

ARM64 Assembly Language and

Architecture
November 1st, 2024

Alan Johnson

ii

Copyright © 2024 Alan Johnson. All rights reserved.

Published by xelsys

iii

Disclaimer

The information provided in this book is for general informational purposes only. While the

author has made every effort to ensure the accuracy of the information, this book is not

guaranteed to be completely error-free. The author assumes no responsibility for errors or

omissions, or for any damages that may result from the use of the information contained

herein.

Product names, logos, brands, and other trademarks featured or referred to within this book

are the property of their respective trademark holders.

These trademark holders are not affiliated with the author or any of the author's

representatives. They do not sponsor or endorse the contents, materials, or processes

discussed within this book.

Feedback is greatly encouraged and will be acknowledged (if desired by the contributor) in

future editions.

Send comments to arm64bookfeedback@duck.com

mailto:arm64bookfeedback@duck.com

iv

Contents

Chapter 1. The fundamentals. .. 1-1

What is assembly language? .. 1-1

Why use assembly? .. 1-2

Hardware Vs Software Vs Firmware ... 1-3

Number Systems .. 1-3

Binary, Octal, Hexadecimal ... 1-4

Converting Hexadecimal to Decimal .. 1-7

Converting Decimal to Hexadecimal .. 1-7

Binary Fractions .. 1-7

One and Two’s complement .. 1-8

Addition and subtraction of binary numbers ... 1-10

Shift/ Rotate instructions to perform multiply and divide operations 1-14

Binary Coded Decimal (BCD) .. 1-15

Converting Binary Coded Decimal to Decimal .. 1-15

BCD addition .. 1-15

Conversion from Hex/Pure Binary to BCD ... 1-16

Floating Point .. 1-18

Biased exponents .. 1-19

Normalized ... 1-21

Logic operations – and, OR, Exclusive OR, NOT ... 1-22

Summary of chapter 1 ... 1-25

Exercises for chapter1 .. 1-26

Chapter 2. Getting Started .. 2-1

Origin of ARM ... 2-1

Choosing a candidate platform ... 2-2

Architecture .. 2-3

v

ARM64 Registers .. 2-3

PSTATE and Exception levels ... 2-5

A Slight change of notation! .. 2-6

Assembling and Linking .. 2-6

Moving 32-bit and 64-bit immediate values .. 2-14

Displaying output .. 2-16

Make .. 2-18

Using strace .. 2-19

Summary of chapter 2 .. 2-20

Exercises for chapter 2 .. 2-21

Chapter 3. Dealing with memory .. 3-1

Load and Store instructions .. 3-1

LOAD Instructions (Memory → Registers) ... 3-1

Store Instructions (Registers → Memory) .. 3-9

Addressing modes .. 3-13

Enhancements to GDB ... 3-16

Summary of chapter 3 .. 3-19

Exercises for chapter3 .. 3-20

Chapter 4. Arithmetic operations (First Pass) .. 4-1

Add Instruction ... 4-1

ADDS instruction. ... 4-10

SUB .. 4-15

MUL Instruction and variants .. 4-16

madd .. 4-16

UMULL and SMULL ... 4-21

MSUB and MNEG .. 4-26

Division .. 4-28

vi

Shift and Rotate .. 4-29

Logic Operations – AND/OR/EOR ... 4-32

Summary of chapter 4 .. 4-44

Exercises for chapter4 .. 4-45

Chapter 5. Loops, Branches and Conditions ... 5-1

Nested Loops .. 5-5

Summary of chapter 5 .. 5-13

Chapter 6. The Stack, Macros and Functions .. 6-1

Macros and Functions ... 6-1

The Stack .. 6-4

Link Register ... 6-7

Summary of chapter 6 .. 6-15

Chapter 7. Calling assembly functions from a high-level language 7-1

Using in-line code .. 7-3

Summary of chapter 7 .. 7-11

Chapter 8. Floating Point and Neon Coprocessor .. 8-1

Neon Coprocessor .. 8-4

Lanes and data placement ... 8-9

Permutations and Interleaving ... 8-16

Transposition .. 8-17

Summary of chapter 8 .. 8-21

Exercises for chapter8 .. 8-22

Chapter 9. Cross Compilation .. 9-1

Cross compiling assembly code ... 9-3

Summary of chapter 9 ... 9-5

Exercises for chapter 9 ... 9-6

vii

Figures

Figure 1-1Converting Decimal to binary using repeated division by 210 1-6

Figure 1-2 Converting Decimal to binary using repeated division by 1610 1-7

Figure 1-3 Using shift operations to multiply and divide by two ... 1-14

Figure 1-4 Interpretation of Bias with floating point .. 1-20

Figure 1-5 Addition of two floating point numbers .. 1-22

Figure 2-1 BBC Micro .. 2-1

Figure 2-2 Floating Point and Vector Registers .. 2-4

Figure 2-3 Format of MOVZ instruction .. 2-13

Figure 2-4 Format of movk instruction ... 2-15

Figure 3-1 GDB using TUI .. 3-17

Figure 3-2 GDBGUI ... 3-18

Figure 3-3 GDB Frontend .. 3-18

Figure 4-1 64-bit multiplication (verified by hand) ... 4-25

Figure 4-2 Format of AND (immediate) instruction ... 4-32

Figure 4-3 Examples of Logical immediate values .. 4-34

Figure 6-1 Stack memory contents after stp x3, x4, [sp, #-16]! instruction 6-5

Figure 6-2 Stack contents with nested operations ... 6-6

Figure 6-3 Memory locations for the cube program and their values 6-8

Figure 8-1 V Register layout ... 8-1

Figure 8-2 Vector registers lane distribution .. 8-5

Figure 8-3 Four lane 128-bit floating-point addition ... 8-6

Figure 8-4 Layout of immediate data bits in the movi instruction .. 8-7

Figure 8-5 Use of zip instruction .. 8-17

Figure 8-6 Rev instruction ... 8-18

Figure 8-7 Use of a lookup table to change less structured element lists 8-18

Figure 9-1 Running a cross-compiled program with GDB ... 9-4

viii

Listings

Listing 2-1 Using the mov instruction .. 2-7

Listing 2-2 Using the movk instruction .. 2-14

Listing 2-3 Using the MOVN instruction .. 2-15

Listing 2-4 Displaying output with the Write syscall ... 2-16

Listing 3-1 String printing ... 3-2

Listing 3-2 str example ... 3-10

Listing 3-3 Addressing modes .. 3-14

Listing 4-1Add (Extended Register) ... 4-1

Listing 4-2 Add (immediate) .. 4-2

Listing 4-3 Add immediate with a left shift ... 4-3

Listing 4-4 Add with a left shifted register ... 4-4

Listing 4-5 UXTB byte operation ... 4-5

Listing 4-6 Add extended using UXTB on a halfword value ... 4-6

Listing 4-7 Add extended using UXTH on a halfword value .. 4-6

Listing 4-8 Add extended using SXTH on a negative number ... 4-7

Listing 4-9 Add extended using SXTH on a positive number... 4-8

Listing 4-10 Add extended SXTW with a 4-place shift .. 4-9

Listing 4-11 Leaving condition flags unchanged with the add instruction. 4-10

Listing 4-12 Setting the negative flag using the adds instruction ... 4-11

Listing 4-13 Setting the overflow flag using the adds instruction ... 4-12

Listing 4-14 Effect of ADCS, ADC and add instructions ... 4-13

Listing 4-15 SUB (extended register) ... 4-15

Listing 4-16 SUB (immediate instruction) .. 4-16

Listing 4-17 madd Instruction .. 4-17

Listing 4-18 MUL instruction ... 4-18

ix

Listing 4-19 Using madd to multiply two 32-bit numbers. ... 4-20

Listing 4-20 Unsigned Multiply Long ... 4-21

Listing 4-21 Signed Multiply Long ... 4-22

Listing 4-22 Multiplying two 64-bit numbers to give a 128-bit result (Unsigned) 4-23

Listing 4-23 Second example - Multiplying two 64-bit numbers to give a 128-bit result

(Unsigned) ... 4-24

Listing 4-24 Use of MSUB ... 4-26

Listing 4-25 Use of MNEG... 4-27

Listing 4-26 Using UDIV ... 4-28

Listing 4-27 Examples of Shift and Rotate instructions .. 4-29

Listing 4-28 Use of the orr and ORN instructions ... 4-36

Listing 4-29 Using logical immediates with and/orr instructions ... 4-37

Listing 4-30 Example of logical instruction with shifted register operands 4-41

Listing 4-31 BIC and BFI instructions .. 4-42

Listing 5-1 Simple comparison and branch example .. 5-1

Listing 5-2 Using B.EQ condition ... 5-4

Listing 5-3 Nested For loop ... 5-5

Listing 5-4 Nested loops with pre-index addressing mode .. 5-9

Listing 6-1 A simple macro ... 6-1

Listing 6-2 Separate macro file .. 6-3

Listing 6-3 Calling a macro using the include directive.. 6-3

Listing 6-4 Push and Pop operations using str and ldr ... 6-4

Listing 6-5 Nested stack operations... 6-5

Listing 6-6 Main program to print out cubed numbers ... 6-9

Listing 6-7 Routine to calculate cube numbers ... 6-12

Listing 6-8 Double-Dabble routine to convert hex/binary to binary coded decimal 6-12

Listing 7-1 Cube and add assembly code .. 7-1

Listing 7-2 Cube and add C code .. 7-1

x

Listing 7-3 Using inline assembly code with C .. 7-4

Listing 7-4 Cube numbers revisited ... 7-6

Listing 7-5 Using printf to print a string from assembly ... 7-8

Listing 7-6 Using printf to print numbers .. 7-8

Listing 7-7 Use of format specifiers.. 7-9

Listing 8-1 Loading floating point values into vector registers (single precision) 8-1

Listing 8-2 Using printf to display floating-point values. .. 8-3

Listing 8-3 Vector move instruction examples .. 8-6

Listing 8-4 Adding sixteen bytes in parallel ... 8-8

Listing 8-5 Vector register addition and multiplication examples... 8-8

Listing 8-6 ld1, ld2, ld3 and ld4 non-offset examples ... 8-11

Listing 8-7 ld4r instruction ... 8-15

Listing 8-8 Interleaving data from the vector registers .. 8-19

xi

Tables

Table 1-1 Binary, Decimal and Hexadecimal equivalents .. 1-5

Table 1-2 Converting Binary to Decimal ... 1-5

Table 1-3 Converting decimal to binary .. 1-6

Table 1-4 Signed number representation. .. 1-9

Table 1-5 Signed and unsigned numbers ... 1-10

Table 1-6 Data type sizes .. 1-11

Table 1-7 Double-Dabble example .. 1-17

Table 1-8 Three digit double dabble example ... 1-18

Table 1-9 Floating-Point formats ... 1-19

Table 1-10 BIAS within single precision IEEE 754 .. 1-20

Table 1-11 Truth table - AND .. 1-23

Table 1-12 Truth table - OR .. 1-23

Table 1-13 Truth table - XOR .. 1-23

Table 1-14 Simple example of encoding text using XOR .. 1-23

Table 2-1 Register width. .. 2-4

Table 2-2 ARM64 Flags ... 2-5

Table 2-3 preferred number base notation .. 2-6

Table 2-4 Registers for system calls and return values... 2-8

Table 3-1 Using GDB to display memory contents .. 3-1

Table 3-2 Action of str instruction to memory .. 3-13

Table 3-3 Summary of addressing modes .. 3-14

Table 3-4 Effect of addressing modes on pointer registers .. 3-16

Table 4-1 ARM64 Data Types ... 4-1

Table 4-2 Extend Operators .. 4-5

Table 4-3 Rotate and shift instructions .. 4-29

Table 4-4 imms field examples .. 4-35

xii

Table 4-5 Interpreting the imms field bits ... 4-36

Table 5-1 Conditional branches .. 5-4

Table 6-1 Memory locations used by the listcubes program .. 6-7

Table 7-1 printf format specifiers .. 7-3

Table 7-2 Inline assembly template .. 7-4

Table 7-3 In line assembly converted .. 7-6

Table 8-1 Lane division in 128-bit / 64 bit vector registers .. 8-5

Table 8-2 Sample ldx (no offset) instructions .. 8-9

Table 8-3 ld4 instruction Rt field .. 8-14

Table 8-4 Bit fields of the ld4 instruction .. 8-14

Fundamentals

Chapter 1. The fundamentals.
This chapter provides a foundation for the topics that will be discussed as the book progresses.

It is reasonably general, staying away from any specific architecture.

Pre-requisites are not too demanding; however, knowledge of the following areas will ease the

journey.

• Familiarity with basic computer hardware

• Microprocessor architecture

o Memory and data buses, register, ALUs, …

• Knowledge of Linux ®

o Installation of the Operating System and applications

o Bash

• Basic knowledge of the C programming language

• High school, level mathematics, although college level is helpful for some of the

material in chapter 8.

• An inexpensive computing device such as the Raspberry Pi.

What is assembly language?

Many high-level languages place a strong emphasis on abstraction, treating functions as

impenetrable black boxes and hiding the inner working. Assembly language takes a different

approach and allows (indeed mandates) the coder to familiarize themself with the innards of

the system.

The former method is similar to Rapid Application Development (RAD) methodology that works

well with teams whereas the second approach often includes smaller groups with specialized

knowledge. Both approaches have their place. Digital computers inherently process data in

one of two states (binary) so it is essential that we understand the low level world of one’s and

zero’s.

Processors have different architectures and they each understand their own machine code

instructions – at their very heart these instructions are combinations of binary numbers that

instruct the processor how to proceed. Binary numbers are cumbersome for human operators

and instead a set of mnemonic instructions are used. A hypothetical example could be an

instruction such as add r1, r2,r3 which would add two numbers together that are contained

Fundamentals

1-2

in register21 and register3, placing the result in register1 or add r1, r2, 45 which could add

the value 45 to the value contained in register2, placing the result in register1. The

corresponding native machine code (again hypothetical) could be the binary code 10101100

00010010 00101100. The mnemonic instructions make up the assembly language.

The role of the assembler (program) is to convert programmer-readable assembly instructions

into the corresponding machine code instructions. The output code is termed an object file.

Conversely a disassembler converts machine code instructions back into assembly language.

The assembler has additional roles such as understanding a set of directives that can define

and place data into the computer’s memory locations. An example could be a set of error

codes defined as textual informational messages. These messages are defined by the

programmer rather than the specific processor itself. There are a number of these directives,

and they will be discussed in more detail as the document progresses.

Higher-level languages use compilers to translate to machine code. After the assembly or

compilation process the object files are linked to form an executable program. The linker may

act on individual or multiple files. High level language instructions do not normally have a one-

to-one correspondence with the underlying machine code instructions. They are designed to

be more instinctive to the programmer by providing English like keywords such as if ... then,

while, and print. High level languages can be interpretive and translated into machine code

instructions during runtime, or pre-compiled before runtime into native machine-code.

Why use assembly?

Assembly language has a direct relationship with the CPU that it is running on and as a result

the programs will be more compact and efficient. It is also more suited to system-level

programming. A disadvantage is that many lines of code may be required when compared to

high level languages and as a result a hybrid approach may be deployed where the bulk of the

code could be written using C or Python which can pass parameters to and accept return

values from a smaller section of assembly code. Portability is also an issue since the assembly

language is tightly coupled with the CPU that it is running on.

1 Registers are low-capacity storage elements (typically anywhere from one to eight bytes in

size) high-speed devices contained within the processor architecture.

Fundamentals

1-3

Experienced system-level coders may wish to skip this chapter or treat it as a refresher. The

material discussed in this chapter is general and does not necessarily apply to any specific

system.

Hardware Vs Software Vs Firmware

Hardware

In computer terms hardware refers to the physical components that make up the system.

Hardware is something that can be seen and touched.

Software

Software refers to the actual instructions that are loaded into the computer’s memory. These

instructions may direct the hardware to perform certain tasks. For example, the system

software is responsible for displaying the result of an operation onto a hardware output device

such as a display screen or printer and for taking input from a device such as a keyboard. Most

users are more familiar with application software such as word processors, email,

spreadsheets, etc.

Firmware

Firmware can be thought of as a set of instructions residing in hardware. This definition has

become somewhat blurred as these instructions were originally loaded onto read only devices

(ROMs). These devices would be physically replaced when new upgrade code was required.

Over time Erasable Programmable integrated circuits (IC’s) (EPROMs) were introduced, which

as the name implies could be written over with new code. Today, non-volatile random-access

memory (NVRAM) devices are used and can often be upgraded on-line without even requiring a

reboot. This process is sometimes referred to as flashing since the underlying device is often

Flash memory.

Number Systems

Anthropologists may make a claim that we count in base 10 as this is the number of digits on

our hands. Other cultures have used base 60 and base 20 (possibly using both fingers and

Fundamentals

1-4

toes). These number systems are not as well suited to computer systems and today2 base 2

and base 16 dominate when using low-level assembly programming.

Binary, Octal, Hexadecimal

Consider the base 10 number 467310 – this breaks down into:

 4 x 103

+

6 x 102

+

7 x 101

+

3 x 100

= 4000 + 600 + 70 + 3 = 4673

The use of ten (0-9) different characters along with their position represented a major advance

in computation when compared to systems such as the Roman counting method.

Digital electronic systems naturally gravitate towards a two-state binary system where current

either flows or it does not. These two states are represented by the symbols 0 or 1.

Each binary digit is termed a bit(b). For convenience, binary digits are often grouped into 8 bits

termed a Byte(B). Since eight bits can represent numbers ranging from 00000000 through

11111111, the decimal values translate to 0 through 255. A disadvantage of binary numbers is

that a three-digit decimal number may require an equivalent binary number up to ten binary

digits. A more compact numbering system is base 16 (hexadecimal) which treats a group of

four binary numbers as a single hexadecimal number. This means that two hexadecimal

numbers will represent a single byte3. Hexadecimal numbers use the same symbols as

decimal up to the value 9, and then use the characters A through F to represent the decimal

numbers 10 through 15. The hex number 1016 corresponds to decimal number 1610.

2 Base 8 - Octal was also used on many earlier computers such as Digital Equipment

Corporation’s PDP family of minicomputers.

3 A single hexadecimal number is sometimes referred to as a nibble.

Fundamentals

1-5

Table 1-1 Binary, Decimal and Hexadecimal equivalents

Binary Decimal Hexadecimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Converting Binary to Decimal

Each binary digit can be converted to decimal by multiplying its value by two raised to an index

where the index corresponds to the bit’s position.

Table 1-2 Converting Binary to Decimal

 The binary number 1101012 then, can be converted to decimal using the following steps.

1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20 =

32 + 16 + 0 + 4 + 0 + 1

= 5310

Converting Decimal to Binary

The following method breaks down a decimal number into powers of two, so to convert the

number 84310 to its equivalent binary number –

1. First get the highest power of two contained in 843 which is 512 (29).

Value 1 1 0 1 0 1

Position 5 4 3 2 1 0

Multiply by 25 24 23 22 21 20

Fundamentals

1-6

2. Subtract 512 from 843 = 331,

3. The highest power of two contained in 331 is 256 (28),

4. Subtract 256 from 331 to get 75,

5. The highest power of two contained in 75 is 64 (26),

6. Subtract 64 from 75 to get 11,

7. The highest power of two contained in 11 is 8(23),

8. Subtract 8 from11 to get 3,

9. The highest power of two contained in 3 is 2 (21),

10. Subtract from 3 to get 1,

11. The highest power of two contained in 1 is 1 (20),

12. Subtract 1 from 1 to get 0.

Everywhere that a power of two appears, write its index as the binary value one and where it did

not appear write the binary value zero using the positional notation shown in Table 1-2.
Table 1-3 Converting decimal to binary

29 28 27 26 25 24 23 22 21 20

1 1 0 1 0 0 1 0 1 1

Another way of converting is a repeated division method. Divide the number repeatedly until

zero is reached. Take note of the remainders and put the first remainder in the left-most

position, then the second remainder into the left-most second position, repeating until all

reminders have been recorded.

Figure 1-1Converting Decimal to binary using repeated division by 210

Now write down the remainders starting from the top to get:

11010010112.

2 843
2 421 Rem 1

2 210 Rem 1
2 105 Rem 0

2 52 Rem 1
2 26 Rem 0

2 13 Rem 0
2 6 Rem 1

2 3 Rem 0
2 1 Rem 1

2 0 Rem 1

Fundamentals

1-7

Converting Hexadecimal to Decimal

A hex number such as 5B7C16 can be converted to decimal using a power of sixteen method –

= 5 x 163, + B x 162, + 7 x 161, + C x 160

= 20,480 + 2816 + 112 + 12

= 23420

Converting Decimal to Hexadecimal

Take the number as shown, divide repeatedly by 1610 until zero is reached. Record the

remainders in base 16 format (e.g. for a remainder of 1010, record “A”). Note the remainders

and put the last remainder in the left-most position, the second from last remainder into the

left-most second position, repeating until all reminders have been recorded.

Figure 1-2 Converting Decimal to binary using repeated division by 1610

Binary Fractions

The binary numbers that have been dealt with up to this point are natural number equivalents

(positive whole numbers). Positional notation is used to show the corresponding power of two

index. 4 Fractions can be represented in binary by moving to the left of the 20. These values then

become 2-1, 2-2, . . .

Converting a binary fraction to decimal

1101.01 is equivalent to the base 10 number 13.25 since we have:

1 x 23 + 1 x 22 + 0 x 21 +1 x 20 + 0x 2-1 + 1x2-2.

4 Recall that negative indices can be resolved by changing the sign of the index and changing

the operation from division to multiplication and vice versa so that 1 / 2-2 becomes 1 x 22 = 4

and 4 x 22 = 4/2-2 = 16

16 23420
16 1463 Rem C

16 91 Rem 7
16 5 Rem B

16 0 Rem 5

Fundamentals

1-8

Converting a decimal fraction to binary.

Repeatedly multiply the fractional part by two until it becomes zero, taking note of the value to

the left (integer portion) of the decimal point. Accumulate the values of the integer part from

top to bottom to get the binary fractional part.

Example 0.62510

0.625 x 2 = 1.25

0.25 x 2 = 0.5

0.5 x 2 = 1.0

Stop since the value to the right of the decimal point =0

Take the integer value from top to bottom = 0.1012

The next example shows a recurring fraction

Example 0.3

0.3 x 2 = 0.6

0.6 x 2 = 1.2

0.2 x 2 = 0.4

0.4 x 2 = 0.8

0.8 x 2 = 1.6

0.6 x 2 = 1.2

0.2 x 2 = 0.4

0.4 x 2 = 0.8

0.8 x 2 = 1.6

0.6 x 2 = 1.2

This highlighted value has been met before, so this is a recurring fraction with the pattern 0011

repeating - .0100110011… This means that when evaluating, a halt counter should be added.

The logic would be to end when the fractional part = 0 or when the required degree of precision

has been reached.

One and Two’s complement

An eight-bit byte can represent any one of 256 values ranging from 0 – 25510. This is known as

unsigned notation. Another representation is to use half of the range as positive integers and

Fundamentals

1-9

the other half as negative, in this case the range is from +1275 through -128. This method uses

the most significant bit to represent the sign and is known as signed notation. The number line

for an eight-bit signed number is:

-128, -127, …, 0, 1, 2, …, 127

Table 1-4 Signed number representation.

27 26 25 24 23 22 21 20

Sign bit Magnitude Bits

Interpreting the value of a signed number is straightforward –

 The procedure is to add the corresponding powers of two of each bit’s place value but leave

out the sign bit. The next step is to add in the value of the sign bit. For positive numbers it

makes no difference since the value of the sign bit is zero, but for negative numbers the value

of the sign bit is -128.

Example

• Take the positive binary number 00101100

• Add the magnitude bits together

0x26 + 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20

= 32 + 8 + 4 = 44

• Add in the value of the magnitude bit (27) to get:-

0 + 44 = 44

• For the negative number 10011001

• Add the magnitude bits together.

0x26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20

= 16 + 8 + 1 = 25

• Add in the value of the magnitude bit (27)to get

5 Zero is treated as a positive number here

Fundamentals

1-10

-128 + 25 = -103

Converting from a signed number to an unsigned number is a simple operation, the procedure

is to invert the bits and then add the binary value 1.

So, to convert the positive number 6310 to negative 6310.

• Convert the number to an eight-bit binary number -

00111111

• Invert the bits to get -

11000000 (one’s complement)

• Add 1 to get –

11000001 (two’s complement)

• Convert back to decimal to get:-

-128+64+1 = 63

The first stage of inverting the bits - obtains the one’s complement, adding the binary digit 1 to

the one’s complement - obtains the two’s complement.

The following table shows an extract of the first few signed numbers.

Table 1-5 Signed and unsigned numbers

Signed Binary Number Decimal Equivalent

0111 1111 127

0111 1110 126

0111 1101 125

. . .

0000 0000 0

1111 1111 -1

1111 1110 -2

.. . .

1000 0010 -126

1000 0001 -127

1000 0000 -128

Addition and subtraction of binary numbers

Binary Addition

To add two binary numbers together is straightforward, there are only four outcomes.

Fundamentals

1-11

• 0 + 0 = 0

• 0 + 1 = 1

• 1+ 0 = 1

• 1 + 1 =10 (0+ carry)

An example of an unsigned binary addition follows-

0 0 1 0 1 1 0 1

0 1 1 1 0 1 0 0

1 0 1 0 0 0 0 1

Checking by adding the decimal number equivalents together –

45 + 116 = 161

Consider if these numbers being added were in signed notation – here adding two positive

numbers together would result in a negative number since the sign bit of the result = 1. This is

an overflow condition since the result of 161 is clearly outside of the maximum positive

number that can be represented in signed eight-bit binary arithmetic. This is something that

needs to be checked and there are conditions built-in to the processor architecture to detect

this kind of situation.

Larger numbers can be dealt with by using two bytes for storage, treating the second byte as

having the values 28 through 215. Assemblers and compilers will refer to groups of bytes by

designations such as long int, word etc. It is important to check the definitions.

One such definition is:
Table 1-6 Data type sizes

Unit Width

Doubleword 64 bits

Word 32 bits

Halfword 16 bits

Byte 8 bits

Of course, it is important to specify signed or unsigned, again a definition for an unsigned

integer in the programmer’s documentation might be referred to as uint.

Fundamentals

1-12

Binary subtraction

Binary subtraction can be dealt with using elementary rules for small numbers and then taking

into account “borrows” rather than “carrys” but using the two’s complement method described

on page 1-8 is by far the preferred method for larger numbers.

 The steps for binary subtraction are:

1. Obtain the two’s complement of the subtrahend (the number that will be taken away)

2. Add this to the minuend (the number that will be subtracted from).

3. Add the two’s complement of the subtrahend to the minuend.

4. If there is a carry after the addition, then drop the carry (final result is positive)

5. If there is no carry, then compute the two’s complement of the result (final result is

negative)

Taking a concrete example of subtracting 00100100 (3610) from 00000010 (210)

• Two’s complement of the subtrahend

1101 1011 +1 = 1101 1100

• Add to the minuend

0 0 0 0 0 0 1 0 Minuend

1 1 0 1 1 1 0 0 Two’s complement of subtrahend

1 1 0 1 1 1 1 0

(Carry = 0)

Two’s complement of the result is

00100001+1 = 00100010

Result is negative since the carry was false = -34

Another example -

• Subtract 4510 from 12010

• Convert numbers to eight-bit binary

4510= 0010 11012

12010 = 0111 10002

• Two’s complement of 00101101

Fundamentals

1-13

1101 0011

• Add to 0111 1000

0 1 1 1 1 0 0 0

1 1 0 1 0 0 1 1

0 1 0 0 1 0 1 1

(carry = 1)

The result is positive since carry was zero, 01001011 = 7510

Binary multiplication

The rules for multiplication of two bits are

0 x 0 = 0

0 x 1 = 0

1 x 0 =0

1 x 1 =1

Note anything multiplied by zero is of course zero.

