ARM64 Assembly Language and

Architecture

November 1st, 2024

Alan Johnson

Copyright © 2024 Alan Johnson. All rights reserved.

Published by xelsys

Disclaimer

The information provided in this book is for general informational purposes only. While the
author has made every effort to ensure the accuracy of the information, this book is not
guaranteed to be completely error-free. The author assumes no responsibility for errors or
omissions, or for any damages that may result from the use of the information contained

herein.

Product names, logos, brands, and other trademarks featured or referred to within this book

are the property of their respective trademark holders.

These trademark holders are not affiliated with the author or any of the author's
representatives. They do not sponsor or endorse the contents, materials, or processes

discussed within this book.

Feedback is greatly encouraged and will be acknowledged (if desired by the contributor) in

future editions.

Send comments to arm64bookfeedback@duck.com

mailto:arm64bookfeedback@duck.com

Contents

Chapter 1. The fUNAAMENTALS.couivniiiei e ettt et s e e sasaneansaneanens 1-1
What is assemMbLly langUAZE?...cuu ettt te et eaee e e s tseeeasassansansanssnens 1-1
Why USE @SSEIMDBLY? .eeiiiiiiiiii et e et s et s e e e e e s eanseeneaansannsannanns 1-2

Hardware Vs SOftWare VS FIFMWAEIEcoeuuieiuuiieiiiieiii et et eetie s et e eenesetaeeeenes 1-3
NTU 0] o =T)Y (= o o - PRI 1-3
Binary, Octal, HEXAAECIMALceueeeeieiieieee ettt et e ee e e e e e e s saea st s e ans 1-4
Converting Hexadecimal to Decimal......cue e e 1-7
Converting Decimal to HEXadECiIimaAl.........c..eueieniiiiiiiiiiiieieie ettt e e eaesasasaaaans 1-7
Y[F= | VA o €= ot 4 [0 4 1< J T PP PRPRPROt 1-7
One and TWO’S COMPLEIMIENTcvuniieiiieiie ittt e eee e et e e s e s e s e saasaansannsannaannns 1-8
Addition and subtraction Oof biNAry NUMBEISeeiiiieuiieeiiieieieeiiieeieeeene e reereeenans 1-10
Shift/ Rotate instructions to perform multiply and divide operationsccccceeuveuneenn. 114
Binary Coded Decimal (BCD) ...uuiiuiiiiiiiiiiiii ittt et et seeeeee e sasansansaneanaanns 1-15
Converting Binary Coded Decimalto Decimal.......ccveuvieiieiieiiriiriiiiiniieieeeeeeeeeeeennns 1-15
BCD addition ...ccuuuiiiiiiiiiiiiiiiiiii i e 1-15
Conversion from Hex/Pure Binary to BCDcvniiniiiii e 1-16
FLOAEING POINT ...t ettt ettt et et st e e e et et st st san st esnsenassnssnssnsensensensanennns 1-18

2T = ToT=To =N o T =Y o 1 = RN 119
NOIMALZE .c..iiiiiiiiiiii e 1-21
Logic operations —and, OR, EXClusive OR, NOT........cceuiiuiiiiiiiiiiiiiiieieeeee e eaeeaeanns 1-22
SUMMAIY OF CRAPTEE T ettt e ettt re st st st s ensaassnssnssansansansansanns 1-25
EXErCiSes fOr ChaAPTEIT oueeiin ittt et et et s e s e s ensensennsansansansnnsennanns 1-26
Chapter 2. =T au T 7= 1 (= To B TR 2-1
Origin OF ARM L.ttt ettt e ettt e et tea e s e e tea e e e e teaa e e eteea e s eeeanaeeeeans 2-1
Choosing a candidate platforMmi.....e et et e e e eesesensanaanns 2-2

LY (o] 11 (=T o (U = PP 2-3

ARMBZ REGISTEIS .ceuiieiiiiiii ittt ettt et et et et et et et et e e e e eaneens 2-3

PSTATE and EXCEPLION LEVELS .. cuvniiniiiiii ettt et et et e e e easansaneaneanaens 2-5

A Slight change of NOtatioN!ce i e e e ea e e e e e e eas 2-6
ASSEMDBLNG @Nd LINKING ..ccuniiiiiiiiiiii ettt eens 2-6
Moving 32-bit and 64-bit immediate valuescc.ccoouiiiiiiiiiiiiiiiii e, 2-14
DiSPLaYiING OUEDUL ..c..cunieeieiiiiiiie ittt e tete e eaeeaesansansansanssnssussessensensansansenstans 2-16
IMBKE ..ottt et ettt e et ettt et e e e e eaeasa et et anns 2-18
USING STIACE .. eeiiiiii ettt ettt et et ettt et et et et et e e san e b eeneennsenns 2-19
SUMMIATY Of ChaAPTEI 2 ..o e et e e e e e e e sas e s e sansansansanaannnn 2-20
EXEICISES fOr CRAPTEI 2.u ittt et et et s e st e e easansansansansanannns 2-21
Chapter 3. Dealing With MEMIOIYcuneenieieeiieie et eeeee et et s ee e e eneseesansensensensannan 3-1
Load and Store INSTFUCTIONS «.cuuieeiiiiiiiie ettt et ettt et et et et et eeneene e 3-1
LOAD Instructions (Memory = ReZISTEIS)....uiiiiiiuieiiiiiiieeeeiiiieeeeeeteeeeeerieeeeseereeeeersneeeans 3-1
Store INStructions (REZISTErs = MEMOIY) ..iiiivieeeeeiiiieeeeeiiieeeeeereeeerearieeererrieeeererneeeesenes 3-9
AdAreSSING MOUES ..euivniiniiniiiiieiieiitie et e e te e ea et eeereerenrtnsensanssnsssssensensensensensennes 3-13
Enhancements to GDBcc.iiiiiiiiiiiiiiiiiii e 3-16
SUMMIATY Of ChaPTer B .o e e et et e e e e e et e eaesansansansansanaannns 3-19
EXErCises fOr ChapTer3in it ettt et e et e e et s e sansansansaneanaanns 3-20
Chapter 4. Arithmetic operations (FirSt Pass) ...cceuieieiiiiiiiie e 4-1
Add INSTIUCTION . ..uiiiiiiiiiii it s e ra e s s enaaes 41
ADDS INSTIUCTION. ..tiiiiiiiiiiii ittt ettt et s et e te s een s e taa e eenes 4-10
ES] 6 PP PPPRPRPPIN 415
MUL Instruction and variantsccceeviiiiiiiiiiiiiiiii et 4-16
[0 07T (o TP P PP PPRRN 4-16
UMULL @NA SMULL .ttt ettt et ettt e et e e e et s e e eene e eeeenaans 4-21
MSUB @NA MNEGconiiiiiiiiieieiee ettt ettt e et s e et s s e e een s eerena s e erenaens 4-26
DIVISION cettiiiiiiii it e e e e e b e e aa e 4-28

S aThif= [Tl a{o] €= (= N 4-29

Logic Operations — AND/OR/EOR ... cuiiiiiiiiiiiiieiieie et et st e ee e easansansensanaannan 4-32
SUMMAIY OF ChAPTEI 4 ..t ee et e e ee e e s e s e easassansensansansannnn 4-44
EXErcises fOr ChApIErd ettt ettt et e e ee e e e e et e e enns 4-45

Chapter 5. Loops, Branches and ConditionNsveeiiieiiiiiiiiiiiiiie e eeeeen 5-1

L= (T l e To] o} PP PR RN 5-5

SUMMArY Of ChAPTEI B ettt et et e te et e e e e san et asassesnes 5-13
Chapter 6. The Stack, Macros and FUNCTIONSuiiiiiiiiiieiie et ee e e eae e 6-1

Macros and FUNCHIONSiiiiiiiiiiiii ittt ettt e e s eaaaeees 6-1
THE STACK eevniiiii ittt et ettt e et et s e e e tan s eane s 6-4

LiNK REGISTEN . e st e e st s e s e s e s e s e s ensenane 6-7
SUMMANY OF ChAPTEI B ..ttt e e et st e e e eaeeeesensenseneannan 6-15

Chapter 7. Calling assembly functions from a high-level languageccccceeveiveiiniennnnne. 7-1

USING IN-LNE COUR ..iniiiiiiiiiii ittt et et e eeete et sansansansaneaneensensensansansanssnenes 7-3

10 aa]a g F=T) ied g F=] o) (=T C 7-11
Chapter 8. Floating Point and Neon COpPrOCESSOr ..c.iuiiuriuieieiirenrireeeneeneeeeererenrennens 8-1
NI=To] s W@ o] food Y1 o | S T RPRRN 8-4

Lanes and data PlaCemMENTiiuiiiiiiiie et ete et e e e e e e e et et e a e e e e e e aas 8-9
Permutations and INtErleaVving........cue i ieieii ittt e ee e e eneneeensansensensanns 8-16

1 =T 1= o Yo 1=7 14 o o 8-17
SUMMIANY OFf ChaPTEr 8 ..o e et e e e e e e e e e eaesansansansanaanaannns 8-21
EXErciSes fOr ChAPIEI8euiniiniiiiiie ettt st s e st s e ensasansansansansennanns 8-22

Chapter 9. CroSS ComMPIlatioN cu.iuie ittt et e eneeneeansaeensansensensennan 9-1

Cross compiling asSEMbBLY COAE ..ouuiuiiiiiii e e et e e e s e aaas 9-3
18] aal aa =T o) il el aF=] o] =1 gL PR 9-5
EXErCiSes fOr ChaPEr O..een ittt et et et st s e s e eaenesnesensansenssnssnnnn 9-6

Vi

Figures

Figure 1-1Converting Decimal to binary using repeated division by 210 ...ceuvevviniiininniiniiniinnennen 1-6
Figure 1-2 Converting Decimal to binary using repeated diviSion by 1610 ...vevveuriniiniienieninnnennen 1-7
Figure 1-3 Using shift operations to multiply and divide by tWoccoviiiiiiiiiiiiiiiiiniinennen. 114
Figure 1-4 Interpretation of Bias with floating pointccccoiiiiiiiii e, 1-20
Figure 1-5 Addition of two floating poiNt NUMDBEIS ...c.ivuiiiiiiiiie e e eaens 1-22
FIUIE 2-1 BB MICIO ceuiiuiiiiiiiiii ittt tiie ettt ettt et st etneeneussensansensenstnssnssnssessessesesnssssesernnes 2-1
Figure 2-2 Floating Point and Vector REGISTErsc..viuiiiiiiniiii et 2-4
Figure 2-3 Format of MOVZ INSTIUCTION c...ieeiiiiiiii ettt ettt et eeae e 2-13
Figure 2-4 Format of MOVK INSTIUCTION c...iuiiniiii et eaeasa s e e e eas 2-15
Figure 3-1 GDB USING TUI c..eneiiiiieeiie ettt e bt e et e et s e erenae e e erennees 3-17
FIBUIE 3-2 GDBGUI ..c.ueiiiiiiiieiiiee ettt et s e st s e et s e e etaae s s e eeea s eeaenaeseanenaens 3-18
FigUIE 3-3 GDB FrONTENG ...c..cuneeieiieei ettt e e et e e e eeneens 3-18
Figure 4-1 64-bit multiplication (verified by hand).....c.ccoiiviiiiiiiiiirrr e 4-25
Figure 4-2 Format of AND (immediate) iNSTrUCtioNcivviiiiiiiiiiiiii e 4-32
Figure 4-3 Examples of Logical immediate Valuesceuviuinieieiiiiiniiiriiniieeeeee e eeeeeennens 4-34
Figure 6-1 Stack memory contents after stp x3, x4, [sp, #-16]! instructionccceeeeviinnnnn. 6-5
Figure 6-2 Stack contents with nested OperationS.......ccccviiiiiiiiiiiiiiiieiee e eaes 6-6
Figure 6-3 Memory locations for the cube program and theirvaluesccoeeeevieieniirennenns 6-8
Figure 8-1V RegISTEI LaYOUL....ceu ittt et ee et st et et e e enssneenesensensensennan 8-1
Figure 8-2 Vector registers lane distribUtioN.......ccociiiiiiiiiiiie e e 8-5
Figure 8-3 Four lane 128-bit floating-point addition........ccccieiiiiiiiiii e 8-6
Figure 8-4 Layout of immediate data bits in the moviinstructionc..ccoeeiiiiiiiiiiiinninnneen. 8-7
Figure 8-5Use Of ZIp INSTIUCTION ceuvuiiniie ettt r e st e e e e eaesaesansaneannans 8-17
Figure 8-6 ReV INSIITUCTION c..cuie i et e e e e s e e sa e s e ansanenaanas 8-18
Figure 8-7 Use of a lookup table to change less structured element lists.......cccceevievininnannns. 8-18
Figure 9-1 Running a cross-compiled program with GDBcccouiiiiiiiiiiiiiniirir e eeeeeenes 9-4

Vii

Listings

Listing 2-1 UsSiNg the MOV INSTIUCTION ..iuiuii ettt ee e e eaeaesansansanaannan 2-7
Listing 2-2 Using the mMOoVK INSTIUCTION «...cueiieiiiiiiii e 2-14
Listing 2-3 Using the MOVN iNSTrUCTION ..cc.uuiiiiiiiiiiiiiiiiiii ettt ettt e eea e 2-15
Listing 2-4 Displaying output with the Write SySCallccviuiiuiiiiiiiiiiiiiiiiiirir e 2-16
LiStiNg 3-1 StriNgG PriNTiNg.cuu e e iiiiiiiiiieiie et ettt et e te e ereeteeensensenstnstnssnssessessesesnssnseseenns 3-2
LiSTiNG 3-2 STr @XAMIPLE .. ettt ettt et et et et et et et st e e e e e 3-10
Listing 3-3 AddresSSiNg MOUEScuuiiieiieiiiiie ettt ettt et et et st et et et e e eene e 3-14
Listing 4-1Add (EXteNded REGISTEN) ..cuivuiiuiiiiiiiiieiii e etee et e e e et saeeansansansanasnnan 4-1
Listing 4-2 Add (IMMEAIATE) ..ivniiniiiiiiiiiie e eeeee et st e e e e e e e e sasansansansansenasnns 4-2
Listing 4-3 Add immediate with a left Shift ..o, 4-3
Listing 4-4 Add with a left shifted register... ..o e, 4-4
Listing 4-5 UXTB byte OPerationcuiiuiiiiiiiiiiiie ittt et st e eeee s sansansansansnnasnns 4-5
Listing 4-6 Add extended using UXTB on a halfword value.........ccccueiiiiiiiiiiiiniiiiinic e ciceeeenns 4-6
Listing 4-7 Add extended using UXTH on a halfword valuecccoeeeiiiiiiiiiiiiiiiieeeenneen. 4-6
Listing 4-8 Add extended using SXTH on a negative NUMbEr.......ccccciviiiiiiiiiiiiiiie e, 4-7
Listing 4-9 Add extended using SXTH on a positive NUMDEr.......cciviiiiiiiiiiiiiiieeie e eieeieeeeans 4-8
Listing 4-10 Add extended SXTW with a 4-place shift........cooiiiiiiiiiiii e, 4-9
Listing 4-11 Leaving condition flags unchanged with the add instruction.c...cc......... 4-10
Listing 4-12 Setting the negative flag using the adds instruction..........ccccoveviiiiiiiiniinnnnn.n. 4-11
Listing 4-13 Setting the overflow flag using the adds instruction..........ccccoeevviiiiiiiiiiiniinnnnn.n. 412
Listing 4-14 Effect of ADCS, ADC and add inStruCtioNSceuevieiiiiiiiiiriieieiie e eeeeneees 413
Listing 4-15 SUB (eXtended reZISEI) v.vuiiuiiiiiiiiiiiiiiiriie ettt et et et et e eeeeeesarensensennens 4-15
Listing 4-16 SUB (immediate iNSTrUCTION) ... cveiiniiiiiiiiiiiie et e e e e e e e 4-16
Listing 4-17 madd INSTrUCTION ..u.ieii it e e e e e e s e ea e eananaanas 417
Listing 4-18 MUL INStIUCTION ..cvuiitiiiiiiieie ettt ettt e et et eeeeee et eensensensensnssansensensensennens 4-18

viii

Listing 4-19 Using madd to multiply two 32-bit numbers.......ccccoiiiiiiiiiiiiie e, 4-20

Listing 4-20 Unsigned MULIPLY LONE «..vuniiniiiiiiiiiiiiiie et et et st e ee e sasansnnsansansannens 4-21
Listing 4-21 Signed MULLIPLY LONE ceniiniiiiiii ettt et et st s ee e saeassansansanesnnans 4-22
Listing 4-22 Multiplying two 64-bit numbers to give a 128-bit result (Unsigned)................... 4-23

Listing 4-23 Second example - Multiplying two 64-bit numbers to give a 128-bit result

