each

# Each element is 32 bits in size

.text

.global start

_start:

# Configure vector parameters

1i t0, 8 # Set vector length (8 elements)
vsetvli tl, t0, e32 # Set vector length to 8 (t0), element width to 32 bits
(e32)

# Load vector data (example values)

70 This does not necessarily mean that the instruction is completed during one hardware clock cycle.
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la a0, datal # Load address
la al, data2 # Load address
la a2, addresult # Load address
la a3, subresult # Load address
# Load vectors into vector regis

vle32.v vl, (a0) # Load first ve

of first vector

of second vector

for addition result
for subtraction result
ters

ctor into vl

vle32.v v2, (al) # Load second vector into v2

# Vector operations take one instruction vv is vector,vector

vadd.vv v3, vl, v2 # v3 = vl + v2 (element-wise)

vsub.vv v4, vl, v2 # vd = vl- v2
# Store result

vse32.v v3, (a2) # Store addi

vse32.v v4, (a3) # Store subt

# Exit program

tion result vector in memory

raction result vector in memory

1i a7, 93 # Exit syscall number

11 a0, 0 # Exit code 0

ecall
.data
datal: .word 110, 220, 330, 440, 550, 660, 777, 880 # First vector (8 elements)
data2: .word 100, 200, 300, 400, 500, 600,700,800 # Second vector (8 elements)
addresult: .word 0, 0, 0, 0, 0, O, 0, O # Addition result
subresult: .word 0, 0, O, O, O, O, O, O # Subtraction result

Figure 9-4 shows the contents of the vector registers v3 and v4 which hold the results of the vector

addition and vector subtraction operations.

The content of the vectors is pushed out to memory via the

vse 32.v instructions and is shown in GbB by examining location 0x11170 which is pointed to by the

integer register a2.

In total 64 bytes of memory stores the two

registers was set by e32 in the vsetvli ti1,

71 64-bit width is indicated by e64.

32-byte vector registers (v3 and V4). The width of the vector
t0, e32 instruction’.

9-7



Chapter 9 Vector operations

Figure 9-4 GDB showing vector elements

13 # Load vector data
14 la a0, datal #
15 la al, dataZz #
16 la a2, addresult #
17 la a3, subresult #
18 # Load vectors into
19 vle32.v vl, (a0) #
20 vle32.v v2, (al) #
21
22 # Vector operations
23 vadd.vv v3, vl, v2
24 vsub.vv v4, vl, v2
25 # Store result
26 vse3Z.v v3, (a)
27 vse3Z.v vd, (a3)
28
29 # Exit program

>
31 1i a0, 0
32 ecall
33
34 .data
35 datal: d 110,

1 10U,

(example wvalues)

Load address of first vector

Load address of second wvector

Load address for addition result
Load address for subtraction result
vector registers

Load first wvector into wl

Load second vector into w2

take one instruction vv is wector,vector
# v3 = vl + vZ (element-wise)
# v4 vi- v2

# Store addition result wvector in
# Store subtraction result vector

memory
in memory

all number]
# Exit code 0

a
a}

elements)
elements)

First wvector
Second vector
Addition result

Subtraction result

440,
400,

a
! g

S

= = T e

(gdb) b 1

Breakpoint 1 at 0x1l00e8: file list
(gdb) run

Starting program: home/alan/asm
Breakpoint 1, () at listing
(gdb) n

(gdb) p Sv3.w

-1 = {210, 420, &30, B840, 1050, 12
(gdb) p Svd.w

- = {10, 20, 30, 40, 50, &0, 77,
(gdb) x /léw 0x11170

0x11170: 210 420 63
0x11180: 1050 1260 14
0x111%90: 10 20 30
0x111a0: 50 60 i

-1.5:10
60, 1477, 1680} . V3 holds the addition results
80} V4 holds the subtraction results
0 840 Results are stored at the base
7 1380 _— address pointed to by register a2
50

This instruction (vadd.vv v2, v0, v1)isanexample of a Single Instruction acting on Multiple pieces of

Data (SIMD).

Disassembly shows:

$ objdump -d -M no-aliases lis
listing9-1: file format el
Disassembly of section .text:

00000000000100e8 < start>:

100e8: 42al
100ea: 0102£357
100ee: 00001517

ting9-1

fed-littleriscv

c.li t0, 8
vsetvli tl1,t0,e32,ml,tu,mu

auipc a0, 0x1
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100£2: 04250513 addi a0,a0,66 # 11130 < DATA BEGIN >
100f6: 00001597 auipc al,0x1

100fa: 05a58593 addi al,al, 90 # 11150 <data2>
100fe: 00001617 auipc az,0x1

10102: 07260613 addi a2,a2,114 # 11170 <addresult>
10106: 00001697 auipc a3, 0x1

1010a: 08a68693 addi a3,a3,138 # 11190 <subresult>
1010e: 02056087 vle32.v vl, (a0)

10112: 0205107 vle32.v v2, (al)

10116: 021101d7 vadd.vv v3,vl,v2

1011la: 02110257 vsub.vv v4,vl,v2

1011le: 020661la’7 vse32.v v3, (a2)

10122: 0206e227 vse32.v v4, (a3)

The opcode breakdown for the vector store instruction V3 = Memory vse23.v v3, (a2) is shown in Figure
9-5.

vse 32.v.020661a7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 o0 0- o o 0 o 0 0 12 1 0 0O 1 1 0 O O O 1 1 O0 1 0 0 1 1 1
0 2 0 6 6 1 a 7

Bits 6:0 Opcode Vector store
Bits 11:7 Store data (vs3) Vector register 3

Bits 14:12 Mew =0 110 = 32b element

Bits 19:15 Regx12(a2)