Example multiply binary 10 (210) by 11 (310)

 1 0

 1 1 x

 1 0

1 0

1 1 0

= 610

Note this is the same as decimal multiplication where we multiply by each of the

digits and then add these results together.

Binary Division

The rules for division of two bits are as follows (recall that division by zero is invalid)

• 0 / 0 invalid

• 0 / 1 = 0

• 1 / 0 invalid

• 1 / 1 =1

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Fundamentals

1-14

Division example

Divide 1 1011 (Dividend) by 00111 (Divisor)

Using long division -

Shift/ Rotate instructions to perform multiply and divide operations

Consider an eight-bit byte 00101110 which has the decimal equivalent of 46. Next take each

bit of the byte and shift them over one place to the left, filling in the now vacant bit 0 with the

padded value 0 as shown below. Bit 7 has nowhere to go since it has no bit 8 position to

occupy. The newly vacated bit 0 position is filled with a binary zero.

By shifting all the bits to the left the original number has been multiplied by two since the bit 0

value of 20 has been moved to the 21 position, bit 1’s value of 21 has been moved to 22, etc.

 Note that if the original bit 7 had a value of 1 then it would have been lost giving

an incorrect result. This is a condition that must be checked for by the

programmer and this will be covered in a later section.

Division by two is accomplished by shifting the bit values to the right.

Figure 1-3 Using shift operations to multiply and divide by two

bit 0 → bit 1→ bit 2 → bit 3 → bit 4 → bit 5 → bit 6 → bit 7 → bit 0, . . .

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Fundamentals

1-15

For simplicity the registers shown are byte-wide. In reality the width is more often 32 or 64 bits.

 Other rotates are possible where the shifted-out bit feeds back to the input, giving a circular

action.

Other types of shifting involves wrap around rotates where the pattern is:

Bit0→Bit1→Bit2→Bit3→Bit4→Bit5→Bit6→Bit7→Bit0→Bit1…

Binary Coded Decimal (BCD)

Binary Coded Decimal represents decimal numbers in groups of bits, the encoding is normally

done in four-bit nibbles. Each bit represents a power of two weight (23, 22, 21, 20, or 8,4,2,1).

Since four bits can represent 16 distinct numbers, and there are only ten decimal digits,

wastage occurs with this method. An alternative known as packed BCD may be used but is less

common.

Converting Binary Coded Decimal to Decimal

BCD is similar to hexadecimal except that hex characters a through are illegal. A binary

grouping of BCD characters could look like:

1001 0111 1000. Each group of 4 bits (nibbles) are read off as follows –

• 1001 = 9

• 0111 = 7

• 1000 =8

This corresponds to the decimal number 978.

BCD addition

Adding is straightforward, however if the addition of two nibbles results in a value greater than

9 (1010, 1011, 1100,1101, 1110, 1111) then it is an invalid decimal number. The resolution is to

add 6 (0110) which will bring it back to a valid number. The carry will be added to the next

nibble.

Addition examples –

1.
14 + 22 = 36 = 0011 0110
Verify by binary addition
0001 0100 (14)
0010 0010 (22) +
 0011 0110 (36)

Fundamentals

1-16

2.
20 +20 = 40 = 0100 0000
0010 0000 (20)
0010 0000 (20) +
0100 0000 (40)

3.
26+25 = 51 = 0101 0001
0010 0110 (26)
0010 0101 (25)+
0100 1011 Least significant nibble is greater than 9 so add 6
0000 0110 + (6)
01010001 (51)

4.
121 + 157 = 278 = 0010 0111 1000
0001 0010 0001 (121)
0001 0101 0111 (157)+
 0010 0111 1000 (278)

5.
199 + 933 = 1132 = 0001 0001 0011 0010
 0001 1001 1001(199)
 1001 0011 0011 (933)+
 1010 1100 1100 (Two nibbles invalid add 0110 0110
 0000 0110 0110 +
 1011 0011 0010 Now, the most significant nibble is invalid so add 6 to it
 0110 0000 0000 +
 0001 0001 0011 0010 (1132) Brings in a fourth nibble!

Conversion from Hex/Pure Binary to BCD

One way of converting a hex number to BCD is to convert the hex number to decimal and then

to BCD. An alternative is to use the double-dabble method.

Double-Dabble

The double-dabble algorithm is fairly simple to implement, it consists of a series of shift6

operations and additions. Note that an n digit hex number can translate into more than n

decimal digits, (8516 = 13310, FFF16 = 409510). The method sets up a register to hold n binary

6 Shift/Rotate operations are discussed on page 1-13.

Fundamentals

1-17

digits and partitions to hold the decimal powers of two – units, tens, hundreds, thousands, …

The partitions are cleared to hold all zeros and then the binary digits are shifted in one bit at a

time, adjustments (addition of decimal 3) are made to the partition values dependent on their

magnitude (>4). Once all bits have been shifted7 the algorithm has completed.

An example follows:

Consider the binary number 00011011 = hex 1B = decimal 27. The steps to convert from pure

binary to BCD are shown in Table 1-7.

Table 1-7 Double-Dabble example

Hundreds
Partition

Tens
Partition

Units
Partition

Binary
Register

Action

0000 0000 0000 00011011
0000 0000 0000 00110110 Shift left-most bit over to partitions (shift1)
0000 0000 0000 01101100 Shift left-most bit over to partitions (shift2)
0000 0000 0000 11011000 Shift left-most bit over to partitions (shift3)
0000 0000 0001 10110000 Shift left-most bit over to partitions (shift4)
0000 0000 0011 01100000 Shift left-most bit over to partitions (shift5)
0000 0000 0110 11000000 Shift left-most bit over to partitions (shift6)
0000 0000 1001 11000000 Add 3 to units, since unit is 5 or greater
0000 0001 0011 10000000 Shift left-most bit over to partitions (shift7)
0000 0010 0111 00000000 Shift left-most bit over to partitions (shift8)

Reading off the tens and unit columns gives the value 2710.

Note 3 is added rather than 6 since the shift left operation multiplies by two!

A more complex 12-bit example is shown in Table 1-8.

7 The number of shifts is equal to the number of binary digits

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Fundamentals

1-18

Table 1-8 Three digit double dabble example

Floating Point

An integer is a whole, complete and exact number such as 107 or 456. There is a limit to

magnitude within a simple unit of storage such as a register. With floating -point representation

a range of extremely large or extremely small numbers can be represented at the expense of

precision. This means that a floating-point number may be an approximation that introduces

rounding to nearest digits. There are two main parts to a floating-point number, the significand

or mantissa and the exponent. There is also provision for a sign bit. The form is significand

multiplied by the base raised to a power, an example being 3,450,000 = 345 X 104. Here 345 is

the significand, ten is the base and four is the exponent.

There is a standard IEEE 754 (https://standards.ieee.org/ieee/754/6210/) which is a

specification for floating-point arithmetic. The standard defines Single and Double floating-

Double Dabble Three digit Hex (200) number
12 binary digits so 12 shifts are required
Hundreds Tens Units Binary

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Initial State
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Shift #1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Shift #2
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Shift #3
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #4
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #5
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #6
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #7
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #8
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #9
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to tens
0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #10
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #11
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to Tens
0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #12

 5 1 2 200 hex = 001000000000 binary = 512 decimal

https://standards.ieee.org/ieee/754/6210/

Fundamentals

1-19

point formats8as shown in Table 1-9. There is also provision to include Not-a-Number9 (NaNs)

and ±Infinity.

 A 32-bit single precision floating-point binary number within IEEE 754 is defined as:

Sign Bit (1 bit) Exponent (8 bits) Significand (23 bits)

A 64-bit double precision floating-point binary number within IEEE 754 is defined as:

Sign Bit (1 bit) Exponent (11 bits) Significand (52 bits)

This is summarized in Table 1-9.

Table 1-9 Floating-Point formats

Format Bits Significand Unbiased Exponent Decimal Precision

Single 32 24 10 (23+1) 8 6-9 digits

Double 64 53 (52+1) 11 15-17 digits

Biased exponents

The use of a biased exponent can represent negative exponents. For single precision the

values range from decimal +127 to -126. The bias is normally given as 2n-1-1 where n is the

number of exponent bits, so here we have 27-1= 127. The value of the biased exponent is the

unbiased exponent minus 127, so that an exponent of 10011011 gives a biased exponent of

(128+16+8+2+1) – 127 = 155-127 = 28.

 See Table 1-10 and Figure 1-4 for more on bias.

Infinity and Not-a-number representation

A biased exponent of all ones and a significand of all zeros (-127) represents infinity. The sign

bit differentiates between negative and positive infinity.

8 Other formats are defined but they will not be discussed here.

9 This could arise from operations such as divide by zero or the square root of a negative

number.

10 There is an implied bit, since the normalized format is always 1.X then there is no need to

specify the “1” value to the left of the decimal point.

Fundamentals

1-20

 Not-a-number is represented by the biased exponent being equal to all ones (+128)and the

significand being non-zero. The sign bit is don’t care.

Table 1-10 BIAS within single precision IEEE 754

Understanding bias

The diagram shown in Figure 1-4 shows how varying the bias affects the ratio of negative to

positive numbers. The bias is chosen in the standard to give similar ranges of positive and

negative exponents.

Figure 1-4 Interpretation of Bias with floating point

P
o

s
itiv

e

V
a

lu
e

s

N
e

g
a

tiv
e

V

a
lu

e
s

P
o

s
itiv

e

V
a

lu
e

s
N

e
g

a
tiv

e

V
a

lu
e

s

P
o

s
itiv

e

V
a

lu
e

s

N
e

g
a

tiv
e

V

a
lu

e
s

Bias Point

Bias Point

Bias Point

With double precision numbers the bias is 1023 since the unbiased component shown in Table

1-9 is 11-bits wide.

Exponent field
Binary Decimal Exponent
00000001 1 2-126

… …
01111011 123 2-4

01111100 124 2-3

10000011 01111101 125 2-2

10000001 01111110 126 2-1

01111111 127 20 Bias set to mid way point
10000000 128 21

10000001 129 22

100000010 130 23

b= 2n-1-1 =127 where number of bits is 8 100000011 131 24

… …
11111110 254 2127

Fundamentals

1-21

Normalized

A normalized number has the form 1.XXXXX… The steps are to convert the number to binary

and then perform shifts to give the desired result. Normalization shifts to the left or right

depending on where the decimal point is

Example 410.625

Steps -

1. Convert to binary (See page 1-8, if needed. for a refresher on converting decimal

fractions)

= 110011010.101

2. Perform repeated shift until desired pattern us reached.

110011010.101 x 2 (shift right operation)

= 11001101.0101 x2

= 1100110.10101 x2

= 110011.010101 x2

= 11001.1010101 x2

= 1100.11010101 x2

= 110.011010101 x2

= 11.0011010101 x2

=1.10011010101

This took a total of 8 shift operations. Add this number to 127 to get 135. Convert to binary to

get:

10000111.

From our shifts earlier we had the value 10011010101, extend this to 23 bits to get

10011010101000000000000 giving the value:

S Exponent Significand

0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

=410.625

Addition of floating-point numbers

Addition is reasonably straightforward; the main concern is when the exponent differs. To

equalize the exponents, take the lower number and shift over the binary point the required

amount of positions. So, if one exponent is 136-Bias and the second is 134-Bias, the second

number needs to be shifted two places to the left.

Fundamentals

1-22

Figure 1-5 Addition of two floating point numbers

Logic operations – and, OR, Exclusive OR, NOT

Logic operations are often used in decision making for example –

1. “If I feel hungry AND I have enough money, then I will order food in”.

2. “If it is cold OR it is raining, then I will wear a coat to go outside”.

3. “I can get a car discount if I pay the total amount in cash OR a I can get a lower interest

rate if I take out a loan”.

Statement 1 is an AND condition and the decision to order food holds true if I am hungry AND I

have enough money. Both conditions must be true.

0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 Number 1
0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Number2

Step 1. Convert exponents to decimal
134 Number 1
131 Number 2 Note the exponents differ

2. Prepend the implicit "1" to the significand

1. 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 X 2 134-bias Number1

1. 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 131-bias Number2

Step 2 Take number 2 and left shift the binary point three places to make the exponents the same

0. 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 134-bias

Step 3 Now add number 1 to the shifted number two

1. 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 X 2 134-bias

0. 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 134-bias

1 0. 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 X 2 134-bias

Step 4 Normalize

1. 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 x 2 135-bias

Step 5 Rounding is necessary since there are too many digits in the significand

1. 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 x 2 135-bias

1. 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 x 2 135-bias

Round down
Step 6 Convert exponent back to a binary number

135 = 10000111

Step 7 Re-assemble

0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0

Fundamentals

1-23

Statement 2 is an OR condition and it states that I will wear a coat if either of these (or both)

conditions are true.

Statement 3 is like statement 2 except that it is an either-or situation. Statement 2 applies

equally well to both conditions in that it could be cold and also raining, and it would be similar

to the AND condition. Statement 3 exclusively applies to the OR situation and is referred to as

Exclusive OR (XOR).

These conditions are normally represented by Truth Tables such as if condition A is true AND

condition B is true then result C is true. True and false values can be conveniently mapped to

the binary values 1 and 0. These are known as Boolean variables.

Table 1-11 Truth table - AND

A B C

False (0) False (0) False (0)

True (1) False (0) False (0)

False (0) True (1) False (0)

True (1) True (1) True (1)

Table 1-12 Truth table - OR

A B C

False (0) False (0) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

True (1) True (1) True (1)

Table 1-13 Truth table - XOR

A B C

False (0) False (0) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

True (1) True (1) False (0)

Other logic functions exist such as NOT which inverts the value, so a binary zero becomes a

binary one. Repeating the operation, of course gets back to the original value. Boolean algebra

is a complex topic by itself – which is dealt with in set theory.

For fun - a simple encoding can be done with XOR – take the word “Plaintext”, converting this to

seven-bit ASCII code becomes –

Table 1-14 Simple example of encoding text using XOR

Fundamentals

1-24

Text

string

ASCII code

(decimal)

ASCII code

(binary)

Apply XOR function

with 10101010

Resultant ASCII code

letter

P 80 1010000 1111010 z

l 108 1101100 1000110 .

a 97 1100001 1001011 K

i 105 1101001 1000011 C

n 110 1101110 1000100 D

t 116 1110100 1011110 ^

e 101 1100101 1001111 O

x 120 1111000 1010010 4

t 116 1110100 1011110 ^

So, the encoded string “Plaintext” becomes “z.KCD^O4^”.

Of course, this is easily cracked and decoded!

The following rules show the resulting bitwise values:

• X AND 0 = 0

• X AND 1 = X

• X OR 0 = X

• X OR 1 = 1

Now that the foundation is in place it is time to move from generic concepts to programming on

a specific architecture!

Fundamentals

1-25

Summary of chapter 1

• Introduction to Assembly language

• Number Systems

• Shift Operations

• Logic and Truth tables

Fundamentals

1-26

Exercises for chapter1

1. Divide 10111101 by 111 using manual long division

2. Convert 11.110 to base 10

3. Covert 0x1fd to BCD

4. Convert 35.65 to single precision floating-point according to IEEE 754

5. Write pseudo code to convert lower case ASCII characters a-z to upper case ASCII

character A_Z.

6. Convert the signed binary byte to base10

7. Convert the octal number 341 to base 16

8. What are mnemonics?

9. Describe the advantages of a high-level language over assembly language

10. Describe the advantages of assembly language over higher level languages.

Starting out with ARM

2-1

Chapter 2. Getting Started

This chapter is aimed at gaining familiarity with the ARM64 assembly language architecture.

Subsequent chapters will concentrate on low level details and focus on topics in a more

structured manner. The code snippets are short to allow for an easier grasp of the concepts

presented.

Origin of ARM

In the early 1980’s IBM introduced the IBM personal computer. Realizing that personal

computing, would soon spread to the masses, the British Broadcasting Corporation (BBC) in

the United Kingdom commissioned a company called Acorn computers to build a

microcomputer for their TV series aimed at promoting computer literacy. This system was

referred to as the BBC microcomputer.

Many UK schools adopted the computer part of this computer literacy thrust. The BBC Micro

used a 6502 microprocessor and featured BBC Basic as its default programming language.

Acorn then decided to embark on their own design, initially known as the Acorn RISC Machine.

ARM (Advanced RISC Machines) was formed in late 1990.

The design used a Reduced Instruction Set Computer (RISC) design which differed from the

Complex Instruction Set (CISC) design of other leading microprocessors such as the Z-80 from

Zilog, the 6800 from Motorola and the 8080 from Intel®11. RISC has the advantage of a simpler

design with lower power consumption making it ideal for use in embedded systems. Success

came with the 32-bit design used in Apple and Android phones. The 64-bit ARM (ARM64) was

announced in late 2011 and is the focus of this book.

Figure 2-1 BBC Micro

11 Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries

Starting out with ARM

2-2

 Currently there are three ARM architecture profiles –

• A-Profile for applications,

• R-Profile for Real-Time applications

• M-Profile for small deployments where power consumption is a primary concern,

examples are microcontrollers.

The ARM business model is to license their intellectual property to other manufacturers.

Choosing a candidate platform

The examples shown here will run quite happily on Raspberry Pi systems. Raspberry PI models

4 and 5 are recommended although the 64-bit Raspberry Pi 3 system can be used if needed.

The recommended Operating System12 is Raspberry Pi OS (64-bit) which includes the GNU

tools that will be used.

Once the Pi13 has been set up verify -

The command below shows that the architecture is indeed ARM64 (aarch64).

uname -a

Linux pi5a 6.1.0-rpi8-rpi-2712 #1 SMP PREEMPT Debian 1:6.1.73-1+rpt1 (2024-01-25)

aarch64 GNU/Linux

$ lscpu

Architecture: aarch64

 CPU op-mode(s): 32-bit, 64-bit

 Byte Order: Little Endian

CPU(s): 4

 On-line CPU(s) list: 0-3

Vendor ID: ARM

 Model name: Cortex-A76

 Model: 1

12 Refer to https://www.raspberrypi.com/software/operating-systems/ for a compatibility list of

Raspberry Pi’s that can run a 64-bit O/S.

13 See https://www.raspberrypi.com/documentation/computers/getting-started.html

https://www.raspberrypi.com/software/operating-systems/

Starting out with ARM

2-3

 Thread(s) per core: 1

 Core(s) per cluster: 4

 Socket(s): -

 Cluster(s): 1

 Stepping: r4p1

 CPU(s) scaling MHz: 100%

 CPU max MHz: 2400.0000

 CPU min MHz: 1500.0000

 BogoMIPS: 108.00

 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp

 asimdhp cpuid asimdrdm lrcpc dcpop asimddp

Architecture

From an assembly language programmer’s perspective, the architecture refers to the make-up

of the system. It includes higher level areas such as memory addressing, CPU behavior,

register layout, and the instruction set. A lower level is the micro-architecture which discusses

how the instructions are executed and the interconnections (the datapath) through which the

data traverses.

ARM64 Registers

Registers are locations that store values that are similar to variables in high-level languages.

The primary way of interfacing with the ARM64 system is via the register set. Generically they

may be referred to as Rd (destination register), Rn (first source register), Rm (second source

register).

ARM64 provides 31 general purpose registers 0 through 30. The registers can be used as 32- bit

or 64-bit. If a register is addressed with an “x” prefix then it functions as 64-bit using bits 63

through bit 0, if it is addressed with a “w” prefix then it is designated as a 32-bit register using

bits 31 through bit 0. The registers can be designated as wn or xn for any of the w and x registers

or more specifically as x4 for the fifth 64-bit general purpose register. Again, a more generic

reference is rn which does not specify whether the 32-bit or 64-bit register is used.

The 32-bit w register forms the lower half of the corresponding 64-bit x register. That is, w0

maps onto the lower word of x0, and w1 maps onto the lower word of x1.

When reading from a 32-bit w register the higher 32 bits of the x register are ignored. A write

operation however, to a 32-bit w register will set the higher 32 bits of the x register to zero.

Starting out with ARM

2-4

Register x30 is known as the link register (LR) and holds the return address of a function so it

should be used with care. The 64-bit XZR and 32-bit WZR registers will return zero when read.

Write operations will not change the value.

The program counter (PC) keeps track of program execution and is not used as a general-

purpose register. Not all registers are programmer accessible.

Table 2-1 Register width.

. . .
Figure 2-2 Floating Point and Vector Registers

There are 32 additional registers used for floating point and vector operations. These registers

have a width of 128 bits, but can be addressed with 8, 16, 32, 64 or 128 bits. Like the w and x

general purpose registers a prefix is also used to determine the width. The smallest value of 8

bits is Bx up to Qx which has a width of 128 bits. These vector registers can operate on multiple

data streams in parallel and are discussed in chapter 8.

Starting out with ARM

2-5

PSTATE and Exception levels

ARM64 defines four exception levels – EL0 through EL3. Not all of these levels may be

implemented; so a system might only implement ELO and EL1. These exception levels are

privilege levels with the highest EL number corresponding to the highest privilege level. User

code typically runs at EL0 and kernel code runs at EL1. If EL2 and EL3 are implemented, they

typically are used for Hypervisor and lower-level firmware functions.

The Processor state (PSTATE) shows the current state of the processor. The PSTATE includes

flags that convey event information. These flags are single bit Boolean variables conveying True

or False conditions.

These flags are:

• Negative (N) True when signed number is negative, false if positive.

• Zero (Z) True if result such as comparison of values are equal, false if not equal.

• Carry (C) True If carry or no borrow condition occurs, shifted out bit

• Overflow (V) True if and overflow condition occurs.

The flags are held in a special purpose register Saved

Program Status Register (SPSR) .

These are known as condition flags and occupy bit

positions 31 through 28.

Other fields are used for exception masking (DAIF) and are:-

• Debug (D) Enable/Disable debug exceptions.

• Asynchronous (A) Enable/Disable external asynchronous events (interrupts).

• IRQ (I) Enable/Disable interrupt requests.

• FIQ (F) Enable/Disable fast interrupt requests. FIQ takes priority over IRQ!

To summarize:-

Table 2-2 ARM64 Flags

Name Description

N Negative condition flag.

Z. Zero condition flag

C Carry condition flag.

V oVerflow condition flag.

D Debug mask bit.

Starting out with ARM

2-6

A SError mask bit.

I IRQ mask bit.

F FIQ mask bit.

In AArch64, the ERET instruction is used to return from an exception. The PSTATE. Flags N, Z, C,

V are accessible at Exception Level 0. Accessing the other PSTATE fields requires exception

levels higher than EL0.

For more information and bit field definitions, a good starting point is Arm Armv8-A

Architecture Registers14, specifically looking at Saved Program Status Register sections.

A Slight change of notation!

A programming note – From now on in this document the number’s base will no longer have a

subscript to differentiate them. Programmers use the more convenient shorthand 0b for binary

and 0x for hexadecimal so the byte 00110100 is written as 0b0110100, hexadecimal numbers

are written with the prefix 0x such as 0xF3AD and decimal numbers are devoid of a prefix. In

addition, the abbreviation “hex” will be used for base 16 rather than the more cumbersome

term “hexadecimal”.

This is shown below:

Table 2-3 preferred number base notation

Binary Decimal Hexadecimal

0b00101111 47 0x2F

Assembling and Linking

Prior to looking at the instruction set in depth, it is beneficial to create some program snippets

and then analyze the results. The code following does very little except for some register

manipulation, nevertheless it will provide a good introduction for technical discussion and

understanding. The ARM64 architecture uses 64 bits for the memory address and instructions

are 32 bits in length. Data is processed within the registers rather than memory directly. This

means that data must be loaded from memory into the registers and stored in memory from

the registers forming a Load and Store architecture.

14 https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en

https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en
https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en

Starting out with ARM

2-7

mov Instruction

Using the editor of your choice create and edit the file moveregisters.s with the following lines

–

Listing 2-1 Using the mov instruction

.global _start

_start:

.text

 mov x3, 0XFFFF

 mov x4, x3

 mov w8, 93 //ARM64 Syscall to exit

 svc #0

The first line includes an assembler directive (.global) using a label _start which defines the

program’s entry point and is declared as .global allowing external access to other files. Only

one global _start label should appear when multiple files are involved. Instructions starting

with “.” are directives that communicate with the assembler program. The next directive .text

introduces the actual code.

The first instruction (mov)places the value FFFF (hex) into the 64-bit register x3. This is a 16-bit

value and is the largest number that can be placed into the register at any one time.

The second instruction takes the contents of the x3 register and copies it to the 64-bit register

x4. After this has been executed, register x3 and x4 will have identical contents.

The third instruction invokes the exit system call. System Calls (syscalls) are dependent on the

underlying architecture/operating system, and they specify how and where the call/return

values are to be configured. Table 2-4 below shows an extract from Linux15. These are privileged

instructions. User-mode programs interact with system resources via an Application

Programming Interface (API). User-mode applications typically run in Exception Level zero

(EL0) and this is the lowest level of privilege. The application calls the Operating System to

perform the task on its behalf. These applications interact with the operating system’s kernel

resources by running under a higher level of privilege - Exception Level one (EL1).

15 Invoke with man syscall.

Starting out with ARM

2-8

The ARM64 architecture passes the system call via register w8.

Table 2-4 Registers for system calls and return values

The fourth instruction is the supervisor call to trigger the system call.

The program is converted to object code by the command –

as -o moveregisters.o moveregisters.s

The meaning of the instruction is to assemble the source file (.s) to an object file(.o) which is

the binary code.

The next step is to link and create the executable file –

ld -o moveregisters moveregisters.o

Here the object code moveregister.s.o is linked to create the executable file moveregisters.

Finally make the code executable with the command:

chmod 777 moveregisters

Run the code with –

./moveregisters

The program has completed, but did it really do what we asked it? To find out there is a

debugging (GDB) tool which allows us to interactively display the registers and execute the

code one step at a time.

Recreate the object code but this time add the -g switch (debug) as shown –

as -g -o moveregisters.o moveregisters.s

ld -o moveregisters moveregisters.o

Next invoke the debugger

$ gdb moveregisters

GNU gdb (Debian 13.1-3) 13.1

Copyright (C) 2023 Free Software Foundation, Inc.

Starting out with ARM

2-9

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from moveregisters...

List the code (l)

(gdb) l

1 .global _start

2 _start:

3 .text

4 mov x3, 0XFFFF

5 mov x4, x3

6 mov w8, 93 //ARM64 Syscall to exit

7 svc #0

Set a breakpoint to stop the program (b)

(gdb) b 1

Breakpoint 1 at 0x400078: file moveregisters.s, line 4.

Note line 4 is the first line of actual code.

Start the program (run)

(gdb) run

Starting program: /home/alan/asm/moveregisters

Breakpoint 1, _start () at moveregisters.s:4

4 mov x3, 0XFFFF

(gdb)

Starting out with ARM

2-10

The program has stopped at our first line of code, show the register contents by (i)nfo

(r)egisters.