(8] g3 T=1a =T) TR PP 4-24
Listing 4-24 USE Of MSUB ... cuiiiiiiiiiiiiie ettt te et eeaesesae e e s e s e eassassansansanssnsssnees 4-26
Listing 4-25 USE Of MNEG...... oo ittt et et et et et et e e e e e 4-27
LiSting 4-26 USINGUDIV ..c.uuniiiiiiieiiie ettt ettt s e et s e e eeeae s s sene s s eeaenaseeeenaens 4-28
Listing 4-27 Examples of Shift and Rotate inStructionsccciuvveeiiiiiiiiiiiniin e, 4-29
Listing 4-28 Use of the orrand ORN iNStruCtioNS c...c.ivviiiiiiiiiiie e e 4-36
Listing 4-29 Using logical immediates with and/orr inStructions........c.cccceeviiiiiiiiiiiniennnee. 4-37
Listing 4-30 Example of logical instruction with shifted register operandscccccceeuvennenn.e. 4-41
Listing 4-31 BIC and BFIIiNSTrUCTIONS ..iuuiuiiiiiii ittt e e e eansasan e e e anaans 4-42
Listing 5-1 Simple comparison and branch example......c.cceieiiiiiiiiiiiiiiiiie e 51
Listing 5-2 Using B.EQ CONAITIONiuiiniiiiiiiiii et re et st e e e e eneeeeensanseneanns 5-4
Listing 5-3 INESTEA FOr LOOP cuuiuniiiiiiiiiiiie et et et et et e e e eeeaesasansansansanasnns 5-5
Listing 5-4 Nested loops with pre-index addressing Modeccueiveiiiiiiiiiiiiiieiie e eeeieeeeenns 5-9
Listing 6-1 A SIMPLE MACKO 1 eiuieniiniiniiiirieie ettt et e ee e e eneeaeeeren st reneansanssnssnssnnsensensensennns 6-1
Listing 6-2 Separate MacCrO filecuuiiiiiiiiiiiiiii ittt e e e e e eneeesensansenaanns 6-3
Listing 6-3 Calling a macro using the include dir€Ctive........ccciueiiiiiiiiiiiiiiiiiee e eans 6-3
Listing 6-4 Push and Pop operations using strand ldr......ccceiiiiiiiiiniinir e eeees 6-4
Listing 6-5 Nested staCck OperationNS......icuiuiiiiieiiiiiiiiriie et rte et et et e eneensesensenseneenns 6-5
Listing 6-6 Main program to print out cubed NUMDBErS......c.ciuiiiiiiiiiiiiiirir e eaes 6-9
Listing 6-7 Routine to calculate cube NUMDbBErs ... 6-12
Listing 6-8 Double-Dabble routine to convert hex/binary to binary coded decimal.............. 6-12
Listing 7-1 Cube and add asSembLly COUE .. . ittt ettt te e e eeeeereeeneeneannas 71
Listing 7-2 Cube and add C COUE....uuiiuiiiiiiiiiiiiii it etir ettt et et et etneensnssnesansensensensennas 71

iX

Listing 7-3 Using inline assembly code With C........ccciuiiiiiiiiiiiiiiiiiiee e 7-4

Listing 7-4 Cube NUMDBEIS FEVISITEA .uvuiiiiiiiiiiii ettt eee et eaeaeaneansaneanaanns 7-6
Listing 7-5 Using printf to print a string from assemblyccviuiiiiiiiiiiiiiiiinir e eaes 7-8
Listing 7-6 Using printf to print NUMDEIS «...couiiiiiiiii et 7-8
Listing 7-7 Use of format SPECITIEIS. .. cuue ittt 7-9
Listing 8-1 Loading floating point values into vector registers (single precision)ccc..cceuee. 8-1
Listing 8-2 Using printf to display floating-point values.ccceiueiiiiiiiiiiiiiiiner e iveeenns 8-3
Listing 8-3 Vector move instruction eXamplesSc.viuiiiiiiiiiieiiee e ceeete et ee e 8-6
Listing 8-4 Adding sixteen bytes in parallel........ccouviniiiiiiiiiiii ettt ee e 8-8
Listing 8-5 Vector register addition and multiplication examplesS......ccocviiiiiiiiiiiniecieniiniinnnns 8-8
Listing 8-6 ld1, ld2, ld3 and ld4 non-offset eXampleS.....ccccvivieeiiniiniiniiiiir e 8-11
Listing 8-7 LdAr iNSTIUCTION .ceeuieeiiiiiiie ettt ettt et et et et et e e e e e e e e eeneee 8-15
Listing 8-8 Interleaving data from the vector registers......ocv i 8-19

Tables

Table 1-1 Binary, Decimal and Hexadecimal equivalentsSc.cccciueieiiiiiiiiiiiiininir e e 1-5
Table 1-2 Converting Binary to DeCIMaAl.....cuuiuniiiiiiiiiiiiir et ceeeee e e e e 1-5
Table 1-3 Converting decimalto DiNary........cooeiiiiiii it e 1-6
Table 1-4 Signed NnUMber represSentation. ... i it e e e e e e eeenes 1-9
Table 1-5 Signed and UNSIZNEA NUMDEIS c..iviiiiiiii it eaeeeeneaneaneanans 1-10
TabLe 1-6 Data tyYPE SIZES tiuuiuniiiiiiiiiiieiie ettt et e tete e eaeeansanstnsanstnsssssassensesesnsssseneens 1-11
Table 1-7 Double-Dabble eXampPle ...ttt ee et et e e e e e e ens 117
Table 1-8 Three digit double dabble example ..o e 1-18
Table 1-9 FLoating-Point fFOrMAtSiiiiiiii et e tre s e e sasasaesaneanaens 119
Table 1-10 BIAS within single precCiSion [EEE 754c.ovniiniiiiiiieis s 1-20
Table 1-11 Truth table - AND ... ettt et et et et et et e e e e een 1-23
Table 1-12 Truth table - OR ...oe e ettt et et et et et e e e e e 1-23
Table 1T-13 Truth table - XORcvueiiiiiiiie ittt e e e e 1-23
Table 1-14 Simple example of encoding text USING XORccuiiiiiiiiiiiiiiiiiieie e 1-23
Table 2-1 RegIiSter Width. ... e ettt et st s e et e easeesensensensannanns 2-4
Table 2-2 ARMBA FLAGS....ccuuuiieieniiee ittt ettt e et et e e e tene e e e eeene s eetana e eerenaans 2-5
Table 2-3 preferred number base NOtAtIoONiu i e e aeeaes 2-6
Table 2-4 Registers for system calls and return ValuesS......c.ceuieieieniiiiiiriiniinie e eeeenes 2-8
Table 3-1 Using GDB to display Memory CONTENTS ...c.vvuvieiiiiiieiiiiiiie i rireeee e eeeeeenreneennes 3-1
Table 3-2 Action of StrinsStruction T0 MEMOIY ..cu.iiiiiiiiiiiiiiee e e e e e e e e e ees 3-13
Table 3-3 Summary of addresSing MOAEScvuiiiiiiiiiiiiiii e e e e e e e e ees 3-14
Table 3-4 Effect of addressing modes on pointer regiStersccoviueierieniiiiiinieieieieieeeeeennens 3-16
Table 4-1 ARMBA Data TYPES wuveuienieniiniiiieiietietueeerenrerenetneeueseeseasensensensensenssnssnssassessensenssnnes 4-1
Table 4-2 EXTENA O PBIatOrS . cuu i iiiiiiiiiiiiiie ettt et e e e eeete et st st st saneanasaassassssnassnsensensenns 4-5
Table 4-3 Rotate and shift iNSTrUCTIONS .. c..ieeii i 4-29
Table 4-4 immS field EXamIPLES...c.ien ittt et et see e enseneeneeensensensanens 4-35

Xi

Table 4-5 Interpreting the imms field DitS ..o 4-36

Table 5-1 Conditional branChes........ccivvuiiiiiiiiiiiiiii e 5-4
Table 6-1 Memory locations used by the listcubes programccceeeieiiiiiiiiiiniiiiie e 6-7
Table 7-1 printf format SPECITIEIS . .uu ittt et et e eaes 7-3
Table 7-2 Inline assembly temMPLlatec. oottt et eaae 7-4
Table 7-3 In line assembly CONVEITE......c. ittt e eaeasaneaneansanns 7-6
Table 8-1 Lane division in 128-bit/ 64 bit VECTOr regiSterscuviueiiiieiiiiiiiiiin i eans 8-5
Table 8-2 Sample ldx (N0 0ffSet) INSTIUCTIONS c..cveieniiniiiiei et e e eaes 8-9
Table 8-3 [d4 inStruction REfIEld......cue ittt e e e e 8-14
Table 8-4 Bit fields of the ld4 INSTrUCTIONciuuiiiiiiiiiiii e 8-14

Xii

Fundamentals

Chapter 1. The fundamentals.

This chapter provides a foundation for the topics that will be discussed as the book progresses.

It is reasonably general, staying away from any specific architecture.

Pre-requisites are not too demanding; however, knowledge of the following areas will ease the

journey.

e Familiarity with basic computer hardware

e Microprocessor architecture
o Memory and data buses, register, ALUs, ...

e Knowledge of Linux ®
o Installation of the Operating System and applications
o Bash

e Basic knowledge of the C programming language

e High school, level mathematics, although college level is helpful for some of the

material in chapter 8.

e Aninexpensive computing device such as the Raspberry Pi.

What is assembly language?

Many high-level languages place a strong emphasis on abstraction, treating functions as
impenetrable black boxes and hiding the inner working. Assembly language takes a different
approach and allows (indeed mandates) the coder to familiarize themself with the innards of

the system.

The former method is similar to Rapid Application Development (RAD) methodology that works
well with teams whereas the second approach often includes smaller groups with specialized
knowledge. Both approaches have their place. Digital computers inherently process data in
one of two states (binary) so it is essential that we understand the low level world of one’s and

zero’s.

Processors have different architectures and they each understand their own machine code
instructions — at their very heart these instructions are combinations of binary numbers that
instruct the processor how to proceed. Binary numbers are cumbersome for human operators
and instead a set of mnemonic instructions are used. A hypothetical example could be an

instruction such as add ri, r2,r3whichwould add two numbers together that are contained

Fundamentals

in register2’ and register3, placing the result in register1 or add r1, r2, 45which could add
the value 45 to the value contained in register2, placing the result in register1. The
corresponding native machine code (again hypothetical) could be the binary code 10101100

00010010 00101100. The mnemonic instructions make up the assembly language.

The role of the assembler (program) is to convert programmer-readable assembly instructions
into the corresponding machine code instructions. The output code is termed an object file.
Conversely a disassembler converts machine code instructions back into assembly language.
The assembler has additional roles such as understanding a set of directives that can define
and place data into the computer’s memory locations. An example could be a set of error
codes defined as textual informational messages. These messages are defined by the
programmer rather than the specific processor itself. There are a number of these directives,

and they will be discussed in more detail as the document progresses.

Higher-level languages use compilers to translate to machine code. After the assembly or
compilation process the object files are linked to form an executable program. The linker may
act on individual or multiple files. High level language instructions do not normally have a one-
to-one correspondence with the underlying machine code instructions. They are designed to
be more instinctive to the programmer by providing English like keywords such as if ... then,
while, and print. High level languages can be interpretive and translated into machine code

instructions during runtime, or pre-compiled before runtime into native machine-code.

Why use assembly?

Assembly language has a direct relationship with the CPU that it is running on and as a result
the programs will be more compact and efficient. It is also more suited to system-level
programming. A disadvantage is that many lines of code may be required when compared to
high level languages and as a result a hybrid approach may be deployed where the bulk of the
code could be written using C or Python which can pass parameters to and accept return
values from a smaller section of assembly code. Portability is also an issue since the assembly

language is tightly coupled with the CPU that it is running on.

" Registers are low-capacity storage elements (typically anywhere from one to eight bytes in

size) high-speed devices contained within the processor architecture.

1-2

Fundamentals

Experienced system-level coders may wish to skip this chapter or treat it as a refresher. The
material discussed in this chapter is general and does not necessarily apply to any specific

system.

Hardware Vs Software Vs Firmware

Hardware

In computer terms hardware refers to the physical components that make up the system.

Hardware is something that can be seen and touched.

Software

Software refers to the actual instructions that are loaded into the computer’s memory. These
instructions may direct the hardware to perform certain tasks. For example, the system
software is responsible for displaying the result of an operation onto a hardware output device
such as a display screen or printer and for taking input from a device such as a keyboard. Most
users are more familiar with application software such as word processors, email,

spreadsheets, etc.

Firmware

Firmware can be thought of as a set of instructions residing in hardware. This definition has
become somewhat blurred as these instructions were originally loaded onto read only devices
(ROMs). These devices would be physically replaced when new upgrade code was required.
Over time Erasable Programmable integrated circuits (IC’s) (EPROMs) were introduced, which
as the name implies could be written over with new code. Today, non-volatile random-access
memory (NVRAM) devices are used and can often be upgraded on-line without even requiring a
reboot. This process is sometimes referred to as flashing since the underlying device is often

Flash memory.

Number Systems

Anthropologists may make a claim that we count in base 10 as this is the number of digits on

our hands. Other cultures have used base 60 and base 20 (possibly using both fingers and

Fundamentals

toes). These number systems are not as well suited to computer systems and today? base 2

and base 16 dominate when using low-level assembly programming.

Binary, Octal, Hexadecimal

Consider the base 10 number 46734, - this breaks down into:
4x10°

+

6x10?

+

7x10'

+

3x10°

= 4000 + 600 + 70 + 3 =4673

The use of ten (0-9) different characters along with their position represented a major advance

in computation when compared to systems such as the Roman counting method.

Digital electronic systems naturally gravitate towards a two-state binary system where current

either flows or it does not. These two states are represented by the symbols 0 or 1.

Each binary digit is termed a bit(b). For convenience, binary digits are often grouped into 8 bits
termed a Byte(B). Since eight bits can represent numbers ranging from 00000000 through
11111111, the decimal values translate to 0 through 255. A disadvantage of binary numbers is
that a three-digit decimal number may require an equivalent binary number up to ten binary
digits. A more compact numbering system is base 16 (hexadecimal) which treats a group of
four binary numbers as a single hexadecimal number. This means that two hexadecimal
numbers will represent a single byte®. Hexadecimal numbers use the same symbols as
decimal up to the value 9, and then use the characters A through F to represent the decimal

numbers 10 through 15. The hex number 104 corresponds to decimal number 16+,

:Base 8 - Octal was also used on many earlier computers such as Digital Equipment

Corporation’s PDP family of minicomputers.

3 A single hexadecimal number is sometimes referred to as a nibble.

1-4

Fundamentals

Table 1-1 Binary, Decimal and Hexadecimal equivalents

Binary Decimal Hexadecimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Converting Binary to Decimal

Each binary digit can be converted to decimal by multiplying its value by two raised to an index

where the index corresponds to the bit’s position.

Table 1-2 Converting Binary to Decimal

The binary number 110101, then, can be converted to decimal using the following steps.
1x2°+1x2*+0x2°+1x22+0x2"+1x2°=

Value 1 1 0 1 0 1

5 4 3 2 1 0

Multiplyby [P R SR R L

32+16+0+4+0+1

=531
Converting Decimal to Binary

The following method breaks down a decimal number into powers of two, so to convert the

number 8434, to its equivalent binary number -

1. First get the highest power of two contained in 843 which is 512 (2°).

1-5

Fundamentals

2. Subtract 512 from 843 = 331,

3. The highest power of two contained in 331 is 256 (28),
4. Subtract 256 from 331 to get 75,

5. The highest power of two contained in 75 is 64 (2°),
6. Subtract 64 from 75 to get 11,

7. The highest power of two contained in 11 is 8(2°),
8. Subtract8from11to get3,

9. The highest power of two contained in 3is 2 (27),
10. Subtract from 3 to get 1,

11. The highest power of two contained in 1is 1 (2°),
12. Subtract 1 from 1 to get 0.

Everywhere that a power of two appears, write its index as the binary value one and where it did
not appear write the binary value zero using the positional notation shown in Table 1-2.
Table 1-3 Converting decimal to binary

20 28 27 26 25 2¢ 23‘22 2" 20‘

1 /1 /01T |00 1T /|0 1 1

Another way of converting is a repeated division method. Divide the number repeatedly until
zero is reached. Take note of the remainders and put the first remainder in the left-most
position, then the second remainder into the left-most second position, repeating until all

reminders have been recorded.

Figure 1-1Converting Decimal to binary using repeated division by 210

2| 843
2| 421 Rem1
2| 210 Rem 1
2| 105 Rem 0
2| 52 Rem 1
2| 26 Rem 0
2| 13 Rem 0
2| 6 Rem1

Now write down the remainders starting from the top to get:

1101001011>.

1-6

Fundamentals

Converting Hexadecimal to Decimal

A hex number such as 5B7C+s can be converted to decimal using a power of sixteen method -
=5x16% +Bx16%, +7x16", +Cx16°
=20,480+2816+ 112+ 12

=23420

Converting Decimal to Hexadecimal

Take the number as shown, divide repeatedly by 16+, until zero is reached. Record the
remainders in base 16 format (e.g. for a remainder of 1040, record “A”). Note the remainders
and put the last remainder in the left-most position, the second from last remainder into the

left-most second position, repeating until all reminders have been recorded.

Figure 1-2 Converting Decimal to binary using repeated division by 1610

16| 23420

16| 1463 Rem C
16| 91 Rem7

Binary Fractions

The binary numbers that have been dealt with up to this point are natural number equivalents
(positive whole numbers). Positional notation is used to show the corresponding power of two
index. * Fractions can be represented in binary by moving to the left of the 2°. These values then

become 2,22, ...

Converting a binary fraction to decimal
1101.01 is equivalent to the base 10 number 13.25 since we have:

1x28+1x22+0x2'+1x2°+0x 2"+ 1x2*

4 Recall that negative indices can be resolved by changing the sign of the index and changing
the operation from division to multiplication and vice versa so that 1 /22 becomes 1x2%=4
and4x2?=4/22=16

Fundamentals

Converting a decimal fraction to binary.

Repeatedly multiply the fractional part by two until it becomes zero, taking note of the value to
the left (integer portion) of the decimal point. Accumulate the values of the integer part from

top to bottom to get the binary fractional part.