Bits 24:20

Bit 25 vm Used for masking 1 =unmasked

Bits 27:26  mop Memory operating mode

Bit 28 mew  Extended memory element witSee bits 14:12
Bits 31:29  nf No of fields per segment

Figure 9-5 Bit field breakdown for vector store instruction

9.3.1.Adding a vector and a scalar

The next example adds a vector to a scalar. A scalar value is singular. The first vector register will hold a
vector quantity and the second vector register will hold the scalar. Scalars can be taken from the integer
registers or the first element of a vector register. The concept is shown in Figure 9-6.
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Figure 9-6 Adding a scalar to all elements of a vector

Vector register 1

BT e EET BT e R AT SO Addend 1 (vecton

Integer Register Addend 2 (scalar)
Vector register 2 sroadcas @O
roadcast scalar rrom
l- l- l- l- l- l- F l- Xrg%to second vector
register
alriex | [alel| [alslex| [afabex| [al]ex| [af21ex] [alt)ex] [aowx | Add firstvector

Destinai . register to second
estination register vector register

The graphic in Figure 9-6 shows a vector register holding an array of eight elements, a scalar quantity is
held in an integer register. The content of the integer register is replicated to all elements of a second
vector register and finally both vector registers are added together. The code is shown below.

Listing 9-2 Adding a vector and a scalar

Listing 9-2.s

Vector-Scalar Addition

vl = vector (8 elements)

x10 (a0) = scalar = 15

Result stored in v2

No data section here as the value for the vector registers are generated
within the program. This program also introduces the concept of stride

and broadcasting a scalar from an integer register to all elements of another

H H= H= H= H = H = H

vector register

.text

.global start

_BEarts

# Configure vector setting

1i t0, 8 # Set vector length to 8 elements

vsetvli t0, t0, e32 # 32-bit elements, vl = 8

# Load scalar value into an integer register (a0)
1i a0, 15 # Scalar value = 15
# Generate vector values for vl rather than obtain them for a .data section

1i t1, Oxffff # Load integer register tl with 65535
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vmv.v.x vl, tl # Set all elements to Oxffff (the value in tl)

1i t1, 11 # Set Stride amount

# vid.v is the vector element index instruction, each element's index is written from
# 0 to the vector length -1, since vl = 8, 0-7 are written to the dest register (v0)
vid.v v0 # indices (0,1,2...) into vO
vmul.vx v0, v0, tl # Multiply indices by stride
vadd.vv vl, vl1, vO # vl = [65535, 65546, 65557, 65568, 65579, 65590, 65601, 65612]

# Convert scalar in x register to vector (broadcast)

vmv.v.x v3, a0l # Broadcast scalar to all elements of v3
# Vector-scalar addition (v2 = vl + v3)
vadd.vv v2, vl, v3 # v2[i] = v1[i] + scalar

# Exit (result is in v2)
11 a7, 93 # Invoke syscall

ecall

By way of introducing new instructions the program does more than simply adding a scalar and vector
together. The data was generated using new commands, although it would have been simpler to load
the vectors with values defined in the data section this method adds educational value!

Steps 1 through 7 are used to (lengthily) generate the vector content of v1.

The program explanation is as shown.

1. The vector settings are configured for eight elements with a width of 32 bits
2. The code loads a scalar value 0xffff (65535) into the integer register t1

3. The instruction vmv.v.x w1, t1 moves the value held in the x register T1 to all elements of the
vector register v1. Each element in v1 is now {65535, 65535, 65535, 65535, 65535, 65535, 65535,
65535}

4, The stride amount is set to 11.

5. Thevid.v vo0 instruction writes each elements index ID to the destination, the indices are from 0 to
the vector length — 1. Since vO0 is the destination and the vector length has been set to 8, vO is now
{0,1,2,3,4,5,6,7}.

6. The indices are multiplied by the stride value of 11 (register t1) with the instruction vmul.vx vo0,
v0, t1,giving aresultof {0, 11,22,33,44,55,66,77} in vector vO.

7. Vector v0 and vector v1 are added together giving v1 the result {65535, 65546, 65557, 65568, 65579,
65590, 65601, 65612}.

8. The scalar value 15 is replicated (broadcasted) to all elements of v3. Giving v3 the value
{15,15,15,15,15,15,15,15}
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9. Finally vector vl and v3 are adding placing the result of {65550, 65561, 65572, 65583, 65594, 65605,
65616, 65527} into vector register v2.

‘ 9.3.2.Vector CSR content after execution of Listing 9-2

The CSR register can be shown in DB with the command info registers vector (I R V)

36 vadd.vv vZ, vl, v3 # v2[1i] = wl1l[i] + scalar
37
38 # Exit (result is in w2)

> 39
40 ecall

vstart 0=0 ]

vxsat 00 ]

vErm 0x0 o Vector Iength =8

Vst b o Vector type bits 5:3 = 010 = 32
vtype 0x10 16 Vector length in bytes = 32
vlenb 0x20 32

9.4. Moving elements with vslide

The next example (Listing 9-3) adds individual elements from two vector registers. This is accomplished
by extracting the individual elements from the vector registers, placing them in scalar registers and then
performing a scalar addition. This is accomplished by the vs1idedown instruction. For completeness the
vslideup instruction is included.

The elements are actually moved by the vsiide instructions which "slides" elements by a number of
positions, elements that have been slid out are replaced by zeros. This is similar to shift/rotate
operations.