(gdb) i r

x0 0x0 0

x1 0x0 0

x2 0x0 0

x3 0x0 0

x4 0x0 0

x5 0x0 0

x6 0x0 0

. . .

x29 0x0 0

x30 0x0 0

sp 0x7ffffffff140 0x7ffffffff140

pc 0x400078 0x400078 <_start>

cpsr 0x1000 [EL=0 BTYPE=0 SSBS]

fpsr 0x0 []

fpcr 0x0 [Len=0 Stride=0 RMode=0]

tpidr 0x0 0x0

tpidr2 0x0 0x0

Hit (s)tep to step into the next line of code

(gdb) s

5 mov x4, x3

Show register 3 and 4 only

(gdb) i r x3

x3 0xffff 65535

(gdb) i r x4

x4 0x0 0

We can see that x3 has the content 0xffff, hit s to execute the next line of code and show

registers 3 and 4 again.

(gdb) i r x3

x3 0xffff 65535

(gdb) i r x4

Starting out with ARM

2-11

x4 0xffff 65535

Register x4 now has the content ffff and register x3 has been left untouched.

Show all the registers again –

(gdb) i r

x0 0x0 0

x1 0x0 0

x2 0x0 0

x3 0xffff 65535

x4 0xffff 65535

x5 0x0 0

x6 0x0 0

x7 0x0 0

x8 0x5d 93

x9 0x0 0

x10 0x0 0

x11 0x0 0

.. .

x29 0x0 0

x30 0x0 0

sp 0x7ffffffff140 0x7ffffffff140

pc 0x400084 0x400084 <_start+12>

cpsr 0x201000 [EL=0 BTYPE=0 SSBS SS]

fpsr 0x0 []

fpcr 0x0 [Len=0 Stride=0 RMode=0]

tpidr 0x0 0x0

tpidr2 0x0 0x0

Aliases

With assembly code there are often multiple ways of accomplishing the same task, for

example the CMP (Compare instruction) is an alias of the Sub (Subtract instruction).The CMP

Compare (immediate) subtracts an immediate value from a register value. The SUB Subtract

(immediate), subtracts an immediate value from a register value, and writes the result to the

destination register. Rather than have the programmer work out the equivalency, the assembler

Starting out with ARM

2-12

will perform the substitution allowing the coder to continue using (perhaps) mnemonics that

they are more used to. Again, with RISC architectures there is limited space for instructions.

Re-assemble the program again, without the -g option (to remove debug information).

as -o moveregisters.o moveregisters.s

ld -o moveregisters moveregisters.o

Now run the objdump program with the -D(issasemble) option –

$ objdump -D moveregisters

moveregisters: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d29fffe3 mov x3, #0xffff // #65535

 40007c: aa0303e4 mov x4, x3

 400080: 52800ba8 mov w8, #0x5d // #93

 400084: d4000001 svc #0x0

Re-run objdump again but this time use -M no-aliases.

$ objdump -D -M no-aliases moveregisters

moveregisters: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d29fffe3 movz x3, #0xffff

 40007c: aa0303e4 orr x4, xzr, x3

 400080: 52800ba8 movz w8, #0x5d

 400084: d4000001 svc #0x0

Typically,16, instructions in ARM64 are of the form – Instruction <Rd> <Rn>, 2nd operand. Rd

is the destination register followed by a source register and a possible second operand that

can be a register or an immediate (literal value). The use of R indicates that the registers can be

16 Not always, see str instructions!

Starting out with ARM

2-13

either X or W registers. Modification can be made to a source register such as performing a

shift operation.

The output of the utility objdump as shown above has the following format –

Address in memory Instruction (Hex) ARM64 instruction

Notice that the memory location increments by four bytes (corresponding to the 32-bit wide

ARM64 instruction) after each instruction is executed.

Figure 2-3 Format of MOVZ instruction

Referring to the ARM64 instruction set architecture documentation17 the MOVZ instruction

states that “This instruction is used by the alias mov (wide immediate).” So, there is no actual

mov instruction as such, however it transparently accomplishes the action that is to be

executed. The format of the MOVZ (Move wide with zero) instruction is :-

Breaking down the bits d29fffe3 (first line of objdump non-aliased code shown on page 2-12)

gives a binary value of –

sf opcode hw Immediate Xd

1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1

• 64-bit

• Opcode is A5

• Immediate value is FFFF

• Register is x3

17 See https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/

https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/

Starting out with ARM

2-14

Instruction Aliases

Note that when the no-aliases option is used the disassembly process listed the

code as an actual ARM64 instruction rather than pseudo-code. Aliases are

mnemonics that are familiar to the programmer and the assembler will replace

them with an actual ARM.instruction.

Moving 32-bit and 64-bit immediate values

Question - Since there are only 16 bits available for the immediate value, how would a register

be loaded with the 32-bit value 0X12345678?

Response - The approach is to move the values in stages with the movk instruction. This

instruction moves data 16 bits at a time and optionally puts the values into the register with a

shifted offset value; this offset can be 0, 16, 32 or 48 bits as defined by the 2-bit hw field and

leaves the other bits alone.

Our plan is to move in the first 16 bits with a default shift of zero, followed by another move of

16 bits but in the second quarter of the register.

Example –

Listing 2-2 Using the movk instruction

.global _start

.text

_start: movk x3, #1234, lsl #0

 movk x3, #5678, lsl #16

 mov x8, #93

 svc 0

After execution of the code movk x3, #5678, lsl #16 the content of x3 is:

x3 0x162e04d2 372114642

(gdb) i r

x0 0x0 0

x1 0x0 0

x2 0x0 0

x3 0x162e04d2 372114642

Checking → 0x162e = 5678 and 0x04d2 = 1234.

objdump shows –

Disassembly of section .text:

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Starting out with ARM

2-15

0000000000400078 <_start>:

 400078: f2809a43 movk x3, #0x4d2

 40007c: f2a2c5c3 movk x3, #0x162e, lsl #16

 400080: d2800ba8 mov x8, #0x5d // #93

 400084: d4000001 svc #0x0

Looking at the second line movk x3, #0x162e, lsl #16

• 64-bit

• The format of movk (Move wide with keep) instruction is

• Opcode is E5

• Immediate value is 162e

• Register is x3

Figure 2-4 Format of movk instruction

The next example shows the MOVN instruction – The listing is included in GDB’s output.

Comments can be placed on the same line by appending “//” after the instruction (as shown

below) or block style starting with “/*” and ending with “*/”.

MOVE Negated instruction (MOVN)

(gdb) list

Listing 2-3 Using the MOVN instruction

1 .global _start

2 _start:

3 MOVN x2, #0xfedc //This is the move negated instruction

4 NOP //after execution it will change the value above

to

Starting out with ARM

2-16

5 NOP //0xffffffffffff0123

6 NOP //can be useful with bitmask operations

7 mov w8, #0x5d //Time to go.

8 svc #0

(gdb) b _start

Breakpoint 1 at 0x400078: file moven.s, line 3.

(gdb) b 7

Breakpoint 2 at 0x400088: file moven.s, line 7.

(gdb) run

Starting program: /home/alan/asm/moven

Breakpoint 1, _start () at moven.s:3

3 MOVN x2, #0xfedc //This is the move negated instruction

(gdb) continue

Continuing.

Breakpoint 2, _start () at moven.s:7

7 mov w8, #0x5d //Time to go.

(gdb) i r x2

x2 0xffffffffffff0123 -65245

Effectively, this has produced the one’s complement of our number.

Displaying output

Listing 2-4 Displaying output with the Write syscall

// listing2-4

/* This example shows how to write a string to the screen. It uses the write

system call for this. The call expects three arguments -

- x0 holds the file descriptor (1=stdout),

- x1 holds the starting address in memory of the string to be written

- x2 holds the length of the string */

.text

.global _start

_start:

 mov x0, #1 //stdout

 ldr x1, =result

Starting out with ARM

2-17

 mov x2, #6 //Print 6 characters

 mov w8, #64 //This is the write system call

 svc #0 //Put it out to screen

 mov x0, #0 //Return code of 0

 mov w8, #0x5d //Time to go.

 svc #0

.data

result: .ascii "Hello\n"

.align 4

This program uses the write syscall (0x40) to output a string of text to stdout. This works by

loading register x0 with the value 1 corresponding to stdout. Register x1 points to the starting

address in memory to where the string of is located and register x2 is loaded with the length of

the string. After the string has been written, register x0 is loaded with a return code of 0

(success) and the exit service call is triggered.

The assembler directive .data defines the start of memory.

objdump -s -d -M no-aliases printhello

printhello: file format elf64-littleaarch64

Contents of section .text:

 4000b0 200080d2 e1000058 c20080d2 08088052 X.......R

 4000c0 010000d4 000080d2 a80b8052 010000d4 R....

 4000d0 e0004100 00000000 ..A.....

Contents of section .data:

 4100e0 48656c6c 6f0a0000 00000000 00000000 Hello...........

Disassembly of section .text:

00000000004000b0 <_start>:

 4000b0: d2800020 movz x0, #0x1

 4000b4: 580000e1 ldr x1, 4000d0 <_start+0x20>

 4000b8: d28000c2 movz x2, #0x6

 4000bc: 52800808 movz w8, #0x40

 4000c0: d4000001 svc #0x0

 4000c4: d2800000 movz x0, #0x0

 4000c8: 52800ba8 movz w8, #0x5d

 4000cc: d4000001 svc #0x0

Starting out with ARM

2-18

 4000d0: 004100e0 .word 0x004100e0

 4000d4: 00000000 .word 0x00000000

The data section is located at memory address 0x4100e0 and the hex codes for the ASCII string

(Hello) is highlighted above.

Make

The commands that have been used so far for assembling and linking (as,ld) have worked well

enough for our situation, however when multiple files are involved it is normal to use a build

tool to accomplish this. The make utility keeps track of what has been done and will only apply

actions to the changed portions. The instructions are conveyed to the utility using a makefile.

The makefile below can be used to assemble link the program moveregister.s.

Simple makefile

moveregisters: moveregisters.o

 ld -o moveregisters moveregisters.o

moveregisters.o: moveregisters.s

 as -o moveregisters.o moveregisters.s

The line at the top denotes the target file which depends on the object file which in turn is

dependent on the source file. The rules on how to create the target file are shown above, so the

flow is :-

Create the target file (moveregister.s) from the object file (moveregister.o) which is created

from the source file (moveregister.s). The first target (here moveregister) is termed the default

goal.

Note use Tab characters for indentation in the makefile.

The next example assembles and links two programs into a single executable file,

OBJECTS = program1.o program2.o

all: myprogram

%.o : %.s

 as $< -g -o $@

myprogram: $(OBJECTS)

 ld -o myprogram $(OBJECTS)

This example will allow the target to be passed to the makefile:-

TARGETFILE = $(targetfile)

print: $(TARGETFILE).o

Starting out with ARM

2-19

 ld -o $(TARGETFILE) $(TARGETFILE).o

$(TARGETFILE).o: $(TARGETFILE).s

 as -o $(TARGETFILE).o $(TARGETFILE).s

$ make targetfile=print

make: 'print' is up to date.

$ ls

makefile print print.o print.s

Make will be revisited in more depth later on!

Using strace

The strace utility can be used to monitor which syscalls have been invoked by a particular

program or process:-

$ strace -c ./print

Hello again!

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

 0.00 0.000000 0 1 write

 0.00 0.000000 0 1 execve

------ ----------- ----------- --------- --------- ----------------

100.00 0.000000 0 2 total

With this particular program strace shows that the syscalls write and exit were invoked once.

Starting out with ARM

2-20

Summary of chapter 2

• Register Set

• Assembling and linking

• Makefiles

• Aliases and pseudo code

• Debugging with GDB

Starting out with ARM

2-21

Exercises for chapter 2

1. Install Raspberry PI OS on a 64-bit Raspberry PI system

2. What qualifier would you add to the as command to embed debug information?

3. What is the purpose of a linker?

4. How many w registers are available for general purpose use?

5. What are assembly directives?

6. Describe two ways of loading the value 0x1256 into the top 16 bits of register x3

7. What are syscalls?

8. What is the function of a makefile?

9. What are ARM assembly aliases?

10. What tool is used to disassemble an ARM executable program?

11. Describe two flags that the ARM instruction set uses to convey conditions.

Memory Operations

Page 3-1

Chapter 3. Dealing with memory
Chapter 3 delves further into the architecture and discusses memory topics , addressing

modes with LDR and STR instructions. Graphical debuggers are introduced.

Load and Store instructions

ARM64 deals with register operations, to work with memory, addresses are loaded into

registers, and stored back from registers to memory. Operations are with respect to memory so

loading from memory to registers is a read operation and storing from registers is a write

operation. The method by which memory addresses are derived is known as addressing modes

and there are several. The code fragments in this chapter will show how to communicate with

memory and will also introduce various addressing modes.

Load and store instructions can access memory. Data is loaded (ldr) from memory, acted on

and then stored (str) back to memory. This is termed load-store architecture.

LOAD Instructions (Memory → Registers)

Examining memory with GDB

GDB can be used to examine memory. The format of the command is x/nfu addr. Here the

parameters have the following meaning:

Table 3-1 Using GDB to display memory contents

n How much memory to display in units, with a default value of one.

f This is the display format; default is to display in hex. The main options are o(octal),

x(hex), d(decimal), u(unsigned decimal), t(binary), f(float), a(address), i(instruction),

c(char), s(string)

u Unit size b = byte h = halfword (2 bytes) w = word (4 bytes) g = giant (8 bytes)

Example

(gdb) x/16w 0x4100e0

0x4100e0: 0x6c6c6548 0x00000a6f 0x00000000 0x00000000

0x4100f0: 0x0000002c 0x00000002 0x00080000 0x00000000

0x410100: 0x004000b0 0x00000000 0x00000028 0x00000000

0x410110: 0x00000000 0x00000000 0x00000000 0x00000000

This is the contents of memory after running the printhello program shown on page 2-12.

Memory Operations

Page 3-2

This shows the ASCII data highlighted in default hex values, strings can be shown more clearly

by using the x/s command –

gdb) x/s 0x4100e0

0x4100e0: "Hello\n"

Consider a similar program (printhelloARM64.s) that writes out a slightly longer string.

Listing 3-1 String printing

/* This example shows how to write a string to the screen. It uses the write

system call

2 for this. The call expects three arguments -

3

4 - x0 holds the file descriptor (1=stdout),

5 - x1 holds the starting address in memory of the string to be written

6 - x2 holds the length of the string */

7

8 .text

9

10 .global _start

11

12 _start:

13 mov x0, #1 //stdout

14 ldr x1, =string1

15 mov x2, #13 //Print 13 characters

16 mov w8, #64 //This is the write system call

17 svc #0 //Put it out to screen

18 mov x0, #0 //Return code of 0

19 mov w8, #0x5d //Time to go.

20 svc #0

21

22 .data

23 string1: .ascii "Hello ARM64!\n"

24 .align 4

Using gdb shows :-

Memory Operations

Page 3-3

(gdb) list 1,30

1 /* This example shows how to write a string to the screen. It uses the

write system call

2 for this. The call expects three arguments -

3

4 - x0 holds the file descriptor (1=stdout),

5 - x1 holds the starting address in memory of the string to be written

6 - x2 holds the length of the string */

7

8 .text

9

10 .global _start

11

12 _start:

13 mov x0, #1 //stdout

14 ldr x1, =string1

15 mov x2, #13 //Print 13 characters

16 mov w8, #64 //This is the write system call

17 svc #0 //Put it out to screen

18 mov x0, #0 //Return code of 0

19 mov w8, #0x5d //Time to go.

20 svc #0

21

22 .data

23 string1: .ascii "Hello ARM64!\n"

24 .align 4

gdb) b 20

Breakpoint 1 at 0x4000cc: file helloARM64.s, line 20.

(gdb) run

Starting program: /home/alan/asm/helloARM

Hello ARM64!

Breakpoint 1, _start () at helloARM64.s:20

Memory Operations

Page 3-4

20 svc #0

gdb) x/s 0x4100e0

0x4100e0: "Hello ARM64!\n"

(gdb) x/16xb 0x4100e0

0x4100e0: 0x48 0x65 0x6c 0x6c 0x6f 0x20 0x41 0x52

0x4100e8: 0x4d 0x36 0x34 0x21 0x0a 0x00 0x00 0x00

Individual characters of the string can be shown by issuing x/1q

c <address>. The memory layout is actually:-

0x4100e0: 72 'H'

0x4100e1: 101 'e'

0x4100e2: 108 'l'

0x4100e3: 108 'l'

0x4100e4: 111 'o'

0x4100e5: 32 ' '

0x4100e6: 65 'A'

0x4100e7: 82 'R'

0x4100e8: 77 'M'

0x4100e9: 54 '6'

0x4100ea: 52 '4'

0x4100eb: 33 '!'

0x4100ec 10 '\n'

The directive .data placed the starting character of the string is placed at the lowest memory

location. This is termed little-endian18 where the least significant byte is stored at the lowest

address.

18 This term originally comes from Jonathan Swift’s novel Gulliver’s travels and refers to which

end a boiled egg is broken from.

Memory Operations

Page 3-5

The debugger shows us the bytes in increasing address order, starting from the left, (the same

order as when reading a book published in English).

(gdb) x/16xc 0x4100e0

0x4100e0: 72 'H' 101 'e' 108 'l' 108 'l' 111 'o' 32 ' ' 65 'A' 82 'R'

0x4100e8: 77 'M' 54 '6' 52 '4' 33 '!' 10 '\n' 0 '\000' 0 '\000' 0 '\000'

Disassembly produces :-

objdump -d -M no-aliases printhelloARM64

printhelloARM64: file format elf64-littleaarch64

Disassembly of section .text:

00000000004000b0 <_start>:

 4000b0: d2800020 movz x0, #0x1

 4000b4: 580000e1 ldr x1, 4000d0 <_start+0x20>

 4000b8: d28001a2 movz x2, #0xd

 4000bc: 52800808 movz w8, #0x40

 4000c0: d4000001 svc #0x0

 4000c4: d2800000 movz x0, #0x0

 4000c8: 52800ba8 movz w8, #0x5d

 4000cc: d4000001 svc #0x0

 4000d0: 004100d8 .word 0x004100d8 < Start of Data section

 4000d4: 00000000 .word 0x00000000

The first line puts the value of one into register x0

The second line loads register x1 with contents of the memory pointed to by the current

instruction’s location (as pointed to by the Program Counter (PC with an offset of 0x20 which is

where the first part of our data resides. Note this is 8 instructions from the start label or 7

instructions away from the current instruction. Recall that each instruction takes 4 bytes, so

the offset is 28 bytes or 0x1c bytes.

0x4000b0+0x20 = 0x4000d0

Memory Operations

Page 3-6

The way that memory is addressed by the ldr instruction is termed PC Relative addressing, if

no offset is given, then it defaults to an immediate value of 0x0.

The ldr instruction as we have used it puts the address of the string into register x1. The next

program uses ldr to put the contents of the string into register x4. The instruction is:

ldr x4, [x1] as highlighted below:

Breakpoint 1, _start () at printhelloARM2.s:

 mov x0, #1 //stdout

(gdb) s ldr x1, =string1 //This loads the address string1

into x1

(gdb) s ldr x4, [x1] //This loads the actual data into x4

(gdb) s mov x2, #13 //Print 13 characters

(gdb) i r

x0 0x1 1

x1 0x4100e0 4260064

x2 0x0 0

x3 0x0 0

x4 0x5241206f6c6c6548 5927054247528785224

x5 0x0 0

. . .

x30 0x0 0

sp 0x7ffffffff0a0 0x7ffffffff0a0

pc 0x4000bc 0x4000bc <_start+12>

cpsr 0x201000 [EL=0 BTYPE=0 SSBS SS]

fpsr 0x0 []

fpcr 0x0 [Len=0 Stride=0 RMode=0]

tpidr 0x0 0x0

tpidr2 0x0 0x0

Memory Operations

Page 3-7

Decoding the contents of register x4 shows:-

Since the register is 64-bits only eight characters of the string can be accommodated. Altering

the line to add an offset of two (=string1 + 2) will cause the string to skip the first two characters

(He) as shown below.

Breakpoint 1, _start () at printhelloARM3.s:12

 mov x0, #1 //stdout

 ldr x1, =string1 + 2 //This loads the address string1 into x1

 ldr x4, [x1, #4] //This loads the actual data into x4

 mov x2, #26 //Print 26 characters

 mov w8, #64 //This is the write system call

 svc #0 //Put it out to screen

llo ARM64!

Hello again!

18 mov x0, #0 //Return code of 0

.text

.global _start

 _start:

 mov x0, #1 //stdout

 ldr x1, =string1 //This loads the address string1 into x1

 ldr x4, [x1, #4] //This loads the actual data into x4

 mov x2, #26 //Print 26 characters

 mov w8, #64 //This is the write system call

Byte ASCII

0x48 H

0x65 e

0x6c l

0x6c l

0x6f 0

0x20 <Space>

0x41 A

0x52 R

Memory Operations

Page 3-8

 svc #0 //Put it out to screen

 mov x0, #0 //Return code of 0

 mov w8, #0x5d //Time to go.

 svc #0

.data

 string1: .ascii "Hello ARM64!\n"

 string2: .ascii "Hello again!\n"

$ objdump -d -M no-aliases printhelloARM2

printhelloARM2: file format elf64-littleaarch64

Disassembly of section .text:

00000000004000b0 <_start>:

 4000b0: d2800020 movz x0, #0x1

 4000b4: 58000121 ldr x1, 4000d8 <_start+0x28>

 4000b8: f8404024 ldur x4, [x1, #4]

 4000bc: d2800342 movz x2, #0x1a

 4000c0: 52800808 movz w8, #0x40

 4000c4: d4000001 svc #0x0

 4000c8: d2800000 movz x0, #0x0

 4000cc: 52800ba8 movz w8, #0x5d

 4000d0: d4000001 svc #0x0

 4000d4: 00000000 udf #0

 4000d8: 004100e0 .word 0x004100e0

 4000dc: 00000000 .word 0x00000000

Note Rt is the transfer register and Rn is the base register.

To summarize :-

• Register x1 holds the address of the text by using program counter relative addressing.

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Memory Operations

Page 3-9

• Register x4 holds the value of the memory address pointed to by register x1 using

register indirect with offset addressing

• The square brackets are used to show indirect memory addressing

• Indirect addressing refers to loading the data stored at the address pointed to by the

register.

o This is similar to a book index which points the reader to the page where the

content is stored.

• Note where there is an offset no-aliases gives the instruction ldur x4, [x1, #4]

• A summary of addressing modes is given in Table 3-3

The instruction LDUR is load unscaled register. In this case the 64-bit value from register x1

plus an offset of 4 is loaded into register x4.

 mov x0, #1 //stdout

(gdb) s

 ldr x1, =string1 //This loads the address string1 into x1

(gdb) s

 ldr x4, [x1, #4] //This loads the actual data into x4

(gdb) s

 mov x2, #26 //Print 26 characters

(gdb) i r

x0 0x1 1

x1 0x4100e0 4260064

x2 0x0 0

x3 0x0 0

x4 0x2134364d5241206f 2392597007760957551

!46MRA o

Skipping “Hell”

The ldr instruction is actually ldr {type} where type is actually an unsigned byte (B), a signed

byte (SB), unsigned halfword (H), signed halfword (SH).

Store Instructions (Registers → Memory)

We have already shown how to define memory contents using the .data directive on page 2-17.

The format of the data can be specified in multiple ways, some examples include: -

Memory Operations

Page 3-10

.data

 msg: .ascii “Hello ARM”

 randombytes: .byte 52, 35, 46, 95, 0x42

 characters: .byte ‘H’, ‘e’, ‘l’, ‘l’, ‘o’

 somewords: .word 0x0123456789abcdef

 negnumbers: .byte -0xaa,0xff

 blanks: .space 8

The next program generates a string and loads it into memory, previously a string was defined

using the .ascii directive. In this example 8 bytes of memory will be reserved using the .space

directive. The default will be to zero out these bytes but they can be set to other values by using

.space <number_of_bytes> {,<fill_byte>} for example message1: .space 8, 0x55

Listing 3-2 str example

// Listing3-2

/* This example shows how to write a string to the screen. It uses the write

system call

for this. The call expects three arguments -

- x0 holds the file descriptor (1=stdout),

- x1 holds the starting address in memory of the string to be written

- x2 holds the length of the string

A block of memory is reserved using the .data directive with the label message1.

It is initialized with 8 bytes of zero value

The string is loaded into register x4 2 bytes at a time via movk

and then stored into the memory location pointed to by x1

*/

.text

.global _start

 _start:

 mov x0, #1 //stdout

 ldr x1, =message1 //This loads the address of the label message1

into x1

 mov w4, #0x6548 //Load first two bytes "He" just use w4

for this rather than x4

Memory Operations

Page 3-11

 movk x4, #0x6C6c, lsl #16 //Load next two bytes "ll"

 movk x4, #0x206f, lsl #32 //Next two bytes "o "

 movk x4, #0x654d, lsl #48 //Next two "Me "

 str x4, [x1] // Put the eight byte string into memory

pointed to by register x1

 mov x2, #8 //Print 8 characters

 mov w8, #64 //This is the write system call

 svc #0 //Put it out to screen

 mov x0, #0 //Return code of 0

 mov w8, #0x5d //Time to go.

 svc #0

.data

 message1: .space 8

Output -

$./store1

Hello Me

The output of gdb up until the str command has been executed shows:-

$ gdb store1

. . .

Type "apropos word" to search for commands related to "word"...

Reading symbols from store1...

(gdb) b 1

Breakpoint 1 at 0x4000b0: file store1.s, line 16.

(gdb) run

Starting program: /home/alan/asm/stores/store1

Breakpoint 1, _start () at store1.s:16

16 mov x0, #1 //stdout

17 ldr x1, =message1 //This loads the address of the label

message1 into x1

18 mov w4, #0x6548 //Load first two bytes "He" just use w4

for this rather than x4

19 movk x4, #0x6C6c, lsl #16 //Load next two bytes "ll"

Memory Operations

Page 3-12

20 movk x4, #0x206f, lsl #32 //Next two bytes "o "

21 movk x4, #0x654d, lsl #48 //Next two "Me "

22 str x4, [x1] // Put the eight byte string into memory

pointed to by register x1

23 mov x2, #8 //Print 8 characters

(gdb) i r

x0 0x1 1

x1 0x4100f0 4260080

x2 0x0 0

x3 0x0 0

x4 0x654d206f6c6c6548 7299526233969943880

x5 0x0 0

. . .

x30 0x0 0

sp 0x7ffffffff060 0x7ffffffff060

pc 0x4000cc 0x4000cc <_start+28>

cpsr 0x201000 [EL=0 BTYPE=0 SSBS SS]

fpsr 0x0 []

fpcr 0x0 [Len=0 Stride=0 RMode=0]

tpidr 0x0 0x0

tpidr2 0x0 0x0

(gdb) x/s 0x4100f0

0x4100f0: "Hello Me"

The figure below shows how the memory contents change after the str instruction has been

executed.

Memory Operations

Page 3-13

Table 3-2 Action of str instruction to memory

Referring to the ARM instruction document, Rt corresponds to register x4 and register Rn

corresponds to register x1.