Example 0.625,

0.625x2=1.25

0.25x2=0.5

0.5x2=1.0

Stop since the value to the right of the decimal point =0
Take the integer value from top to bottom =0.101,

The next example shows a recurring fraction

Example 0.3
0.3x2=0.6
0.6x2=1.2
0.2x2=0.4
0.4x2=0.8
0.8x2=1.6
0.6x2=1.2
0.2x2=0.4
0.4x2=0.8
0.8x2=1.6
0.6x2=1.2

This highlighted value has been met before, so this is a recurring fraction with the pattern 0011
repeating - .0100110011... This means that when evaluating, a halt counter should be added.
The logic would be to end when the fractional part = 0 or when the required degree of precision

has been reached.

One and Two’s complement

An eight-bit byte can represent any one of 256 values ranging from 0 — 255+,. This is known as

unsigned notation. Another representation is to use half of the range as positive integers and

1-8

Fundamentals

the other half as negative, in this case the range is from +127° through -128. This method uses
the most significant bit to represent the sign and is known as signed notation. The number line

for an eight-bit signed number is:

-128,-127,...,0,1,2,...,127

Pl »
< »

Table 1-4 Signed number representation.
2’ 2° 2> 24 280 22 2 2°
Sign bit ‘ Magnitude Bits

Interpreting the value of a signed number is straightforward —

The procedure is to add the corresponding powers of two of each bit’s place value but leave
out the sign bit. The next step is to add in the value of the sign bit. For positive numbers it

makes no difference since the value of the sign bit is zero, but for negative numbers the value

of the sign bit is -128.
Example

o Take the positive binary number 00101100

e Add the magnitude bits together
OXx2°+1x2°+0x2*+1x22+1x22+0x2'+0x2°
=32+8+4=44

e Add inthe value of the magnitude bit (27) to get:-
0+44=44

e Forthe negative number 10011001

e Add the magnitude bits together.
Ox2°+0x2°+1x2*+1x22+0x22+0x2"+1x2°
=16+8+1=25

e Add in the value of the magnitude bit (27)to get

5Zero is treated as a positive number here

1-9

Fundamentals

-128 +25=-103

Converting from a signed number to an unsigned number is a simple operation, the procedure

is to invert the bits and then add the binary value 1.
So, to convert the positive number 63+, to negative 631,.
e Convert the number to an eight-bit binary number -
00111111
e |nvert the bits to get -
11000000 (one’s complement)
e Add1toget-
11000001 (two’s complement)
e Convert back to decimal to get:-
-128+64+1 =63

The first stage of inverting the bits - obtains the one’s complement, adding the binary digit 1 to

the one’s complement - obtains the two’s complement.

The following table shows an extract of the first few signed numbers.

Table 1-5 Signed and unsigned numbers

Signed Binary Number Decimal Equivalent

0111 1111 127
01111110 126
01111101 125
0000 0000 0
11111111 -1
11111110 -2
1000 0010 -126
1000 0001 -127
1000 0000 -128

Addition and subtraction of binary numbers
Binary Addition

To add two binary numbers together is straightforward, there are only four outcomes.

Fundamentals

e 0+0=0
o 0+1=1
o 1+0=1

e 1+1=10(0+carry)

An example of an unsigned binary addition follows-
o o0 1 0 1 1 0o 1
o 1 1 1 0 1 0 O
1 0 1 0 0 0 0o 1

Checking by adding the decimal number equivalents together —
45+ 116 =161

Consider if these numbers being added were in signed notation — here adding two positive
numbers together would result in a negative number since the sign bit of the result = 1. This is
an overflow condition since the result of 161 is clearly outside of the maximum positive
number that can be represented in sighed eight-bit binary arithmetic. This is something that
needs to be checked and there are conditions built-in to the processor architecture to detect

this kind of situation.

Larger numbers can be dealt with by using two bytes for storage, treating the second byte as
having the values 28 through 2'5. Assemblers and compilers will refer to groups of bytes by

designations such as long int, word etc. It is important to check the definitions.

One such definition is:
Table 1-6 Data type sizes

Unit Width

Doubleword 64 bits
Word 32 bits
Halfword 16 bits

Byte 8 bits

Of course, it is important to specify signed or unsigned, again a definition for an unsigned

integer in the programmer’s documentation might be referred to as uint.

Fundamentals

Binary subtraction

Binary subtraction can be dealt with using elementary rules for small numbers and then taking
into account “borrows” rather than “carrys” but using the two’s complement method described

on page 1-8 is by far the preferred method for larger numbers.
The steps for binary subtraction are:
1. Obtain the two’s complement of the subtrahend (the number that will be taken away)
2. Add this to the minuend (the number that will be subtracted from).
3. Addthe two’s complement of the subtrahend to the minuend.
4. Ifthereis a carry after the addition, then drop the carry (final result is positive)

5. Ifthere is no carry, then compute the two’s complement of the result (final result is

negative)
Taking a concrete example of subtracting 00100100 (36+o) from 00000010 (210)
e Two’s complement of the subtrahend
11011011 +1=1101 1100
e Add to the minuend
0 0 0 0 00O 1 O Minuend

171 0 1 1 1 0 0 Two’s complement of subtrahend

11 0 1 1 1 1 0
(Carry=0)
Two’s complement of the result is
00100001+1 = 00100010
Result is negative since the carry was false = -34
Another example -
e Subtract 45, from 12040
e Convert numbers to eight-bit binary
45,,=0010 1101,
1204,=0111 1000,

e Two’s complement of 00101101

Fundamentals

1101 0011

e Addto0111 1000
o 1 1 1 1 0 0 O

(carry=1)
The result is positive since carry was zero, 01001011 = 75
Binary multiplication
The rules for multiplication of two bits are
0x0=0
0x1=0
1x0=0
1x1=1

1 Note anything multiplied by zero is of course zero.
12

Example multiply binary 10 (210) by 11 (310)

1 0
1 1 X
1 0
1 0
1 1 0
=610
¥ Note this is the same as decimal multiplication where we multiply by each of the
1 digits and then add these results together.
Binary Division

The rules for division of two bits are as follows (recall that division by zero is invalid)

e 0/0invalid
e 0/1=0
e 1/0invalid
o 1/1=1

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Fundamentals

Division example
Divide 1 1011 (Dividend) by 00111 (Divisor)

Using long division -

Divide 11011 by 111

0 0011
111 1 1 0 1 1 Bringdown
Subtract 111 lthel
1101
Subtract 111
1 1 0 «<— Remainder(sinceitis

too small to be divided by 111)
Check by convertingto base 10 27/7 =3 with remainder 6
Dividend 27
Divisor 7
Quotient 3
Remainder 6

Shift/ Rotate instructions to perform multiply and divide operations

Consider an eight-bit byte 00101110 which has the decimal equivalent of 46. Next take each
bit of the byte and shift them over one place to the left, filling in the now vacant bit 0 with the
padded value 0 as shown below. Bit 7 has nowhere to go since it has no bit 8 position to

occupy. The newly vacated bit 0 position is filled with a binary zero.

By shifting all the bits to the left the original number has been multiplied by two since the bit 0

value of 2° has been moved to the 2" position, bit 1’s value of 2" has been moved to 22, etc.

) W= Note that if the original bit 7 had a value of 1 then it would have been lost giving
L’

programmer and this will be covered in a later section.

an incorrect result. This is a condition that must be checked for by the

Division by two is accomplished by shifting the bit values to the right.

Figure 1-3 Using shift operations to multiply and divide by two

bit7 bité bit5 bit4 bit3 bit2 bitl bit0
Before Shift 0 0 1 0 1 1 1 O0Basel0(46)
After Shift 0 0 1 0 1 1 1 0 O0Base10(92)
Binary bit 7 falls of the end Binary 0 shifted into bit 0 position

bit 0 = bit 1> bit 2 = bit 3 = bit4 = bit 5 2 bit6 = bit 7 2 bit0, . ..

1-14

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Fundamentals

For simplicity the registers shown are byte-wide. In reality the width is more often 32 or 64 bits.

Other rotates are possible where the shifted-out bit feeds back to the input, giving a circular

action.
Other types of shifting involves wrap around rotates where the patternis:

Bit0 2Bit1 2Bit2 2Bit3 ?Bit4 ?Bit5 2Bit6 >Bit7 2Bit0 ?Bit1...

Binary Coded Decimal (BCD)

Binary Coded Decimal represents decimal numbers in groups of bits, the encoding is normally
done in four-bit nibbles. Each bit represents a power of two weight (23, 22, 27, 2°, or 8,4,2,1).
Since four bits can represent 16 distinct numbers, and there are only ten decimal digits,
wastage occurs with this method. An alternative known as packed BCD may be used but is less

common.

Converting Binary Coded Decimal to Decimal

BCD is similar to hexadecimal except that hex characters a through are illegal. A binary

grouping of BCD characters could look like:

1001 0111 1000. Each group of 4 bits (nibbles) are read off as follows —

e 1001=9
e 0111=7
e 1000=8

This corresponds to the decimal number 978.

BCD addition

Adding is straightforward, however if the addition of two nibbles results in a value greater than
9(1010,1011,1100,1101, 1110, 1111) then itis an invalid decimal number. The resolution is to
add 6 (0110) which will bring it back to a valid number. The carry will be added to the next
nibble.

Addition examples -

1.
14+22=36=00110110
Verify by binary addition
0001 0100 (14)
00100010 (22) +
00110110 (36)

Fundamentals

2.

20 +20 = 40 = 0100 0000
0010 0000 (20)

0010 0000 (20) +

0100 0000 (40)

3.

26+25=51=0101 0001

00100110 (26)

00100101 (25)+

0100 1011 Least significant nibble is greater than 9 so add 6
00000110 + (6)

01010001 (51)

4.

121 +157 =278 =0010 0111 1000
0001 0010 0001 (121)

0001 0101 0111 (157)+
00100111 1000 (278)

5.

199 +933=1132=0001 0001 0011 0010
0001 1001 1001(199)
10010011 0011 (933)+
1010 1100 1100 (Two nibbles invalid add 01100110
000001100110 +
1011 0011 0010 Now, the most significant nibble is invalid so add 6 to it
0110 0000 0000 +

0001 0001 0011 0010 (1132) Brings in a fourth nibble!

Conversion from Hex/Pure Binary to BCD

One way of converting a hex number to BCD is to convert the hex number to decimal and then
to BCD. An alternative is to use the double-dabble method.

Double-Dabble
The double-dabble algorithm is fairly simple to implement, it consists of a series of shift®

operations and additions. Note that an n digit hex number can translate into more than n
decimal digits, (851 = 13310, FFF1s = 4095,0). The method sets up a register to hold n binary

8 Shift/Rotate operations are discussed on page 1-13.

1-16

Fundamentals

digits and partitions to hold the decimal powers of two — units, tens, hundreds, thousands, ...
The partitions are cleared to hold all zeros and then the binary digits are shifted in one bit ata
time, adjustments (addition of decimal 3) are made to the partition values dependent on their

magnitude (>4). Once all bits have been shifted’ the algorithm has completed.
An example follows:

Consider the binary number 00011011 = hex 1B = decimal 27. The steps to convert from pure

binary to BCD are shown in Table 1-7.

Table 1-7 Double-Dabble example

Hundreds Tens Units Binary Action
Partition Partition Partition Register
0000 0000 0000 00011011
0000 0000 0000 00110110 Shift left-most bit over to partitions (shift1)
0000 0000 0000 01101100 Shift left-most bit over to partitions (shift2)
0000 0000 0000 11011000 Shift left-most bit over to partitions (shift3)
0000 0000 0001 10110000 Shift left-most bit over to partitions (shift4)
0000 0000 0011 01100000 Shift left-most bit over to partitions (shift5)
0000 0000 0110 11000000 Shift left-most bit over to partitions (shift6)
0000 0000 1001 11000000 Add 3 to units, since unitis 5 or greater
0000 0001 0011 10000000 Shift left-most bit over to partitions (shift7)
0000 0010 0111 00000000 Shift left-most bit over to partitions (shift8)
Reading off the tens and unit columns gives the value 27+,.
}: Note 3 is added rather than 6 since the shift left operation multiplies by two!

A more complex 12-bit example is shown in Table 1-8.

”The number of shifts is equal to the number of binary digits

1-17

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Fundamentals

Table 1-8 Three digit double dabble example

Double Dabble Three digit Hex (200) number

12 binary digits so 12 shifts are required
L units | | Binary

00O 0

o
o

Initial State
Shift #1
Shift #2
Shift #3
Shift #4
Shift #5
Shift #6

0
0
0
0
0
0
1

O r O O o o
O O »r O O O o
O O O »r OO o

Shift #7
|p0d stounits |
1001
0010 Shift #8
0100 Shift #9
0011 0000 Add 3to tens
0100
1000 Shift #10
|Add stounits |
1011
0110 Shift #11
0011 00O0O Add 3to Tens
0110

O O O O O OO O OO0 OO0 O0OO0OOoOOoOOoOOoOOoOOoOo oo
R O O O OO O OO0 O O0OO0O0OO0ODO0OOoOO0oOOoOOoOOoOOoOoo o
O R ORFRr OFRPr OO0 OO0 O0OO0OO0O0OO0ODO0OOoOOoOOoOOoOOoOooo
R O O O OO Fr OFRr OO0 O O0OO0OO0OO0OO0OOoOOoOOoOOoOOoOooo
O O O O O OO O OO0 O0OO0ODO0OO0OO0ODOoOOoLbOoOOoOOoOOoOOoOoer oo
O O O O O O O O OO O0OO0ODO0OO0OO0ODO0OOoOOoOOoOOoOo ook o
O O O O O OO O O OO O0ODO0OO0OO0ODOOLOOOoOOouOOoOOoOOoOOo R
O O O O O O O OO O O0OO0ODO0OO0OO0ODOoOOoODOoOOoOOooo oo o
O O O O O OO O OO0 OO0 O0OO0ODOLOOLOOOoOOoOOoOOoOoOoo o
O O O O O OO O OO0 OO0 O0OO0ODO0OOLOoOOoOOoOOoOo oo
O O O O O OO O OO0 OO0 O0OO0ODO0OOLOOoOOoOOoOOoOo oo
O O O O O O O O OO0 00000000 OoOOoOOoOOoOoooo
O O O O O O O O OO O0OO0ODO0OO0OO0ODO0oOOoOOoOOoOOoOOo oo o o
O O O O O O O O OO0 O0OO0ODO0OO0OO0ODO0oOOoOOoOOoOOoOOo oo o o
O O O O O O OO OO0 O0OO0ODO0OO0OO0ODO0oOOoOOoOOoOOoOOoOo oo o
O O O O O O OO0 OO0 O0OO0ODO0OO0OO0oODO0oOOoODOoOOoOOoOoo oo o

Shift #12

|

2 200 hex = 001000000000 binary =512 decimal

Floating Point

An integer is a whole, complete and exact number such as 107 or 456. There is a limit to
magnitude within a simple unit of storage such as a register. With floating -point representation
a range of extremely large or extremely small numbers can be represented at the expense of
precision. This means that a floating-point number may be an approximation that introduces
rounding to nearest digits. There are two main parts to a floating-point number, the significand
or mantissa and the exponent. There is also provision for a sign bit. The form is significand
multiplied by the base raised to a power, an example being 3,450,000 = 345 X 10%. Here 345 is

the significand, ten is the base and four is the exponent.

There is a standard IEEE 754 (https://standards.ieee.org/ieee/754/6210/) which is a

specification for floating-point arithmetic. The standard defines Single and Double floating-

https://standards.ieee.org/ieee/754/6210/

Fundamentals

point formats®as shown in Table 1-9. There is also provision to include Not-a-Number® (NaNs)

and =Infinity.

A 32-bit single precision floating-point binary number within IEEE 754 is defined as:

Sign Bit (1 bit) Exponent (8 bits) | Significand (23 bits)

A 64-bit double precision floating-point binary number within IEEE 754 is defined as:

Sign Bit (1 bit) Exponent (11 bits) Significand (52 bits)

This is summarized in Table 1-9.

Table 1-9 Floating-Point formats

Format Bits Significand Unbiased Exponent Decimal Precision
Single 32 247°(23+1) 8 6-9 digits
Double 64 53 (52+1) 11 15-17 digits

Biased exponents

The use of a biased exponent can represent negative exponents. For single precision the
values range from decimal +127 to -126. The bias is normally given as 2"'-1 where n is the
number of exponent bits, so here we have 27-1= 127. The value of the biased exponent is the
unbiased exponent minus 127, so that an exponent of 10011011 gives a biased exponent of
(128+16+8+2+1) - 127 = 155-127 = 28.

See Table 1-10 and Figure 1-4 for more on bias.
Infinity and Not-a-number representation

A biased exponent of all ones and a significand of all zeros (-127) represents infinity. The sign

bit differentiates between negative and positive infinity.

8 Other formats are defined but they will not be discussed here.

°This could arise from operations such as divide by zero or the square root of a negative

number.

°There is an implied bit, since the normalized format is always 1.X then there is no need to

specify the “1” value to the left of the decimal point.

1-19

Fundamentals

Not-a-number is represented by the biased exponent being equal to all ones (+128)and the

significand being non-zero. The sign bitis don’t care.
Table 1-10 BIAS within single precision IEEE 754

Exponentfield

Binary Decimal |Exponent
(00000001 | 1 2126
(01111011 | 123 4
(01111100 | 124 2°

10000011 (01111101 | 125 22

10000001 (01111110 | 126 2!
(0111111147 127 | 2° |Biassetto midway point
4@% 128 [2

/ 10000001 | 129 | 2
100000010 130 [2°
b= 2""-1 =127 where number of bits is 8 | 100000011 131 r 24

Understanding bias

The diagram shown in Figure 1-4 shows how varying the bias affects the ratio of negative to
positive numbers. The bias is chosen in the standard to give similar ranges of positive and

negative exponents.