Listing 9-3 Use of vector vslide instructions

# Listing9-3.s

# Extract individual elements form vector registers, performs arithmetic,

# placing the result in integer registers

.section .data

vectorl: .word 10, 20, 30, 40, 50, 60, 70, 80

vector2: .word 1, 2, 3, 4, 5, 6, 7, 8

.text
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.global start

_start:

# Load vector from memory
la a0, vectorl
la al, vector2

vsetivli t0O, 8, e32 # 8 elements, 32-bit each

vlie32.v vl, (a0) # vl = [10,20,30,40,50,60,70,80]
vlie32.v v2, (al) # vl = [1,2,3,4,5,6,7,8]

# Get value at index 2 (30) from vectorl

# and value at index 7 (8) from vector?2

# Slide and extract

# vslidedown moves an element down a register group

# vslideup moves an element up a register group

# Move down four places, v3 = [50,...], 30 in pole position

vslidedown.vi v3, vl, 4
# Move down seven places v4 = [8,...], 8 in pole position

vslidedown.vi v4, v2, 7
# V3 looks like [50, 60, 60, O, 0, 0, O, O]
# V4 looks like [8, O, 0, 0, 0, O, 0, 0]
vmv.x.s t2, v3 # t2 now holds 50 v3[0]
vmv.x.s t3, vé # t3 now holds 8 v4[0]
add t4, t, t3

# Now t4 contains the value 58

vslideup.vi v5, vl, 5 # v3 = [...,10,20 30]
vslideup.vi v6, v2, 6 # v4d = [...,1,2]

# Exit

1i a7, 93

ecall

Consider the instruction vslidedown.vi v3, w1, 4 inthe listing. Initially vector register 1 contains the
eight elements [10, 20, 30, 40, 50, 60, 70 80] and they will be “slid” 4 places downwards (to the left). As
the elements are moved leftwards they are replaced from the right by zeros, with the result being placed
in vector register v3.

Vector register 1
[10, 20, 30, 40, 50, 60, 70, 80]
[20, 30, 40, 50, 60, 70, 80, 0] Slide down one place
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[30, 40, 50, 60, 70, 80, 0, 0] Slide down two places
[40, 50, 60, 70, 70, 0, 0, 0] Slide down three places
[50, 60, 60, 80,0, 0, 0, 0] Slide down four places
Place this value into vector register 3

vslideup moves the elements rightwards, padding from the left.

9.5. Grouping vector registers

When dealing with certain datasets, it is often not necessary to have 32 vector registers, this might be
the case when dealing with comparisons of data held in just two vector registers. Rather than compare
eight elements at a time (assuming that 8 is the maximum number of elements having the required data
size that can be accommodated by a single vector register the data size) it could be more convenient to
process sixteen elements (or more) with each instruction.

By grouping vector registers the model presented to the programmer might be 16 registers each having
16 elements, or 8 registers with 32 elements etc.

Figure 9-6 shows the concept where two 8-element vector registers are combined into one 16-element
vector register. Grouping is accomplished by the instruction vsetivli TO, 16. E32, m2, here m2
signifies that the number of groups is 16 (32/2), a value of 4 represents 8 groups and a value of 8 would
represent 4 groups. This is shown in Table 9-3.

Table 9-3 LMUL and grouping correspondence

Vimul (2:0) LMUL # of groups
000 1 32

001 2 16

010 4 8

011 8 4

The grouped register is addressed as a single operand using the first grouped register so an instruction
such as vle32.v v0, (t0) would load the data pointed to by t0 into register vO and v1.
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Figure 9-7 Grouping vector registers

Vector registerQ

Vector registerl

Combined Vector registers
Addressable as vO

Listing 9-4 Shows how to combine vector registers into groups of two.
Listing 9-4 Grouping vector registers
# Listing 9-4.s
# Groups two vectors together as one
# VO and V1 form one group addressed by v0
# V2 and V3 form the second group addressed by V2
#
.section .data
# First vector's contents
datasetl: .word 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
# Second vector's contents
dataset2: .word 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
.section .text
.global start
_start:
# Configure for LMUL=2 with m2 (group 2 registers together)
vsetivli t0, 16, e32, m2 # 16 elements (2x8), 32-bit, LMUL=2

# Recall LMUL represents the grouping factor
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# Load first dataset into v0 (first register in group)
la tl, datasetl #Point to datasetl
vle32.v v0, (tl) # Address group by first vector in the group (v0)
# Load second dataset into the next group)
la tl, dataset?2 #Point to dataset?2
# Address group by first vector in the group (v2)
vlie32.v v2, (tl)
# vO-vl: First vector
# v2-v3: Second vector
#Process each group as single l6-element vector:
# Example
# Add 2 to all 16 elements of the first grouped vector
# Add 3 to all 16 elements of the second grouped vector
#

Use vector integer add instruction

vadd.vi v0, v0, 2 # Add 2 to first vector

vadd.vi v2, v2, 3 #Add 3 to second vector
# Exit

1i a7, 93

ecall~

The instruction vsetivli t0, 16, e32, m2 includes m2 to set the grouping, previous instances of this
instruction did not include an m value which left the default group at 1 = 1 register corresponding to 1
group. The e32 designation is the element size = 32 bits and the preceding number = 16 is the number
of elements

Figure 9-8 shows the vector registers before and after the data has been loaded.

Note that a single instruction loads 16 elements, without grouping two
instructions would be required — the first instruction to load vector 0 and the
second to load vector 1.