Disassembly shows:-

4000b0: d2800020 movz x0, #0x1

 4000b4: 580001a1 ldr x1, 4000e8 <_start+0x38>

 4000b8: 528ca904 movz w4, #0x6548

 4000bc: f2ad8d84 movk x4, #0x6c6c, lsl #16

 4000c0: f2c40de4 movk x4, #0x206f, lsl #32

 4000c4: f2eca9a4 movk x4, #0x654d, lsl #48

 4000c8: f9000024 str x4, [x1]

The instruction f9400024 ldr x4, [x1] breaks down as follows:-

Addressing modes

The table below summarizes various addressing modes used with ARM64 architecture –

Memory Operations

Page 3-14

Table 3-3 Summary of addressing modes

Addressing

Mode

Parameters Meaning Format

Simple

(Pc relative

addressing)

Register Register x1 is loaded with the contents of the

address pointed to by base register x0. The base

register is always 64-bit, since the addresses are

64-bit wide.

ldr x1, [x0]

ldr x1,

=mylabel

Offset Register plus

an offset

Register w2 is loaded with the contents of the

address pointed to by base register x0 plus an

offset. The offset may be a constant (immediate

value) or another register

ldrh w2, [x0, #8]

ldrb w2, [x0, x10]

Pre-indexed Offset Similar to the offset address mode, except that

the base register(x0) is updated with the new

calculated address and data is loaded from the

new location. The update happens before

fetching the data

ldrh w2, [x0,

#8]!

Post-index Offset Similar to the pre-indexed mode, except that the

data is loaded from the current base register and

the base register is updated only then with the

new calculated address. Update happens after

fetching the data.

ldrh w2, [x0],

#7

• [] signifies indirection

• ! signifies pre-indexing, offset inside brackets

• Post indexing, offset outside of brackets

The next listing shows examples of these addressing modes and resulting register contents

using the data in the layout shown below.

Listing 3-3 Addressing modes

/* This example shows ARM64 addressing modes-

.text

.global _start

_start:

 ldr x0, =baselocation //This loads the address baselocation (0x4100d8)

into x0

Memory Operations

Page 3-15

// Simple Addressing Mode

 ldr x1, [x0] //This loads the actual data (0x1817161514131211) from

baselocation into x1

//Offset addressing with a constant as an offset

 ldrh w2, [x0, #8] // Loads contents (0x1a19) of location 4100d8+8)

into w2

//Offset addressing with a register as an offset

 mov x10, #4 // Move offset value into register x10

 ldrb w2, [x0, x10] // Loads contents (0x15) of location 4100d8+4) into w2

//Pre-Index Addressing Mode

 ldrh w2, [x0, #8]! // Similar to offset except that x0 is updated with the

new calculated address. x0 now contains the address 0x4100e0 and w2 with the data

0x1a19

//Post-index Addressing mode

 ldrh w2, [x0], #7 // Picks up the data at location 0x4100e0 and only then

updates x0 to 0x4100ef

 mov w8, #0x5d //Time to go.

 svc #0

.data

 baselocation: .byte 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,

0x18

 baselocationwithoffset: .byte 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,

0x20

Memory Operations

Page 3-16

Table 3-4 Effect of addressing modes on pointer registers

Addressing

Mode

Register x0

contents after

instruction

Register x1

contents

Register w2

contents

Comments

Simple 0x4100d8 0x1817161514131

211

- Loads full 64 bits

Offset with

constant

0x4100d8 - 0x1a19 Loads halfword

Offset with

register

0x4100d8 - 0x15 (byte) Loads byte

Pre-index 0x4100e0 - 0x1a19

halfword

Loads halfword from new

address

Post-index 0x4100ef - 0x1a19

halfword

Loads halfword from

address prior to update

Simple addressing is really Program Counter relative with an offset?

The instruction ldr x0, = baselocation, actually disassembles to ldr x0, 4000d8

<_start+0x28> where the program counter corresponds to the location 0x4000d8 and 0x28

being the offset where the data is located. The offset must be a multiple of four!

The difference between pre and post indexing is the order in which the data comes from.

• Pre-index - the pointer register location is first updated, and the data is then fetched

from the updated location.

• Post-index – the data is fetched from the current location and only then is the update

applied to the pointer register.

Other modifications are possible with the ldr and str instructions which are fully documented

in the ARM architecture guides.

Enhancements to GDB

So far GDB has been used as the default tool for analyzing code. The following commands

entered into the file ~/.gdbinit will give a better (TUI) layout experience.

layout split

layout regs

set history save on

set history filename ~/gdbhistory

set logging enabled on

Memory Operations

Page 3-17

Note that if using the GDB TUI then the up and down arrows are no longer

available for command history; use Ctrl-P(revious) and Ctrl-N(ext) instead.

Figure 3-1 GDB using TUI

There are several enhancements/alternatives to GDB. One such tool that enhances the

debugging experience is gdbgui. Installation instructions for installation can be found at
www.gdbgui.

Start gdbgui from the command line by entering the following command:-

gdbgui --args ./asm/printhelloARM3/printhelloARM3

The screenshot is a snapshot of the program midway through. The memory location shows the

values in hex and in character format. The GDB command window (not shown) is at the bottom

left. Registers x0 through x8 are shown along with the source code: -

http://www.gdbgui/
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Memory Operations

Page 3-18

Figure 3-2 GDBGUI

Another alternative is gdbfrontend. This can be installed from

https://github.com/rohanrhu/gdb-frontend

Figure 3-3 GDB Frontend

https://github.com/rohanrhu/gdb-frontend

Memory Operations

Page 3-19

Summary of chapter 3

• Memory layout

• Load and Store Instruction

• Outputting text

• Addressing Modes

• Graphical Debuggers

Memory Operations

Page 3-20

Exercises for chapter3

1. How many bits are contained in an ARM64 instruction?

2. What does the command x/32w 0x4100f0 do when executed in GDB?

3. What is the significance of the square [] brackets when used with ldr or str instructions?

4. What assembly directive is used to define a string of characters within an assembly

language program?

5. Describe the purpose of the instruction ldrh w2, [x0, #8]!

6. What is the role of the x2 register when using the write syscall to print a string of text to the

screen?

Arithmetic and logic operations

Page 4-1

Chapter 4. Arithmetic operations (First Pass)
This section will introduce the arithmetic instruction capabilities of ARM64. A subsequent

chapter discusses more advanced operation utilizing vector registers. Logic instructions such

as AND, OR and EOR are also covered.

Floating Point operations are not covered in this section.

Recall the bit sizes as defined in Byte, . . . Quadword

Table 4-1 ARM64 Data Types

of bits Definition

8 Byte

16 Halfword

32 Word

64 Doubleword

128 Quadword

Add Instruction

– First start with add. Two numbers are placed in registers x4 and x5 with the result being stored

in register x6.

Listing 4-1Add (Extended Register)

* This example shows various addition instructions */

.text

.global _start

_start:

 mov x4, #1024

//This moves the number 1024 to reg x4

 mov x5, #60

// This moves the number 60 to reg x5

 add x6, x4, x5

//Adds the contents of x4 and x5 placing the result in x6

 mov w8, #0x5d

svc #0

//Time to go.

Disassembly produces objdump -d -M no-aliases add1

Arithmetic and logic operations

Page 4-2

add1: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d2808004 movz x4, #0x400

 40007c: d2800785 movz x5, #0x3c

 400080: 8b050086 add x6, x4, x5

 400084: 52800ba8 movz w8, #0x5d

 400088: d4000001 svc #0x0

 Note that even though three distinct registers were used, using an instruction

such as add x5, x4, x5 is perfectly valid.

The next listing gives a similar result, the difference being that instead of a third register an

immediate value is added.

Listing 4-2 Add (immediate)

// listing4-2

.text

.global _start

 _start:

 mov x4, #1024 //This moves the number 1024 to reg x4

Arithmetic and logic operations

Page 4-3

 add x6, x4, #60 //Adds the contents of reg x4 and an immediate

value of 60 placing the result in reg x6

 mov w8, #0x5d //Time to go.

 svc #0

In Listing 4-3 a 12-bit offset is used – here the immediate value of 6 is left shifted by 12 places

giving the value:- 0110 0000 0000 0000 = 0x6000 and then this is added to the content of reg x4

(0x400) = 0x6400.

Listing 4-3 Add immediate with a left shift

// listing4-3

.text

.global _start

_start:

Arithmetic and logic operations

Page 4-4

 mov x4, #1024

//This moves the number 1024 to reg x4

 add x6, x4, #6, LSL #12

//Adds the contents of reg x4 and an immediate value of 60

left shifted by 12, placing the result in reg x6*/

 mov w8, #0x5d //Time to go.

 svc #0

Listing 4-4 Add with a left shifted register

// listing4-4

.text

.global _start

_start:

 mov x4, #1024 //This moves the number 1024 to reg x4

 mov x5,#64 // Move 64 into reg x5

 add x6, x4, x5, LSL #6

/*Adds the contents of reg x4 and reg x5 left shifted by 6 places placing the

result in reg x6*/

 mov w8, #0x5d //Time to go.

 svc #0

Arithmetic and logic operations

Page 4-5

The next example introduces the extend operators. Values that can be extended are bytes,

halfwords and words. In addition, they can be signed or unsigned. One further operation is to

shift the values by one through four bits. The operations are shown in Table 4-2.

Table 4-2 Extend Operators

The next listing shows the effect of a UXTB byte operation shifted by four places.

Listing 4-5 UXTB byte operation

// listing4-5

.text

.global _start

 _start:

 mov x4, #0x400 //This moves the number 1024 to reg x4

 mov x5, #0x55 // Move into reg x5

 add x6, x4, x5, UXTB #4 /* Unsign extends the byte in reg x5 (0x55),

shifting it four places, adding it to reg 4 placing the result in reg x6*/

 mov w8, #0x5d //Time to go.

 svc #0

The value ending up in register x6 is 0x950. A breakdown follows:-

• x5 = 0x55 = 0b01010101

• Shift the value of x5 by four places to the left = 0b010101010000 = 0x550

19 For “|” read or.

Operator Meaning Optional Shift

UXTB Unsigned byte 8 bits to 64 bits N = 1|2|3|419

SXTB Signed byte 8 bits to 64 bits N = 1|2|3|4

UXTH Unsigned halfword 16 bits to 64 bits N = 1|2|3|4

SXTH Signed halfword 16bits to 64 bits N = 1|2|3|4

UXTW Unsigned word 32 bits to 64 bits N = 1|2|3|4

SXTW Signed word 32bits to 64 bits N = 1|2|3|4

Arithmetic and logic operations

Page 4-6

• Add 0x550 to the contents of register x4 (0x400) to get 0x950.

NOTE register x5 is unchanged, only its value is acted on.

The following example shows the operation of Unsigned to byte when a 16-bit value is

contained in reg x5.

Listing 4-6 Add extended using UXTB on a halfword value

// listing4-6

.text

.global _start

_start:

 mov x4, #0x400

//This moves the number 1024 to reg x4

 mov x5, #0xaaaa

// Move 0Xaaaa into reg x5

 add x6, x4, x5, UXTB

/* Unsign extend the byte in reg x5 (0xaaaa), placing the result in reg x6*/

 mov w8, #0x5d //Time to go.

 svc #0

Here the instruction sign extended a byte value so only 8 bits were extended not 16 bits!

The next example uses UXTH to extend the full halfword value.

Listing 4-7 Add extended using UXTH on a halfword value

// listing4-7

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Arithmetic and logic operations

Page 4-7

.text

.global _start

 _start:

 mov x4, #0x400 //This moves the number 1024 to reg x4

 mov x5, #0xaaaa // Move 0X5555 into reg x5

 add x6, x4, x5, UXTW /* Unsign extend the byte in reg x5 (0xaaaa),

placing the result in reg x6*/

 mov w8, #0x5d //Time to go.

svc #0

Changing the listing to SXTH extends the sign bit. Previously the extend operation was unsigned

so the extended leading zeroes were simply dropped. The value 0xaaaa is 1010 1010 1010 1010

in binary so the leading bit is a one denoting that it is a negative number using signed binary.

Listing 4-8 Add extended using SXTH on a negative number

//listing4-8

.text

.global _start

 _start:

 mov x4, #0x400 //This moves the number 1024 to reg x4

 mov x5, #0xaaaa // Move 0Xaaaa into reg x5

 add x6, x4, x5, SXTH /* Unsign extend the byte in reg x5 (0xaaaa),

placing the result in reg x6*/

Arithmetic and logic operations

Page 4-8

 mov w8, #0x5d //Time to go.

 svc #0

Changing the sign bit to zero gives :-

Listing 4-9 Add extended using SXTH on a positive number

//listing4-9

.text

.global _start

 _start:

 mov x4, #0x400 //This moves the number 1024 to reg x4

 mov x5, #0x7aaa // Move 0X7aaa into reg x5 giving a signed

positive number

 add x6, x4, x5, SXTH /* Sign extend the halfword in reg x5

(0x7aaa), placing the result in reg x6*/

 mov w8, #0x5d //Time to go.

 svc #0

Arithmetic and logic operations

Page 4-9

Listing 4-10 Add extended SXTW with a 4-place shift

// listing4-10

.text

.global _start

_start:

 mov x, #0 //Clear reg x4

 mov x5, #0xaaaa // Move into reg x5

 movk x5,#0xaaaa, LSL 16

 add x6, x4, x5, SXTW #4 /* Sign extend the word in reg x5 (0xaaaaaaaa),

shifting it four places, adding it to reg 4 placing the result in reg x6*/

 mov w8, #0x5d //Time to go.

 svc #0

Here 0xaaaaaaaa is shifted four places to give 0xaaaaaaaa0 and then sign extended (since the

leading bit is a one) to get 0xfffffffaaaaaaaa0.

Arithmetic and logic operations

Page 4-10

ADDS instruction.

So far, the instructions that have been used do not set the condition flags. The adds instruction

will do this. Consider the first listing where the add instruction is used, after execution of the

add instruction the CPSR bits are unchanged.

Due to the large data sizes involved many operations do not have to take the condition flags

into account. An example could be the number of employees in a company – using a 32-bit

data size is never going to reach an overflow condition! This will also speed up operations

without having to carry out checks.

Listing 4-11 Leaving condition flags unchanged with the add instruction.

//listing4-11

.text

.global _start

 _start:

 mov x4, #0xb000 //Add #0xb000 reg x4

 mov x5, #0xaaaa // Move into reg x5

 movk x5,#0xaaaa, LSL 16

 movk x5, #0xaaaa, LSL 32

 movk x5, #0xb000, LSL 48

 add x6, x4, x5 // Does not set the N flag

 mov w8, #0x5d //Time to go.

 svc #0

Arithmetic and logic operations

Page 4-11

Note that the adds instruction does change the CPSR status.

Listing 4-12 Setting the negative flag using the adds instruction

//listing4-12

.text

.global _start

 _start:

 mov x4, #0xb000 //Add #0xb000 reg x4

 mov x5, #0xaaaa // Move into reg x5

 movk x5,#0xaaaa, LSL 16

 movk x5, #0xaaaa, LSL 32

 movk x5, #0xb000, LSL 48

 adds x6, x4, x5 // Sets the N flag

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Arithmetic and logic operations

Page 4-12

 mov w8, #0x5d //Time to go.

 svc #0

The next snippet causes an overflow condition as well as setting the negative flag:-

Listing 4-13 Setting the overflow flag using the adds instruction

//listing4-13

text

.global _start

 _start:

 mov x4, #0xffff // Load up x4

 movk x4, #0xffff

 movk x4, #0xffff, LSL16

 movk x4, #0xffff, LSL 32

 movk x4, #0x7fff, LSL 48

 mov x5, # 0xffff // Load up x5

 movk x5,# 0xffff, LSL 16

 movk x5, #0xffff, LSL 32

Arithmetic and logic operations

Page 4-13

 movk x5, #0x7fff, LSL 48

 adds x6, x4, x5 // Sets N and V flags

 mov w8, #0x5d //Time to go.

 svc #0

The next listing will differentiate between ADCS, ADC and add instructions.

Listing 4-14 Effect of ADCS, ADC and add instructions

// listing4-14

.text

_start:

 mov x4, #0xffff // Load up x4

 movk x4, #0xffff

 movk x4, #0xffff, LSL16

 movk x4, #0xffff, LSL 32

 movk x4, #0x8fff, LSL 48

 mov x5, # 0xffff // Load up x5

 movk x5,# 0xffff, LSL 16

 movk x5, #0xffff, LSL 32

 movk x5, #0x7fff, LSL 48

 ADCS x6, x4, x5 //

Arithmetic and logic operations

Page 4-14

 ADC x6, x4, x5

 add x6, x4, x5

 mov w8, #0x5d //Time to go.

 svc #0

After execution of ADCS, register x6 contains the value 0xfffffffffffffffe and the Carry bit has been

set (CPSR = 0x20201000.

The instruction ADC also adds x4 and x5 but this time it includes the C bit giving the result in x6

of 0xffffffffffffffff. The last instruction add does not include the C bit; giving the result in x6 of

0xfffffffffffffffe.

Arithmetic and logic operations

Page 4-15

SUB Instruction

Subtraction instructions are similar to addition, consequently not too much time will be spent

here.

Listing 4-15 SUB (extended register)

//listing4-15

.text

.global _start

 _start:

 mov x4, #1024 //This moves the number 1024 to reg x4

 mov x5, #60 // This moves the number 60 to reg x5

 SUB x5, x4, x5 //Subtracts the contents of reg x4 from x5 placing the

result in reg x5

 mov w8, #0x5d //Time to go.

svc #0

Arithmetic and logic operations

Page 4-16

Listing 4-16 SUB (immediate instruction)

//listing4-16

.text

.global _start

 _start:

 mov x4, #1024 //This moves the number 1024 to reg x4

 SUB x5, x4, #1000 //Subtracts the contents of reg x4 from 80 placing the

result in reg x5

 mov w8, #0x5d //Time to go.

 svc #0

MUL Instruction and variants

Note Multiply and divide instructions do not set flags!

madd

The MUL instruction is an alias of madd. madd takes two registers, multiplies their contents

together, then adds a third value placing the result in the destination. If no addition is required,

then this operand will have a value of zero (see note on page 4-19).

The format of the instruction is madd Xd, Xn, Xm, Xa.

Arithmetic and logic operations

Page 4-17

Note that the first two operands are 64 registers and so is the destination. Since a 128-bit

destination would be required, the action is to discard the upper 64 bits. Now this is often

acceptable for smaller numbers that do not cross a 64-bit threshold, but it is an issue that the

programmer needs to be aware of.

Listing 4-17 madd Instruction

// listing4-17

.text

.global _start

_start:

 mov x4, #1024 //This moves the number 1024 to reg x4

 mov x5, #60 // This moves the number 60 to reg x5

 mov x6, #1000 // This number will be added

 madd x2, x4, x5, x6 /*Multiplies the contents of x4 and x5 together, adding

the contents of x6 and placing the result in x2*/

 mov w8, #0x5d //Time to go.

 svc #0

Disassembly shows –

objdump -d mul1

mul1: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d2808004 mov x4, #0x400 // #1024

 40007c: d2800785 mov x5, #0x3c // #60

 400080: d2807d06 mov x6, #0x3e8 // #1000

 400084: 9b051882 madd x2, x4, x5, x6

 400088: 52800ba8 mov w8, #0x5d // #93

 40008c: d4000001 svc #0x0

Arithmetic and logic operations

Page 4-18

Without the add (third operand) component:-

Listing 4-18 MUL instruction

//listing4-18

.text

.global _start

 _start:

 mov x4, #1024 //This moves the number 1024 to reg x4

 mov x5, #60 // This moves the number 60 to reg x5

 MUL x2, x4, x5 /*Multiplies the contents of x4 and x5 together,

placing the result in reg x2*/

 mov w8, #0x5d //Time to go.

 svc #0

Arithmetic and logic operations

Page 4-19

Note how the unaliased disassembly for MUL produces the instruction madd x2, x4, x5,

xzr. Recall from page 2-4 that the XZR register returns zero when read.

$ objdump -d -M no-aliases mult2

mult2: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d2808004 movz x4, #0x400

 40007c: d2800785 movz x5, #0x3c

 400080: 9b057c82 madd x2, x4, x5, xzr

 400084: 52800ba8 movz w8, #0x5d

 400088: d4000001 svc #0x0

Aliased disassembly produces :-

~/asm/addition $ objdump -d mult2

mult2: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d2808004 mov x4, #0x400 // #1024

 40007c: d2800785 mov x5, #0x3c // #60

 400080: 9b057c82 mul x2, x4, x5

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Arithmetic and logic operations

Page 4-20

 400084: 52800ba8 mov w8, #0x5d // #93

 400088: d4000001 svc #0x0

Multiply two 32-bit numbers using madd –

Listing 4-19 Using madd to multiply two 32-bit numbers.

//listing4-19

.text

.global _start

_start:

 mov x4, #0xffff // Load up first 16 bits to reg x4

 movk x4,#0xffff,lsl #16 //Load up next set of 16 bits

 mov x5, #0xffff // Now load reg x5

 movk x5,#0xffff,lsl #16

 MUL x2, x4, x5 /*Multiplies the contents of x4 and x5 together,

placing the result in reg x2*/

 mov w8, #0x5d //Time to go.

 svc #0

Disassembly produces –

objdump -d -M no-aliases mult4

mult4: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d29fffe4 movz x4, #0xffff

 40007c: 72bfffe4 movk x4, #0xffff, lsl #16

 400080: d29fffe5 movz x5, #0xffff

 400084: 72bfffe5 movk x5, #0xffff, lsl #16

 400088: 9b057c82 madd x2, x4, x5, xzr

 40008c: 52800ba8 movz w8, #0x5d

 400090: d4000001 svc #0x0

The result of the multiplication is:

0XFFFFFFFE00000001.

Arithmetic and logic operations

Page 4-21

UMULL and SMULL

The instructions UMULL(Unsigned Multiply Long) and SMULL (Signed Multiply Long) are used to

multiply two 32-bit w registers, giving a 64-bit (placing the result in an x register) unsigned or

signed result.

Listing 4-20 Unsigned Multiply Long

//listing 4-20

.text

.global _start

_start:

 mov w4, #0xffff // Load up first 16 bits to reg w4

 movk w4,#0xffff,lsl #16 //Load up next set of 16 bits

 mov w5, #0xffff // Now load reg w5

 movk 5,#0xffff,lsl #16

 UMULL x2, w4, w5 /*Multiplies the contents of w4 and w5 together,

placing the unsigned result in reg x2*/

 mov w8, #0x5d //Time to go.

 svc #0

$ objdump -d -M no-aliases mult3

mult3: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: 529fffe4 movz w4, #0xffff

 40007c: 72bfffe4 movk w4, #0xffff, lsl #16

 400080: 529fffe5 movz w5, #0xffff

 400084: 72bfffe5 movk w5, #0xffff, lsl #16

 400088: 9ba57c82 umaddl x2, w4, w5, xzr

 40008c: 52800ba8 movz w8, #0x5d

 400090: d4000001 svc #0x0

Note the unaliased UMULL instruction is umaddl which is the mnemonic for Unsigned Multiply-

Add Long. The format is UMAADDL Xd, Wn, Wm, Xa. In this example Xd = x2, wn = w4, wm = w5,

xa =0.

After execution the contents of x2 is 0xFFFFFFFE00000001.

Arithmetic and logic operations

Page 4-22

Using SMULL gives the signed number 1.

Listing 4-21 Signed Multiply Long

//listing4-21

.text

.global _start

 _start:

 mov w4, #0xffff // Load up first 16 bits to reg x4

 movk w4,#0xffff,lsl #16 //Load up next set of 16 bits

 mov w5, #0xffff // Now load reg x5

 movk w5,#0xffff,lsl #16

 SMULL x2, w4, w5 /*Multiplies the contents of x4 and x5

together, placing the result in reg x2*/

 mov w8, #0x5d //Time to go.

 svc #0

$ objdump -d -M no-aliases mult3

mult3: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: 529fffe4 movz w4, #0xffff

 40007c: 72bfffe4 movk w4, #0xffff, lsl #16

 400080: 529fffe5 movz w5, #0xffff

 400084: 72bfffe5 movk w5, #0xffff, lsl #16

 400088: 9b257c82 smaddl x2, w4, w5, xzr

 40008c: 52800ba8 movz w8, #0x5d

 400090: d4000001 svc #0x0

Multiplication of two 64-bit numbers to give a 128-bit result.

The instructions UMULH (Unsigned Multiply High) and SMULH (Signed Multiply High) calculate the

upper 64 bits of a 64-bit multiplication. UMULL and SMULL are used to multiply two 32-bit (w

registers) together to get a 64-bit result. The U prefix signifies unsigned while the S prefix

signifies signed. In this example UMULH is used to calculate the high order bits and MUL is

used to calculate the low order bits.

Arithmetic and logic operations

Page 4-23

Note that UMULH and SMULH are not complementary to UMULL and SMULL .

Listing 4-22 Multiplying two 64-bit numbers to give a 128-bit result (Unsigned)

/* listing4-22

This example shows how to multiply two 64-bit numbers, placing the 128-bit result

in two 64-bit registers.

MUL is used for the lower 64 bits and UMULH is used for the higher 64 bits */

.text

.global _start

_start:

 mov x4, #0xffff // Load up first 16 bits to reg x4

 movk x4,#0x00ff,lsl #16 // Load up next set of 16 bits

 movk x4,#0xffff,lsl #32 // Next 16 bits

 movk x4,#0x1234,lsl #48 // Last 16 bits

 mov x5, #0xffff // Now load reg x5

 movk x5, #0x00ff,lsl #16

 movk x5, #0xffff,lsl #32

 movk x5, #0x5678,lsl #48

MUL x2, x4, x5 /*Multiplies the contents of x4 and x5 together, placing the

lower 64-bit result in reg x2*/

 UMULH x3, x4, x5 /*Multiplies the contents of x4 and x5 together, placing

the higher unsigned 64-bit result (64:127) result in reg x3, discarding lower 64

bits (0:63)*/

 mov w8, #0x5d //Time to go.

 svc #0

The complete 128-bit result is: 0x0626 690c 97ba ae00 9553 0001 fe00 0001.

Note that UMULL is an alias of UMADDL

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Arithmetic and logic operations

Page 4-24

Another Example -

Listing 4-23 Second example - Multiplying two 64-bit numbers to give a 128-bit result (Unsigned)

/* listing4-23

This example shows how to multiply two 64-bit numbers, placing the 128-bit result

in two 64-bit registers.

MUL is used for the lower 64 bits and UMULH is used for the higher 64 bits */

.text

.global _start

_start:

 mov x4, #0x1 // Load up first 16 bits to reg x4

 movk x4,#0x0000,lsl #16 // Load up next set of 16 bits

 movk x4,#0x0001,lsl #32 // Next 16 bits

 movk x4,#0x0000,lsl #48 // Last 16 bits

 mov x5, #0x2 // Now load reg x5

 movk x5, #0x0000,lsl #16

 movk x5, #0x0002,lsl #32

 movk x5, #0x0000, lsl #48

 MUL x2, x4, x5 /*Multiplies the contents of x4 and x5 together,

placing the 64-bit result in reg x2*/

UMULH x3, x4, x5 /*Multiplies the contents of x4 and x5 together, placing the

higher unsigned 64-bit result (64:127) result in reg x3, discarding lower 64 bits

(0:63)*/

 mov w8, #0x5d //Time to go.

 svc #0

Arithmetic and logic operations

Page 4-25

Figure 4-1 64-bit multiplication (verified by hand)

Disassembly shows:

$ objdump -d -M no-aliases mult8

mult8: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d2800024 movz x4, #0x1

 40007c: f2a00004 movk x4, #0x0, lsl #16

 400080: f2c00024 movk x4, #0x1, lsl #32

 400084: f2e00004 movk x4, #0x0, lsl #48

 400088: d2800045 movz x5, #0x2

 40008c: f2a00005 movk x5, #0x0, lsl #16

 400090: f2c00045 movk x5, #0x2, lsl #32

 400094: f2e00005 movk x5, #0x0, lsl #48

Arithmetic and logic operations

Page 4-26

 400098: 9b057c82 madd x2, x4, x5, xzr

 40009c: 9bc57c83 umulh x3, x4, x5

 4000a0: 52800ba8 movz w8, #0x5d

 4000a4: d4000001 svc #0x0

MSUB and MNEG

MNEG (Multiply-Negate) is an alias of MSUB. The format is MSUB Xd, Xn, Xm, Xa, where Xd is the

64bit destination register, Xm is the first operand (multiplicand) , Xn is the second operand

(multiplier) , Xa is the third operand holding the minuend. The operation multiplies Xm and Xn,

then subtracts the product from the third operand register.