Figure 1-4 Interpretation of Bias with floating point

sanjep
aAljebaN
sanjep
aAllebaN
sanjep
annebaN

Bias Point

Bias Point

Bias Point

With double precision numbers the bias is 1023 since the unbiased component shown in Table

1-9is 11-bits wide.

1-20

Fundamentals

Normalized

A normalized number has the form 1.XXXXX... The steps are to convert the number to binary
and then perform shifts to give the desired result. Normalization shifts to the left or right

depending on where the decimal point is
Example 410.625

Steps -
1. Convert to binary (See page 1-8, if needed. for a refresher on converting decimal
fractions)
=110011010.101
2. Perform repeated shift until desired pattern us reached.
110011010.101 x 2 (shift right operation)
=11001101.0101 x2
=1100110.10101 x2
=110011.010101 x2
=11001.1010101 x2
=1100.11010101 x2
=110.011010101 x2
=11.0011010101 x2
=1.10011010101

This took a total of 8 shift operations. Add this number to 127 to get 135. Convert to binary to
get:

10000111.

From our shifts earlier we had the value 10011010101, extend this to 23 bits to get
10011010101000000000000 giving the value:

S Exponent Significand

o100001171717001101010100000O0O0O0O0O0O0OO0

=410.625

Addition of floating-point numbers
Addition is reasonably straightforward; the main concern is when the exponent differs. To
equalize the exponents, take the lower number and shift over the binary point the required

amount of positions. So, if one exponentis 136-Bias and the second is 134-Bias, the second

number needs to be shifted two places to the left.

1-21

Fundamentals

Figure 1-5 Addition of two floating point numbers

01 0 0 0 0 1 1 0 Number 1

0 1 0 0 0 0 O 1 1 Number2
Step 1. Convert exponents to decimal

134 Number 1

131 Number 2 Note the exponents differ

2. Prepend the implicit"1" to the significand

0111100001 1001110001000 0x2%" Numberl
r 131-bias
L 10 101010101010101010 10 1Xx2 Number2

Step 2 Take number 2 and left shift the binary point three places to make the exponents the same

o 0% a0 1010 40 10 10 10 10 10 10 10 1x2™

Step 3Now add number 1to the shifted number two

'1 X 2 134-bias
'0 0 '0 X 2 134-bias
. 0 0

1001 10001 00011011 10 10 10 1 X 21%4biEs

Step 4 Normalize

7. o0 1 001 10001000110 111010 1 0 1 x plssbies +—
Step 5 Rounding is necessary since there are too many digits in the significand

/

A 135-bias

i 0 0 0 1.0 01 1 0 O O1 00 0121901121 0101 0 1 X 2

Round down
Step 6 Convert exponent back to a binary number

135=10000111

Step 7 Re-assemble

Logic operations —and, OR, Exclusive OR, NOT

Logic operations are often used in decision making for example —
1. “If I feel hungry AND | have enough money, then | will order food in”.
2. “Ifitis cold ORitis raining, then | will wear a coat to go outside”.

3. “lcangeta cardiscountif | pay the total amountin cash OR a | can get a lower interest
rate if | take out a loan”.

Statement 1 is an AND condition and the decision to order food holds true if | am hungry AND |

have enough money. Both conditions must be true.

1-22

Fundamentals

Statement 2 is an OR condition and it states that | will wear a coat if either of these (or both)

conditions are true.

Statement 3 is like statement 2 except that it is an either-or situation. Statement 2 applies
equally well to both conditions in that it could be cold and also raining, and it would be similar
to the AND condition. Statement 3 exclusively applies to the OR situation and is referred to as
Exclusive OR (XOR).

These conditions are normally represented by Truth Tables such as if condition A is true AND
condition B is true then result C is true. True and false values can be conveniently mapped to

the binary values 1 and 0. These are known as Boolean variables.

Table 1-11 Truth table - AND

A B C \
False (0) | False (0) False (0)
True (1) False (0) False (0)
False (0) True (1) False (0)
True (1) | True (1) True (1)
Table 1-12 Truth table - OR
A B C
False (0) False (0) False (0)
True (1) | False (0) True (1)
False (0) True (1) True (1)
True (1) True (1) True (1)
Table 1-13 Truth table - XOR
A B C ‘
False (0) False (0) False (0)
True (1) False (0) True (1)
False (0) True (1) True (1)
True (1) | True (1) False (0)

Other logic functions exist such as NOT which inverts the value, so a binary zero becomes a
binary one. Repeating the operation, of course gets back to the original value. Boolean algebra

is a complex topic by itself —which is dealt with in set theory.

For fun - a simple encoding can be done with XOR - take the word “Plaintext”, converting this to

seven-bit ASCIl code becomes -

Table 1-14 Simple example of encoding text using XOR

1-23

Fundamentals

Text ASCIll code ASCIIcode Apply XOR function Resultant ASCIl code
string (decimal) (binary) with 10101010 letter
P 80 1010000 1111010 z

L 108 1101100 1000110

a 97 1100001 1001011 K

i 105 1101001 1000011 C

n 110 1101110 1000100 D

t 116 1110100 1011110 ~

e 101 1100101 1001111 0]

X 120 1111000 1010010 4

t 116 1110100 1011110 n

So, the encoded string “Plaintext” becomes “z.KCD"*04"”.
Of course, this is easily cracked and decoded!
The following rules show the resulting bitwise values:

e XANDO=0

e XAND1=X

e XORO0O=X

e XOR1=1

Now that the foundation is in place it is time to move from generic concepts to programming on

a specific architecture!

1-24

Fundamentals

Summary of chapter 1

Introduction to Assembly language

Number Systems

Shift Operations

Logic and Truth tables

1-25

Fundamentals

Exercises for chapter1

1.

9.

10.

1-26

Divide 10111101 by 111 using manual long division

Convert 11.110 to base 10

Covert Ox1fd to BCD

Convert 35.65 to single precision floating-point according to IEEE 754

Write pseudo code to convert lower case ASCII characters a-z to upper case ASCII

character A_Z.

Convert the signed binary byte to base10

Convert the octal number 341 to base 16

What are mnemonics?

Describe the advantages of a high-level language over assembly language

Describe the advantages of assembly language over higher level languages.

Starting out with ARM

Chapter2. Getting Started

This chapter is aimed at gaining familiarity with the ARM64 assembly language architecture.
Subsequent chapters will concentrate on low level details and focus on topics in a more
structured manner. The code snippets are short to allow for an easier grasp of the concepts

presented.

Origin of ARM

In the early 1980’s IBM introduced the IBM personal computer. Realizing that personal
computing, would soon spread to the masses, the British Broadcasting Corporation (BBC) in
the United Kingdom commissioned a company called Acorn computers to build a
microcomputer for their TV series aimed at promoting computer literacy. This system was

referred to as the BBC microcomputer.

Many UK schools adopted the computer part of this computer literacy thrust. The BBC Micro
used a 6502 microprocessor and featured BBC Basic as its default programming language.
Acorn then decided to embark on their own design, initially known as the Acorn RISC Machine.
ARM (Advanced RISC Machines) was formed in late 1990.

The design used a Reduced Instruction Set Computer (RISC) design which differed from the
Complex Instruction Set (CISC) design of other leading microprocessors such as the Z-80 from
Zilog, the 6800 from Motorola and the 8080 from Intel®'". RISC has the advantage of a simpler
design with lower power consumption making it ideal for use in embedded systems. Success
came with the 32-bit design used in Apple and Android phones. The 64-bit ARM (ARM64) was

announced in late 2011 and is the focus of this book.

Figure 2-1 BBC Micro

" Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries

21

Starting out with ARM

Currently there are three ARM architecture profiles —
o A-Profile for applications,
e R-Profile for Real-Time applications

o M-Profile for small deployments where power consumption is a primary concern,

examples are microcontrollers.

The ARM business model is to license their intellectual property to other manufacturers.

Choosing a candidate platform

The examples shown here will run quite happily on Raspberry Pi systems. Raspberry Pl models
4 and 5 are recommended although the 64-bit Raspberry Pi 3 system can be used if needed.
The recommended Operating System'? is Raspberry Pi OS (64-bit) which includes the GNU
tools that will be used.

Once the Pi'® has been set up verify -

The command below shows that the architecture is indeed ARM64 (aarch64).
uname -—a

Linux piba 6.1.0-rpi8-rpi-2712 #1 SMP PREEMPT Debian 1:6.1.73-1+rptl (2024-01-25)
aarch64 GNU/Linux

$ lscpu
Architecture: aarché64
CPU op-mode (s) : 32-bit, 64-bit
Byte Order: Little Endian
CPU(s) : 4
On-line CPU(s) list: 0-3
Vendor ID: ARM
Model name: Cortex-A76
Model: 1

12 Refer to https://www.raspberrypi.com/software/operating-systems/ for a compatibility list of
Raspberry Pi’s that can run a 64-bit O/S.

13 See https://www.raspberrypi.com/documentation/computers/getting-started.html

2-2

https://www.raspberrypi.com/software/operating-systems/

Starting out with ARM

Thread(s) per core: 1

Core(s) per cluster: 4

Socket (s) : -
Cluster(s) : 1
Stepping: rdpl

CPU(s) scaling MHz: 100%

CPU max MHz: 2400.0000

CPU min MHz: 1500.0000

BogoMIPS: 108.00

Flags: fp asimd evtstrm aes pmull shal sha2 crc32 atomics fphp

asimdhp cpuid asimdrdm lrcpc dcpop asimddp

Architecture

From an assembly language programmer’s perspective, the architecture refers to the make-up
of the system. It includes higher level areas such as memory addressing, CPU behavior,
register layout, and the instruction set. A lower level is the micro-architecture which discusses
how the instructions are executed and the interconnections (the datapath) through which the

data traverses.

ARMG64 Registers

Registers are locations that store values that are similar to variables in high-level languages.
The primary way of interfacing with the ARM64 system is via the register set. Generically they
may be referred to as Rd (destination register), Rn (first source register), Rm (second source

register).

ARM®64 provides 31 general purpose registers 0 through 30. The registers can be used as 32- bit
or 64-bit. If a register is addressed with an “x” prefix then it functions as 64-bit using bits 63
through bit O, if itis addressed with a “w” prefix then it is designated as a 32-bit register using
bits 31 through bit 0. The registers can be designated as wn or xn for any of the w and x registers
or more specifically as x4 for the fifth 64-bit general purpose register. Again, a more generic

reference is rn which does not specify whether the 32-bit or 64-bit register is used.

The 32-bit w register forms the lower half of the corresponding 64-bit x register. That is, w0

maps onto the lower word of x0, and w1 maps onto the lower word of x1.

When reading from a 32-bit w register the higher 32 bits of the x register are ignored. A write

operation however, to a 32-bit w register will set the higher 32 bits of the x register to zero.

Starting out with ARM

Register x30 is known as the link register (LR) and holds the return address of a function so it
should be used with care. The 64-bit XZR and 32-bit WZR registers will return zero when read.

Write operations will not change the value.

The program counter (PC) keeps track of program execution and is not used as a general-

purpose register. Not all registers are programmer accessible.

Table 2-1 Register width.

Figure 2-2 Floating Point and Vector Registers

BO
HO
50
DO
Qo

8 bits (Byte)

16 bits (Halfword)

32 bits (Single word)
64 bits (Double word)
128 bits (Quad word)

There are 32 additional registers used for floating point and vector operations. These registers
have a width of 128 bits, but can be addressed with 8, 16, 32, 64 or 128 bits. Like the w and x
general purpose registers a prefix is also used to determine the width. The smallest value of 8
bits is Bx up to Qx which has a width of 128 bits. These vector registers can operate on multiple

data streams in parallel and are discussed in chapter 8.

2-4

Starting out with ARM

PSTATE and Exception levels

ARM®64 defines four exception levels — ELO through EL3. Not all of these levels may be
implemented; so a system might only implement ELO and EL1. These exception levels are
privilege levels with the highest EL humber corresponding to the highest privilege level. User
code typically runs at ELO and kernel code runs at EL1. If EL2 and EL3 are implemented, they

typically are used for Hypervisor and lower-level firmware functions.

The Processor state (PSTATE) shows the current state of the processor. The PSTATE includes
flags that convey event information. These flags are single bit Boolean variables conveying True

or False conditions.
These flags are:
e Negative (N) True when signed number is negative, false if positive.
e Zero (Z) True if result such as comparison of values are equal, false if not equal.
e Carry(C) True If carry or no borrow condition occurs, shifted out bit
e Overflow (V) True if and overflow condition occurs.

1
The flags are held in a special purpose register Saved

Program Status Register (SPSR) .

31 30 29 28

These are known as condition flags and occupy bit

positions 31 through 28.
Other fields are used for exception masking (DAIF) and are:-
o Debug (D) Enable/Disable debug exceptions.
e Asynchronous (A) Enable/Disable external asynchronous events (interrupts).
¢ |RQ (/) Enable/Disable interrupt requests.
e FIQ (F) Enable/Disable fast interrupt requests. FIQ takes priority over IRQ!

To summarize:-

Table 2-2 ARM64 Flags

Name Description

N Negative condition flag.
Z. Zero condition flag

C Carry condition flag.

\') oVerflow condition flag.
D Debug mask bit.

2-5

Starting out with ARM

A SError mask bit.
| IRQ mask bit.
F FIQ mask bit.

In AArch64, the ERET instruction is used to return from an exception. The PSTATE. Flags N, Z, C,
V are accessible at Exception Level 0. Accessing the other PSTATE fields requires exception
levels higher than ELO.

For more information and bit field definitions, a good starting pointis Arm Armv8-A

Architecture Registers', specifically looking at Saved Program Status Register sections.

A Slight change of notation!

A programming note — From now on in this document the number’s base will no longer have a
subscript to differentiate them. Programmers use the more convenient shorthand Ob for binary
and Ox for hexadecimal so the byte 00110100 is written as 0b0110100, hexadecimal numbers
are written with the prefix Ox such as OxF3AD and decimal numbers are devoid of a prefix. In
addition, the abbreviation “hex” will be used for base 16 rather than the more cumbersome

term “hexadecimal”.

This is shown below:

Table 2-3 preferred number base notation
Binary Decimal Hexadecimal
0b00101111 47 Ox2F

Assembling and Linking

Prior to looking at the instruction set in depth, it is beneficial to create some program snippets
and then analyze the results. The code following does very little except for some register
manipulation, nevertheless it will provide a good introduction for technical discussion and
understanding. The ARM64 architecture uses 64 bits for the memory address and instructions
are 32 bits in length. Data is processed within the registers rather than memory directly. This
means that data must be loaded from memory into the registers and stored in memory from

the registers forming a Load and Store architecture.

4 https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en

2-6

https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en
https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en

Starting out with ARM

mov Instruction

Using the editor of your choice create and edit the file moveregisters.s with the following lines

Listing 2-1 Using the mov instruction
.global _start
_start:
.text
mov x3, OXFFFF
mov x4, x3
mov w8, 93 //ARM64 Syscall to exit

svc #0

The first line includes an assembler directive (.global) using a label _start which defines the

program’s entry point and is declared as .global allowing external access to other files. Only
one global start label should appear when multiple files are involved. Instructions starting
with “” are directives that communicate with the assembler program. The next directive . text

introduces the actual code.

The first instruction (mov)places the value FFFF (hex) into the 64-bit register x3. This is a 16-bit

value and is the largest number that can be placed into the register at any one time.

The second instruction takes the contents of the x3 register and copies it to the 64-bit register

x4. After this has been executed, register x3 and x4 will have identical contents.

The third instruction invokes the exit system call. System Calls (syscalls) are dependent on the
underlying architecture/operating system, and they specify how and where the call/return
values are to be configured. Table 2-4 below shows an extract from Linux'®. These are privileged
instructions. User-mode programs interact with system resources via an Application
Programming Interface (API). User-mode applications typically run in Exception Level zero
(ELO) and this is the lowest level of privilege. The application calls the Operating System to
perform the task on its behalf. These applications interact with the operating system’s kernel

resources by running under a higher level of privilege - Exception Level one (EL1).

'S Invoke with man syscall.

2-7

Starting out with ARM

The ARM64 architecture passes the system call via register w8.

Table 2-4 Registers for system calls and return values

The first table lists the instruction used to transition to kernel mode (which might not be the
fastest or best way to transition to the kernel, so you might have to refer to vdso(7)), the
register used to indicate the system call number, the register(s) used to return the system call
result, and the register used to signal an error.

Arch/ABI Instruction System Ret Ret Error Notes
call # val val2

alpha callsys ve ve a4 a3 1 6

arc trap® r8 re - -

arm/0ABI swi NR - re - - 2

arm/EABI swi Ox0 r7 re ri -

arm64 svc #0O w8 X0 x1

blackfin excpt Ox0 PO RO - -

1386 int $0x80 eax eax edx -

The fourth instruction is the supervisor call to trigger the system call.
The program is converted to object code by the command -
as -0 moveregisters.o moveregisters.s

The meaning of the instruction is to assemble the source file (.s) to an object file(.0) which is

the binary code.

The next step is to link and create the executable file —

1ld -o moveregisters moveregisters.o
Here the object code moveregister.s.o is linked to create the executable file moveregisters.