Similarly, each vadd instruction operates on all of 16 elements of each register pair with one instruction.
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Figure 9-8 Loading two vector registers with one instruction

21 # Load second dataset into the next gro

dat
23 vle3Z.v v2, (tl) # Address

26 # vO0-vl: First vector
27 # wv2Z-v3: Second vector

28

29 #Process each group as single l6-element vector:
30

31 # Example

32 # id 2 to all 16 elements of the first grouped vector
33 # 1 3 to all 16 elements of the second grouped vector
34 # Use vector integer add instruction

35 vadd.vi w0, v0O, 2 # Multiply first vector by 2
36 vadd.vi vZ, v2, 3 # Multiply second vector by 3
37

38 # Exit

39 1i a7, 93

40 ecall

19 vlieiZz.v vO, (tl) # Address group by first vector in the gr

(v0)

by first vector in the group (v2)

ative p [

-—Type <RET> for more, g to guit, ¢ to continue without paging—-
teading symbols from listingS-4...

gdb) b 1

ireakpoint 1 at 0x100e8: file listing®-4.s, line 15.

(gdb) run
jtarting program: /home/

ireakpoint 1, () at 1lis
{gdb) n
{gdb) n
lgdb) p Sv0.w
;1 = {0, 0, 0O, 0O, 0, O, 0O, O}
W
0,

——  Beforevie32vv0, (t1)

igdb) p $vl
i2 = {0, O,
(gdb) n

0, 0, 0, 0, 0} Note one instruction

i3 = {1, 2, 3, 4, 5, &, 1, 8}
{gdb) p Svi.w T Aftervie32vvo, (t1)
;4 = 9, 10, 11, 12, 13, 14, 15, 16}

{gdb) p $v0.w populated both registers
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Figure 9-9 Operating on two vector registers with a single add instruction

37

38 # Exit

Reading symbols from 1ists
(gdb) b 1

Breakpoint 1 at 0x100e8: file listing9-4.s, line 15.
(gdb)} run

Starting program: /home/alan/asm/chapter0%/listing%-4

Breakpoint 1, () at listing%-4.s:15

(gdb) n

(gdb) n

(gdb) p 5v0.w

21 = {3, 4, 5, &, 7, 8, 8, 10}

{gdb) p Svl.w ) .

52 = (i1, 12, 13, 14, 15, 16, 17, 18} Two add instructions

(gdb) p $v2.w operate on 4 registers
$3 = {20, 21, 22, 23, 24, 25, 26, 27}

(gdb) p 5Sv3.w

54 = {28, 29, 30, 31, 32, 33, 34, 35}

tgab)

After the vsetivli t0, 16, e32, m2 has been executed the CSR registers show the values listed in
Figure 9-10. The value 0x11 in the vtype register gives the sew bits (5:3) as 010 and the vmul bits as 001

Figure 9-10 CSR registers after execution of the vsetivli t0, 16, e32, m2 instruction

vl 0x10 le
vtype D=11 17
vlenb 0=20 32

9.5.1.Masking and merging

RISC-V can merge elements from two vectors based on certain conditions. A mask can be used so that a
value can be taken from the first source register if a Boolean is true or from the second source register if
the Boolean is false with the result going to a destination register. For example a mask consisting of
1,1,0,1,0,1 would take the first two values from rs1, the next value from rs2, the fourth value from rsi,
the fifth from rs2 and finally the sixth from rs1. Listing 9-5 shows an example.

Listing 9-5 Use of vmerge instruction

# Listing 9-5.s

# Use of mask and vector vmerge instruction

.section .data

oddnumbers: .word 1, 3, 5, 7, 9, 11, 13, 15
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20
21 # Set up a mask register: thsi will select alternate elements odd and even
22 # Use v0 with binary pattern: to hold mask bits

23 1i tl, 0b1010101010101010
24 vmv.v.x v0, tl

25

26 # wvmerge.vvm result intoc v3 = merge vl and vZ based on mask w0
27 vmerge.vvm v3, vli, vZ, wi

28

2% # Store the result

30 la a3, result

31 vse3Z.v v3, (a3)

32

33 # Exit

native pr 2 (
Feading symbols from listingt

(gdb) b 1

BEreakpoint 1 at 0xl100e8: file listing®-5.s, line 10.
(gdb) run

Starting program: /home/alan/asm/chapter0%/listingf-5
BEreakpoint 1, () at listing%-5.s:10

(gdb) n

(gdb) p Svl.w

51 =41, 3, 5, 7, 9, 11, 13, 15}

(gdb) p SvZ.w

52 = {2, 4, 6, 8, 10, 12, 14, 16}

(gdb) p 5v3.w Memory
53 = {1, 4, 5, 8, 9, 12, 13, 16}

(gdb) = /lew 0Oxl11168

0x11168: 1 4 5 8

0x11178: 9 12 13 16

9.5.1.1. Other vtype fields

Often in vector processing several elements are unused, for example if 12 elements’? are processed out
of 16, then the unprocessed elements are known as the tail. Store/load operations will only work with
the processed elements. The remaining tail elements can be set to any value which is known as tail
agnostic (ta) or they can remain with their previous value which is termed tail undisturbed (tu). The policy
is set with the vsetvii instruction. The unprivileged instruction set manual volumel now states that the
full form of the instruction is mandatory and will be required by future code. The full form also includes

the mask policy which is Mask Agnostic (ma) or Mask Undisturbed (mu). An example would be vsetvli
t0, a0, e32, m4, ta, ma.

72 These are the active elements
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The tail policy is set in bit 6 of the vtype register (refer to Figure 9-1) and the mask policy is set in bit 7. Tail elements are set to
agnostic when bit 6 is set to 1 and undisturbed when set to 0. There may be occasions where the tail values are important, in this
case use tail undisturbed. Use tail agnostic when there is no dependency on the tail elements. In some cases, it may be simpler
to just overwrite the tail elements.