Listing 4-24 Use of MSUB

//listing4-25

// This example illustrates the MSUB instruction which multiplies two operands and

then subtracts the product from a third operand.

.text

.global _start

_start:

 mov x4, #0x5a5 // Load up first 16 bits to reg w4

 mov x5, #0x4 // Now load reg x5

 mov x6, #0xaa // Value to be subtracted from

 MSUB x3, x4, x5, x6 // Multiplies the contents of x4 and x5 together,

subtracting the product from x6

 mov w8, #0x5d //Time to go.

 svc #0

Dissassembly

$ objdump -d -M no-aliases mult11

mult11: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d280b4a4 movz x4, #0x5a5

 40007c: d2800085 movz x5, #0x4

 400080: d2801546 movz x6, #0xaa

Arithmetic and logic operations

Page 4-27

 400084: 9b059883 msub x3, x4, x5, x6

 400088: 52800ba8 movz w8, #0x5d

 40008c: d4000001 svc #0x0

When MNEG is used it is equivalent to using XZR as the third operand, so it negates the

product.

Listing 4-25 Use of MNEG

//listing4-25

// This example illustrates the MNEG instruction which multiplies two operands and

then subtracts the product from XZR.

.text

.global _start

_start:

 mov x4, #0x5a5 // Load up reg w4

 mov x5, #0x4 // Now load reg x5

 mov x6, #0xaa // Value to be subtracted from

 MNEG x3, x4, x5 // Multiplies the contents of x4 and x5 together,

subtracting the product from 0 (XZR)

 mov w8, #0x5d //Time to go.

 svc #0

$ objdump -d -M no-aliases mult11

mult11: file format elf64-littleaarch64

Disassembly of section .text:

Arithmetic and logic operations

Page 4-28

0000000000400078 <_start>:

 400078: d280b4a4 movz x4, #0x5a5

 40007c: d2800085 movz x5, #0x4

 400080: d2801546 movz x6, #0xaa

 400084: 9b05fc83 msub x3, x4, x5, xzr

 400088: 52800ba8 movz w8, #0x5d

 40008c: d4000001 svc #0x0

UMNEGL and SMNEGL

These instructions multiply two 32-bit (w) registers, negate the product placing the result in a

64-bit (X) register. UMNEGL and SMNEGL are aliases for UNSUBL and SMSUBL, respectively.

Division

Division operations can be signed or unsigned using the instructions UDIV and SDIV. The format

is SDIV|UDIV Rd, Rn, Rm where Rd is the destination, Rn contains the numerator and Rm

contains the denominator. Registers can be 32-bit or 64-bit.

Note dividing by zero does not give an error, it returns the value 0, so it needs to be tested

separately.

Listing 4-26 Using UDIV

// listing4-26

// This example illustrates the UDIV instruction which uses two operands as the

numerator and denominator.

.text

.global _start

_start:

 mov x4, #2000 // Load up reg x4 (number to be divided)

 mov x5, #0x4 // Now load reg x5 (number that will divide)

 UDIV x3, x4, x5 // Divides x4 by x5 together, result goes into x3

 mov x4, #1999 // x4 no longer evenly divisble by contents of x5

 UDIV x3, x4, x5 // No remainder recorded

 mov x5, #0 // Dividing by zero does not error, but returns zero

 UDIV x3, x4, x5

Arithmetic and logic operations

Page 4-29

 mov w8, #0x5d //Time to go.

 svc #0

Note there is no provision made for recording the remainder, this needs to be calculated

separately.

In the second part of Listing 4-26 where x4 contains 1999, the remainder is calculated by

subtracting the product of x3 and x5 from x4:

• x3 = 499

• x4 = 1999

• x5 = 4

o Remainder = 1999 – (499*4) = 1999 – 1996 = 3.

Shift and Rotate

Some of the listings have used shift/rotate instruction already but this section will formally

introduce them. The instructions and their descriptions are shown in Table 4-3

Table 4-3 Rotate and shift instructions

Operation Example Description

Logical Shift Left lsl rd, rn, #shift Shift bits left by specified amount, zeros move in

from the right, can be immediate or register

Logical Shift Right lsr Rd, Rn, #shift Shift bits right by specified amount, zeros move in

from the left, can be immediate or register

Arithmetic Shift

Right

asr rd, rn, #shift Shift bits right by specified amount, maintaining

the sign bit. Use for signed integers, can be

immediate or register.

Rotate Right ror rd, rn, rm Rotate right in that the bit shifted from bit0 moves

into the most significant bit, can be immediate or

register

Examples are shown in Listing 4-27.

Listing 4-27 Examples of Shift and Rotate instructions

// listing4-27

.text

.global _start

_start:

Arithmetic and logic operations

Page 4-30

mov w0, #0xaaaa

mov w1, #0x33333333

mov w2, #0x44444444

mov w3, #0x55555555

mov w4, #0x66666666

lsl w5, w1, #3 // w5 = 0x99999998

lsl w6, w1, w0 // w6 = 0xcccccc00

asr w7, w2, #3 // w7 = 0x88888888

ror w3, w3, #5 // w3 = 0xaaaaaaaa

mov w8, #93 //Time to go

svc 0

Disassembly shows the non-aliased form of the instructions.

rotate: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: 52955540 movz w0, #0xaaaa

 40007c: 3200e7e1 orr w1, wzr, #0x33333333

 400080: 3202e3e2 orr w2, wzr, #0x44444444

 400084: 3200f3e3 orr w3, wzr, #0x55555555

 400088: 3203e7e4 orr w4, wzr, #0x66666666

 40008c: 531d7025 ubfm w5, w1, #29, #28

 400090: 1ac02026 lslv w6, w1, w0

 400094: 13037c47 sbfm w7, w2, #3, #31

 400098: 13831463 extr w3, w3, w3, #5

 40009c: 52800ba8 movz w8, #0x5d

 4000a0: d4000001 svc #0x0

The instruction results are straightforward except for lsl w6, w1, w0. Here register w0, which

holds the value 0xaaaa, is divided by the data size which in this case is 32. The remainder of

the division is used to specify the rotation. The remainder is 0xa, so the rotation will be applied

10 times.

Arithmetic and logic operations

Page 4-31

Rotate by 10 positions to get 0xcccccc00

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

c

c

c

c

c

c

0

0

Arithmetic and logic operations

Page 4-32

Logic Operations – AND/OR/EOR

Truth tables for AND and OR operations are shown in Table 1-11 and Table 1-12.

• To test whether a bit is a one or a zero, the bit can be AND’ed with a binary one. If the

result of the AND is a one then the tested bit is also one, since this is the only AND

operation that will generate a binary one, otherwise it has the value zero.

• Similarly, if a bit is OR’ed with a zero and the result is a zero then the tested bit is also

zero since the OR operation only produces a zero when both bits are zero.

To summarize:

• 1 AND X = 1 iff20 X=1

• 0 OR X = 0 iff X=0

Multiple bits can be cleared or set by the use of a bitmask.

The format of the Bitwise AND (immediate) instruction is shown in Figure 4-2. The immediate

data is 12 bits in size, limiting the size of the bitmask for OR/AND instructions. There is though,

a form of immediate termed logical immediate that provides for larger bitmask sizes. The

approach is to provide a pattern with some compromises on the data that can be represented.

Figure 4-2 Format of AND (immediate) instruction

The ARM architecture reference manual21 states:

20 Iff – if and only if!

21 Text may be version dependent.

Arithmetic and logic operations

Page 4-33

“Logical (immediate)

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern

or a 64-bit pattern viewed as a vector of identical elements of size e = 2, 4, 8, 16, 32 or, 64 bits.

Each element contains the same sub-pattern, that is a single run of 1 to (e - 1) nonzero bits

from bit 0 followed by zero bits, then rotated by 0 to (e - 1) bits. This mechanism can generate

5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.”

 This means that there are repeated patterns of bits with varying sizes. The elements can be

made up of 2 bits, 4 bits, 8 bits, 16 bits, 32 bits or 64 bits.

 The two-bit element contains 32 x 1 bit sub-patterns which looks like:

01

There is only one possible (base) pattern since the rule states that the sub pattern is a single

run of 1 to e-1 nonzero bits, and since size element e is 2, then the run is 1 to (2-1) = 1. The

pattern starts with a 1 at the bit zero position followed by zero bits. The pattern can be right

rotated, however giving a second sub-pattern as shown:

1 010

Other patterns give a wider range, for example when e = size 4, there can be 1 to 3 ones (1 to e-

1) in the sub pattern. A subset of patterns is shown in Figure 4-3.

Another way of using large bitmasks is to use a series of movk instructions into a register and

then use this register (with an optional shift) to perform the logic operation. This is often

preferred than the use of logical immediate instructions. Examples of logical operations using

registers are covered later in this chapter.

Arithmetic and logic operations

Page 4-34

Figure 4-3 Examples of Logical immediate values

Note that the patterns are identical as stated in the ARM documents, therefore a pattern such

as 0x0fff0fff0fff0fff0 would be valid (recurring consecutive ones) but 0xfff0fff0fff00fff would

not.

The actual encoding for the bitwise AND instruction is shown in Table 4-4 below.

The logical immediate is made up of the N, immr and imms fields.

• The single bit N field is set to 1 if the element size is 64 bits.

• The 6-bit immr field specifies the rotation amount and since there are 6 bits then 0-63

rotations are possible.

Arithmetic and logic operations

Page 4-35

• The 6-bit imms field (in conjunction with the N bit is used to specify the element size

and the sub patterns. Table 4-4shows examples of the patterns generated by the imms

field bits.

Table 4-4 imms field examples

N Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Sub pattern

0 1 1 1 1 0 0 01 01 01 . . .

32-bit 2-bit element size One “1”

0 1 1 1 0 0 0 0001 0001 . . .

32-bit 4-bit element size One “1”

0 1 1 1 0 0 1 0011 0011 . . .

32-bit 4-bit element size Two “1s”

0 1 1 1 0 1 0 0111 0111 . . .

 4-bit element size Three “1s”

0 1 1 0 0 0 0 00000001 00000001 . . .

32-bit 8-bit element size One “1”

0 1 1 0 0 0 1 00000011 00000011 . . .

32-bit 8-bit element size Two “1s”

0 1 1 0 0 1 0 00000111 00000111 . . .

32-bit 8-bit element size Three “1s”

0 1 1 0 0 1 1 00001111 00001111 . . .

32-bit 8-bit element size Four “1s”

0 1 0 1 0 0 1 0000001111111111 . . .

32-bit 16-bit element size Ten “1s”

0 0 0 1 1 1 1

 32-bit element size sixteen “1’s” 00000000000000001111111111111111 . . .

1 0 0 0 0 0 1

 64-bit element size two “1s” 00011

Arithmetic and logic operations

Page 4-36

The relevant bits for the element size are shown in Table 4-5. The bits that do not correspond to

the element sizes are used for positioning the 1’s values. Listing 4-29 shows the results of

using the values shown in Figure 4-3.
Table 4-5 Interpreting the imms field bits

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Element size

1 1 1 1 0 - 2

1 1 1 0 - - 4

1 1 0 - - - 8

1 0 - - - - 16

0 - - - - - 32

- - - - - - 6422

The listing below shows the orr instruction in operation

Listing 4-28 Use of the orr and ORN instructions

//listing 4-28

.text

.global _start

_start:

// orr (Bitwise OR immediate)

mov w0, #0xaaaaaaaa

orr w1, w0, #0x55555555 // w1=0xffffffff

orr w1, w0, #0xaaaaaaaa // w1=0xaaaaaaaa

orr w1, w0, #0x0000ffff // w1=0xaaaaffff

orr w1, w0, #0xffff0000 // w1=0xffffaaaa

//orr (Bitwise OR shifted register)

mov w0,#3

orr w1, w0, w0, lsl #6 // w1 = 0xc3 = 0b11000011

22 In this case N = 1

Arithmetic and logic operations

Page 4-37

mov w0, #9

orr w1, w0, w0, lsl #8 // w1 = 0x909 = 0b100100001001

//ORN (Bitwise OR NOT shifted register)

mov x0, #0x1122

ORN x1, x0, x0, lsl #8 //x1 = 0xffffffffffeeddff, note 0x1122 gets inverted

mov w8, #93

svc 0

Note the disassembly aliases –

Orr wo, wzr, #aaaaaaaa = mov w0, #0xaaaaaaaa

. . .

$ objdump -d -M no-aliases orr

orr: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: 3201f3e0 orr w0, wzr, #0xaaaaaaaa

 40007c: 3200f001 orr w1, w0, #0x55555555

 400080: 3201f001 orr w1, w0, #0xaaaaaaaa

 400084: 32003c01 orr w1, w0, #0xffff

 400088: 32103c01 orr w1, w0, #0xffff0000

 40008c: 52800060 movz w0, #0x3

 400090: 2a001801 orr w1, w0, w0, lsl #6

 400094: 52800120 movz w0, #0x9

 400098: 2a002001 orr w1, w0, w0, lsl #8

 40009c: d2822440 movz x0, #0x1122

 4000a0: aa202001 orn x1, x0, x0, lsl #8

 4000a4: 52800ba8 movz w8, #0x5d

 4000a8: d4000001 svc #0x0

Listing 4-29 Using logical immediates with and/orr instructions

$ //listing4-29

.text

.global _start

_start:

Arithmetic and logic operations

Page 4-38

// and (Bitwise and immediate)

mov x4, #0xffff

movk x4, #0x0000, lsl 16

movk x4, #0x0000, lsl 32

movk x4, #0xfff, lsl 48

// Use objdump to see encoding for logical immediates

// Format is N, immr, imms. If N = 1 then pattern is 64 bit

// If N = 0 then pattern is 32 bit repeating n times, where n is specified in the

imms field

// imms = 11110X then 2 bit pattern recurring 32 times, one "1",

// imms = 1110xx then 4 bit pattern recurring 16 times, one thru three "1s"

// imms = 110xxx then 8 bit pattern recurring 8 times, one thru seven "1s"

// imms = 10xxxx then 16 bit pattern recurring 4 times, one thru 15 "1s"

// imms - 0xxxxx then 32 bit pattern recurring 2 times, one thru 31 "1s"

// x field = # of ones, where the # of ones is one less than the x value,00 = 1

"1", 01 = 2 "1s", 10 = 3 ", . . .

// so for imms = 111001 pattern is 4 bits and the # of ones is 2 = 0011 0011 0011

. . .

// for imms = 110110 pattern is 8 bits and # of ones is 7 = 01111111 01111111

01111111 . . .

// immr is the rotate field where 000000 = no rotation and 111111 =sixty-three

rotations

// Note for imms = 11110x then 1 rotation is possible

// Note for imms = 110xxx then 1 thru 7 rotations are possible

// Examples follow

and x3, x4, #0x5555555555555555 // r3 = 555000000005555

// Pattern is 2 bits wide imms, = 111100, one sequential one, immr = 000000, no

rotate

and x3, x4, #0xaaaaaaaaaaaaaaaa, // r3 = 0xaaa00000000aaaa

// Pattern is 2 bits wide imms, = 111100, one sequential one, immr = 000001, one

rotate

and x3, x4, #0x1111111111111111 // r3 = 0x1110000000001111

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000000, no

rotates

and x3, x4, #0x3333333333333333 // r3 = 0x3330000000003333

Arithmetic and logic operations

Page 4-39

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 00000, no

rotate

and x3, x4, #0x7777777777777777 // r3 = 0x7770000000007777

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000000, no

rotate

and x3, x4, #0x8888888888888888 // r3 = 0x8880000000008888

// Pattern is 4 bits wide imms = 111000, one sequential one, immr = 000001, one

rotate

and x3, x4, #0x9999999999999999 // r3 = 0x9990000000009999

// Pattern is 4 bits wide imms = 111001, two sequential ones, immr = 000001, one

rotate

and x3, x4, #0xbbbbbbbbbbbbbbbb // r3 = 0xbbb000000000bbbb

// Pattern is 4 bits wide,imms = 111010, three sequential ones, immr = 000001, one

rotate

orr x3, x4, #0x4444444444444444 // r3 = 0x4fff44444444ffff

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000010, two

rotates

orr x3, x4, #0xcccccccccccccccc // r3 = 0xcfffccccccccffff

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 000010, two

rotates

orr x3, x4, #0xdddddddddddddddd // r3 = 0xdfffddddddddffff

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000010,

two rotates

orr x3, x4, #0x2222222222222222 // r3 = 0x2fff22222222ffff

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000011, three

rotates

orr x3, x4, #0x6666666666666666 // r3 = 0x6fff66666666ffff

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 000111,

three rotates

orr x3, x4, #0xeeeeeeeeeeeeeeee // r3 = 0xefffeeeeeeeeffff

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000111,

three rotates

orr x3, x4, #0x0101010101010101 // r3 = 0xfff01010101ffff

// Pattern is 8 bits wide, imms = 110000, one sequential one, immr = 000000, no

rotate

orr x3, x4, #0b01100110011001100110011001100110011001100110011001100110011001100

//r3 = 0xcfffccccccccffff

Arithmetic and logic operations

Page 4-40

//Same as orr x3,x4, #0x44444444444444 but expressed in binary (often easier when

working with bitmasks)

and x3, x4, #0x0000000000000001 // r3 = 0x1

// N=1, One 64 -bit pattern of one one, imms = 000000, immr = 000000, no rotation

and x3, x4, #0x1000000000000000 // r3 = 0x0

// N=1, One 64-bit pattern of one one, imms = 000000, immr = 000100, four

rotations (0001 - 0001 . . .)

mov w8, #93 //Time to go

svc 0

The imms and immr fields can be shown from the disassembly :

$ objdump -d -M no-aliases examples

examples: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d29fffe4 movz x4, #0xffff

 40007c: f2a00004 movk x4, #0x0, lsl #16

 400080: f2c00004 movk x4, #0x0, lsl #32

 400084: f2e1ffe4 movk x4, #0xfff, lsl #48

 400088: 9200f083 and x3, x4, #0x5555555555555555

 40008c: 9201f083 and x3, x4, #0xaaaaaaaaaaaaaaaa

 400090: 9200e083 and x3, x4, #0x1111111111111111

 400094: 9200e483 and x3, x4, #0x3333333333333333

 400098: 9200e883 and x3, x4, #0x7777777777777777

 40009c: 9201e083 and x3, x4, #0x8888888888888888

 4000a0: 9201e483 and x3, x4, #0x9999999999999999

 4000a4: 9201e883 and x3, x4, #0xbbbbbbbbbbbbbbbb

 4000a8: b202e083 orr x3, x4, #0x4444444444444444

 4000ac: b202e483 orr x3, x4, #0xcccccccccccccccc

 4000b0: b202e883 orr x3, x4, #0xdddddddddddddddd

 4000b4: b203e083 orr x3, x4, #0x2222222222222222

 4000b8: b203e483 orr x3, x4, #0x6666666666666666

 4000bc: b203e883 orr x3, x4, #0xeeeeeeeeeeeeeeee

 4000c0: b200c083 orr x3, x4, #0x101010101010101

Arithmetic and logic operations

Page 4-41

 4000c4: b202e483 orr x3, x4, #0xcccccccccccccccc

 4000c8: 92400083 and x3, x4, #0x1

 4000cc: 92440083 and x3, x4, #0x1000000000000000

 4000d0: 52800ba8 movz w8, #0x5d

 4000d4: d4000001 svc #0x0

Exercise – Try using a logical immediate with a mov instruction.

and shifted register instruction

The and shifted instruction and’s two registers together. Placing the result in the destination

register. The second register can also have an optional shift applied to it prior to the AND

operation. The format is:

and <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

ANDS instructions

The ands instruction is used to set flags.

orr shifted register instruction

The orr shifted instruction OR’s two registers together. Placing the result in the destination

register. The second register can also have an optional shift applied to it prior to the orr

operation. The format is:

orr <Xd>, <Xn>, <Xm>, <shift> #<amount>

 ORN bitwise shifted register

The orn bitwise is similar to the and and orr bitwise shifted register instructions, except that it

inverts the bits in the second register prior to applying the ORN instruction

EOR instructions

Exclusive or instructions can be used as bitwise immediate or in shifted register forms.

Listing 4-30 shows more logical instruction examples.

Listing 4-30 Example of logical instruction with shifted register operands

//listing4-30

.text

.global _start

_start:

// and (Bitwise and immediate)

mov w4, #0xcccccccc

https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XdOrXZR__6
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XnOrXZR__12
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XmOrXZR__4
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#shift_option__3
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#amount__7
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XdOrXZR__6
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XnOrXZR__12
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XmOrXZR__4
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#shift_option__3
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#amount__7

Arithmetic and logic operations

Page 4-42

mov w5, #0x55555555

// Examples follow

and w3, w4, w5 // w3 = 0x44444444

orr w3, w4, w5 // w3 = 0xdddddddd

and w3, w4, w5, lsl 4 // w3 = 0x44444440

orr w3, w4, w5, lsr 2 // w3 = 0xdddddddd

orn w3, w4, w5, asr 1 // w3 = dddddddddd

eor w3, w4, w5, ror 6 // w3 = 0x99999999

mov w8, #93 //Time to go

svc 0

BIC and BFI instructions

Bitwise bit clear BIC can clear bits by executing the AND instruction with the inverse of the

contents of an optionally shifted register. The format is:

BIC Xd, Xn, Xm, shift type amount

The bitfield insert (BFI) instruction copies a set of bits (from the least significant positions)

specified in the width field in the source register to a bit position (specified in the lsb field) in

the target register. BFI is an alias for BFM (bitfield move).

Examples are shown in Listing 4-31.

Listing 4-31 BIC and BFI instructions

//listing4-31

// BIC instruction

mov x3, #0x5555

mov x4, #0x6666666666666666

bic x5, x3, x4, lsl 3 // x5 = 0x4445

bfi x5, x4, 6,5 // x5 = 0x4185

mov w8, #93 //Time to go

svc 0

The instruction format and steps are shown in Figure 4-3.

The disassembly shows –

objdump -d -M no-aliases bic

bic: file format elf64-littleaarch64

Arithmetic and logic operations

Page 4-43

Disassembly of section .text:

0000000000400078 <_start>:

 400078: d28aaaa3 movz x3, #0x5555

 40007c: b203e7e4 orr x4, xzr, #0x6666666666666666

 400080: 8a240c65 bic x5, x3, x4, lsl #3

 400084: b37a1086 bfm x6, x4, #58, #4

 400088: 52800ba8 movz w8, #0x5d

 40008c: d4000001 svc #0x0

Arithmetic and logic operations

Page 4-44

Summary of chapter 4

• Arithmetic operations

o Add, Subtract, Multiply and Divide

• Logical Operations

o Bitwise operators

• Shift and Rotate instructions

• Logical Immediate instructions

• Condition flags

Arithmetic and logic operations

Page 4-45

Exercises for chapter4

1. Describe the difference between the add and ADDs instruction?

2. After executing the following code what value ends up in register x6

mov x4, #1024 //This moves the number 1024 to reg x4

mov x5,#64 // Move 64 into reg x5

add x6, x4, x5, LSL #6

3. What is the value in w3 after the code below has been executed.

// and (Bitwise and immediate)

mov w4, #0xcccccccc

mov w5, #0x55555555

and w3, w4, w5

4. Describe two ways to place the immediate value 0xbbbbbbbb into register X6

Loops, Branches and Decisions

Page 5-1

Chapter 5. Loops, Branches and Conditions
This chapter will show how to use iteration and decision making with ARM64 assembly code.

The next listing shows how to compare two numbers and will print out an appropriate message.

Listing 5-1 Simple comparison and branch example

//listing5-1

// This example shows how basic comparison and branch instructions work

.text

.global _start

_start:

 mov x4, #0X8000 // Load up reg x4

 mov X5, #0x4000 // Now load reg x5

 cmp x4, x5

 bgt printlower

 ldr x1, =lower // Point x1 to lower string location

 mov x2, #22 // Length of lower string

 B printit

printlower:

 ldr x1, =upper // Point x1 to upper string location

 mov x2, #23 // Length of upper string

printit:

 mov x0, #1

 mov w8, #64 // Invoke the Write system call

 svc #0

 mov w8, #0x5d // Time to go.

 svc #0

.data

 lower: .ascii "First number is lower\n"

.align

 upper: .ascii "First number is higher\n".

Output: - First number is higher

Loops, Branches and Decisions

Page 5-2

This snippet compares two numbers held in register x4 and x5. It does a comparison and if the

second number is lower than the first number then it branches to the code located at the label

printlower. The instruction bgt is a conditional branch. If the number is not greater, then the

write parameters are set up (string location and its length) and the code performs an

unconditional branch to the label printit, skipping over the printlower code. Regardless of the

comparison the code at printit is common and its function is to invoke the Write System call

and then exit.

Disassembling the code is instructive:

objdump -d -M no-aliases cmp1

cmp1: file format elf64-littleaarch64

Disassembly of section .text:

00000000004000b0 <_start>:

 4000b0: d2900004 movz x4, #0x8000

 4000b4: d2880005 movz x5, #0x4000

 4000b8: eb05009f subs xzr, x4, x5

 4000bc: 5400008c b.gt 4000cc <printlower>

 4000c0: 58000141 ldr x1, 4000e8 <printit+0x14>

 4000c4: d28002c2 movz x2, #0x16

 4000c8: 14000003 b 4000d4 <printit>

00000000004000cc <printlower>:

 4000cc: 58000121 ldr x1, 4000f0 <printit+0x1c>

 4000d0: d28002e2 movz x2, #0x17

00000000004000d4 <printit>:

 4000d4: d2800020 movz x0, #0x1

 4000d8: 52800808 movz w8, #0x40

 4000dc: d4000001 svc #0x0

 4000e0: 52800ba8 movz w8, #0x5d

 4000e4: d4000001 svc #0x0

 4000e8: 004100f8 .word 0x004100f8

 4000ec: 00000000 .word 0x00000000

 4000f0: 0041010e .word 0x0041010e

 4000f4: 00000000 .word 0x00000000./cmp1

Loops, Branches and Decisions

Page 5-3

Note that the cmp instruction is an alias of SUBS which performs a subtraction;

using the xzr register to discard the result.

Adding in the command MRS X9, NZCV shows which flags are set, in the case where the value of

X4 is higher than the value in x5 then the Carry bit is set (X9=0x20000000), in the second case

where the value of X4 is lower than the value of x5 then the Negative bit is set (x9=0x80201000).

Case1 (x4 > x5)

Example x4 = 0X8000, x5 = 0x4000 Negative bit is clear, Zero bit is clear, Carry bit is set,

Overflow bit is clear

Case2 (x4 < x5)

Example x4=0X8000, x5=0X9000,Negative bit is set, Zero bit is clear, Carry bit is clear, Overflow

bit is clear.

For conditional branches the format is Branch on condition to label (B.condition label) so in

Listing 5-1 the command bgt printlower was used with GT being the condition <Greater

Than> and <printlower> being the label to branch to.

Table 5-1 shows the applicable conditional branches as determined by flag settings.