Finally make the code executable with the command:
chmod 777 moveregisters

Run the code with —

./moveregisters

The program has completed, but did it really do what we asked it? To find out there is a
debugging (cpB) tool which allows us to interactively display the registers and execute the
code one step at a time.

Recreate the object code but this time add the -g switch (debug) as shown —

as -g -o moveregisters.o moveregisters.s

1ld -o moveregisters moveregisters.o

Next invoke the debugger

$ gdb moveregisters

GNU gdb (Debian 13.1-3) 13.1

Copyright (C) 2023 Free Software Foundation, Inc.

2-8

Starting out with ARM

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "aarch64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...

Reading symbols from moveregisters...

List the code (l)

(gdb) 1

1 .global _start

2 _start:

3 .text

4 mov x3, OXFFFF

5 mov x4, x3

6 mov w8, 93 //RARM64 Syscall to exit
7 sve #0

Set a breakpoint to stop the program (b)
(gdb) b 1
Breakpoint 1 at 0x400078: file moveregisters.s, line 4.

Note line 4 is the first line of actual code.

Start the program (run)

(gdb) run

Starting program: /home/alan/asm/moveregisters
Breakpoint 1, start () at moveregisters.s:4

4 mov x3, OXFFFF

.html>

Starting out with ARM

The program has stopped at our first line of code, show the register contents by -

Hit (s)tep to step into the next Q%of code

Show register 3

We can see that x3 has the content 0x£££¥, hit s to execute the next line of code and show

registers 3 and 4 again.

Starting out with ARM

x4 Oxffff

65535

Register x4 now has the content ££££ and register x3 has been left untouched.

Show all the registers again —

(gdb) i r

x0 0x0

x1 0x0

X2 0x0

x3 Oxffff
x4 Oxffff
x5 0x0

X6 0x0

x7 0x0

x8 0x5d

x9 0x0

x10 0x0

x11 0x0

%29 0x0

x30 0x0

sp Ox7fff££f£££140
jole] 0x400084
cpsr 0x201000
fpsr 0x0

fpcr 0x0
tpidr 0x0
tpidr2 0x0
Aliases

65535

65535

0

0

Ox7TE££££££££140

0x400084 < start+12>

[EL=0 BTYPE=0 SSBS SS]

[]

[Len=0 Stride=0 RMode=0]
0x0

0x0

With assembly code there are often multiple ways of accomplishing the same task, for

example the CMP (Compare instruction) is an alias of the Sub (Subtract instruction).The CMP

Compare (immediate) subtracts an immediate value from a register value. The SUB Subtract

(immediate), subtracts an immediate value from a register value, and writes the result to the

destination register. Rather than have the programmer work out the equivalency, the assembler

Starting out with ARM

will perform the substitution allowing the coder to continue using (perhaps) mnemonics that
they are more used to. Again, with RISC architectures there is limited space for instructions.
Re-assemble the program again, without the -g option (to remove debug information).

as -o moveregisters.o moveregisters.s

1d -o moveregisters moveregisters.o

Now run the objdump program with the -D(issasemble) option —

S objdump -D moveregisters

moveregisters: file format elf64-littleaarch64
Disassembly of section .text:

0000000000400078 < start>:

400078: d29fffe3 mov x3, #O0xffff // #65535
40007c: aa0303e4 mov x4, x3

400080 52800ba8 mov w8, #0x5d // #93
400084 : d4000001 svc #0x0

Re-run objdump again but this time use -M no-aliases.

$ objdump -D -M no-aliases moveregisters
moveregisters: file format elf64-littleaarcho64
Disassembly of section .text:

0000000000400078 < start>:

400078: d29fffe3 movz x3, #Oxffff
40007c: aa0303e4 orr x4, xzr, x3
400080: 52800bas movz w8, #0x5d
400084: d4000001 svc #0x0

Typically,', instructions in ARM64 are of the form - Instruction <Rd> <Rn>, 2nd operand. Rd
is the destination register followed by a source register and a possible second operand that

can be a register or an immediate (literal value). The use of R indicates that the registers can be

'® Not always, see str instructions!

212

Starting out with ARM

either X or W registers. Modification can be made to a source register such as performing a
shift operation.

The output of the utility objdump as shown above has the following format -

Address in memory _ ARM64 instruction

Notice that the memory location increments by four bytes (corresponding to the 32-bit wide

ARMG64 instruction) after each instruction is executed.

Figure 2-3 Format of MOVZ instruction

MOVZ Xd, immediate value with an optional left shift

sf Opcode hw | imm16 Rd
31 222120191817 161514131211 109876543 210

sf 1=64-bit 0 and hw field =0 then 32-bit

Opcode A5

hw 00 =do not shift left 01 = shift left by 16 bits 10 = shift left by 32 bits 11 =shift left by 48 bits
imm16 = 16 bits unsigned value

Rd = Destination Register

Referring to the ARM64 instruction set architecture documentation' the Movz instruction
states that “This instruction is used by the alias mov (wide immediate).” So, there is no actual
mov instruction as such, however it transparently accomplishes the action that is to be

executed. The format of the MOVZ (Move wide with zero) instruction is :-

Breaking down the bits d29fffe3 (first line of objdump non-aliased code shown on page 2-12)

gives a binary value of —

Immediate

e Opcodeis A5
¢ Immediate value is FFFF

o Registerisx3

7 See https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/

213

https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/

Starting out with ARM

Instruction Aliases

Note that when the no-aliases option is used the disassembly process listed the

code as an actual ARM64 instruction rather than pseudo-code. Aliases are

mnemonics that are familiar to the programmer and the assembler will replace

them with an actual ARM.instruction.

Moving 32-bit and 64-bit immediate values

Question - Since there are only 16 bits available for the immediate value, how would a register
be loaded with the 32-bit value 0X123456787?

Response - The approach is to move the values in stages with the movk instruction. This
instruction moves data 16 bits at a time and optionally puts the values into the register with a
shifted offset value; this offset can be 0, 16, 32 or 48 bits as defined by the 2-bit hw field and

leaves the other bits alone.

Our plan is to move in the first 16 bits with a default shift of zero, followed by another move of

16 bits but in the second quarter of the register.

Example -

Listing 2-2 Using the movk instruction

.global _start
.text
_start: movk x3, #1234, 1sl #0

movk x3, #5678, 1lsl #16
mov x8, #93

svc 0

After execution of the code movk %3, #5678, 1sl #16 the contentof x3is:

%3 0x162e04d2 372114642
(gdb) i

x0 0x0 0

x1 0x0 0

X2 0x0 0

x3 0x162e04d2 372114642

Checking - 0x162e = 5678 and 0x04d2 = 1234.

objdump shows —

Disassembly of section .text:

214

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Starting out with ARM

0000000000400078 < start>:

400078: £2809a43 movk x3, #0x4d2

40007c: f2a2c5c3 movk x3, #0x162e, 1lsl #16

400080: d2800ba8 mov x8, #0x5d // #93
400084: d4000001 svc #0x0

Looking at the second line movk x3, #0x162e, 1sl #16
e 64-bit
e The format of movk (Move wide with keep) instruction is
e OpcodeisE5
e Immediate value is 162e

e Registerisx3

Figure 2-4 Format of movk instruction

MOVK with keep moves immediate value to xd with an optional left shift

|sf | Opcode lhw | imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312111098 76543 210

sf 1=64-bit 0 and hw field =0 then 32-bit

Opcode E5

hw 00 =do not shiftleft 01 =shiftleft by 16 bits 10 =shift left by 32 bits 11 =shift left by 48 bits
imm16 = 16 bits unsigned value

Rd = Destination Register

The next example shows the MovN instruction — The listing is included in GDB’s output.
Comments can be placed on the same line by appending “//” after the instruction (as shown
below) or block style starting with “/*” and ending with “*/”.

MOVE Negated instruction (MOVN)

(gdb) list

Listing 2-3 Using the MOVN instruction

1 .global start

2 _start:

3 MOVN x2, #0Oxfedc //This is the move negated instruction

4 NOP //after execution it will change the value above
to

2-15

Starting out with ARM

Effectively, this has produced the o@ complement of our number.

Q:b
Displaying output §°
Listing 2-4 Displaying outputrggﬂe Write syscall

Starting out with ARM

mov X2, #6 //Print 6 characters
mov w8, #64 //This is the write system call
svc #0 //Put it out to screen
mov x0, #0 //Return code of 0
mov w8, #0x5d //Time to go.
svc #0
.data
result: .ascii "Hello\n"
.align 4

This program uses the write syscall (0x40) to output a string of text to stdout. This works by
loading register x0 with the value 1 corresponding to stdout. Register x1 points to the starting
address in memory to where the string of is located and register x2 is loaded with the length of
the string. After the string has been written, register x0 is loaded with a return code of 0

(success) and the exit service call is triggered.

The assembler directive .data defines the start of memory.
objdump -s -d -M no-aliases printhello
printhello: file format elf64-littleaarch64
Contents of section .text:
4000b0 200080d2 1000058 c20080d2 08088052 Xeveunnon R
4000c0 010000d4 000080d2 a80b8052 010000d4 R....
4000d0 0004100 00000000 AL
Contents of section .data:
4100e0 48656c6c 6£0a0000 00000000 00000000 Hello...........
Disassembly of section .text:

00000000004000b0 < start>:

4000b0: d2800020 movz x0, #0x1

4000b4: 580000el 1ldr x1, 4000d0 < start+0x20>
4000b8: d28000c2 movz %2, #0x6

4000bc: 52800808 movz w8, #0x40

4000c0: d4000001 svc #0x0

4000c4: d2800000 movz x0, #0x0

4000c8: 52800ba8 movz w8, #0x5d

4000cc: d4000001 svc #0x0

217

Starting out with ARM

4000d0: 004100e0 .word 0x004100e0
4000d4: 00000000 .word 0x00000000

The data section is located at memory address 0x4700e0 and the hex codes for the ASCII string
(Hello) is highlighted above.

Make

The commands that have been used so far for assembling and linking (as, 1d) have worked well
enough for our situation, however when multiple files are involved it is normal to use a build
tool to accomplish this. The make utility keeps track of what has been done and will only apply
actions to the changed portions. The instructions are conveyed to the utility using a makefile.

The makefile below can be used to assemble link the program moveregister.s.

Simple makefile
moveregisters: moveregisters.o
1d -o moveregisters moveregisters.o
moveregisters.o: moveregisters.s
as -o moveregisters.o moveregisters.s
The line at the top denotes the target file which depends on the object file which in turn is

dependent on the source file. The rules on how to create the target file are shown above, so the

flow is :-

Create the target file (moveregister.s) from the object file (moveregister.o) which is created
from the source file (moveregister.s). The first target (here moveregister) is termed the default
goal.

Note use Tab characters for indentation in the makefile.

The next example assembles and links two programs into a single executable file,
OBJECTS = programl.o program2.o
all: myprogram
5.0 : 3.8
as $< -g -o s@
myprogram: $ (OBJECTS)

1d -o myprogram $ (OBJECTS)

This example will allow the target to be passed to the makefile:-

TARGETFILE = $(targetfile)

print: $(TARGETFILE) .o

218

Starting out with ARM

1d -o S$(TARGETFILE) $(TARGETFILE) .o
S (TARGETFILE) .0: $(TARGETFILE) .s

as -o $(TARGETFILE) .o $(TARGETFILE).s

S make targetfile=print
make: 'print' is up to date.
$ 1s

makefile print print.o print.s

Make will be revisited in more depth later on!

Using strace
The strace utility can be used to monitor which syscalls have been invoked by a particular
program or process:-

$ strace -c ./print

Hello again!

% time seconds wusecs/call calls errors syscall
0.00 0.000000 0 1 write
0.00 0.000000 0 1 execve

100.00 0.000000 0 2 total

With this particular program strace shows that the syscalls write and exit were invoked once.

Starting out with ARM

Summary of chapter 2

2-20

Register Set

Assembling and linking
Makefiles

Aliases and pseudo code

Debugging with GDB

Starting out with ARM

Exercises for chapter 2

1.

8.

9.

Install Raspberry Pl OS on a 64-bit Raspberry Pl system

What qualifier would you add to the as command to embed debug information?
What is the purpose of a linker?

How many w registers are available for general purpose use?

What are assembly directives?

Describe two ways of loading the value 0x1256 into the top 16 bits of register x3
What are syscalls?

What is the function of a makefile?

What are ARM assembly aliases?

10. What tool is used to disassemble an ARM executable program?

11. Describe two flags that the ARM instruction set uses to convey conditions.

2-21

Memory Operations

Chapter 3. Dealing with memory

Chapter 3 delves further into the architecture and discusses memory topics , addressing

modes with LDR and STR instructions. Graphical debuggers are introduced.

Load and Store instructions

ARMB64 deals with register operations, to work with memory, addresses are loaded into
registers, and stored back from registers to memory. Operations are with respect to memory so
loading from memory to registers is a read operation and storing from registers is a write
operation. The method by which memory addresses are derived is known as addressing modes
and there are several. The code fragments in this chapter will show how to communicate with

memory and will also introduce various addressing modes. I

Load and store instructions can access memory. Data is loaded (ldr) from memory, acted on

and then stored (str) back to memory. This is termed load-store architecture.

LOAD Instructions (Memory = Registers)
Examining memory with GDB

GDB can be used to examine memory. The format of the command is x/nfu addr. Here the

parameters have the following meaning:

Table 3-1 Using GDB to display memory contents

i How much memory to display in units, with a default value of one.

£ This is the display format; default is to display in hex. The main options are o(octal),
x(hex), d(decimal), u(unsigned decimal), t(binary), f(float), a(address), i(instruction),

c(char), s(string)

u Unit size b = byte h = halfword (2 bytes) w = word (4 bytes) g = giant (8 bytes)

Example

(gdb) x/16w 0x4100e0

0x4100e0: 0x6c6c6548 0x00000a6f 0x00000000 0x00000000
0x4100£0: 0x0000002c 0x00000002 0x00080000 0x00000000
0x410100: 0x004000b0 0x00000000 0x00000028 0x00000000
0x410110: 0x00000000 0x00000000 0x00000000 0x00000000

This is the contents of memory after running the printhello program shown on page 2-12.

Page 3-1

Memory Operations

This shows the ASCII data highlighted in default hex values, strings can be shown more clearly

by using the - command -

Consider a similar program _ that writes out a slightly longer string.

Listing 3-1 String printing \

Using gdb shows :-
Page 3-2

Memory Operations

Memory Operations

20 svc #0

gdb) x/s 0x4100e0

0x4100e0: "Hello ARM64!\n"

(gdb) x/16xb 0x4100e0

0x4100e0: 0x48 0x65 0x6¢c 0x6¢c 0x6f 0x20 0x41 0x52

0x4100e8: 0x4d 0x36 0x34 0x21 0x0a 0x00 0x00 0x00
Individual characters of the string can be shown by issuing x/1q
c <address>. The memory layout is actually:-

0x4100e0: 72'H'

0x4100e1: 101 ‘e’

0x4100e2: 108l

0x4100e3: 108l

0x4100e4: 111'0’

0x4100e5: 32"

0x4100e6: 65 'A

0x4100e7: 82'R'

0x4100e8: 77'M'

0x4100e9: 54'6'

0x4100ea: 52'4

0x4100eb: 33"

0x4100ec 10"\n'

The directive .data placed the starting character of the string is placed at the lowest memory
location. This is termed little-endian’ where the least significant byte is stored at the lowest

address.

'8 This term originally comes from Jonathan Swift’s novel Gulliver’s travels and refers to which

end a boiled egg is broken from.

Page 3-4

Memory Operations

The debugger shows us the bytes in increasing address order, starting from the left, (the same

order as when reading a book published in English).
(gdb) x/16xc 0x4100e0
0x4100e0: 72 'H' 101 'e' 108 '1' 108 'l' 111 'o' 32 ' ' 65 'A' 82 'R'

0x4100e8: 77 'M' 54 '6' 52 '4' 33 '"!'" 10 '\n' O '\000' 0 '\0OO' O '\0OOO'

Disassembly produces :-

objdump -d -M no-aliases printhelloARM64

printhelloARM64: file format elf64-littleaarcho64
Disassembly of section .text:

00000000004000b0 < start>:

4000b0: d2800020 movz x0, #0x1

4000b4: 580000el 1dr x1l, 4000d0 < start+0x20>

4000b8: d28001a2 movz x2, #0xd

4000bc: 52800808 movz w8, #0x40

4000c0: d4000001 svc #0x0

4000c4: d2800000 movz x0, #0x0

4000c8: 52800ba8 movz w8, #0x5d

4000cc: d4000001 svc #0x0

4000d0: 004100d8 .word 0x004100d8 < Start of Data section
4000d4: 00000000 .word 0x00000000

The first line puts the value of one into register x0

st | Opcode hw | imm16 Rd
3130 2928 272625242322 2120191817 161514131211109876543 210
11 01001010 00000000000 00000000001

The second line loads register x1 with contents of the memory pointed to by the current
instruction’s location (as pointed to by the Program Counter (PC with an offset of 0x20 which is
where the first part of our data resides. Note this is 8 instructions from the start label or 7
instructions away from the current instruction. Recall that each instruction takes 4 bytes, so

the offset is 28 bytes or Ox1c bytes.