Bit 31 is the vi11 bit and normally clear, set if vtype has an illegal value. Bits 8:30 are reserved.
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| Summary of RISC-V instructions used in chapter 9

Vector Arithmetic Instructions

vadd.vv — Vector + Vector addition

vsub.vv — Vector - Vector subtraction
vadd.vi — Vector + Immediate scalar addition

vmul.vx — Vector x Scalar multiplication

Vector Load/Store Instructions
vle32.v — Load 32-bit elements into a vector

vse32.v — Store 32-bit elements from a vector

Vector Slide Instructions
vslidedown.vi — Slide vector elements down by immediate

vslideup.vi — Slide vector elements up by immediate

Vector Merge and Mask Instructions
vmerge.vvm — Merge vector elements based on mask
vmslt.vv — Set mask if less than (vector-vector comparison)

vmsne.vx — Set mask if not equal (vector-scalar comparison)

Vector Configuration and CSR

vsetvli — Set vector length and configuration
vsetivli — Set vector length with immediate value
vid.v — Generate index vector

vmv.v.x — Move scalar to all vector elements

Register and CSR Usage
e Vector registers used: vO—v31

e CSR-related instructions include:
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o Reading vector control/status via csrr (e.g., csrr t0, vtype)
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Chapter 10. Spike simulator and Cross compiling

Overview of the chapter

Chapter 10 focuses on cross compiling which is the process of building RISC-V programs on a non-native
host machine such as X86-64 to run on a different architecture (RISC-V). The official RISC-V simulator -
Spike will be used to run the cross-compiled programs. Spike supports both 32-bit and 64-bit base ISA’s
with support for vector extensions. There is a proxy kernel PK which provides a run-time environment.
Spike also supports debugging operations.

The target machine that was used to host Spike is an X86_64 Virtual machine running Ubuntu 24.10.

If not using pre-compiled binaries refer to the following section which discusses how to build the
software.

10.1. Building the Toolchain and Spike

The commands below will be executed during the installation; there are three stages:
e Install and build the RISC-V toolchain
e Install and build spike
e Install and build PK

# Prepare paths, directories and ownerships
sudo apt update

sudo apt install -y autoconf automake autotools-dev curl libmpc-dev libmpfr-dev
libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zliblg-
dev libexpat-dev git ninja-build cmake device-tree-compiler

mkdir ~/riscv

cd ~/riscv

sudo mkdir /opt/riscv

sudo chown ubuntuser:ubuntuser /opt/riscv

echo 'export PATH=/opt/riscv/bin:$PATH' >> ~/.bashrc

source ~/.bashrc

# Clone from Github
git clone https://github.com/riscv/riscv-gnu-toolchain
git clone https://github.com/riscv-software-src/riscv-isa-sim

git clone https://github.com/riscv-software-src/riscv-pk
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‘ 10.1.1. Installing the toolchain

Execute the following commands -

$ sudo apt-get install device-tree-compiler autoconf automake autotools-dev curl python3
python3-pip libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo
gperf libtool patchutils bec zliblg-dev libexpat-dev ninja-build git cmake libglib2.0-
dev binutils gcc libpthread-stubs0O-dev libboost-all-dev

$ mkdir riscv

cd riscv

sudo mkdir /opt/riscv

sudo chown ubuntuuser:ubuntuuser /opt/riscv

echo ‘export PATH=/opt/riscv/bin:$PATH’ >> ~/.bashrc
source ~/.bashrc

git clone https://github.com/riscv/riscv-gnu-toolchain

git clone https://github.com/riscv-software-src/riscv-isa-sim

git clone https://github.com/riscv-software-src/riscv-pk

Build the toolchain

cd ~/riscv/riscv-gnu-toolchain
mkdir build

cd build

../configure --prefix=/opt/riscv

v »n »r »v »r o HF= W W »n W W W W »

make -j$ (nproc)

Check to see if we can compile —

$ Riscv64-unknown-elf-gcc-v
Create a small C program —

S vi helloriscv.c

# include <stdio.h>

int main ()

{

printf (“Hello RISC-V!”);
return O;

}

$ riscvé64-unknown-elf-gcc ~/helloriscv.c
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10.1.2. Installing Spike and PK

10.1.3. Spike installation

cd RISCV
cd ~/riscv/riscv-isa-sim
mkdir build && cd build

sudo ../configure --prefix=/opt/riscv

v »n W U »

make -j$ (nproc)

sudo make install

Check
$ spike --help

10.1.4. PK installation

$ cd ~/riscv/riscv-pk

$ mkdir build && cd build

U

../configure —--prefix=$RISCV --host=riscv64-unknown-elf

U

make -j$ (nproc)

sudo make install

U

10.1.5. Testing

Install gcc for risc-v.

riscvé64-unknown-elf-gcc -march=rvé4gcv helloriscv.c
Use the C program created earlier —

# include <stdio.h>

int main ()

{
printf (“Hello RISC-V!”);

return 0;

10.2. Cross-compiling C code

$ riscv64-unknown-linux-gnu-gcc helloriscv.c

Execute the file within the spike environment.
ubuntuuser@ubuntul00:~/RISCVS spike pk ./a.out
Hello, RISC-V!
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Examine the file type
S readelf -h a.out
ELF Header:
Magic:
Class:
Data:
Version:
OS/ABI:
ABI Version:
Type:
Machine:
Version:
Entry point address:
Start of program headers:
Start of section headers:
Flags:
Size of this header:
Size of program headers:
Number of program headers:
Size of section headers:

Number of section headers:

Section header string table index:

7f 45 4c 46 02 01 01 00 00 OO 00 00 OO 0O 00 0O

ELF64
2's complement, little endian
1 (current)

UNIX - System V

0

EXEC (Executable file)
RISC-V

0x1

0x1014e

64 (bytes into file)
22816 (bytes into file)
0x5, RVC, double-float ABI
64 (bytes)

56 (bytes)

4

64 (bytes)

15

14

The program can be transferred over to a native RISC-V host and executed on that host. In the example
below the file has been transferred to a Banana Pi BF3 RISC_V native host and then executed.