Loops, Branches and Decisions

Page 5-4

Table 5-1 Conditional branches

Command Condition Flags

B.CS/B.HS Unsigned greater than or equal

to

Carry Set

B.CC/ B.LO Unsigned less than (lower) Carry Clear

B.MI Negative (Minus) Negative Set

B.PL Plus (Positive, note zero is

positive)

Negative Clear

B.EQ Equal Zero set

B.NE Not equal Zero clear

B.VS Overflow set Overflow set

B.VC No Overflow Overflow clear

B.HI Higher Carry Set, Zero clear

B.LS Lower or the same Carry clear, Zero set

B.GE Signed greater than or equal to Negative and Overflow the same

B.LT Signed less than Negative and Overflow different

B.GT Signed greater than Zero clear, Negative and Overflow the

same

B.LE Signed less than or equal to Zero set, Negative and Overflow

different

From Table 5-1 the listing has been adapted to include Branch if equal (B.EQ)

Listing 5-2 Using B.EQ condition

//listing5-2

// This example shows how basic comparison and branch instructions work

.text

.global _start

_start:

 mov x4, #0X8000 // Load up reg x4

 mov x5, #0x8000 // Now load reg x5

 cmp x4, x5

 mrs X9,NZCV // Get Flags

 b.mi printlower

 b.eq printthesame // Position B.EQ before B.PL since zero is considered

positive

Loops, Branches and Decisions

Page 5-5

 b.pl printhigher

printlower:

 ldr x1, =lower // Point x1 to lower string location

 mov x2, #22 // Length of lower string

 B printit

printhigher:

 ldr x1, =higher // Point x1 to higher string location

 mov x2, #23 // Length of higher string

 B.AL printit

printthesame:

 ldr x1, =same // Point to the same string location

 mov x2, #22

printit:

 mov x0, #1

 mov w8, #64 // Invoke the Write system call

 svc #0

 mov w8, #0x5d // Time to go.

 svc #0

.data

 lower: .ascii "First number is lower\n"

 higher: .ascii "First number is higher\n"

 same: .ascii "The numbers are equal\n"

Nested Loops

Programming often involves iterative algorithms where multiple loops are employed. The next

listing shows two loops (inner and outer) and outputs the loop value to the screen as they are

being calculated.

Listing 5-3 Nested For loop

// listing 5-3

/* This example shows a Nested For Loop in action

Both loops start with an index of 1 and count up to 3

- w3 holds the index value for the inner loop

- w4 holds the index value for the outer loop

Loops, Branches and Decisions

Page 5-6

- w9 holds the termination loop value

- w5 holds the ASCII equivalent of the current index value

For writing -

w0 = 1 <stdout>

w1 = Character location in memory

w2 = Character count for output to stdout

*/

.text

.global _start

_start:

 mov w9, #4 //ending value for loop

 mov w7, #1 // For loop iteration value

 mov w0, #1 //stdout

 ldr w1, =printheader

 mov w2, #14 // Character count of printheader string

 mov w8, #64 // Write out header text

 svc #0

 ldr w1, =printvalues // Now that the header has been printed get ready

to print values

 mov w3, #0x1 // Load up reg w3 with starting inner loop value

 mov w4, #0x1 // Load up reg w4 with starting outer loop value

incrementinner:

 add w5, w3, #48 // Convert inner index to ascii

 add w6, w4, #48 // Convert outer index to ascii

 mov w0, #1 // stdout, don't assume x0 is preserved after svc call

 strb w5, [x1] // Put character into string space

 mov w2, #2 // One character at a time

 mov w8, #64 // Write out inner index

 svc #0

 mov w0, #1

 mov w2, #1

 mov w5, #9 // Tab for neatness

 strb w5, [x1] //Load up a tab character

Loops, Branches and Decisions

Page 5-7

 mov w8, #64 // Write out the Tab

 svc #0

 add w5, w4, #48 // Convert outer index to ASCII

 mov w0, #1

 mov w2, #1

 strb w5, [x1] // Put outer index ascii value into string space

 mov w8, #64

 svc #0

 mov w5, #10

 strb w5, [x1] // Newline character

 mov w8, #64

 svc #0

 add w3, w7, w3 // incrementinner loop

 cmp w3, w9 // End of inner loop index reached?

 B.EQ incrementouter // Time to increment adjacent for loop

 B incrementinner

incrementouter:

 mov w3, #1 // Set innerloop index back to starting value

 add w4, w7, w4 // Increment adjacent loop index

 cmp w4, w9 // End of outer loop finished?

 b.ne incrementinner

exit:

 mov w0, #1

 mov w10, #10

 mov w11, #13

 strb w10, [x1]

 mov w2, #1

 mov w8, #64

 svc 0

 mov w0, #1

 strb w11, [x1]

 mov w2, #1

Loops, Branches and Decisions

Page 5-8

 mov w8, #64 // Invoke the Write system call

 svc #0

 mov w8, #0x5d // Time to go.

 svc #0

.data

 printheader: .ascii "\nInner Outer\n"

 printvalues: .space 8

Output:

Inner Outer

1 1

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3

Two data regions have been defined – printheader which is used to print out a heading and

then printvalues which is an area of memory that reserves empty space to hold the calculated

loop values. Prior to printing out the values the numbers are converted to ASCII text by adding

the value 4823, placing the result in w5.

Each character is stored into the empty printvalues space by the instruction strb w5, [x1,#024].

This instruction stores the value held in w5 to the memory location pointed to by x1 with an

23 This because the ASCII numeric characters are consecutive in value and the ASCII character

for zero is 48 (0x30).

24 Note When the offset is zero, then GDB will assume this if no immediate value is given, hence

the listing omits #0 in the strb commands.

Loops, Branches and Decisions

Page 5-9

offset of 0. The addressing mode calculates a register plus an offset. Square brackets signify

indirection. This program stored each character at the same memory location, destroying the

previous contents. The Pre-index addressing mode preserves the data that was generated by

incrementing the memory location, thereby storing data in consecutive locations. The format

of the instruction is highlighted in Listing 5-4. The instruction stores the byte held in register w5

at the memory location pointed to by register x1.

This is different from other instructions, in that the first register is the source.

Listing 5-4 Nested loops with pre-index addressing mode

//listing 5-4

/* This example shows a Nested For Loop in action

Both loops start with an index of 1 and count up to 3

- w3 holds the index value for the inner loop

- w4 holds the index value for the outer loop

- w9 holds the termination loop value

- w5 holds the ASCII equivalent of the current index value

For writing -

w0 = 1 <stdout>

w1 = Character location in memory

w2 = Character count for output to stdout

*/

.text

.global _start

_start:

 mov W9, #4 //ending value for loop

 mov w7, #1 // For loop iteration value

 mov w0, #1 //stdout

 ldr w1, =printheader

 mov w2, #14 // Character count of printheader string

 mov w8, #64 // Write out header text

 svc #0

 ldr w1, =printvalues // Now that the header has been printed get ready to

print values

 mov w3, #0x1 // Load up reg w3 with starting inner loop value

Loops, Branches and Decisions

Page 5-10

 mov w4, #0x1 // Load up reg w4 with starting outer loop value

incrementinner:

 add w5, w3, #48 // Convert inner index to ascii

 add w6, w4, #48 // Convert outer index to ascii

 mov w0, #1 // stdout, don't assume x0 is preserved after svc call

 strb w5, [x1,#1]! // Put character into string space

 mov w2, #2 // One character at a time

 mov w8, #64 // Write out inner index

 svc #0

 mov w0, #1

 mov w2, #1

 mov w5, #9 // Tab for neatness

 strb w5, [x1,#1]! //Load up a tab character

 mov w8, #64 // Write out the Tab

 svc #0

 add w5, w4, #48 // Convert outer index to ASCII

 mov w0, #1

 mov w2, #1

 strb w5, [x1,#1]! // Put outer index ascii value into string space

 mov w8, #64

 svc #0

 mov w5, #10

 strb w5, [x1,#1]! // Newline character

 mov w8, #64

 svc #0

 add w3, w7, w3 // incrementinner loop

 cmp w3, w9 // End of inner loop index reached?

 B.EQ incrementouter // Time to increment adjacent for loop

 B incrementinner

incrementouter:

 mov w3, #1 // Set innerloop index back to starting value

 add w4, w7, w4 // Increment adjacent loop index

Loops, Branches and Decisions

Page 5-11

 cmp w4, w9 // End of outer loop finished?

 b.ne incrementinner

exit:

 mov w0, #1

 mov w10, #10

 mov w11, #13

 strb w10, [x1,#1]!

 mov w2, #1

 mov w8, #64

 svc 0

 mov w0, #1

 strb w11, [x1,#1]!

 mov w2, #1

 mov w8, #64 // Invoke the Write system call

 svc #0

 mov w8, #0x5d // Time to go.

 svc #0

.data

 printheader: .ascii "\nInner Outer\n"

 printvalues: .space 48

At Program completion -

memory address hex char

0x4101a1 00 31 09 31 0a 32 09 31 0a 33 09 31 0a 31 09 32

 .1.1.2.1.3.1.1.2

0x4101b1 0a 32 09 32 0a 33 09 32 0a 31 09 33 0a 32 09 33

 .2.2.3.2.1.3.2.3

R

Registers

name value (hex)

x0 0x1

x1 0x4101c4

x2 0x1

x3 0x3

Loops, Branches and Decisions

Page 5-12

x4 0x3

x5 0xa

x6 0x33

x7 0x1

x8 0x40

x9 0x4

x10 0x0

. . .

x30 0x0

sp 0x7ffffffff080

pc 0x400128

cpsr 0x80201000

Output

Inner Outer

1 1

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3

Loops, Branches and Decisions

Page 5-13

Summary of chapter 5

• Compare instructions

• Conditional branching

• Nested loops

Loops, Branches and Decisions

Page 5-14

Exercises for chapter5

1. Describe the difference between a conditional and unconditional branch

2. Which instruction is cmp an alias for?

3. How does the flag condition signify that the signed less than condition is true?

4. Modify listing 5-2 to accept user input (hint think syscalls)

Macros and Functions

Page 6-1

Chapter 6. The Stack, Macros and Functions

Macros and Functions

This chapter introduces areas that are used by real-world (and other coders) to better manage

and clarify their programs. Now that the listings are getting longer, it makes sense to introduce

the concept of macros and functions. The concepts are similar but the way that the programs

are assembled leads to tradeoffs behind performance and code size.

Listing 6-1 shows a print macro which requires two parameters – the location of the string to be

printed and its location. Output goes to stdout. The macro is called twice, each time with

different parameters. This basic example does not save much in typing, but the benefit is

significant when larger macros are used. The macro code is enclosed between the assembler

directives .macro and .endm. Macros are used to repeat frequently used instructions using

different parameters

Listing 6-1 A simple macro

* This shows an example of a macro

The macro prints to stdout, input parameters are the location of the string and

its character count

It is called twice, to print both strings*/

.text

.global _start

 _start:

 mov w2, #39

 .macro print location, length // Macro expects string location

and its length

 mov w0, #1 //stdout

 ldr w1, =\location //Pass location

 mov w2, \length //Pass length

 mov w8, #64

 svc #0

 .endm

 print string1, w2 // Call macro with parameters string1 and 39!

 mov w2, 16

 print string2, w2 // Call macro with parameters string2 and 18

Macros and Functions

Page 6-2

 mov w8, #93 // Exit the program

 svc 0

.data

 string1: .ascii "\nThis string was printed using a macro\n"

 string2: .ascii "and so was this\n"

Output –

This string was printed using a macro

and so was this

Disassembly shows:

$ objdump -d -M no-aliases macro2

macro2: file format elf64-littleaarch64

Disassembly of section .text:

00000000004000b0 <_start>:

 4000b0: 528004e2 movz w2, #0x27

 4000b4: 52800020 movz w0, #0x1

 4000b8: 18000181 ldr w1, 4000e8 <_start+0x38>

 4000bc: 2a0203e2 orr w2, wzr, w2

 4000c0: 52800808 movz w8, #0x40

 4000c4: d4000001 svc #0x0

 4000c8: 52800202 movz w2, #0x10

ca 4000cc: 52800020 movz w0, #0x1

 4000d0: 180000e1 ldr w1, 4000ec <_start+0x3c>

 4000d4: 2a0203e2 orr w2, wzr, w2

 4000d8: 52800808 movz w8, #0x40

 4000dc: d4000001 svc #0x0

 4000e0: 52800ba8 movz w8, #0x5d

 4000e4: d4000001 svc #0x0

 4000e8: 004100f0 .word 0x004100f0

 4000ec: 00410117 .word 0x00410117

The highlighted sections show the macro, which has been written inline twice. In line code can

be fast but will generate larger code when called extensively.

Macros and Functions

Page 6-3

It is also possible to break out the macro into a separate file which can be called using the

.include directive.

Listing 6-2 Separate macro file

$ cat printmacro.s

 .macro print location, length // Macro expects string location

and its length

 mov w0, #1 //stdout

 ldr w1, =\location //Pass location

 mov w2, \length //Pass length

 mov w8, #64

 svc #0

 .endm

Listing 6-3 Calling a macro using the include directive.

$ cat callmacro.s

/* This shows an example of a macro call

The macro prints to stdout, input parameters are the location of the string and

its character count

It is called twice, to print both strings*/

.text

.include "printmacro.s"

.global _start

_start:

 mov w2, #39

 print string1, w2 // Call macro with parameters string1 and 39!

 mov w2, 16

 print string2, w2 // Call macro with parameters string2 and 18

 mov w8, #93 // Exit the program

 svc 0

 .data

 string1: .ascii "\nThis string was printed using a macro\n"

 string2: .ascii "and so was this\n"

Macros and Functions

Page 6-4

The Stack

Functions will make use of the stack. The stack is a data structure which stores data in a

structured manner. As an example, a register’s contents can be Pushed on to the stack and

can be restored by Popping the data from the stack back to the register again. Push and Pop

operations are performed in a Last in First out (LIFO) manner, in that if multiple registers were

pushed on to the stack the last register pushed would be the first one restored. The stack is a

location in memory.

 A stack pointer will show where in memory the top of the stack is situated. When data is

pushed the stack pointer will be decremented to a lower memory location and when data is

popped, the stack pointer will be incremented. A push to the stack is accomplished using the

str instruction and a pop is accomplished using the ldr instruction. Both these instructions

are familiar, the only difference being that the stack pointer is used as the operand rather than

a normal register. With ARM64, the stack grows downwards in memory and must be 16-byte

aligned.

• The ARM64 documentation states that

o Formally, sp must lie in the range stack_limit < sp <= stack_base, though the

values of stack_limit and stack_base are often inaccessible.

• The memory below sp (but above stack_limit) must not be accessed by your code.

Listing 6-4 shows examples of push and pop operations.

Listing 6-4 Push and Pop operations using str and ldr

 .text

 .global _start

 _start:

 //This program shows how to interact with the stack

 mov x4, #0xffff

 movk x4, #0x0000, lsl 16

 movk x4, #0x0000, lsl 32

 movk x4, #0xfff, lsl 48

 mov x3, sp // Move stack to register x3. SP at 0x7fffffffef20

 str x4, [SP, #-16]! // SP now at 0x7fffffffef10 (lower memory location)

 mov x4, #0 //Clobber X4

 ldr x4, [sp], #16 // Restore x4, SP now back to 0x7fffffffe20

Macros and Functions

Page 6-5

 stp x3,x4, [sp, #-16]! // Store register x3 and x4 on to the stack SP =

0x7fffffffef10

 mov x3, xzr // Clobber x3

 mov x4, xzr // Clobber x4

 ldp x3, x4, [sp], 16 // Restore both, SP = 0x7fffffffe20

 mov w8, #93 //Time to go

 svc 0

The stack could also push to higher memory addresses as shown in Error! Reference source n

ot found.. The actual implementation is architecture dependent!

Figure 6-1 Stack memory contents after stp x3, x4, [sp, #-16]! instruction

The stack supports nested operations, as shown in Listing 6-5

Listing 6-5 Nested stack operations

// listing6-5 1

.text

 .global _start

 _start:

 // This program shows nested stack operations

 mov x4, #0xffff

 movk x4, #0x0000, lsl 16

 movk x4, #0x0000, lsl 32

 movk x4, #0xfff, lsl 48

 mov x3, sp // Move stack to register x3. SP at 0x7fffffffef20

 stp x3,x4, [sp, #-16]! // Store register x3 and x4 on to the stack SP =

0x7fffffffef10

Macros and Functions

Page 6-6

 mov x3, #0x1234 // Fresh write to x3

 mov x4, #0x5678 // Fresh write to x4

 stp x3, x4, [sp, #-16]!

 mov x3, xzr // Clobber x3

 mov x4, xzr // Clobber x4

 ldp x3, x4, [sp],16 // Resore most recent value of x3 and x4

 ldp x3, x4, [sp], 16 // Restore next most recent values of x3 and x4

 mov w8, #93 //Time to go

 svc 0

Figure 6-2 Stack contents with nested operations

 Functions are used to promote coding efficiency and clarity. They are sections of code that

can be included in a program and shared with others as libraries. Over time a coder will usually

generate their own functions for use in their code. When using external functions, registers can

be saved on the stack prior to calling the function, thus ensuring that on return from the

function code everything has been restored and coding will continue from where it left off. The

Program Counter (PC) keeps track of the location in memory where the code is next to be

executed. When a portion of code calls a function, it is termed the caller. The code that was

called (the function itself) is termed the callee. When calling a function there are several tasks

that the caller must perform and similarly the callee has its own responsibilities.

The registers follow certain conventions:

• Parameters are passed via registers x0 through x725.

• Values are returned through register x0.

o Other parameters can be stored in memory using the return register to point to

the address.

25 Additional parameters can be passed using the stack. The parameters are pushed and then

popped

Macros and Functions

Page 6-7

• The x8 register (in Linux) is used for svc calls.

• Registers x19 through x28 are to be preserved for the caller.

o The callee will save these values.

• Register X29 is the frame pointer register and will be discussed later.

• Register X30 is the link register and is discussed below.

The rules are documented in the ARM Procedure Call Standard (PCS). The standard also

defines which registers are corruptible and which are not. A called function can overwrite

corruptible registers. If the function uses non-corruptible registers, then it will perform a stack

push and then a stack pop prior to returning.

Link Register

The link register (LR) is register x30 and is used to hold the address of the next instruction to be

executed after the function has been returned from. The Branch with link (BL) instruction is

used to call the function and put the returning address into the link register.

 The next program consists of a main program (main.s) which call two functions26 (cubit.s)

and dubdab.s). A set of integers ranging from 1 to 10 are passed to the cubeit function which

calculates the cube of the numbers. There are several locations in memory used for specific

purposes –

Table 6-1 Memory locations used by the listcubes program

Location Name Purpose

numberlist Holds the bye values 1 through 10

cubeslist Holds the calculated cubes held in numberlist

bcdlist Holds the list of cubes converted to BCD

Figure 6-3 shows the memory regions and associated values prior to formatting.

26 In most case functions accept inputs and return value. The listings cubeit and dubdab are

more like routines and could be implemented as macros.

Macros and Functions

Page 6-8

Figure 6-3 Memory locations for the cube program and their values

The cubeit routine is simple, it takes a value from the memory location numberlist pointed to

by register x1. It multiplies the number by itself twice, storing the value in register w0. Main will

store the returned value into cubeslist, incrementing it to the next location and the calls cubit

again until the loop count has reached zero27.

The next routine to be called is dubdab which performs the double dabble routine. Each

number has room for a units weight, a tens weight and a hundreds weight. These partitions

take up 4 bits so a total of 12 shifts are used28. The double-dabble algorithm is covered on page

1-16. The routine is responsible for storing the bcd number in the memory location bcdlist

pointed to by register x19. This is done at the label putbcd.

The final task is to separate the nibbles into bytes and then apply offsets corresponding to

ASCII values.

27 Make sure that instruction SUBS is used and not SUB to set the flags appropriately.

28 Note it is not necessary to perform 12 shifts if only single or double digits will result, however

rather than parse out the number of digits and then calculate the required shift count, it was

considered “cleaner to have a fixed worst case shift number. Of course, if performance were a

consideration, then significant savings would be realized by reducing the shift count.

Macros and Functions

Page 6-9

This is done by the function convert (in main.s) which extracts the values from bcdlist starting

at the label getbcd. The first task is to separate the nibbles and put them into byte form, that is

to say where the digits previously occupied four bits they now require an eight bit space. This is

because they are to be converted to ASCII format which requires byte space. A lot of bit

twiddling is performed here to move the bytes into the correct position. After this the rev

instruction is used to reverse the byte order putting them in the correct locations. In between

each store a line feed/carriage return is inserted to improve formatting.

Stripping away the leading zeros is not performed!

The output looks like –

./listcubes

00000001

00000008

00000027

00000064

00000125

00000216

00000343

00000512

00000729

00001000

Listing 6-6 Main program to print out cubed numbers

main.s

text

numbercount=10

.global _start

_start:

// This program shows how to call functions

// The program will print out the first 10 cubes of 1-10.

// Two functions are called, the first to calculate the cubes

// and the second to convert the cubes to BCD

// main.s

ldr x1, =numberlist

Macros and Functions

Page 6-10

ldr x2, =numbercount

ldr x3, = cubeslist

ldr x19, = bcdlist

loop:

bl cubeit //Call function cubeit

strh w0, [x3], #2 //Put the returned cube from w0 into cubeslist

subs x2, x2, #1

bne loop

//Reset registers

ldr x2, =numbercount

ldr x3, = cubeslist //all cube results are now stored in word space

bl dubdab

convert:

mov w7, #10 // Get all ten BCD cube numbers

ldr w19, = bcdlist

ldr w20, = cubes

mov x4, #0x3030 // ASCII adjustment

movk x4, #0x3030, lsl #16

movk x4, #0x3030, lsl #32

movk x4, #0x3030, lsl #48

mov x14, #0xff // Use for masking out leading zeros

mov w6, #0x0a0d // Line feed and carriage return

getbcd:

ldr x10, [x19], #4 // Get entry from BCD list

and x15, x10, #0xf // mask out all but first nibble

mov x16, x15 // w16 holds first byte

and x15, x10, #0xf0 // Mask out all but second nibble

lsl x15, x15, #4 // Nibble2 now in second byte position

orr x16, x15, x16 // Don't destroy existing data in w16

and x15, x10, 0xf00 // Mask out all but third nibble

lsl x15, x15, #8 // Nibble3 now in third byte position

orr x16, x15, x16 // Don't destroy existing data in w16

Macros and Functions

Page 6-11

and x15, x10, #0xf000 // Mask out all but fourth nibble

lsl x15, x15, #12 // Nibble 4 now in fourth byte position

orr x16, x15, x16 // Don't destroy existing data in x16

and x15, x10, #0xf0000 // mask out all but fifth nibble

lsl x15, x15, #20 // Nibble5 now in fifth byte position

orr x16, x15, x16 // Don't destroy existing data in x16

and x15, x10, #0xf00000 // Mask out all but sixth nibble

lsl x15, x15, #24 // Nibble6 now in sixth byte position

orr x16, x15, x16 // Don't destroy existing data in w16

and x15, x10, 0xf000000 // Mask out all but seventh nibble

lsl x15, x15, #28 // Nibble7 now in seventh byte position

orr x16, x15, x16 // Don't destroy existing data in w16

and x15, x10, #0xf0000000 // Mask out all but eighth nibble

lsl x15, x15, #32 // Nibble8 now in eighth byte position

orr x16, x15, x16 // Don't destroy existing data in x16

add x16, x16,x4 // Convert bytes to ASCII format

rev x17, x16 // The low shall become high and the high become low!

str x17, [x20], #8

strh w6, [x20], #2 // Put in line feed

subs w7, w7, #1

b.ne getbcd

printbuffer:

mov x0, #1

ldr x1, =cubes

mov x2, #150

mov x8, #64

svc #0

exit:

mov w8, #93 //Time to go

svc 0

.data

numberlist: .byte 1,2,3,4,5,6,7,8,9,10

Macros and Functions

Page 6-12

.align

cubeslist: .space 200

.align

bcdlist: .space 40

cubes: .space 110

linefeed: .ASCII "\n"

Listing 6-7 Routine to calculate cube numbers

cubeit.s

// Simple function to cube a number

// cubeit.s

.global cubeit

cubeit:

ldrb w5, [x1], #1

mul w0, w5, w5

mul w0, w5, w0

ret

Listing 6-8 Double-Dabble routine to convert hex/binary to binary coded decimal

dubbdabb.s

.text

// This function implements the double dabble algorithm

// It takes a list of 10 numbers and converts them to BCD

// w9 holds the hex number to be shifted

// w10 holds the BCD number

// w11 for the unitsmask

// w12 for the tensmask

// w13 for the hundredsmask

// W14 holds the number of cubes to be converted

// w15 holds the number of binary digits that the cube has (here n =12)

// w16 is a scratchpad to hold the result of anding in routine getnumberofdigits

// X17 is a counter for the number of shifts performed in double dabble

// w19 points to the location where the BCD cubes are stored

// dubbdabb.s

Macros and Functions

Page 6-13

.global gethexnumbers

.global getnumberofdigits

.global dodoubledabble

.global dubdab

dubdab:

unitsmask=0xf000

tensmask=0xf0000

hundredsmask=0xf00000

numberofshifts=12

numberofcubes=10

mov w11, #unitsmask

mov x12, #tensmask

mov x13, #hundredsmask

mov w14 ,#numberofcubes

mov x15, #numberofshifts

gethexnumbers:

ldrh w9, [x1], #2 //load cube

dodoubledabble:

// Start pushing

mov w17, w15 // Use w17 as the shift counter

shiftnbits: // n is held in w17

lsl w9, w9, #1 //shift into units, tens and hundreds area

subs w17, w17, #1

beq putbcd

checkhundreds:

and w16, w9, w13 // Only look at hundreds column

cmp w16, 0x500000 // Dabble needed ?

b.lt checktens // If not try the tens column

add w9, w9, #0x300000 //Dabble the hundreds column

checktens:

and w16, w9, w12 // Only look at the tens column

cmp w16, 0x50000

Macros and Functions

Page 6-14

b.lt checkunits

add w9, w9, #0x30000 // Dabble the tens column

checkunits:

and w16, w9, w11 // Only look at units column

cmp w16, 0x5000

b.lt skipunits

add w9, w9, #0x3000

skipunits:

b shiftnbits

putbcd:

mov w10, w9 //Put the double dabble number into x10 (units)

lsr w10, w10, w15 // Discard bits 0-11 and move bcd number into its place

str w10, [x19], #4

subs w14, w14, #1

b.eq exitdd

b gethexnumbers

exitdd:

ret

The makefile combines the three listings into the program listcubes and is as follows:

OBJECTS = main.o cubeit.o dubbdabb.o

all: listcubes

%.o : %.s # Any .o .s

 as $< -g -o $@ # $< source file $@ output file

listcubes: $(OBJECTS)

 ld -o listcubes $(OBJECTS)

Macros and Functions

Page 6-15

Summary of chapter 6

• Use of the stack

• Macros

• Functions

• Calling conventions

o Caller and callee

Macros and Functions

Page 6-16

Exercises for chapter6

1. What is the purpose of the Link register?

2. What is the ARM Procedure call standard used for?

3. Modify the listcubes program to strip out leading zeros

4. Explain the difference between a function and a macro

5. Which directives signify the start and end of a macro?

6. When is the .include directive used?

7. What instruction can be used to push values on the stack?

Mixing assembly code with high-level languages

Page 7-1

Chapter 7. Calling assembly functions from a high-

level language
However instructive the previous listcubes code was, outputting the text was complex, often

it would not be practical to code in all parts of a program assembly language. Some of the

many disadvantages include:

• Complexity

• Difficult to debug

• Hard to test

• Time to develop, optimize and document

In the real world, a more pragmatic approach is used. Code is more often (than not) written in a

higher-level language such as C, C++ or Python, which has many built-in functions and

libraries that the programmer can call upon. A hybrid approach is often taken where assembly

code might be used for time critical parts or for direct access to the target machine’s hardware.