0x4000b0+0x20 = 0x4000d0

Page 3-5

Memory Operations

LDR Xt, label '580000e1 ldr x1,4000d0 <_start+0x20>

|op | imm19 Rt
31 30 29 28 27 26 25 24 23 22 21201918 17 16 1514 131211109876 543 210
01 011000O0OO0OO0OO0O0DO0OO0ODO0OOOOO0OOODOO001I1100001
op 01=64-bit
imm19 Multiple of 4 and is the offset (in words) from the current instruction so offset is 0x7 instructions further on
Rt = Register to be loaded = R1

The way that memory is addressed by the 1dr instruction is termed PC Relative addressing, if

no offset is given, then it defaults to an immediate value of 0x0.

The ldr instruction as we have used it puts the address of the string into register x1. The next

program uses ldr to put the contents of the string into register x4. The instruction is:

ldr x4, [x1] as highlighted below:

Breakpoint 1, start () at printhelloARM2.s:

mov x0, #1 //stdout
(gdb) s 1dr x1, =stringl //This loads the address stringl
into x1
(gdb) s 1ldr x4, [x1] //This loads the actual data into x4
(gdb) s mov x2, #13 //Print 13 characters
(gdb) i r
x0 Ox1 1
x1 0x4100e0 4260064
X2 0x0 0
%3 0x0 0
x4 0x5241206£6c6c6548 5927054247528785224
x5 0x0 0
%30 0x0 0
sp Ox7fff£f££££0a0 Ox7fff£f££££0a0
jole] 0x4000bc 0x4000bc < start+12>
cpsr 0x201000 [EL=0 BTYPE=0 SSBS SS]
fpsr 0x0 []
fpcr 0x0 [Len=0 Stride=0 RMode=0]
tpidr 0x0 0x0
tpidr2 0x0 0x0

Page 3-6

Memory Operations

Decoding the contents of register x4 shows:-

Byte ASCII

0x48 H
0x65 e
0Ox6c |
0Ox6c |
ox6f O
0x20 <Space>
0x41 A
0x52 R

Since the register is 64-bits only eight characters of the string can be accommodated. Altering

the line to add an offset of two (=string1 + 2) will cause the string to skip the first two characters

(He) as shown below.

Breakpoint 1, start
mov
ldr
ldr
mov
mov
svc

1llo ARM64!

Hello again!

18

.text
.global start
_start:
mov
ldr
ldr
mov

mov

Page 3-7

()
x0,
x1,
x4,
X2,
w8,

#0

mowv

x0,
x1,
x4,
x2,

w8,

at printhelloARM3.s:12

#1 //stdout

=stringl + 2 //This loads the address stringl into x1
[x1, #4] //This loads the actual data into x4

#26 //Print 26 characters

#64 //This is the write system call

//Put it out to screen

x0, #0 //Return code of O

#1 //stdout

=stringl //This loads the address stringl into x1
[x1, #4] //This loads the actual data into x4

#26 //Print 26 characters

#64 //This is the write system call

Memory Operations

svc #0 //Put it out to screen
mov x0, #0 //Return code of O
mov w8, #0x5d //Time to go.
svc #0
.data
stringl: .ascii "Hello ARM64!\n"
string2: .ascii "Hello again!\n"

S objdump -d -M no-aliases printhelloARM2

printhelloARM2: file format elf64-littleaarch64

Disassembly of section .text:

00000000004000b0 < start>:

4000b0: d2800020 movz x0, #0x1

4000b4: 58000121 1dr x1l, 4000d8 < start+0x28>

4000b8: £8404024 ldur x4, [x1, #4]

4000bc: d2800342 movz x2, #0xla

4000c0: 52800808 movz w8, #0x40

4000c4: d4000001 svc #0x0

4000c8: d2800000 movz x0, #0x0

4000cc: 52800ba8 movz w8, #0x5d

4000d0: d4000001 svc #0x0

4000d4: 00000000 udf #0

4000d8: 004100e0 .word 0x004100e0

4000dc: 00000000 .word 0x00000000
X Note Rtis the transfer register and Rn is the base register.
X

To summarize :-

o Register x1 holds the address of the text by using program counter relative addressing.

Page 3-8

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Memory Operations

o Register x4 holds the value of the memory address pointed to by register x1 using

register indirect with offset addressing
e The square brackets are used to show indirect memory addressing

e |ndirect addressing refers to loading the data stored at the address pointed to by the

register.

o Thisis similar to a book index which points the reader to the page where the

content is stored.
« Note where there is an offset no-aliases gives the instruction 1dur x4, [x1, #4]
e A summary of addressing modes is given in Table 3-3

The instruction LDUR is load unscaled register. In this case the 64-bit value from register x1

plus an offset of 4 is loaded into register x4.

mov x0, #1 //stdout

(gdb) s
1dr x1, =stringl //This loads the address stringl into x1
(gdb) s
1dr x4, [x1, #4] //This loads the actual data into x4
(gdb) s
mov x2, #26 //Print 26 characters
(gdb) i r
x0 Ox1 1
x1 0x4100e0 4260064
X2 0x0 0
%3 0x0 0
x4 0x2134364d5241206f 2392597007760957551
146MRA o

Skipping “Hell”
The ldr instruction is actually 1dr {type} where type is actually an unsigned byte (B), a signed

byte (SB), unsigned halfword (H), signed halfword (SH).

Store Instructions (Registers > Memory)

We have already shown how to define memory contents using the .data directive on page 2-17.

The format of the data can be specified in multiple ways, some examples include: -

Page 3-9

Memory Operations

.data
msg: .ascii “Hello ARM”

randombytes: .byte 52, 35, 46, 95, 0x42

characters: .byte ‘H’, ‘e’, ‘1’, ‘17, ‘o'
somewords : .word 0x0123456789%abcdef
negnumbers: .byte -0Oxaa, 0xff

blanks: .space 8

The next program generates a string and loads it into memory, previously a string was defined
using the .ascii directive. In this example 8 bytes of memory will be reserved using the .space
directive. The default will be to zero out these bytes but they can be set to other values by using
.space <number of bytes> {,<fill byte>} forexamplemessagel: .space 8, 0x55

Listing 3-2 strexample

// Listing3-2

/* This example shows how to write a string to the screen. It uses the write

system call

for this. The call expects three arguments -

- x0 holds the file descriptor (l=stdout),

- x1 holds the starting address in memory of the string to be written

- x2 holds the length of the string

A block of memory is reserved using the .data directive with the label messagel.
It is initialized with 8 bytes of zero value

The string is loaded into register x4 2 bytes at a time via movk

and then stored into the memory location pointed to by x1

*/

.text

.global start
_ Sttart:
mov x0, #1 //stdout

ldr x1, =messagel //This loads the address of the label messagel

into x1

mov wd, #0x6548 //Load first two bytes "He" just use w4
for this rather than x4

Page 3-10

Memory Operations

O

The output of gdb up until the - comma@as been executed shows:-

Page 3-11

Memory Operations

The figure below s\@ how the memory contents change after the strinstruction has been

executed. %Qa&
NS

>
D

Page 3-12

Memory Operations

Table 3-2 Action of str instruction to memory

After LDR x1, message instruction

and

Before STR x4, [x1] instruction
Memory Memory
Address Contents

0x4100ec | not defined / ‘Set tozero by .space 8 directive
x1 0x4100f0 | —————— [(0x4100f0 |0x00000000000000004|
0x4100f8 |not defined

After STR x4, [x1] instruction

Memory Memory

Address Contents

0x4100ec not defined ‘x4 0x654d20616c6c6400
x1 0x4100f0 ~—————> 0x4100f0 0x654d206f6c606400/

0x4100f8 not defined

The contents of register x4 are stored in the memory address pointed to by register x1

Referring to the ARM instruction document, Rt corresponds to register x4 and register Rn

corresponds to register x1.

Disassembly shows:-

4000b0: d2800020 movz x0, #0x1
4000b4: 580001al ldr x1, 4000e8 < start+0x38>
4000b8: 528ca%04 movz w4, #0x6548
4000bc: f2ad8d84 movk x4, #0x6c6c, 1lsl #16
4000c0: f2c40ded movk x4, #0x206f, 1lsl #32
4000c4: f2eca%a4 movk x4, #0x654d, 1sl #48
4000c8: £9000024 str x4, [x1]

The instruction f9400024 ldr x4, [x1] breaks down as follows:-

ldrx4, [x1] with optional positive immediate unsigned byte offset which is a multiple of 4
9400024

‘size ‘ VR opc |imm12 Rn Rt
31 30 29 28 27 2524 23 22|21 20 19 18 17 16 15 14 13 12 11 10 43 210
11 11100101 0O0O0OO0OO0ODO0ODO0O0DO0O0O0ODO0D0DO0D0D0100 100
size 11 =64-bit 10=32-bit x1 x4
immdiate value is 0
Rnisx1
Rtis x4

Addressing modes

The table below summarizes various addressing modes used with ARM64 architecture -

Page 3-13

Memory Operations

Table 3-3 Summary of addressing modes

Addressing

Mode

Parameters

Meaning

Simple Register Register x1 is loaded with the contents of the ldr x1, [x0]
(Pc relative address pointed to by base register x0. The base ldr x1,
addressing) register is always 64-bit, since the addresses are | =mylabel
64-bit wide.
Offset Register plus Register w2 is loaded with the contents of the ldrh w2, [x0, #8]
an offset address pointed to by base register x0 plus an ldrb w2, [x0, x10]
offset. The offset may be a constant (immediate
value) or another register
Pre-indexed Offset Similar to the offset address mode, except that ldrh w2, [x0,
the base register(x0) is updated with the new #8]!
calculated address and data is loaded from the
new location. The update happens before
fetching the data
Post-index Offset Similar to the pre-indexed mode, except thatthe | ldrh w2, [x0],
data is loaded from the current base registerand | #7

the base register is updated only then with the
new calculated address. Update happens after
fetching the data.

e []signifies indirection

e !signifies pre-indexing, offset inside brackets

e Postindexing, offset outside of brackets

The next listing shows examples of these addressing modes and resulting register contents

using the data in the layout shown below.

Listing 3-3 Addressing modes

/* This example shows ARM64 addressing modes-

.text

.global start

_start:

1ldr

into x0

Page 3-14

%0,

=baselocation //This loads the

address baselocation (0x4100d8)

Memory Operations

Page 3-15

Memory Operations

Table 3-4 Effect of addressing modes on pointer registers

Addressing Register x0 Register x1 Registerw2 Comments
Mode contents after contents contents
instruction
Simple 0x4100d8 0x1817161514131 | - Loads full 64 bits
211

Offset with 0x4100d8 - 0x1a19 Loads halfword

constant

Offset with 0x4100d8 - 0x15 (byte) Loads byte

register

Pre-index 0x4100e0 - 0x1a19 Loads halfword from new
halfword address

Post-index 0x4100ef - 0x1a19 Loads halfword from
halfword address prior to update

Simple addressing is really Program Counter relative with an offset?

The instruction 1dr %0, = baselocation, actually disassemblesto 1dr x0, 4000d8
<_start+0x28> where the program counter corresponds to the location 0x4000d8 and 0x28

being the offset where the data is located. The offset must be a multiple of four!
The difference between pre and post indexing is the order in which the data comes from.

e Pre-index - the pointer register location is first updated, and the data is then fetched

from the updated location.

e Post-index —the data is fetched from the current location and only then is the update

applied to the pointer register.

Other modifications are possible with the ldr and str instructions which are fully documented
in the ARM architecture guides.

Enhancements to GDB

So far GDB has been used as the default tool for analyzing code. The following commands
entered into thefile ~/.gdbinit will give a better (TUI) layout experience.

layout split

layout regs

set history save on

set history filename ~/gdbhistory

set logging enabled on

Page 3-16

Memory Operations

Figure 3-1 GDB using TUI

Note that if using the GDB TUI then the up and down arrows are no longer

available for command history; use Ctrl-P(revious) and Ctrl-N(ext) instead.

X0
X2
x4
X6
X8
x10
x12
x14
X186
x18
X20
X22
X24
X26
X28
X30
nc
fpsr
tpidr

13
14
15
16
i7

0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
9x4000h0
0x0
0x0

LDR

SVC

6] x1
6] X3
¢} x5
¢} x7
¢} x9
¢} x11
0 x13
0 x15
0 x17
0 x19
0 x21
0 x23
) x25
) x27
) x29
[c] sp
0x4000b0 <_start> cpsr
[] fpcr
oxe tpidr2
Using split TUI
#1 //stdout view
X1, =stringl
X2, #13 //Print 13 characters
w8, #64 // is the write system

#0 //Put it to screen

0x0
0xe
ox0
ox0
0x0
0x0
Ox0
0x0
ox0
0x0
oxe
oxe
oxe
oxe
oxe
Ox7fFfffffef2o
0x1000
oxe
oxe

[cNoNoNoNoNoNoNoNololololoNolo})

ox7fffffffefzo

[EL=0 BTYPE=0 SSBS]

[Len=0 Stride=0 RMode=0]
oxe

There are several enhancements/alternatives to GDB. One such tool that enhances the

debugging experience is gdbgui. Installation instructions for installation can be found at

www . gdbgui.

Start gdbgui from the command line by entering the following command:-

gdbgui --args

./asm/printhelloARM3/printhelloARM3

The screenshot is a snapshot of the program midway through. The memory location shows the

values in hex and in character format. The GDB command window (hot shown) is at the bottom

left. Registers x0 through x8 are shown along with the source code: -

Page 3-17

http://www.gdbgui/
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Memory Operations

Figure 3-2 GDBGUI

1 reverse C > 0

system | fetch disassembly reload file home/alan/asm/chapteroa/1isting3-3.5:178 (28 lines total)

> threads
> local variables

> expressions

v Tree
6 LDR x0, Bbaselocation //This loads the address baselocation (0x4100d8) into x0
ssing Mod v memory
LDR x1, [x@] i 1 fr baselocation into x1
ffset 0x4100e0 0x4100ff 16
Offset addressing with a cor
LORH w2, [x8, #8] a19) of locati d8+8) into w address: - hex
nore
ffset a
MOV x10, 11 12 13 14 15 16 17 18 19 1a 1b ic 1d 1e 1f 20
LOR8 w2, [x6, x16] Load: location 4109dg+4, 2c 00 00 00 62 00 00 00 00 00 08 00 00 00 00 00
Pre-Inde more
LDRH ilar to offset except that x6 is updated with the new calculat
—— > breakpoints
e w0 2 signals
¥ registers
name value (hex) value (decimal) description
X0 4260064
x1 X18171615141 1735880461161534000
x2 21
;s o PRegsters
(end of rile)
x4 0
5 0
6 0]
X7 0
® 0

Another alternative is gdbfrontend. This can be installed from

https://github.com/rohanrhu/gdb-frontend

Figure 3-3 GDB Frontend

R [QLoad Executable g¥Connect

Sources % B Disassembly
home 000b0
alan J00b4
asm 0x4000b8
chapter03 0x4000be

0x4000c0

Watches

Breakpoints

Call stack
0 _start()

Variables

Registers

0x4100e0 4260064

817161514131211 1735880461161533969

Page 3-18

https://github.com/rohanrhu/gdb-frontend

Memory Operations

Summary of chapter 3

e Memory layout

e Load and Store Instruction
e Outputting text

e Addressing Modes

e Graphical Debuggers

Page 3-19

Memory Operations

Exercises for chapter3

1.

How many bits are contained in an ARM64 instruction?
What does the command x/32w 0x4100£0 do when executed in GDB?
What is the significance of the square [] brackets when used with 1dr or str instructions?

What assembly directive is used to define a string of characters within an assembly

language program?
Describe the purpose of the instruction 1drh w2, [x0, #8]!

What is the role of the x2 register when using the write syscall to print a string of text to the

screen?

Page 3-20

Arithmetic and logic operations

Chapter 4. Arithmetic operations (First Pass)

This section will introduce the arithmetic instruction capabilities of ARM64. A subsequent
chapter discusses more advanced operation utilizing vector registers. Logic instructions such
as AND, OR and EOR are also covered.

Floating Point operations are not covered in this section.

Recall the bit sizes as defined in Byte, . . . Quadword

Table 4-1 ARM64 Data Types

of bits Definition

8 Byte

16 Halfword

32 Word

64 Doubleword
128 Quadword

Add Instruction

— First start with add. Two numbers are placed in registers x4 and x5 with the result being stored
in register x6.
Listing 4-1Add (Extended Register)
* This example shows various addition instructions */
.text
.global start
_start:
mov x4, #1024
//This moves the number 1024 to reg x4
mov x5, #60
// This moves the number 60 to reg x5
add x6, x4, x5
//Adds the contents of x4 and x5 placing the result in x6
mov w8, #0x5d
svc #0

//Time to go.

Disassembly produces objdump -d -M no-aliases addl

Page 4-1

Arithmetic and logic operations

addl: file format elf64-littleaarcho6d
Disassembly of section .text:

0000000000400078 < start>:

400078: d2808004 movz x4, #0x400

40007c: d2800785 movz x5, #0x3c

400080: 80050086 add X6, x4, x5

400084: 52800ba8 movz w8, #0x5d

400088: d4000001 svc #0x0

£=

i

1 _— . .) .

u Note that even though three distinct registers were used, using an instruction

such as add x5, x4, x5 is perfectly valid.

x0 Ox0 0 x1 Oxq
x2 0x0 <) x3 Ox{
x4 0x400 1024 x5 Ox3

6 - Oxq
x8 Ox0 0 x9 Ox{
x10 0x0 0 x11 Oxq
x12 0x0 0 x13 Ox(
x14 Ox0 0 x15 Ox{
x16 ox0e e x17 Oxd
x18 oxe 0 x19 x4
x20 Ox0 (<) x21 Ox{
x22 0x0 e x23 x4
x24 0x0 0 x25 Oxq
x26 Ox0] x27 Oxq
x28 0x0 0 x29 Ox{
B+ 7 x4, #1024 // moves the number 1024 to reg x4

8 x5, #60 // moves the number 60 to reg x
9 x6, x4, x //Adds the contents of reg x4 x5 together
> 10 w8, //Time to go.
11 20
12

The next listing gives a similar result, the difference being that instead of a third register an
immediate value is added.
Listing 4-2 Add (immediate)
// listing4-2
.text
.global start
_ Sttart:

mov x4, #1024 //This moves the number 1024 to reg x4

Page 4-2

Arithmetic and logic operations

add x6, #60

value of 60 placing the result in reg x6

x4, //Adds the contents of reg x4 and an immediate

mov w8, #0x5d //Time to go.