$ scp a.out 192.168.68.231:
user@192.168.68.231"'s password:

a.out
$ ./a.out
Hello, RISC-V!

Typically, programmers will use spike for initial development and then test their final releases on a native

host.
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10.3. Cross-assembling and linking

The command line for assembling and linking are similar to the commands that run on a native host. To

differentiate the RISC_V tools from the (in this case) X86-64 tools they are preceded here with riscv64-
unknown—elf-<toolname>.

Writing the HelloRiscv program followed by cross assembling and linking in pure assembly is shown
below -

$ cat hellorisc.s

# hellorisc.s

.section .text

.global start

_start:

1i a0, 1 # use a0 for stdout

la al, message # Load the address of the message text
11 a2, 12 # Store the message length

1i a7, 64 # Write syscall

ecall

11 a7, 93 # Exit syscall

ecall

.data

message: .ascii "Hello RISCV\n"

$ riscv64-unknown-elf-as -g -o hellorisc.o hellorisc.s
$ riscv64-unknown-elf-1d -o hellorisc hellorisc.o

$ spike --isa=rvé64gcv pk hellorisc

Hello RISCV

10.3.1. Using objdump

The command to dump the executable is-

riscvo4-unknown-elf-objdump -d helloriscv.

The disassembled . text section looks like:
000000000001014e < start>:

1014e: 00003197 auipc gp, 0x3

10152: 6cal8193 addi gp,gp, 1738 #13818 < global pointers$>
10156: 00004517 auipc a0, 0x4

1015a: 86250513 addi a0,a0,-1950 # 13908 < stdio exit handler>
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1015e: 00004617 auipc a2,0x4

10162: ela60613 addi a2,a2,-486 # 13f78 < BSS END >
10166: 8e09 sub az,a2,al

10168: 4581 1i al,o

101l6a: 742000ef jal 108ac <memset>

101l6e: 00001517 auipc a0, 0x1

10172: 95450513 addi a0,a0,-1708 # 10ac2 <atexit>
10176: c519 beqgz a0,10184 < start+0x36>

10178: 00002517 auipc a0, 0x2

1017c: ac250513 addi a0,a0,-1342 # 1lc3a <_ libc fini array>
10180: 143000ef jal 10ac2 <atexit>

10184: 6c6000ef jal 1084a < 1libc init array>

10188: 4502 1w a0, 0 (sp)

1018a: 002c addi al,sp,8

1018c: 4601 1i az2,0

1018e: 04e000ef Jjal 101dc <main>

10192: b779 310120 <exit>

Debugging with Spike

Spike has debugging capabilities, it can be invoked by adding -d to the command line as follows:
spike -d --isa=rv64gcv pk hellorisc

Enter “help” to show available actions -

(spike) help

Interactive commands:

reg <core> [reqg] # Display [reg] (all if omitted) in <core>

freg <core> <reg> # Display float <reg> in <core> as hex

quit # End the simulation
q Alias for quit
help # This screen!

h Alias for help

Note: Hitting enter is the same as: run 1

The help session uses “core” with many of the commands, here core will have the value 0 representing
a single core, a debug session illustrating some of the debug commands follows —
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Table 10-1 Spike interactive commands for debugging

Command Output Interpretation ‘

pc 0 0x0000000000001000 Program counter at
0x1000
insn 0 0x0000000002028593 addi al, t0, 32 Current Instruction at

Program Counter

run 1 Run 1 line Advances n
instructions

reg 0 t0 0x0000000000001000 Shows the value held
in register t0

Reg 0 (spike) reg © If register is not
zero: Qx0000Q00R0PRRRRQ0R ra: Px0000RBREAL Specrﬁed all regbters
tp: 2x0000RERRROR0EREG tO: PxC0E0EREBE
s0: OxDPPPEERERAPRRRRR s1: Px0EE0ERRB0
aZ: Ox0PPPEERERERPRRRRR a3: Px0PODERRBO
ab: Qx000ERERERBRRERER a7: Dx00E0RRERE
sd: (x0000REROROR0EREEG s55: PxE0E0E0E00
S8: Ox000EREROROROEREEG s59: DxE0E0E0E0E
t3: Ox000000Q0R0R000E0 t4: Bx00E000000

are displayed

until pc 1008 0x0000000000001008 Set a breakpoint at
PC=0x1008
priv 0 M Shows current

privilege level

The up-arrow key can be used to recall previous commands.

For more information on spike and the proxy kernel refer to the resources listed at the end of this
chapter.

This chapter has not covered “Bare-metal coding” and spike is useful in the situation where a host
operating System is not available.

For Linux-based implementations (the focus of this book), GDB is recommended.
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| Further resources ‘

e Information steps for spike installation can be found at GitHub

https://github.com/riscv-software-src/riscv-isa-sim).

e Installation steps for the RISC-V toolchain can be found at GitHub

https://github.com/riscv-collab/riscv-gnu-toolchain)

e Risc-V toolchain projects

https://riscv.atlassian.net/wiki/spaces/HOME/pages/16154663/Toolchain+Projects
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Appendix