The GNU Compiler Collection (GCC) allows compilation of a mixture of code. The following

example shows how to call ARM64 assembly from C code.

First develop a simple assembly language function which cubes a number and then adds an

offset.

Listing 7-1 Cube and add assembly code

.global cubeandadd

cubeandadd:

mov w2, w0

mul w0, w0, w0 // Arguments are in r0 and r1

mul w0, w2, w0

add w0, w0, w1

ret

The function cubeandadd has been declared as a global function to allow for external access.

It receives its parameters from the c code shown in Listing 7-2.

Listing 7-2 Cube and add C code

#include <stdio.h>

Mixing assembly code with high-level languages

Page 7-2

extern int cubeandadd(int a, int b);

int main()

{

 int a = 5;

 int b = 10;

 printf ("\n The cube and add function, calls assembly code to cube the

first number %d and then add the second number %d, the result is %d\n", a, b,

cubeandadd(a,b));

 return (0);

}

The assembly function (cubeandadd) has been declared as external and it passes its

parameters (a and b to the assembly code.

The output code is generated by gcc using the command:

gcc -g -o cubeandadd ./listing7-2.c ./listing7-1.s

The debugger shows the code midway through execution.

The C library function printf is defined within <stdio.h> as int printf(const char

*format,…) It is a variadic function which means that it can take a variable number of

arguments. This is conveyed by the ellipsis… in the prototype. The function takes a minimum of

one argument which is a pointer to the location of the starting character of the text. The text

itself can embed formatting tags which specify how the arguments that are passed are to be

printed – for example a variable using “%d” will be formatted as a signed base 10 integer. To

Mixing assembly code with high-level languages

Page 7-3

print a string, register x0 will have been loaded with the address of the text (see Listing 7-5),

variables are passed into the other registers (see Listing 7-6).

A non-exhaustive list of format specifiers are shown in Table 7-1.

Table 7-1 printf format specifiers

Format specifier interpretation

%d Signed decimal number

%u Unsigned decimal number

%s Pointer to an array of characters

%c Outputs a single character

%x Represents an unsigned integer in lower case hexadecimal form

%X Represents an unsigned integer in upper case hexadecimal form

%% Outputs a literal “%” character

%e Represents floating point as decimal exponent notation

%f Represents floating point as decimal

Using in-line code

Basic and Extended ASM

Listing 7-3 makes use of assembly instructions with operands. This is known as Extended ASM

as opposed to Basic ASM

Basic ASM

Basic ASM is a set of assembly instructions. With inline code the asm keyword is not an actual

C keyword29 but it is understood by the assembler. Note that non-GNU assemblers may use an

alternative keyword. An example is shown below:

asm(

 "mov w4, #5\n\t"

 "mov w5, #15\n\t"

 "add w6, w4, w5\n\t"

);

29 This is not the case with C++.

Mixing assembly code with high-level languages

Page 7-4

Note that the instructions are separated by the combination of /n and /t.

Extended ASM

Extended ASM can use variables from the C source code. Extended ASM cannot be used

outside of C functions The assembler template consists of:

asm(code template : output operand(s) : input operand(s) : clobber list);

Table 7-2 gives an explanation.

Table 7-2 Inline assembly template

Template

Phase Example Description

Code - Assembler

Instruction
mov w0, w1 Regular assembly instruction

Code Template mov %[inputa],

%[inputb]

Using parameters passed as

inputs to the code template

Output Operand(S) List [answer] “r” (result)

Can be left empty using

:

List of output operand(s)

[answer] is a symbolic name, r is

a constraint string meaning

register and (result) is returned

to the Calling code.

Input Operands List inputa] "r" (a),

[inputb] "r" (b)

Similar syntax to operand list

Clobber List “x5”, “x6” Optional list of registers, that

may not be preserved

A significant advantage of using inline assembly code like this is that the task of procedure call

handling (see page 6-7) is left to the compiler.

Listing 7-3 shows an example of assembly code being executed in-line with the C code. This

code cubes a number and then adds a constant (x3 + y). Here the number 5 is cubed and then

the constant 10 is added.

Listing 7-3 Using inline assembly code with C

int cubeandadd(int a, int b, int c)

{

 int res = 0;

 /*Assembly Template is as follows:

 Code (Assembly language instruction such as add x0, X0, X3)

Mixing assembly code with high-level languages

Page 7-5

 Code template (add %result, %[input1], %[input2], . . .)

 Output Operands ([result] "=r" (res); r is a constraint string which is a

general purpose 64-bit X register

 = is a constraint modifier for writing, + is for read and write

 Input Operands ([inputa] "r" (a) [inputb] "r" (b); two input operands a and

b*/

 asm(

 "mov %[inputc], %[inputa]\n"

 "mul %[inputa], %[inputa], %[inputa]\n\t"

 "mul %[inputa], %[inputa], %[inputc]\n\t"

 "add %[result], %[inputa], %[inputb]\n\t"

 : [result] "=r" (res) // Output Operand(s) list r = general registers

 : [inputa] "r" (a), [inputb] "r" (b), [inputc] "r" (c) // Input Operand(s)

list

);

 return res;

}

int main (void)

{

 int a = 5;

 int b = 10;

 int c = 0;

 int result = cubeandadd(a,b,c);

 printf ("Cubing %d and adding %d = %d\n", a,b,result);

}

Using the gcc option gcc -save-temps listing7-3.c will allow the preservation of the

intermediate files that were generated during the compilation process. An extract of the

assembly file is shown below:

cubeandadd:

.LFB0:

 .cfi_startproc

 sub sp, sp, #32

 .cfi_def_cfa_offset 32

Mixing assembly code with high-level languages

Page 7-6

 str w0, [sp, 12]

 str w1, [sp, 8]

 str w2, [sp, 4]

 str wzr, [sp, 28]

 ldr w0, [sp, 12]

 ldr w1, [sp, 8]

 ldr w2, [sp, 4]

#APP

// 15 "listing6-12.c" 1

 mov x2, x0

mul x0, x0, x0

 mul x0, x0, x2

 add x0, x0, x1

Looking at the cubeandadd routine , it can be seen that registers x0, x1 and x2 are used.

Register X0 holds the first parameter (5), a copy of X0 is placed in register X2. X0 is then

multiplied by itself with the result 25 being stored in register X0. The updated X0) value (25) is

then multiplied by the original value of X0 (which is stored in X2) and X0 now holds the value

125. The second operand passed in X1 is added to X0 giving the final result of 135.

The is shown in Table 7-3.
Table 7-3 In line assembly converted

The next listing revisits Listing 6-6 that cubed the first ten numbers –

Listing 7-4 Cube numbers revisited

include <stdio.h>

int cubenumbers(int counter, int index)

{

 int res;

 asm(

Source Assembled code

“mov %[inputc], %[inputa]” mov x2, x0

"mul %[inputa], %[inputa], %[inputa]” mul x0, x0, x0

"mul %[inputa], %[inputa], %[inputc]” mul x0, x0, x2

“add %[result], %[inputa], %[inputb]” add x0, x0, x1

Mixing assembly code with high-level languages

Page 7-7

 "mul %[outputresult], %[inputcounter], %[inputcounter]\n\t"

 "mul %[outputresult], %[inputcounter], %[inputindex]\n\t"

 : [outputresult] "=r" (res) // Output Operand(s) list r = general

registers

 : [inputcounter] "r" (counter), [inputindex] "r" (index) // Input

Operand(s) list

);

 return res;

}

int main (void)

{

 int counter = 1;

 int index = 1;

 int result = cubenumbers(counter,index);

 while (counter <11)

 {

 result=cubenumbers(counter,index);

 printf ("Cubing %d = %d\n", counter,result);

 counter++;

 index++;

 }

}

Compilation String

$ gcc -g -o cubenumbers ./listing7-4.c

Output

asm/chapter07 $./cubenumbers

Cubing 1 = 1

Cubing 2 = 8

Cubing 3 = 27

Cubing 4 = 64

Cubing 5 = 125

Cubing 6 = 216

Cubing 7 = 343

Mixing assembly code with high-level languages

Page 7-8

Cubing 8 = 512

Cubing 9 = 729

Cubing 10 = 1000

Much more concise!

The next two listings use printf to print out values. Arguments are passed to printf via the X

registers or the vector registers in the case of floating-point numbers.

Listing 7-5 Using printf to print a string from assembly

// listing 7-5

.text

.global _start

_start:

ldr x0, =string1

bl printf // Use -nostartfiles when linking with gcc

mov w8, #93

svc #0

string1: .asciz "This string was printed from assembly using printf\n"

Use the following commands to build the program

as -g -o listing7-5.o listing7-5.s

gcc -nostartfiles -o listing7-5 listing7-5.o

The -nostartfiles option means do not use the standard system startup files when linking.

The listing passes the location of the string to printf and outputs:

“This string was printed from assembly using printf”

The next listing uses registers x0, x1, x2 and x3.

Listing 7-6 Using printf to print numbers

// listing7-6

.text

.global _start

_start:

ldr x0, =string1

mov x1,#5

mov x2, #15

Mixing assembly code with high-level languages

Page 7-9

add x3, x1, x2

ldr x0, =string1

bl printf // Use -nostartfiles when linking with gcc

mov w8, #93

svc #0

string1: .asciz "The first number is %d, the second number is %d, the addition of

the two numbers is: %d\n"

Use the following commands to build the program

as -g -o listing7-6.o listing7-6.s

gcc -nostartfiles -o listing7-6 listing7-6.o

The output is:

“The first number is 5, the second number is 15, the addition of the two numbers is: 20”.

Another example shows output using some of the format specifiers shown in Table 7-1

Listing 7-7 Use of format specifiers

//listing7-7

.text

.global _start

_start:

ldr x0, =string1

mov x1,#-140

mov x2, #15

add x3, x1, x2

ldr x0, =string1

str x1, [SP, #-16]!

str x2, [SP, #-16]!

str x3, [SP, #-16]!

bl printf // Use -nostartfiles when linking with gcc

ldr x0, =string2

ldr x3, [sp], #16

ldr x2, [sp], #16

ldr x1, [sp], #16

bl printf

Mixing assembly code with high-level languages

Page 7-10

mov w8, #93

svc #0

.data

 string1: .asciz "The first number represented as signed decimal is %d, the

second number represented as lower case hexadecimal is %x, the addition of the two

numbers represented as upper case hexadecimal is: %X\n"

 string2: .asciz "\nThe first number represented as unsigned decimal is %u,

the second number represented as signed decimal is %d, the addition of the two

numbers represented as upper case hexadecimal is: %X\n"

Output:

The first number represented as signed decimal is -140, the second number

represented as lower case hexadecimal is f, the addition of the two numbers

represented as upper case hexadecimal is: FFFFFF83

The first number represented as unsigned decimal is 4294967156, the second number

represented as signed decimal is 15, the addition of the two numbers represented

as upper case hexadecimal is: FFFFFF83.

Mixing assembly code with high-level languages

Page 7-11

Summary of chapter 7

• Using in line assembly code

• Compiling C and assembly code together

• Printf and variants

Mixing assembly code with high-level languages

Page 7-12

• Exercises for chapter7

1. How would you print the literal character “%” with printf

2. Which register is used to convey the location of the string to be printed when using printf?

3. How would you preserve intermediate files that were generated during the compilation

process?

4. What is the purpose of -nostartfiles, try compilation without using it

Floating-point operations and the Neon Co-Processor

Page 8-1

Chapter 8. Floating Point and Neon Coprocessor
This section discusses the vector registers and the concept of Single Instruction Multiple Data

(SIMD) with emphasis on arithmetic operations. ARM64 adheres to the floating-point IEEE 754

standard as discussed earlier (see page 1-18). There are 32 x 128-bit vector registers (see page

2-4). These registers have a width of 128 bits, and can be addressed with 8, 16, 32, 64 or 128

bits as shown in Figure 8-1. The smallest value of 8 bits is Bx up to Qx which has a width of 128

bits. Even though there are 128 bits, floating point operations are limited to 64-bits.

Figure 8-1 V Register layout

The following listing will show the layout of data in the vector registers and confirm that the

single precision layout of IEEE 754 is followed

Listing 8-1 Loading floating point values into vector registers (single precision)

//listing8-1

// Single precision floating-point

.text

.global _start

_start:

ldr x0, = floating01

ldr x1, = floating02

ldr s0, [x0] // Load into single precision s0 fp register

ldr s1, [x1] // Load into single precision s1 fp register

fadd s2, s0,s1 // Perform fp addition putting the result into s2

fmul s3, s0,s1 // Perform fp multiplication putting the result into s3

mov x8, #93

svc #0

.data

Floating-point operations and the Neon Co-Processor

Page 8-2

 floating01: .single 1.414

 floating02: .single 3.14

 Listing 8-1 shows:

• Two single precision floating point numbers have been defined – 1.414 and 3.14.

• The addresses of these values are loaded into registers x0 and x1.

• The contents of the locations pointed to by the x registers are stored in the single word

registers s0 and s1

• An addition of s0 and s1 is performed with the result shown in register s2

• A multiplication of registers 0 and s1 is performed with the result showing in s3

Use the GDB command info vector to show the contents of the vector registers30.

v0 {d = {f = {0x3fb4fdf4, 0x0}, u = {0x3fb4fdf4, 0x0}, s =

{0x3fb4fdf4, 0x0}}, s = {f = {0x3fb4fdf4, 0x0, 0x0, 0x0}, u = {0x3fb4fdf4, 0x0,

0x0, 0x0}, s = {0x3fb4fdf4, 0x0, 0x0, 0x0}}, h = {bf = {0xfdf4, 0x3fb4, 0x0, 0x0,

0x0, 0x0, 0x0, 0x0}, f = {0xfdf4, 0x3fb4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, u =

{0xfdf4, 0x3fb4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, s = {0xfdf4, 0x3fb4, 0x0, 0x0,

0x0, 0x0, 0x0, 0x0}}, b = {u = {0xf4, 0xfd, 0xb4, 0x3f, 0x0 <repeats 12 times>}, s

= {0xf4, 0xfd, 0xb4, 0x3f, 0x0 <repeats 12 times>}}, q = {u = {0x3fb4fdf4}, s =

{0x3fb4fdf4}}}

 . .
s0 . . . s = 0x3fb4fdf4} {f = 1.41400003, . . .

s1 . . . s = 0x4048f5c3} {f = 3.1400001, . . .

s2 . . . s = 0x4091ba5e} {f = 4.5539999, . . .

s3 . . . s = 0x408e1428} {f = 4.43996048, . . .

If using the TUI with GDB then the command tui reg float will show the relevant floating-point

registers31

There is a lot of information shown in the vector registers, normally we are only interested in a

subset. The values shown in the full vector V0 list correspond to the unsigned and signed

30 Use p $vn to show a specific vector register such as p $v1. Use $v3.d or just p $d3 to just

show the d part of the vector register. P /d $v1.b will show bytes in decimal format/

31 The command tui reg next will cycle through the various register groups.

Floating-point operations and the Neon Co-Processor

Page 8-3

entries of the D,S,H,B and Q registers along with their signed and unsigned values. There are

floating point representations given in the single precision (s) and double precision (d)

registers.

The next listing uses printf to display three floating-point operations –
• Addition
• Multiplication
• Square root

Listing 8-2 Using printf to display floating-point values.

//listing 8-2

// Double precision floating-point

.text

 .global _start

 _start:

 ldr x0, = floating01

 ldr x1, = floating02

 ldr d0, [x0] // Load into double precision d0 fp register

 ldr d1, [x1] // Load into double precision d1 fp register

 ldr x0, =string1 // Free to use x0 again

 // Add and Multiply

 fadd d2, d0,d1 // Perform fp addition putting the result into d2

 fmul d3, d0,d1 // Perform fp multiplication putting the result into d3

 stp d0,d1,[sp, #-16]! // Save d0 and d1

 stp d2,d3,[sp, #-16]! // save d2 and d3

 bl printf

 ldp d2,d3, [sp],16 // Bring back the registers, observing LIFO

 ldp d0,d1, [sp],16

 // Square root

 ldr x0, =string2

 fsqrt d1, d0

 stp d0,d1,[sp, #-16]! // Save d0 and d1

 stp d2,d3,[sp, #-16]! // save d2 and d3

 bl printf

Floating-point operations and the Neon Co-Processor

Page 8-4

 ldp d2,d3, [sp],16 // Bring back the registers, observing LIFO

 ldp d0,d1, [sp],16

 mov x8, #0x5d

 svc #0

 .data

 floating01: .double 1.414

 floating02: .double 3.14

 string1: .asciz "The floating point number %f, added to the floating point

number %f, is %f,when multiplied the result is %f\n"

 string2: .asciz "The square root of register d0 containing %f, is %f\n"

Output

./listing8-2

The floating point number 1.414000, added to the floating point number 3.140000,

is 4.554000,when multiplied the result is 4.439960

The square root of register d0 containing 1.414000, is 1.189117

There are also precision specifiers that can be used for floats with printf. The default value is

6 (base 10) digits of precision which can be overridden by placing a point after % followed by a

number to the left of the specifier as shown in the code snippet below.

 string1: .asciz "The floating point number %.3f, added to the floating

point number %.3f, is %.2f,when multiplied the result is %.2f\n"

 string2: .asciz "The square root of register d0 containing %.8f, is %.8f\n"

Output

The floating point number 1.414, added to the floating point number 3.140, is

4.55,when multiplied the result is 4.44

The square root of register d0 containing 1.41400000, is 1.18911732

Neon Coprocessor

The Neon coprocessor allows for parallel processing of operations. This is termed Single

Instruction Multiple Data *(SIMD) since a single instruction operates on multiple pieces of

data. The register set is shown in Figure 8-1 and allows for 128-bit processing across multiple

lanes of data. There are 32 x 128-bit registers available referenced as vn.t where n stands for

the vector register in question, t stands for the number of lanes and the data width. To take a

specific example, v2.4s refers to vector register 2 broken up into 4 X 32-bit (S) paths. The data

types available are:

Floating-point operations and the Neon Co-Processor

Page 8-5

8 bits (B) uint8 or sint8

• 16 bits (H) uint16 or sint16

• 32 bits (S)

• 64 bits (D)

• Single and double precision floats

A single128-bit vector register (bits 127:0) supports 2 X 64-bit, 4 X 32-bit, 8 X 16-bit, or 16 X 8-

bit integer simultaneous operations. A single 64-bit bit vector register (bits 0:63) supports 2 X

32-bit, 4 X 16-bit, or 8 X 8-bit integer simultaneous operations.
Table 8-1 shows possible lane configurations.

Table 8-1 Lane division in 128-bit / 64 bit vector registers

Register

Size

Lane Width (B) Lane Width (H) Lane Width (S) Lane Width (D)

128-bits (Q) 16 lanes x 8 (16B) 8 lanes x 16 (8H) 4 lanes x 32 (4S) 2 lanes x 64 (2D)

64-bits (D) 8 lanes x 8 (8B) 4 lanes x 16 (4H) 2 lanes x 32 (2S)

A single lane represents a scalar value. Using only the low order 64-bits maintains 32-bit

backward compatibility. Operations are performed in parallel on the individual lanes

separately, not as a complete 64-bit or 128-bit register operation. The data size and lane layout

is shown in Figure 8-2. Vector values are composed of multiple groups of numbers, for example

a three-dimensional x,y,z co-ordinate could look like: 23, 42, -9 and be held in 3 different lanes.

A scalar instructions include the single lane designator such as V1.h[2].

Figure 8-2 Vector registers lane distribution

For the 128-bit vector registers there are:

• 16 Byte-wide lanes

• 8 Halfword-wide lanes

32 X 64-Bit Vector Registers

Lane 1 (S) Lane 0 (S) Vn.S2

Lane 3 (H) Lane 2 (H) Lane 1 (H) Lane 0 (H) Vn.4H

Lane 7 (B) Lane 6 (B) Lane 5 (B) Lane 4 (B) Lane 3 (B) Lane 2 (B) Lane 1 (B) Lane 0 (B) Vn.8B

32 X 128-Bit VectorRegisters

Lane 3 (S) Lane 2 (S) Lane 1 (S) Lane 0 (S) Vn.S4

Lane 7 (H) Lane 6 (H) Lane 5(H) Lane 4 (H) Lane 3 (H) Lane 2 (H) Lane 1 (H) Lane 0 (H) Vn.8H

Lane 15 (B) Lane 14 (B) Lane 13 (B) Lane 12 (B) Lane 11 (B) Lane 10 (B) Lane 9 (B) Lane 8 (B) Lane 7 (B) Lane 6 (B) Lane 5 (B) Lane 4 (B) Lane 3 (B) Lane 2 (B) Lane 1 (B) Lane 0 (B) Vn.16B

Bit 127, 126, 1,0

Floating-point operations and the Neon Co-Processor

Page 8-6

• 4 Singleword-wide lanes

• 2 Doubleword-wide lanes

Adding data from lane 1 in register V0 to the data in lane1 in vector register V1 is a completely

independent operation. This is illustrated in Figure 8-3.

Figure 8-3 Four lane 128-bit floating-point addition

The code to generate the above data is shown in Listing 8-5.

Examples:

mov1, v0.16b, #0x55 will load the vector register V0 with 16 bytes each byte having the value

0x55.

(gdb) p /x $v0.q

$2 = {u = {0x55555555555555555555555555555555},

s = {0x55555555555555555555555555555555}}

Some examples of the move immediate (movi) instruction are shown in Listing 8-3.

Listing 8-3 Vector move instruction examples

// listing8-3

// Vector register examples

.text

 .global _start

_start:

 mov x0,#0xaa

 movi v0.16b, #0x55 // Q0 will contain 0x55555555555555555555555555555555

 movi v1.8b, #0x55 // D1 will contain 0x5555555555555555

 movi v2.8h, #0x55 // Q2 will contain 0x00550055005500550055005500550055

 movi v3.4h, #0x55 // D3 will contain 0x0055005500550055

 movi v4.4s, #0x55 // Q4 will contain 0x00000055000000550000005500000055

Floating-point operations and the Neon Co-Processor

Page 8-7

 movi v5.2s, #0x55 // D5 will contain 0x0000005500000055

 ins v6.b[10], v0.b[1] // Insert vector element into v6 at index10, from v0,

index0

 cnt v7.16b, v0.16b // Counts the # of ones in the specified elements of a

vector register, placing the result in another register

 // V7 now contains 0x0404040404040404

 dup v8.8b, w0 // V8 contains 0xaaaaaaaaaaaaaaaa aa duplicated across eight

bytes

 dup v0.2d, v7.d[0] // v0 contains 0x404040404040404

 mov w8, #93

 svc #0

Note that ins is an alias for mov

400090: 6e150c06 mov v6.b[10], v0.b[1]

Again, single values are scalar values.

The eight-bit immediate values in the instruction, are actually held in non-contiguous

locations. Looking at the disassembly for the instruction (= 0x4f02e6a0) movi v0.16b, 0x55 ,

the immediate data is held in bits: (18:16) and (9:5). These bits are designated (a,b,c) and

(d,e,f,g,h). This is shown in Figure 8-4 where the eight bits correspond to 010 10101 = 0x55.

 Refer to the ARM documents for a more complete breakdown of the remaining fields.

Figure 8-4 Layout of immediate data bits in the movi instruction

The next listing performs 16 addition operations. Two vector registers (V0 and V1) contain 16

bytes each. The additive result of all 16 bytes is placed in V0 overwriting the previous contents.

movi v0.16b 4f02e6a0
Q op a b c cmode d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Rd = V0

Imm8 = bits 18,17,16,9,8,7,6,5 = 0x55specifies 8-bit operation

cmode 1110, op 0 = 8-bit;

Q 1 = 16Bytes (T=16b)

Floating-point operations and the Neon Co-Processor

Page 8-8

Listing 8-4 Adding sixteen bytes in parallel

// listing 8-4

// Vector register examples

.text

 .global _start

 _start:

 ldr x0,=values

 ldp q0, q1, [x0]

 add v0.16b, v0.16b, v1.16b

mov w8, #93

svc #0

.data

 values: .byte 1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20, After

execution:23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0

Initial contents of V0

1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20, 1, 6, 3, 4, 9, -3, 7,12, 9, 3, -4, 19, 5, 14, 3, 20

Initial contents of V1

23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0, 23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0
Result in V0

24, 11, 10, 12, 19, -1, 11, 29, 12, 11, 41, 22, 1, 45, 7, 20, 24, 11, 10, 12, 19, -1, 11, 29, 12, 11, 41, 22, 1, 45, 7, 20

The next listing shows two operations:

1. How to load the 128-bit Q registers Q0 and Q1 with single floating-point word values and

then to add these values in parallel, placing the result in Q0.

2. How to multiply each lane by a scalar quantity

Listing 8-5 Vector register addition and multiplication examples

 // listing 8-5

 // Vector register examples

 // 1. Floating point additions carried out in parallel

 // 2. Multiply by a scalar

 .text

 .global _start

 _start:

 ldr x0,=v0values

Floating-point operations and the Neon Co-Processor

Page 8-9

 ldr x1,=v2values

 ldp q0, q1, [x0]

 fadd v0.4s, v0.4s, v1.4s // Vector addition, lanes added in parallel

 ldp q0,q1, [x1]

 movi v2.4s, #5

 mul v0.8h, v1.8h, v2.h[0] // Multiplying by a scalar, each lane of V1 is

multiplied by 5 (lane0 of v2) with the result placed in V0

 // V0 now holds: 7700, 2600, 12845, 6455, 3940, 2585, 3900, 7835

 mov w8,#93

 svc #0

 .data

 v0values: .single 1.4, 0.1, 23.2, 40.6, 0.02, 1.96, 4.2, 3.51

 v2values: .byte 20, 34, 5, 9, -4, 10, 2, 7, 100, 40, 3, 8, 3, 4, 64, 56,

4, 6, 8, 2, 9, 10, 11, 5, 20, 3, 5 , 2, 12, 3, 31, 6

Note: Floating-point values can be shown within a vector register with the command p

$v(register number>.<size>.f such as p $v0.s.f.