#0

sSvC

In Listing 4-3 a 12-bit offset is used — here the immediate value of 6 is left shifted by 12 places
giving the value:- 0110 0000 0000 0000 = 0x6000 and then this is added to the content of reg x4
(0x400) = 0x6400.

nZ Bxo 2] x3
w4 ox400 1024 x5
xB Bx@ ¢] x9
x18 oxo 8 x11
x12 oxe 1] x13
x14 Bx@ ¢] x15
x16 oxo a x17
x18 oxe i} x19
%20 Bx0 o x21
x22 oxo a x23
%24 Bx0] _ X25
%26 0x0) / x27
x28 bxB c] / x29
—add? ;
B+ T x4, #1824 ¢ // moves the number 1024 to reg x
8 x6, x4, #60 //Adds the contents of reg x4 an
> *] f
1@ 5vC #0
€] x3 0x0 0
1024 x5 Ox0 0
se0 oxe 0
0 x9 0x0 0
0 x11 Ox0 0
¢] x13 0x0 ¢]
0 x15 Ox0 0
0 x17 Ox0 0
¢] x19 0x0 ¢]
€] x21 0x0 ¢]
0 x23 0x0 0
€] x25 0x0 0
€] x27 0x0 ¢]
0 x29 Ox0 0
IOV x4, #1024 //This moves the number 1024 to reg x4
\DD x6, x4, #6, LSL #12//Adds the contents of reg x4 and an immediate value of 60

Listing 4-3 Add immediate with a left shift
// listing4-3

.text

.global start

_start:

Page 4-3

Arithmetic and logic operations

//This

//Adds

mov x4, #1024
moves the number 1024 to reg x4
add x6, x4, #6, LSL #12

the contents of reg x4 and an immediate value of 60

left shifted by 12, placing the result in reg x6*/

mov w8, #0x5d //Time to go.

svc #0

Listing 4-4 Add with a left shifted register

// listing4-4

.text

.global start

_start:

mov x4, #1024 //This moves the number 1024 to reg x4
mov x5, #64 // Move 64 into reg x5

add x6, x4, x5, LSL #6

/*Adds the contents of reg x4 and reg x5 left shifted by 6 places placing the
result in reg x6*/
mov w8, #0x5d //Time to go.
svc #0

Yz E45) 5] X3
xd Ox400 1024 x5
ki Ax14068
x8 axe 2] x9
x10 Bx0 ¢] x11
x12 Bx0 ¢] x13
x14 Bx0 €] x15
x16 Ax0 6] x17
x18 Bx0 ¢] x19
x20 Ox0 ¢] x21
x22 Bx0 ¢] x23
x24 Bx0 €] x25
x26 Ax0 6] xX27
%28 Ax0 ¢] %29
add4.s
B+ 7 x4, #1024 /’f moves the number 14

8 x5, #64 // Move 64 reg x5

2] x6, x4, x5, #5 /"Adds the contents of reg

18 placing the result reg

> 11 MoV w8, #0x5d /{Time to go.

Page 4-4

Arithmetic and logic operations

The next example introduces the extend operators. Values that can be extended are bytes,
halfwords and words. In addition, they can be signed or unsigned. One further operation is to

shift the values by one through four bits. The operations are shown in Table 4-2.

Table 4-2 Extend Operators
Operator Meaning Optional Shift

UXTB Unsigned byte 8 bits to 64 bits N =1|2|3|4"°

SXTB Signed byte 8 bits to 64 bits N =1]2|3]4

UXTH Unsigned halfword 16 bits to 64 bits N =1|2|3]|4

SXTH Signed halfword 16bits to 64 bits N =1|2|3]|4
UXTW ~ Unsignedword 32bitsto64bits ~ N=1]23]4 |
| SXTW ~ Signedword 32bitsto64bits ~ N=1]2]34 |

The next listing shows the effect of a UXTB byte operation shifted by four places.

Listing 4-5 UXTB byte operation

// listing4-5

.text

.global start

_start:

mov x4, #0x400 //This moves the number 1024 to reg x4
mov x5, #0x55 // Move into reg x5

add x6, x4, x5, UXTB #4 /* Unsign extends the byte in reg x5 (0x55),
shifting it four places, adding it to reg 4 placing the result in reg x6*/

mov w8, #0x5d //Time to go.

svc #0

The value ending up in register x6 is 0x950. A breakdown follows:-
e x5=0x55=0b01010101

e Shift the value of x5 by four places to the left = 0b010101010000 = 0x550

' For “|” read or.

Page 4-5

Arithmetic and logic operations

e Add 0x550 to the contents of register x4 (0x400) to get 0x950.

o NOTE register x5 is unchanged, only its value is acted on.

dﬁoﬂh

lo:——

The following example shows the operation of Unsigned to byte when a 16-bit value is
contained in reg x5.
Listing 4-6 Add extended using UXTB on a halfword value
// listing4-6
.text
.global start
_start:
mov x4, #0x400
//This moves the number 1024 to reg x4
mov x5, #0xaaaa
// Move 0Xaaaa into reg x5
add x6, x4, x5, UXTB
/* Unsign extend the byte in reg x5 (0Oxaaaa), placing the result in reg x6*/
mov w8, #0x5d //Time to go.

svc #0

Here the instruction sign extended a byte value so only 8 bits were extended not 16 bits!

x0 0x0 0
x1 Ox0 0
X2 Ox0 0
x3 0x0 0
x4 0x400 1024
x5 Oxaaaa 43690
X6 Ox4aa 1194
x7 0x0 0
X8 0x0 “N‘“-h‘§‘73‘-‘__
x9 0x0 0
x10 0x0 0
x11 Ox0 0
x12 0x0 0
addé
B+ 7 / x4, #0x400 //This moves the number 1024 to|
8 / X5, #Dxaaaa // Move 0X5555 1in reg x5
9 DD x6, x4, x5, UXTB /* Unsign extend the byte in re
> 10 MoV w8, #0x5d //Time to go.
11 SVC #0

The next example uses UXTH to extend the full halfword value.

Listing 4-7 Add extended using UXTH on a halfword value
// listing4d-7

Page 4-6

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Arithmetic and logic operations

.text

.global start

_start:
mov x4, #0x400 //This moves the number 1024 to reg x4
mov x5, #0xaaaa // Move 0X5555 into reg x5
add x6, x4, x5, UXTW /* Unsign extend the byte in reg x5 (Oxaaaa),

placing the result in reg x6*/

mov w8, #0x5d //Time to go.
svc #0
X0 Ox0 ¢]
x1 Ox0 0
X2 0x0 ¢]
X3 0x0 ¢]
x4 0x400 1024
x5 Oxaaaa 43690
X6 Oxaeaa 44714
X7 Ox0 ¢]
X8 0x0 0
x9 0x0 0
x10 Ox0 0
x11 0x0 0
x12 Ox0 0
B+ 7 x4, #0x400
8 / x5, #0Oxaaaa
9 DD x6, x4, x5, UXTH
> 10 MOV w8, #0x5d
11 SVC #0

Changing the listing to SXTH extends the sign bit. Previously the extend operation was unsigned
so the extended leading zeroes were simply dropped. The value Oxaaaa is 10101010 1010 1010
in binary so the leading bit is a one denoting that it is a negative number using signed binary.
Listing 4-8 Add extended using SXTH on a negative number

//listing4-8

.text

.global start

_ Sttart:
mov x4, #0x400 //This moves the number 1024 to reg x4
mov x5, #0xaaaa // Move OXaaaa into reg x5
add x6, x4, x5, SXTH /* Unsign extend the byte in reg x5 (Oxaaaa),

placing the result in reg x6*/

Page 4-7

Arithmetic and logic operations

mov w8, #0x5d //Time to go.
svc #0
X0 Ox0 0
X2 0x0 0
x3 0x0 0
x4 0x400 ‘/xﬂm/
x5 Oxaaaa 43690
x6 oxffffffffffffacesaa -20822
X7 0x0 0
x8 Ox0 0
x9 0x0 ¢]
x10 0x0 0
x11 0x0 0
x12 0x0 €]
—add6.s
1 /* This example shows various addition instructions]
2
3 text
4
5 _start
6 _start:
B+ 7 MOV x4, #0x400 //This move
8 MOV x5, #0Oxaaaa // Move BXS
9 ADD x6, x4, x5, SXTH /* Unsign ¢

Changing the sign bit to zero gives :-

Listing 4-9 Add extended using SXTH on a positive number
//1listing4-9
.text
.global start
_start:
mov x4, #0x400 //This moves the number 1024 to reg x4

mov x5, #0x7aaa // Move 0X7aaa into reg x5 giving a signed

positive number

add x6, x4, x5, SXTH /* Sign extend the halfword in reg x5

(Ox7aaa), placing the result in reg x6*/
mov w8, #0x5d //Time to go.

svc #0

Page 4-8

Arithmetic and logic operations

X0 0x0 0

x1 0x0 ¢]

X2 0x0 0

x3 Ox0 0

x4 0x400 1024

x5 Ox7aaa 31402

X6 Ox7eaa 32426

X7 0x0 0

X8 0x0 ¢]

X9 0x0 0

x10 0x0 0

x11 Ox0 ¢]

x12 Ox0 ¢]

B+ 7 ! x4, #0x400 /7 moves the n
8 ! x5, #0x7aaa // Move 0X7aaa into reg x5
[¢] A X6, X4, xh. SXTH /* Sign extend the

> 10 MoV w8, #0x5d //Time to go.

11 svC #0

Listing 4-10 Add extended SXTW with a 4-place shift
// listing4-10
.text
.global start
_start:
mov x, #0 //Clear reg x4
mov x5, #0xaaaa // Move into reg x5
movk x5, #0xaaaa, LSL 16
add x6, x4, x5, SXTW #4 /* Sign extend the word in reg x5 (Oxaaaaaaaa),
shifting it four places, adding it to reg 4 placing the result in reg x6*/
mov w8, #0x5d //Time to go.
svc #0

Here Oxaaaaaaaa is shifted four places to give Oxaaaaaaaa0 and then sign extended (since the

leading bit is a one) to get Oxfffffffaaaaaaaal.

Page 4-9

Arithmetic and logic operations

x0 0x0 ¢}

x1 0x0 0

x2 oOx0 ¢}

x3 0x0 0

x4 0x0 0

x5 Oxaaaaaaaa 2863311530

x6 oxfffffffaaaaaaaa® -22906492256

x7 0x0 0

x8 0x0 ¢}

x9 0x0 ¢}

x10 Ox0 ¢}

x11 0x0 0

x12 0x0 0

B+ 7 ¢} //Clear reg x4
8 Oxaaaa // Move reg x5
9 D a, 16
10 ADD x6, x4, x5, SXTW #4 /* Sign extend
11 shifting it fou

> 12 MoV w8, #0x5d //Time to go.

ADDS instruction.

So far, the instructions that have been used do not set the condition flags. The adds instruction
will do this. Consider the first listing where the add instruction is used, after execution of the

add instruction the CPSR bits are unchanged.

Due to the large data sizes involved many operations do not have to take the condition flags
into account. An example could be the number of employees in a company — using a 32-bit
data size is never going to reach an overflow condition! This will also speed up operations
without having to carry out checks.
Listing 4-11 Leaving condition flags unchanged with the add instruction.
//listing4-11
.text
.global start
_Btarts
mov x4, #0xb000 //Add #0xb000 reg x4
mov x5, #0xaaaa // Move into reg x5
movk x5, #0xaaaa, LSL 16
movk x5, #0xaaaa, LSL 32
movk x5, #0xb000, LSL 48
add x6, x4, x5 // Does not set the N flag
mov w8, #0x5d //Time to go.

svc #0

Page 4-10

Arithmetic and logic operations

—listing4-12.s
B+ 5 X4, #0xbooo /7 #0xb00O reg x4
6 X5, #0Oxaaaa // Move reg x5

7 MOVK x5, #0xaaaa, 16
8 MOVK x5, #0xaaaa, 32
9 MOVK x5, #0xbooo, 48
10 6, x4, x5 // Does set the N flag
> 11 w8, #0x5d //Time to go.
12 SVC #B

lative process 851376 In: _start

Reading symbols from listing4-12...

gdb) b 1

Breakpoint 1 at 0x400078: file listing4-12.s, line 5.
gdb) run

ptarting program: /home/alan/asm/chapter@4/listing4-12

Breakpoint 1, () at listing4-12.s:5
gdb) s
gdb)

s
s
s
gdb) s
gdb) s /
gdb) 1 r cpsr

Epsr 0x201000 [EL=0 BTYPE=0 SSBS SS]
gdb) I

N Flag not set after execution of ADD
command

'
Py’
<3

=

Note that the adds instruction does change the CPSR status.

Listing 4-12 Setting the negative flag using the adds instruction

//listing4-12

.text

.global start

_start:

mov x4, #0xb000 //Add #0xb000 reg x4
mov x5, #0xaaaa // Move into reg x5
movk x5, #0xaaaa, LSL 16
movk x5, #0xaaaa, LSL 32
movk x5, #0xb000, LSL 48

adds x6, x4, x5 // Sets the N flag

Page 4-11

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Arithmetic and logic operations

mov w8, #0x5d //Time to go.

svc #0

10 MOVK x5, #0xbeoo, 48
11 ADDSy x6, x4, x5 // the N flag
> 12 MOV w8, #0x5d //Time to go.

20 N Flag set after execution of
21 ADDS instruction

itive process 851583 In: _start

Pading symbols from listing4-13...

jdb) b 1

Feakpoint 1 at 0x400078: file listing4-13.s,\line 6.
pdb) run

Farting program: /home/alan/asm/chapter04/listing4-13

Feakpoint 1, () at listing4-13.s:6
bdb) s

bdb) s

jdb) s

bdb) s
bdb) s
bdb) s
hdb) i r cpsr

psr Ox80201000 [EL=0 BTYPE=0 SSBS SS N]

The next snippet causes an overflow condition as well as setting the negative flag:-

Listing 4-13 Setting the overflow flag using the adds instruction
//listing4-13
text
.global start
_start:
mov x4, #0xffff // Load up x4
movk x4, #0xffff
movk x4, #O0xffff, LSL16
movk x4, #0xffff, LSL 32
movk x4, #0x7fff, LSL 48
mov x5, # Oxffff // Load up x5
movk x5, # Oxffff, LSL 16

movk x5, #O0xffff, LSL 32

Page 4-12

Arithmetic and logic operations

movk x5, #0x7fff, LSL 48

adds x6, x4, x5 // Sets N and V flags

mov w8, #0x5d //Time to go.
svc #0
x4 ox7fffffffffffffff 9223372036854775807 x5 ox7FFFffffffffffff 9223372036854775807
k6 oxrrrrrrrrrrrrrfte 2 [0x0 0
x8 0x0 [¢] x9 0x0 [¢]
x10 0x0 [¢] x11 0x0 [¢]
x12 0x0 ¢] x13 0x0 [¢]
x14 0x0 <] x15 0x0 <]
x16 0x0 ¢] x17 0x0 [¢]
x18 0x0 <] x19 0x0 [¢]
x20 0x0 [¢] x21 0x0 [¢]
x22 0x0 <] x23 0x0 [¢]
x24 0x0 [¢] x25 0x0 [¢]
x26 0x0 [¢] x27 0x0 [¢]
x28 0x0 €] x29 0x0 0
x30 0x0 0 sp ox7ffffffffoeo ox7ffffffffoee
0x4000a0 0x4000a0 <_start+40> 0x90201000 [EL=0 BTYPE=0 SSBS

fpsr 0x0 [] fper 0x0' [Len=0 Stride=0 RM(
tpidr 0x0 0x0 tpidr2 0x0 0x0
—addl0.s
B+ 7 MoV x4, #oxffff // Load up x4

8 MOVK x4, #0Oxffff

9 MOVK x4, #Oxffff, LSL16

10 MOVK x4, #oxffff, LSL 32

11 MOVK x4, #Ox7fff, LSL 48

12

13 Mov x5, # oxffff // Load up x5

14 MOVK x5,# oxffff, LSL 16

15 MOVK x5, #0xffff, L 32

16 MOVK x5, #0x7fff, LSL 48

17 ADDS x6, x4, x5 // Sets N a Vv flags

> 18 MOV w8, #0Ox5d //Time to go.

1o FvrS

The next listing will differentiate between apcs, aAbc and add instructions.

Listing 4-14 Effect of ADCS, ADC and add instructions
// listing4-14
.text
_start:
mov x4, #Oxffff // Load up x4
movk x4, #0xffff
movk x4, #0xffff, LSL16
movk x4, #0xffff, LSL 32
movk x4, #0x8fff, LSL 48
mov x5, # Oxffff // Load up x5
movk x5,# Oxffff, LSL 16
movk x5, #0xffff, LSL 32
movk x5, #0x7fff, LSL 48

ADCS x6, x4, x5 //

Page 4-13

Arithmetic and logic operations

ADC x6, x4, x5

add x6, x4, x5

mov w8, #0x5d //Time to go.
svc #0

After execution of ADCs, register x6 contains the value Oxfffffffffffffffe and the Carry bit has been
set (CPSR = 0x20201000.