Appenix A. GDB Commonly Used Commands

Command Description Example
(B)reak Set breakpoint “b _start” “b1”
Conditional break Break myloop if $t0
==36
(D)elete Delete Breakpoints “d” followed by “y”
(I)nfo b Show breakpoints “i b”
(I)nfo (ad)dress Show the location of a Symbol “iad _start”
(I)nfo files Show the names of files being debugged “i files”
(I)nfo (R)egisters List the integer registers “ir”
(I)nfo (R)egister sn List the content of an individual register “i rt0”
(I)nfo (R)egisters (V)ector Shows vector-related registers “irv”
(I)nfo (R)egisters CSR Shows Control and Status Registers “I'r csr”
P Svh.w Prints the vector register Vn as groups of “p Sv2.w”
words
(I)nfo source Info about the source file being debugged “i source”
(I)nfo symbol &_start Show the section location of a symbol “isymbol _start”
(I)nfo (va)riables Shows addresses of variables “lva”
(I)nfo win Shows windows used in TUI “i win”
(Main)tenance (i)nfo  Shows section information “mai i t#
(t)arget-sections
N(ext) Steps n lines (default is 1) and steps over a “n” “n 3”
sub-routine
S(tep) Steps n lines (default is 1) and steps into a  “s” “s 2”
sub-routine
TUI reg N(ext) Shows next set of registers “tui reg n”
x/FMT address Shows # of memory locations (n), format (f) X /2xg 0x11100
such as x(hex), d(decimal), f(float), s(string)
and size such as b(byte), h(halfword), w
(word), g (giant 8 bytes)
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x/FMT register Shows # of memory locations when a register X /2xg $SP
holds an address (n), format (f) such as
x(hex), d(decimal), f(float), s(string) and size
such as b(byte), h(halfword), w (word), g
(giant 8 bytes)

Up and down arrow Cycles through commands, use <Ctrl>
P(revious) or <Ctrl> N(ext) if using the TUI

Refresh <Ctrl-L>

Enable TUI
The TUI can be enabled by default by adding the following lines to ~/.gdbinit

Layout split

Layout regs

Set history save on

Set history filename ~/gdbhistory
Set logging enabled on

Other default options are available, refer to the GDB documentation for these!
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De ‘ Hex ‘ Char Dec ‘ Hex ‘ Char Dec ‘ Hex ‘ Cha | Dec ‘ Hex ‘ Char
0 0x00 Null character 32 0x20 SPACE 64 0x40 @ 96 0x60
0x01 Start of heading 33 0x21 ! 65 0x41 A 97 0x61 a
2 0x02 Start of text 34 0x22 ” 66 0x42 B 98 0x62 b
3 0x03 End of text 35 0x23 # 67 0x43 C 99 0x63 ¢
End of
4 0x04 transmission 36 0x24 S 68 0x44 D 100 oxe4 d
5 0x05 Enquiry 37 0x25 % 69 0x45 E 101 0x65 e
6 0x06 Acknowledgment 38 0x26 & 70 0x46 F 102 0x66 f
7 0x07 Bell 39 0x27 '’ 71 0x47 G 103 0x67 g
8 0x08 Backspace 40 0x28 ( 72 0x48 H 104 0x68 h
9 0x09 Horizontal tab 41 0x29 ) 73 0x49 | 105 O0x69 i
10 | Ox0A Line feed 42 Ox2A * 74 Ox4A ) 106  Ox6A j
11 0x0B Vertical tab 43 0x2B + 75 0x4B K 107 0x6B k
12 0x0C Form feed 44 o0x2C , 76 0x4C L 108 ox6C |
0x2 0x4 0x6
13 0x0D Carriage return 45 D - 77 D M 109 D m
14 | OxOE Shift out 46 Ox2E 78 Ox4E N 110 Ox6E n
15 OxOF Shift in 47 Ox2F / 79 Ox4F O 111 Ox6F o
16 | 0x10 Data link escape 48 0x30 O 80 0x50 P 112 0x70 p
17 | 0x11 Device Control 1 49 0x31 1 81 0x51 Q 113 0x71 q
18 | 0x12 Device Control 2 50 0x32 2 82 0x52 R 114 0x72 r
19  0x13 Device Control 3 51 0x33 3 83 0x53 S 115 0x73 s
20 0Ox14 Device Control 4 52 0x34 4 84 0x54 T 116 0x74 t
Negative
21  0x15 Acknowledgment 53 0x35 5 85 0x55 U 117 0x75 u
22  0x16 Synchronous Idle 54 0x36 6 86 0x56 V 118 0x76 v
End of
23 | 0x17 Transmission Block | 55 0x37 7 87 0x57 W 119 0x77 w
24 0x18 Cancel 56 0x38 8 88 0x58 X 120 0x78 x
25 | 0x19 End of Medium 57 0x39 9 89 0x59 Y 121 0x79 vy
26 | Ox1A Substitute 58 0x3A 90 Ox5A Z 122  O0x7A z







Appenix C. References and Resources

e Green Card Reference sheet

e https://cs315-f24.cs.usfca.edu/files/RISCVGreenCardv8.pdf

e Ratified Specifications

e  https://If-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-
V+Technical+Specifications

e RISC-V Summits https://riscv.org/community/risc-v-summits/
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Appenix D. Assembly Directives

text Beginning of the code (text) section.

.data Beginning of the data section.

.bss Beginning of the uninitialized data section.

.rodata Beginning of read-only section

.global or .globl Declares a symbol as global, making it accessible across
files.

.section Specifies a named section.

.align Aligns the next item to a specified boundary.

.byte Allocates and initializes 1-byte data

.half/.2byte Allocates and initializes 2-byte data.

.word/.4byte Allocates and initializes 4-byte data.

.dword/.8byte Allocates and initializes 8-byte data.

.string or .asciz

Allocates string space with null-terminatation

.ascii — Allocates string space without a null terminator.

.space N Reserves a specified number of bytes without initialization.
.zeroN Reserves and zeroes a specified number of bytes.