Lanes and data placement

Lanes can be referenced by an index. The ld instruction takes different forms. A non-

exhaustive summary of instructions ld1, ld2, ld3 and ld4 is presented in the following

tables:
Table 8-2 Sample ldx (no offset) instructions

Instruction Description Example

ld1{vt.b}[index],Xn]
Loads a single
element (8 -
bits) to a single
lane of a vector
register

Ld1{v0.b}[0],[x0] // Loads v0 with

the single byte pointed to by x0,

placing the data in lane0

ld1{vt.h}[index],Xn]
Loads a single
element (16 -
bits) to a single
lane of a vector
register

Ld1{v2.h}[3],[x0] // Loads v1 with

the halfword pointed to by x0,

placing the data in lane3

ld1{vt.s}[index],Xn]
Loads a single
element (32 -
bits) to a single
lane of a vector
register

Ld1{2.s}[0],[x0] // Loads v2 with

the singleword pointed to by x0,

placing the data in lane0

Floating-point operations and the Neon Co-Processor

Page 8-10

ld1{vt.d}[index],Xn]
Loads a single
element (64 -
bits) to a single
lane of a vector
register

Ld1{3.d}[0],[x0] // Loads v3 with

the doubleword pointed to by x0

ld2{vt.b,vt.2.b}[index],Xn]
Loads a two-
element
structure (8 -
bits) to a single
lane of two
vector registers

Ld2{v3.b,v4.b}[6],[x0] // Loads v3

and v4, lane6 with the byte pointed

to by x0 and x0+1

ld2{vt.h,vt2.h}[4],[xn]
Loads multiple
byte structures
into two vector
registers

ld2 {v5.h,v6.h,[x0] // Loads eight,

8-bit structures into registers v5

and v6, alternating the values

pointed at by x0

Ld2{vt.b,vt2.b}[index],Xn]
Loads a single
two element (8
-bits) structure
to a single lane
of two vector
registers

ld2{v3.b,v4.b}[6],[x0] // Loads

lane6 of v3 and v4 with the bytes

pointed to at x0

Ld2{vt.h,vt2.h}[index],Xn]
Loads a single
two element
(16 -bits)
structure to a
single lane of
two vector
registers

ld2{v5.h,v6.h}[4],[x0] // Loads

lane4 of v3 and v4 with the

halfwords pointed to by x0

Ld2{vt.s,vt2.s}[index],Xn]
Loads a single
two element
(32 -bits)
structure to a
single lane of
two vector
registers

ld2{v7.s,v8.s}[0],[x0] // Loads

lane0 of v3 and v4 with the word

pointed to by x0

Ld2{vt.d,vt2.d}[index],Xn] Loads a single

element two

element (64 -

bits) to a single

lane of a vector

register

ld2{v3.d,v4.d}[2],[x0] // Loads

lane2 of v3 and v4 with the

doubleword word pointed to by x0

Ld3{vt.b,vt2.b,vt3.b}[index],Xn] Loads a single

three element

structure (8 -

bits) to a single

lane of three

vector registers

Ld3{v0.b,v1.b,v2.b}[0],[x0] //

Loads lane0 of v0, lane0 of v1 and

lane0 of v2 with the bytes pointed

to by x0

Floating-point operations and the Neon Co-Processor

Page 8-11

Ld3{vt.h,vt2.h,vt3.h}[index],Xn] Loads a single

three element

(16 -bits)

structure to a

single lane of

two vector

registers

Ld3{v5.h,v6.h,v7.h}[4],[x0] //

Loads lane4 of v3, lane4 of 6 and

lane4 of v7 with the halfword

structures pointed to by x0

ld3{vt.s,vt2.s,vt3.s}[index],Xn] Loads a single

three element

(32 -bits)

structure to a

single lane of

two vector

registers

ld3{vt.h,vt2.h,vt3.h}[index],Xn]

ld3{vt.h,vt2.h,vt3.h}[index],Xn] Loads a single
two element
(16 -bits)
structure to a
single lane of
two vector
registers

ld3{vt.h,vt2.h,vt3.h}[index],Xn]

ld4 {vt.b,vt2.b,vt3b,vt4.b},[x0]
Multiple 4-
element
structure, move
to four registers
with de-
interleaving

ld4

{v10.8b,v11.8b,v12,8b,v13,8b},[x0]

Example of ldx instructions are shown in Listing 8-6.

Listing 8-6 ld1, ld2, ld3 and ld4 non-offset examples

// listing 8-6

// Vector register ldx examples

 .text

 .global _start

 _start:

 ldr x0,=values // Set x0 to point at the 48 bytes in memory location (values)

 //Single Structure format of the instruction ld1, loading one element to one

lane.

 ld1 {v0.b}[0],[x0] //lane0 of v0 will contain the value 1

 ld1 {v1.b}[1],[x0] //lane1 of v1 will contain the value 1

Floating-point operations and the Neon Co-Processor

Page 8-12

 ld1 {v2.h}[3],[x0] //lane3 of v2 will contain the value 0x0601

 ld1 {v2.h}[2],[x0] // V2 now contains the value 0x601060100000000 (lanes 2 and

3 each hold 0x601)

 //This is the multiple structure format of the instruction ld1, writing

multiple single elements to three registers

 ld1 {v0.8b, v1.8b, v2.8b},[x0] // Loads multiple (8) single element byte

structures into v0, v1 and v2

 // V0 now holds unsigned bytes = {0x1, 0x6, 0x3, 0x4, 0x9, 0xfd, 0x7, 0xc, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

 / v1 now holds unsigned bytes = {0x9, 0x3, 0fc, 0x13, 0x5, 0xe, 0x3, 0x14, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

 // v2 now holds unsigned bytes = {0x17, 0x5, 0x7, 0x8, 0xa, 0x2, 0x4, 0x11,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

 // Note values shown above are listed as ascending in memory contents of [x0]=

0x01, [x0]+1 = 0x06, . . .

 ld1 {v0.16b, v1.16b, v2.16b},[x0] // Loads multiple (8) single element byte

structures into v0, v1 and v2

 // Single two-element structure format using ld2

 ld2 {v3.b,v4.b}[6],[x0] // lane6 of v3 holds 0x01 and lane6 of v4 holds 0x06

 ld2 {v5.h,v6.h}[4],[x0] // Lane4 of V5 contains 0x0106 and lane4 of v6 contains

0x0304

 ld2 {v7.s,v8.s}[0],[x0] // Lane7 of v7 contains 0x010603094 and lane 8 contains

0x09fd070c

 ld2 {v3.d,v4.d}[0],[x0] // Lane0 of v3 contains 0x0106030409fd070c and lane0 of

v4 contains 0x0903fc13050e0314

/* Multiple two-element structure format with de-interleaving. takes the data, and

puts the first element in register1, the second element in register2, third in

register 1, . . .*/

 ld2 {v5.8b,v6.8b},[x0] // Moves eight, byte structures into registers v5 and v6

 // v5 holds 0x01 0x03 0x09 0x07 0x09 0xfc 0x05 0x03

 // v6 holds 0x06 0x04 0xfd 0x0c 0x03 0x13 0x0e 0x14

 ld2 {v5.8h,v6.8h},[x0]

 // v5 holds 0x0601 0xfd09 0x0309 0x050e

 // v6 holds 0x0403 0x0c07.

Floating-point operations and the Neon Co-Processor

Page 8-13

// Multiple three-element structure move to three registers with de-interleaving

 ld3 {v7.4H, v8.4H,v9.4H},[x0]

 // v7 holds 0x0601, 0x070c, 0x050e, 0x0807

 // v8 holds 0x0403, 0x0309, 0x1403, 0x200a

 // v9 holds 0xfd09, 0x13fc, 0x0517, 0x1104

 ld3 {v7.2d-v9.2d}, [x0] // Note the syntax Vm-Vn is also valid

 // v7 holds 0x0106030409fd070c0

 // v8 holds 0x0903fc13050e0314

 // v9 holds 0x170507080a020411

 // Single four-element structure to one single lane of four registers

 ld4 {v15.s,v16.s,v17.s,v18.s}[2],[x0]

 // v15 holds 0x04030601

 // v16 holds 0x0c07fd09

 // V17 holds 0x13fc0309

 // V18 holds 0x14030e05

 // Multiple four-element structure move to four registers with de-interleaving

 ld4 {v10.8b,v11.8b,v12.8b,v13.8b},[x0]

 // v10 holds 0x01, 0x09, 0x09, 0x05, 0x17, 0x0a, 0x03, 0xfc

 // v11 holds 0x06, 0xfd, ox03, 0x0e, 0x05, 0x02, 0x08, 0x1e

 // v12 holds 0x03, 0x07, 0xfc, ox03, 0x07, 0x04, 0x2d, 0x04

 // v13 holds 0x04, 0x0c, 0x13, 0x14, 0x08, 0x11, 0x02, 0x00

 mov w8, #93

 svc #0

.data

 values: .byte 1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20, 23, 5, 7, 8,

10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0, 2, 5, 9, 2, 11, 5, 14, 0, 23, 44, 21, 5,

13, 14, 15, 16

Floating-point operations and the Neon Co-Processor

Page 8-14

Note when using multiple registers, they must be consecutive in number. The reason for this is

that the last 5 bits of the Rt field (see Table 8-4) is used to encode the Vt registers. This is

shown in Table 8-3:

Table 8-3 ld4 instruction Rt field

Vt encoding Vt2 encoding Vt3 encoding Vt4 encoding

Bits 4:0 ((Bits 4:0) +1),

modulo 32

((Bits 4:0) +2),

modulo 32

((Bits 4:0) +3),

modulo 32

 The disassembly for the instruction ld4 {v15.s-v18.s}[2], [x0] is 4d60a00f.

Table 8-4 gives a breakdown of the bit fields.

Table 8-4 Bit fields of the ld4 instruction

As seen the functionality of the fields is well thought out and gives a lot of capability for an

instruction that is only 32-bits wide.

The ldx instructions also have Post-Index capability. The offset can be register or immediate.

The format of ld4 with an eight-bit register offset is LD4 { vt.b,vt2.b, vt3.b,vt4.b
}[index], [Xn|SP], <Xm>.

Breakdown of {v15.s-v18.s}[2], [x0] Instruction 4d60a00f

Q L R Rm o2 Opcode S Size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1

Interpretation

1 Rt vt0

Rt+1, modulo32 Vt1

Rt+2, modulo32 Vt2

Rt+3, modulo32 Vt3

2 Rn Xn|SP (x0)

3 Rm Post-index register

4 Opcode 101&&S=00 = 32-bit

5 Element Index encoded in Q:S for 32-bit (S)

Q:S = 10

Floating-point operations and the Neon Co-Processor

Page 8-15

The last ldx instruction to consider is ld with replicate. Here the ld4r instruction has the no-

offset format of LD4r {vt.T,vt2.T,vt3.T,vt4.T},[Xn|SP}. Its function is to load a single

four-element structure and replicate it to all four lanes of the four registers.

This instruction has similar variants to the ldx instructions shown in Table 8-2. Listing 8-7

shows a brief example.

Listing 8-7 ld4r instruction

// listing 8-7

// Vector register example ld4R

.text

 .global _start

 _start:

 ldr x0,=values // Set x0 to point at the 48 bytes in memory location

(values)

 ld4r {v0.16b,v1.16b,v2.16b,v3.16b,[x0]

 // v0 = 0x0101010101010101

 // v1 = 0x0606060606060606

 // V2 = 0x0303030303030303

 // V3 = 0x0404040404040404

 ld4r {v0.4h,v1.4h,v2.4h,v3.4h,[x0]

 // v0 = 0x0601060106010601

 // v1 = 0x0403040304030403

 // V2 = 0xfd09fd09fd09fd09

 // v3 = 0x0c070c070c070c07

mov w8, #93

svc #0

.data

 values: .byte 1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20,

23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0, 2, 5, 9, 2, 11, 5, 14, 0,

23, 44, 21, 5, 13, 14, 15, 16

Floating-point operations and the Neon Co-Processor

Page 8-16

Permutations and Interleaving

Zip and uzp

There are several options for permuting data. The zip instruction alternatively fetches

elements from a pair of registers, placing the result in a third register. The instruction uses two

source registers and one destination which can only accommodate half of the data. In the case

of 128-bit Q registers, two destination registers are required to interleave all of the

elements.This is achieved by performing two zip instructions. The zip instruction uses two

forms – zip1 and zip2. The first form zip1 stores the low order bytes (bytes0:byte7) into a

destination register and the second form zip2 stores the high order bytes (byte15:byte8) into a

second destination register.

This is shown in Figure 8-5.

The counterpart of zip is uzp to perform the opposite task with the instruction uzp1working on

the low order and uzp2 working on the high order. Listing 8-8 gives an example. The bytes have

consecutive values making for easy interpretation during the interleaving process.

Reversing elements

The reverse (rev) instruction preserves the order of the elements but reverses the byte order.

Examples of word and half word reversals are shown in Figure 8-6.

Extraction of elements extracts a number of elements from one register with the balance

coming from another register. The combination is then placed in a destination register

Extraction of elements is accomplished with the ext command.Listing 8-8 gives an example

where the instruction extracts the top ten bytes from v0, writing them to the bottom ten bytes

of v9 and then writes the lower six bytes from v1 to the remaining high order six bytes of v9.

The xtn instruction (extend and narrow) takes the lower 32 bits of each half of V0 and stores

them in a destination register.

The xtn2 instruction takes the upper 32 bits of each half of a register and stores them in a

destination register.

Floating-point operations and the Neon Co-Processor

Page 8-17

Figure 8-5 Use of zip instruction

Transposition

Transposing elements takes an odd numbered elements (bytes) from two registers placing

them in sequence to a third destination register. An example of the syntax is:

trn1 v12.16b, V0.16b, v1.16b

 The counterpart to trn1 is trn2 which takes the even numbered elements (words) from two

registers placing them in sequence to a third destination register.

Floating-point operations and the Neon Co-Processor

Page 8-18

Figure 8-6 Rev instruction

Lookup

The final permutation instruction looked at is tbl which uses a vector register to hold lookup

values which index into a group of registers that hold the data which will be sent to a

destination register. An example of the syntax is:

 tbl v17.16b, {v0.16b,v1.16b},v16.16b

Figure 8-7 shows an example of a lookup,

Figure 8-7 Use of a lookup table to change less structured element lists

Floating-point operations and the Neon Co-Processor

Page 8-19

Listing 8-8 Interleaving data from the vector registers

// listing 8-8

// Vector register permutations

 .text

 .global _start

 _start:

 ldr x0,=avalues // Set x0 to point at the 16 bytes in memory location

(avalues)

 ldr x1,=bvalues // Set x1 to point at the 16 bytes in memory location

(bvalues)

 ldr x2,=lookupvalues

 ld1 {v0.2d},[x0]

 ld1 {v1.2d},[x1] ld1 {v16.2d},[x2]

 // q0 = 0x100f0e0d0c0b0a09 0807060504030201

 // q1 = 0x201f1e1d1c1b1a19 1817161514131211

 // q2 = 0x060d0c0f0b1f0a08 13070e0014020401

 zip1 v2.16b, v0.16b, v1.16b // q2 now has interleaved low order bytes

from q0 and q1

 // q2 = 0x1808170716061505 1404130312021101

 zip2 v3.16b, v0.16b, v1.16b // q3 now has interleaved high order bytes

from q0 and q1

 // q3 = 0x20101fof1e0e1d0d 1c0c1b0b1a0a1009

 zip1 v4.16b, v1.16b, v0.16b // Change order of source registers

 // q4 = 0x0818071706160515 0414031302120111

 uzp1 v5.16b, v2.16b, v3.16b //Unscramble low order bytes, result in q5

 uzp2 v6.16b, v2.16b, v3.16b //Unscramble high order bytes, result in q6

 // Long-winded way of copying q0 to q5 and q1 to q6

 rev32 v7.16b, v5.16b // reverses bytes within each word element

 rev16 v8.16b, v6.16b // reverses bytes within each halfword element

Floating-point operations and the Neon Co-Processor

Page 8-20

 // Extraction

 ext v9.16b, v0.16b, v1.16b, #6

 // Extracts top 10 bytes from v0, writing them to bottom 10 bytes of v9

and writes the lower 6 bytes from v1 to the remaining high order bytes of v9

 // v9 now contains 0x161514131211100f0e0d0c0b0a090807

 xtn v10.2s, v0.2d // Extend and narrow takes the lower 32 bits of each

half of V0 and stores them in v10 giving 0x0c0b0a0904030201

 // v10 contains 0x0c0b0a09 04030201

 xtn2 v10.8h, v0.4s

 /* Takes the upper 32 bits of each half of V0 and stores them in v10

giving 0x100f0e0d0b0a090807060504030201;

 since the previous instruction wrote to the lower half already and the

instruction does not affect the other bits*/

 // Transposition

 trn1 v12.16b, V0.16b, v1.16b // Takes the odd numbered elements (bytes)

from v0 and v1 placing them in sequence to V12

 // V12 contains 0x1f0f1d0d1b0b19091707150513031101

 trn2 v13.4s, v0.4s, v1.4s // Takes the even numbered elements (words)

from v0 and v1 placing them in sequence to V13

 // V13 now contains 0x201f1e1d100f0e0d1817161508070605

 // Lookup Tables

 // tbl uses a vector register to hold lookup values which index into a

group of registers that hold the data which will be sent to a destination register

 tbl v17.16b, {v0.16b,v1.16b},v16.16b

 V17 now contains 070e0d100c200b0914080f0115030502

 mov w8, #93

 svc #0

Floating-point operations and the Neon Co-Processor

Page 8-21

Summary of chapter 8

• SIMD

• Layout of the vector registers

• Floating-point operations

• Scalar and vector operations

• Permutations and interleaving

Floating-point operations and the Neon Co-Processor

Page 8-22

Exercises for chapter8

1. Generate a program to multiply 4 floating point numbers together using SIMD instructions

2. Explain the difference between scalar and vector values

3. Is the instruction add v0.8s, v0.8s, v1.8s valid? Explain your answer

4. (Advanced) Generate the inverse of a three by three matrix, using single precision floats,

then multiply the result by the original matrix, comment on the answer

5. Explain the action of the rev instruction.

Cross- Compiling

Page 9-1

Chapter 9. Cross Compilation
Cross compiling32 allows development of programs on machines with a different architecture.

In this section cross compilation will be performed on a Linux machine running Debian –

uname -a

Linux debian1 6.1.0-26-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.112-1 (2024-09-30)

x86_64 GNU/Linux

Start by following the steps listed below

Step 9-1. Install the necessary tools

sudo apt install gcc make gcc-aarch64-linux-gnu binutils-aarch64-linux-gnu

[sudo] password for alan:

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

gcc is already the newest version (4:12.2.0-3).

gcc set to manually installed.

make is already the newest version (4.3-4.1).

make set to manually installed.

The following additional packages will be installed:

 cpp-12-aarch64-linux-gnu cpp-aarch64-linux-gnu gcc-12-aarch64-linux-gnu

 gcc-12-aarch64-linux-gnu-base gcc-12-cross-base libasan8-arm64-cross

 libatomic1-arm64-cross libc6-arm64-cross libc6-dev-arm64-cross

 libgcc-12-dev-arm64-cross libgcc-s1-arm64-cross libgomp1-arm64-cross

 libhwasan0-arm64-cross libitm1-arm64-cross liblsan0-arm64-cross

. . .

32 The following link may be helpful Cross-compiler | Arm Learning Paths
https://learn.arm.com/install-guides/gcc/cross/)

https://learn.arm.com/install-guides/gcc/cross/

Cross- Compiling

Page 9-2

Step 9-2. Create helloworld.c file

cat helloworld.c

#include <stdio.h>

int main()

{

 printf("Hello World");

 return 0;

}

Step 9-3. Compile the program using the ARM64 gcc compiler

aarch64-linux-gnu-gcc helloworld.c -o helloworld-arm6433

Step 9-4. Execute the program

$./helloworld-arm64

bash: ./helloworld-arm64: cannot execute binary file: Exec format error

This is to be expected as the ARM64 program is running on X86 architecture!

Step 9-5. Check the file format

file helloworld-arm64

helloworld-arm64: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux-aarch64.so.1,

BuildID[sha1]=7d70ff2387ca56fe82e50f708c75aa3f47209127, for GNU/Linux 3.7.0, not

stripped

The output of the file command indicates that the executable is ARM aarch64.

Step 9-6. Verify that the program runs correctly by transferring it (if available) to an

ARM64 based system

 scp helloworld-arm64 pi5b:/home/alan/asm

alan@pi5b's password:

33 Appending -static to the compilation string will invoke static linking and may help since it

includes the necessary dependencies.

Cross- Compiling

Page 9-3

helloworld-arm64 100% 69KB

4.0MB/s 00:00

ssh pi5b

alan@pi5b's password:

Linux pi5b 6.6.31+rpt-rpi-2712 #1 SMP PREEMPT Debian 1:6.6.31-1+rpt1 (2024-05-29)

aarch64

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Mon Oct 14 15:01:08 2024

alan@pi5b:~ $ cd asm

alan@pi5b:~/asm $ chmod +x helloworld-arm64

alan@pi5b:~/asm $./helloworld-arm64

Hello Worldalan@pi5b:~/asm $

Cross compiling assembly code

Create the assembly file below:

.global main

main: mov x3, #0xf0f0f0f0f0f0f0f0

 mov w4, w3 // Read from w3

 mov w3, w4 // Write to w3

 svc 0

Assemble it with -

aarch64-linux-gnu-as -g -o showregister.o showregister.s

aarch64-linux-gnu-gcc -static -o showregister showregister.o

Copy the file to an ARM64 system.

scp showregister pi5b:/home/alan/asm

The program should now run with GDB as shown in Figure 9-1

Cross- Compiling

Page 9-4

Figure 9-1 Running a cross-compiled program with GDB

The QEMU emulator supports ARM64 based virtual machines on X86 architectures. For further

information consult qemu.com or the many resources found on the Internet. The Ubuntu

documentation describes this and can be found at
https://documentation.ubuntu.com/server/how-to/virtualisation/arm64-vms-on-qemu/

Cross- Compiling

Page 9-5

Summary of chapter 9

• Cross compilation tools

• Testing and executing

• QEMU Virtualization

Cross- Compiling

Page 9-6

Exercises for chapter 9

1. Using an X86 based platform, install the necessary tools to cross compile an ARM64

based program and then verify that ARM64 code runs successfully on an ARM64 platform

2. Generate an ARM based VM running on X86 under QEMU.

Index

Index

%%, 7-3

%c, 7-3

%d, 7-3

%e, 7-3

%f, 7-3

%s, 7-3

%u, 7-3

%x, 7-3

%X, 7-3

(PSTATE, 2-5

.data, 2-17

.endm, 6-1

.global, 2-7

.include, 6-3

.macro, 6-1

.space, 3-10

_start label, 2-7

32-bit WZR, 2-4

64-bit XZR, 2-4

6800, 2-1

8080, 2-1

a Rapid Application Development, 1-1

Acorn, 2-1

Acorn computers, 2-1

ADC, 4-13

ADCS, 4-13

ADD., 4-1

addressing modes, 3-1

ADDS, 4-10

AND, 1-22

ANDS, 4-41

A-Profile, 2-2

architecture, 2-3

Arithmetic Shift Right, 4-29

ARM Procedure Call Standard (PCS, 6-7

ARM64, 2-1

ARM64 Data Types, 4-1

ASCII, 3-2

asm, 7-3

assemble, 1-2

assembler directive, 2-7

assembler template, 7-4

B.CC/ B.LO, 5-4

B.CS/B.HS, 5-4

B.EQ, 5-4

B.GE, 5-4

B.GT, 5-4

B.HI, 5-4

B.LE, 5-4

B.LS, 5-4

B.LT, 5-4

B.MI, 5-4

Index

Index

B.NE, 5-4

B.PL, 5-4

B.VC, 5-4

B.VS, 5-4

Basic ASM, 7-3

BBC Micro, 2-1

BFI, 4-42

BFM, 4-42

BGT, 5-2

biased exponent, 1-19

BIC, 4-42

binary, 1-4

Binary Coded Decimal, 1-15

bit, 1-4

bitmask, 4-32

Boolean variables, 1-23

Branch with link (BL), 6-7

British Broadcasting Corporation, 2-1

Byte, 1-4

call/return, 2-7

callee, 6-6

caller, 6-6

Carry (C), 2-5

cmp, 5-3

compilers, 1-2

coprocessor. See Neon

CPSR, 4-10

DAIF, 2-5

Debian, 9-1

debugger, 2-8, 3-5

Disassembly, 2-12, 2-14, 2-17, 3-5, 3-8, 3-

13, 4-1, 4-2, 4-17, 4-19, 4-20, 4-21, 4-22, 4-

25, 4-26, 4-27, 4-30, 4-37, 4-40, 4-43, 5-2,
6-2

double-dabble, 1-16

Doubleword, 4-1

exception levels, 2-5

executable, 2-8

exit service call, 2-17

exit system call, 2-7

exponent, 1-18

ext, 8-16

Extended ASM, 7-3

external, 7-2

Firmware, 1-3

flags, 2-5

floating -point, 1-18

floats, 8-4

Fractions, 1-7

frame pointer register, 6-7

functions, 6-1

gcc -save-temps, 7-5

GDB, 3-1

GDB TUI, 3-17

gdbfrontend, 3-18

gdbgui, 3-17

Halfword, 4-1

Index

Index

hardware, 1-3

hexadecimal, 1-4

IBM personal computer, 2-1

IEEE 754, 8-1

immediate value, 3-6

immr, 4-34

imms, 4-34

infinity, 1-19

info vector, 8-2

instructions, 2-6

Intel, 2-1

lanes, 8-4

Last in First out, 6-4

ld1, 8-9

ld2, 8-9

ld3, 8-9

ld4, 8-9

LDR, 3-6

ldur x4, [x1, #4], 3-9

libraries, 6-6

link, 2-8

link register, 2-4, 6-7

linked, 1-2

linker, 1-2

little-endian, 3-4

Load and store, 3-1

Logical Shift Left, 4-29

Logical Shift Right, 4-29

machine code, 1-1

macros, 6-1

make utility, 2-18

makefile, 2-18

mantissa, 1-18

memory address, 2-6

micro-architecture, 2-3

MNEG, 4-26

mnemonic, 1-1

Motorola, 2-1

mov, 2-7

MOVK, 2-14

MOVN, 2-15

MOVZ, 2-13

M-Profile, 2-2

MRS, 5-3

MSUB, 4-26

MUL

MADD, 4-16

Negative (N), 2-5

Neon, 8-4

nested operations, 6-5

nibbles, 1-15

normalized, 1-21

-nostartfiles, 7-8

NOT, 1-23

Not-a-Number, 1-19

objdump, 2-13

Index

Index

object code, 2-8

object file, 2-18

Offset. See Addressing Mode

Opcode, 2-13

OR, 1-23

ORN, 4-41

ORR, 4-36

Overflow (V), 2-5

packed BCD, 1-15

Post-index. See Addressing Mode

Pre-indexed. See Addressing Mode

printf, 7-2

privileged instructions, 2-7

program counter, 2-4

Program Counter, 6-6

program counter relative addressing, 3-8

Push and Pop, 6-4

QEMU, 9-4

Quadword, 4-1

Raspberry Pi, 1-1, 2-2

RISC, 2-1

Rotate Right, 4-29

rounding, 1-18

R-Profile, 2-2

Saved Program Status Register, 2-5

scalar, 8-5

SDIV, 4-28

set theory, 1-23

shift, 1-14

shift/rotate, 4-29

shifted offset, 2-14

signed, 1-9

significand, 1-18

Simple. See Addressing Mode

SMULH, 4-22

SMULL, 4-21

source file, 2-18

stack, 6-4

stack pointer, 6-4

stdout, 2-17

str, 3-11

strace, 2-19

STRB, 5-8

SUB, 4-15

SUBS, 5-3

subtrahend, 1-12

SXTB, 4-5

SXTH, 4-7

SXTW, 4-5

syscalls, 2-7

target file, 2-18

tbl, 8-18

trn1, 8-17

trn2, 8-17

tui reg float, 8-2

Two’s complement, 1-12

Index

Index

UDIV, 4-28

umaddl, 4-21

UMULH, 4-22

UMULL, 4-21

unsigned, 1-8

using register indirect with offset

addressing, 3-9

UXTH, 4-6

UXTW, 4-5

uzp1, 8-16

uzp2, 8-16

vector registers, 7-8

Word, 4-1

write syscall, 2-17

XOR, 1-23

Z-80, 2-1

Zero (Z), 2-5

Zilog, 2-1

zip1, 8-16

zip2, 8-16