.equ or .set Defines a constant value for a symbol.

type Specifies the symbol type

option arch,rv64imafdc

-Specify ISA

.option pic / .option nopic

Position-independent code mode

.option relax,/mno-relax

Relaxation
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INDEX

%%, 7-21

%c, 7-21

%d, 7-20

%e, 7-21

%f, 7-21

%s, 7-20

%u, 7-20

%x, 7-21

%X, 7-21
(V-extension, 9-1
.global, 2-15

.include, 6-13
.macro, 6-13
absolute addresses, 3-9
abstraction, 1-1

ADDI, 4-7

AND, 1-26, 4-24
ANDI, 4-24

ASCIl, 2-15
assembler, 2-18
auipc, 2-8, 2-9
BananaPi BPI-F3, 2-25
Bare metal programming, 2-15
Base Integer ISA, 2-1
Basic ASM, 7-15

beq, 5-2

beqz, 5-2

bge, 5-2

bgeu, 5-2

bgez, 5-2

bgt, 5-2

bgtu, 5-2

bgtz, 5-2

biased exponent, 1-22
Binary Coded Decimal, 1-17
Binutils, 2-13

ble, 5-2

bleu, 5-2

blez, 5-2

blt, 5-2

bltu, 5-2

bltz, 5-2

bne, 5-2

bnez, 5-2

B-type, 2-6

callee, 6-3

caller, 6-3

calling routine, 2-4
compilation stage, 2-17
CPUlator, 2-33

cross compiling, 10-1

D Double precision, 8-3
debugging, 2-18

DIV, 4-19

double precision, 1-22
double-dabble method., 1-19
Doubleword, 1-14
ELEN, 9-5
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emulation, 2-26 funct7, 2-12
encoding, 1-27 Functions, 6-1
endm., 6-13 gce, 7-10

Exclusive OR, 1-26 GDB, 2-21
Executable and Linkable format (ELF)., 2-18 GDBinit, 3-20
Extended ASM, 7-15 H Half precision, 8-3

F Single precision, 8-3 Halfword, 1-14
FADD.S, 8-21 hart, 2-2

FCLASS.D, 8-21 IEEE 754, 1-22
FCLASS.S, 8-21 Instruction Set Architectures (, 2-1
FCSR, 8-22 I-type, 2-6

FCVT.D.S / FCVT.S.D, 8-21 JAL, 5-2

FCVT.W.S / FCVT.S.W, 8-21 JALR, 5-3

FEQ.S/ FEQ.D, 8-22 J-type, 2-6

FLD, 8-21 Leaf functions, 6-4
FLE.S / FLE.D, 8-22 li., 2-10

FLEN, 8-1 LicheePi 4A, 2-25
floating -point, 1-21 linker, 2-18

FLT.S / FLT.D, 8-22 linker relaxation, 3-12
FLW, 8-21 Linker scripts, 2-19
FMIN.S / FMAX.S, 8-21 LMUL, 9-4

FMUL.S, 8-21 lui, 2-8

FMV.X.W / FMV.W.X —, 8-22 Iw, 3-3

Format specifier, 7-20 Macros, 6-13

FSD, 8-21 make, 2-24

FSGNJ.S / FSGNIN.S / FSGNJX.S, 8-22 mask, 9-18

FSQRT.S, 8-21 minuend, 1-14
FSUB.S, 8-21 mno-relax, 9-2

FSW, 8-21 mno-relax option, 3-19
funct3, 2-12 MULW, 4-17

funct5, 8-5 nano, 2-14
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Nested functions, 6-4
normalized number, 1-24
NOT, 4-24
Not-a-number, 1-22
NVRAM, 1-3

objdump, 2-17, 2-23
object file., 2-18

one’s complement,, 1-12
opcode, 2-12
optimization, 7-18

OR, 1-26, 4-24

ORI, 4-24

overflow, 4-13

plaintext, 2-14

Pop, 6-1

printf, 7-20

program counter, 2-4

Program Counter (PC) relative addressing, 3-8

proxy kernel PK,10-1

Pseudo instructions, 2-10
Pseudocode, 1-2
Push, 6-1

Q Quad precision, 8-3
QEMU, 2-26

RARS, 2-36

Registers, 2-3

REM, 4-19

REMU, 4-19

RISC, 2-1

RISC-V, 2-1

rounding modes, 8-6

R-type, 2-6
save-temps, 7-10
scalar, 9-2

sections, 2-15

SEW, 9-5

signed, 1-11
significand, 1-22
Simulators, 2-32
single precision, 1-22
sll, 4-21

slli, 4-21

source files, 2-14
SpacemiT K system, 9-4
Spike, 10-1

sra, 4-21

srai, 4-21

srl, 4-21

srli, 4-21

stdout, 3-6

strace, 2-37

S-type, 2-6
subtrahend, 1-14

sw, 2-7

symbol, 2-18

syntax, 2-18

Syscalls, 2-15

tail, 9-20

tail undisturbed, 9-20
TUl, 3-20

two’s complement., 1-12

UDIV(, 4-19



Unconditional branches, 2-11 VLMAX, 9-4
unsigned, 1-11 VLMUL, 9-2

U-type, 2-6 VMA, 2-17

vadd.vv, 9-4 vsetivli t0, 16, e32, m2, 9-16
variadic function, 7-20 vsetvli t1,t0, e64, 9-5
vector byte length, 9-4 vslidedown, 9-12
vector data type register, 9-3 Vslideup, 9-14
vector length multiplier, 9-2 vstart, 9-3

vector length register., 9-2 vtype, 9-3

vector register groups, 9-2 Word, 1-14

vector start position register, 9-3 XLEN, 2-4

vi, 2-14 XOR, 4-24
virtualizer, 2-26 XORI, 4-24

VisionFive2, 2-25