[OxTTIrTrrIrrririe 1152921504606846974 oX0 o
0x0 ¢] x9 0x0 ¢]
0x0 [¢] y Sl 0x0 [¢]
0x0 [¢] x13 0x0 [¢]
0x0 [¢] x15 0x0 0
0x0 [¢] x17 0x0 0
0x0 [¢] x19 0x0 [¢]
0x0 [¢] x21 0x0 [¢]
0x0 [¢] x23 0x0 0
0x0 [¢] x25 0x0 [¢]
0x0 0 x27 0x0 0
0x0 [¢] x29 0x0 [¢]
0x0 0 sp ox7ffffffffoeo ox7ffffffffoeo
0x4000a0 0x4000a0 <_start+40> 0x202016000 [EL=0 BTYPE=0 SSBS SS C
0x0 [fper 0x0 [Len=0 Stride=0 RMode=0
0x0 0x0 tpidr2 0x0 0x0

MOV x4, #oxffff // Load up x4
MOVK x4, #Oxffff
MOVK x4, #O0xffff, LSL16
MOVK x4, #0xffff, L

MOVK x4, #0x8fff

AW o
N

10V x5, # Oxffff // Load up x5
MOVK x5,# Oxffff, L 16

MOVK x5, #0O0 32

MOVK x5, #0O

ADCS x6, x4,

Fm

The instruction apc also adds x4 and x5 but this time it includes the C bit giving the result in x6
of Oxffffffffffffffff. The last instruction add does not include the C bit; giving the result in x6 of
OxfFfffffffffffe.

Page 4-14

Arithmetic and logic operations

OX8 I 2 270288 3
oxffffffffffffffe 1 921504606846974 x7 0x0 0

0x0 0 x9 0x0 0

0x0 0 x11 0x0 0

0x0 0 x13 0x0 0

ox0 0 x15 ox0 0

Ox0 0 x17 0x0 0

0x0 [c] x19 0x0 0

0x0 <] x21 Ox0 0

ox0 0 x23 0x0 0

ox0 0 x25 0x0 (<]

0x0 <] x27 0x0 0

0x0 ¢} x29 0x0 0

0x0 0 sp ox7ffffffffoeo ox7ffffffffoeo

0x4000a8 0x4000a8 <_start+48> 0x20201000 [EL=0 BTYPE=0 SSBS SS C
0x0] fper 0x0 [Len=0 Stride=0 RMode=0
0x0 0x0 tpidr2 0x0 0x0

MOV x4,
MOVK x4,
MOVK x4,
MOVK x4,
MOVK x4,

10V x5, # oxffff // Load up x5
MOVK x5,
MOVK x5, > L
MOVK x5, #0x7fff, LSL 48
ADCS x6, x4, x5 //

ADC x6, x4, x5

16

DD x6, x4, x5
MOV #Ox //Time to go.

SUB Instruction

Subtraction instructions are similar to addition, consequently not too much time will be spent
here.

Listing 4-15 SUB (extended register)

//listing4-15

.text

.global start

_Btarts
mov x4, #1024 //This moves the number 1024 to reg x4
mov x5, #60 // This moves the number 60 to reg x5
SUB x5, x4, x5 //Subtracts the contents of reg x4 from x5 placing the

result in reg x5
mov w8, #0x5d //Time to go.

svc #0

Page 4-15

Arithmetic and logic operations

xB oxB ¢]
x1 0x0 ¢]
X2 oxB ¢]
x3 ox0 &)
x4 Bx480 1024
x5 0x18 24
X6 OxB ¢]
X7 ox0 &)
X 9:

x9 ox0

&)
x10 OxB 6]
x11 ox0 &)
x12 OxB &]
sub2.s
B+ i x4, #1024 fr
8 x5, x4, #1000 /S
2] w3, #0x5d AT
= 10

11

10

Listing 4-16 SUB (immediate instruction)
//listing4-16
.text
.global start
_start:
mov x4, #1024 //This moves the number 1024 to reg x4

SUB x5, x4, #1000 //Subtracts the contents of reg x4 from 80 placing the

result in reg x5
mov w8, #0x5d //Time to go.

svc #0

MUL Instruction and variants

Note Multiply and divide instructions do not set flags!

madd

The MuL instruction is an alias of madd. madd takes two registers, multiplies their contents
together, then adds a third value placing the result in the destination. If no addition is required,

then this operand will have a value of zero (see note on page 4-19).

The format of the instruction ismadd Xd, Xn, Xm, Xa.

Page 4-16

Arithmetic and logic operations

Note that the first two operands are 64 registers and so is the destination. Since a 128-bit
destination would be required, the action is to discard the upper 64 bits. Now this is often
acceptable for smaller numbers that do not cross a 64-bit threshold, but itis an issue that the

programmer needs to be aware of.
Listing 4-17 madd Instruction

// listing4-17

.text

.global start

_start:
mov x4, #1024 //This moves the number 1024 to reg x4
mov x5, #60 // This moves the number 60 to reg x5
mov x6, #1000 // This number will be added

madd x2, x4, x5, x6 /*Multiplies the contents of x4 and x5 together, adding

the contents of x6 and placing the result in x2*/
mov w8, #0x5d //Time to go.
svc #0
Disassembly shows —
objdump -d mull
mull: file format elfé64-littleaarch64
Disassembly of section .text:

0000000000400078 < start>:

400078: d2808004 mov x4, #0x400 // #1024
40007c: d2800785 mov x5, #0x3c // #60
400080: d2807d06 mov x6, #0x3e8 // #1000
400084 : 9p051882 madd x2, x4, x5, x6

400088: 52800ba8 mov w8, #0x5d // #93
40008c: d4000001 svc #0x0

Page 4-17

Arithmetic and logic operations

x3 Ox0 a

x4 0x400

x5 Ox3c 60

X6 0x3e8 le08

X7 Ox0 a

x8 Ox0 a

x9 0x0 a

x10 Ox0 2]

x11 Ox0 a

x12 Ox0 a

—mull.s

B+ 7 x4, #1024 //This moves the num
2] x5, #60 /7 This moves the nu
o] x6, #1008 // This number will
10 MADD x2, x4, x5, X6 /*Multiplies the con

> 11 X //Time to go.

12 sve

Without the add (third operand) component:-

Listing 4-18 MUL instruction
//listing4-18
.text
.global start
_start:
mov x4, #1024
mov x5, #60

MUL x2, x4, x5

placing the result in reg x2*/
mov w8, #0x5d

svc #0

Page 4-18

//This moves the number 1024 to reg x4
// This moves the number 60 to reg x5

/*Multiplies the contents of x4 and x5 together,

//Time to go.

Arithmetic and logic operations

%0 0x0 2]

%1 0x0 2]

% Oxfoen 614

x3 0xB 2]

x4 Bx408 1024

x5 Bx3c 60

X6 Oxa@ 2]

xT7 Ox@ ¢]

x8 Ox@ 2]

x93 Oxa 2]

%18 Ox0 ¢]

x11 Ox0 ¢]

x12 Ox0 ¢]

—mult2. s

B+ 7 X4, #1024 fr moves th
8 X5, #60 i/ moves f
9 X2, x4, x5 /*Multiplies th

> 10 w8, '/Time to go.

11 #0

Note how the unaliased disassembly for MUL produces the instruction madd x2,

xzr. Recall from page 2-4 that the XZR register returns zero when read.

$ objdump -d -M no-aliases mult2

mult2:

Disassembly of section

0000000000400078 < start>:

400078:

40007c:

400080:

400084:

400088:

d2808004

d2800785

9b057c82

52800ba8

d4000001

.text:

movz

movz

madd

movz

sSvcC

x4,
x5,
x2,

w8,

file format elfo64-littleaarch64

#0x400
#0x3c
x5,

x4,

#0x5d

#0x0

Aliased disassembly produces :-

~/asm/addition $ objdump -d mult2
mult?2: file format elf64-littleaarch64
Disassembly of section .text:

0000000000400078 < start>:

400078: d2808004 mov x4, #0x400
40007c: d2800785 mov x5, #0x3c
400080: 9b057c82 mul x2, x4, x5

Page 4-19

XZr

x4,

// #1024

// #60

x5,

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Arithmetic and logic operations

Multiply two 32-bit numbers using madd -

Listing 4-19 Using madd to multiply two 32-bit numbers.

Disassembly produces -

The result of the multiplication is:

OXFFFFFFFEOO000001.

Page 4-20

Arithmetic and logic operations

UMULL and SMULL

The instructions uMuLL(Unsigned Multiply Long) and smuLL (Signed Multiply Long) are used to
multiply two 32-bit w registers, giving a 64-bit (placing the result in an x register) unsigned or
signed result.
Listing 4-20 Unsigned Multiply Long
//listing 4-20
.text
.global start
_start:
mov w4, #Oxffff // Load up first 16 bits to reg wi
movk wé,#0xffff,1sl #16 //Load up next set of 16 bits
mov w5, #Oxffff // Now load reg w5
movk 5,#0xffff,1sl #16

UMULL x2, w4, wb /*Multiplies the contents of w4 and w5 together,

placing the unsigned result in reg x2%*/
mov w8, #0x5d //Time to go.
svc #0
$ objdump -d -M no-aliases mult3
mult3: file format elf64-littleaarch64
Disassembly of section .text:

0000000000400078 < start>:

400078: 529fffed movz w4, #0xffff

40007c: T2bfffed movk w4, #0xffff, 1sl #16
400080: 529fffeb movz w5, #0xffff

400084: 72bfffeb5 movk wb, #Oxffff, 1sl #16
400088: 9ba57c82 umaddl x2, w4, w5, xzr
40008c: 52800ba8 movz w8, #0x5d

400090: d4000001 svc #0x0

Note the unaliased UMULL instruction is umaddl which is the mnemonic for Unsigned Multiply-
Add Long. The format is UMAADDL, xd, Wn, Wm, Xa.lnthis example Xd =x2, wn =w4, wm = w5,

xa =0.

After execution the contents of x2 is OxFFFFFFFEOO000001.

Page 4-21

Arithmetic and logic operations

Using SMULL gives the signed number 1.
x2 Bx1 1

Listing 4-21 Signed Multiply Long

//listing4-21

.text

.global start

_start:

mov w4, #0xffff // Load up first 16 bits to reg x4
movk wé,#0xffff,1sl #16 //Load up next set of 16 bits
mov w5, #Oxffff // Now load reg x5
movk w5, #0xffff,1sl #16

SMULL x2, w4, w5 /*Multiplies the contents of x4 and x5
together, placing the result in reg x2*/

mov w8, #0x5d //Time to go.
svc #0
$ objdump -d -M no-aliases mult3
mult3: file format elf64-littleaarch64
Disassembly of section .text:

0000000000400078 < start>:

400078: 529fffe4d movz w4, #0xffff

40007c: T2bfffed movk w4, #0xffff, 1sl #16
400080: 529fffeb movz w5, #0xffff

400084: 72bfffeb movk wb, #Oxffff, 1sl #16
400088: 99b257c82 smaddl x2, w4, wb, xzr
40008c: 52800ba8 movz w8, #0x5d

400090: d4000001 svc #0x0

Multiplication of two 64-bit numbers to give a 128-bit result.

The instructions umuLH (Unsigned Multiply High) and smutH (Signed Multiply High) calculate the
upper 64 bits of a 64-bit multiplication. UMULL and SMULL are used to multiply two 32-bit (w
registers) together to get a 64-bit result. The U prefix signifies unsigned while the S prefix
signifies signed. In this example UMULH is used to calculate the high order bits and MUL is

used to calculate the low order bits.

Page 4-22

Arithmetic and logic operations

Note that UMULH and SMULH are not complementary to UMULL and SMULL.

Listing 4-22 Multiplying two 64-bit numbers to give a 128-bit result (Unsigned)
/* listing4-22

This example shows how to multiply two 64-bit numbers, placing the 128-bit result

in two 64-bit registers.
MUL is used for the lower 64 bits and UMULH is used for the higher 64 bits */
.text

.global start

_start:
mov x4, #0xffff // Load up first 16 bits to reg x4
movk x4,#0x00ff,1sl #16 // Load up next set of 16 bits
movk x4,#0xffff,1sl #32 // Next 16 bits
movk x4,#0x1234,1s1 #48 // Last 16 bits
mov x5, #0xffff // Now load reg x5
movk x5, #0x00ff,1sl #16
movk x5, #0xffff,1sl #32
movk x5, #0x5678,1sl #48
MUL x2, x4, x5 /*Multiplies the contents of x4 and x5 together, placing the

lower 64-bit result in reg x2*/

UMULH x3, x4, x5 /*Multiplies the contents of x4 and x5 together, placing
the higher unsigned 64-bit result (64:127) result in reg x3, discarding lower 64
bits (0:63)*/

mov w8, #0x5d //Time to go.

svc #0

The complete 128-bit result is: 0x0626 690c 97ba ae00 9553 0001 fe00 0001.

Note that UMULL is an alias of UMADDL

Page 4-23

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA

Arithmetic and logic operations

0x8 a x1 0x8 ¢]
0x95530001fF 1 -7 130434924543 x3 0x626690c97baac0n 443157116148690432
Ox1234ffffeeffffff X1311954862170177535 x5 Ox5678ffFffeeffffff | 6231011555165601791
0x0 X7 0x0 4]
ox0
0x8 a x11 oxe@
0x0 8 x13 0x0 ¢}
0x0 2] x15 0x0 ¢]
Ox0 2] x19 Ox0 4]
0x0@ 8 x21 0x0 2]
0x0 2] x23 0x0 ¢]
0x0 ¢] x25 0x0 4]
Bx0 2] x27 Ox0 4]
Bx0 2] x29 0x0 ¢]
0xe 5} sp ex7fffffffeffo ex7fffffffeffe

Another Example -

Listing 4-23 Second example - Multiplying two 64-bit numbers to give a 128-bit result (Unsigned)
/* listing4-23

This example shows how to multiply two 64-bit numbers, placing the 128-bit result

in two 64-bit registers.
MUL is used for the lower 64 bits and UMULH is used for the higher 64 bits */
.text
.global start
_start:
mov x4, #0x1 // Load up first 16 bits to reg x4
movk x4,#0x0000,1sl #16 // Load up next set of 16 bits
movk x4,#0x0001,1sl #32 // Next 16 bits
movk x4,#0x0000,1sl #48 // Last 16 bits
mov x5, #0x2 // Now load reg x5
movk x5, #0x0000,1sl #16
movk x5, #0x0002,1sl #32
movk x5, #0x0000, 1lsl #48

MUL x2, x4, x5 /*Multiplies the contents of x4 and x5 together,
placing the 64-bit result in reg x2*/

UMULH x3, x4, x5 /*Multiplies the contents of x4 and x5 together, placing the
higher unsigned 64-bit result (64:127) result in reg x3, discarding lower 64 bits
(0:63)*/

mov w8, #0x5d //Time to go.

svc #0

Page 4-24

Arithmetic and logic operations

0x100000001

ox0

0x8
ox0
Gx8
0x8
ox0
0x0
ox0
0x0
0x8

8

17179869186

4294967297

8

OO0 0 0 Ooo

x1
x3
x5
X7

x15
x17
x19
x21
x23
x25
x27
x29

sp

ox0
Ox2
Ox20
Oxe
Ox8
Ox0
Oxe
0x0
Ox0
Ox8
0x0
Oxe
Ox8
ox0
0x0
Ox7f

Figure 4-1 64-bit multiplication (verified by hand)

N

o o

o o o
o © O o

o o O o o

Long Multiply (By hand)

o © O O o o

2 (X5 Register)
1 (X4 Register)

o o OO0 o o o

O ©C OO0 C O o o

N © OO0 O O OO NEKkEDN
O O 0O O O o0 o0 oo o

Disassembly shows:

$ objdump -d -M no-aliases mult8

mult8:

(=3l el ool ol

O ©C O O O oo o

o O O o oo o

o O 0O oo ©
o O Ol o

Q
0
0
Q

2

gt k18
!

(Grade school long multiplication)

file format elf64-littleaarcho4d

Disassembly of section

0000000000400078 < start>:

400078:
40007c:
400080:
400084:
400088:
40008c:
400090:

400094:

Page 4-25

d2800024

£2a00004

£2c00024

£2e00004

d2800045

£2a00005

£2c00045

£2e00005

.text:

movz

movk

movk

movk

movz

movk

movk

movk

x4,
x4,
x4,
x4,
x5,
x5,
x5,

x5,

#0x1

#0x0,
#0x1,
#0x0,
#0x2

#0x0,
#0x2,

#0x0,

1sl

1sl

1s1l

1sl

1sl

1sl

#16
#32

#48

#16
#32

#48

Arithmetic and logic operations

400098: 9b057c82 madd x2, x4, x5, xzr
40009c: 9bc57c83 umulh x3, x4, x5
4000a0: 52800ba8 movz w8, #0x5d
4000a4: d4000001 svc #0x0

MSUB and MNEG

MNEG (Multiply-Negate) is an alias of MsuB. The formatis MSUB xd, xn, xm, Xxa, where Xdisthe
64bit destination register, Xm is the first operand (multiplicand), Xn is the second operand
(multiplier) , Xa is the third operand holding the minuend. The operation multiplies Xm and Xn,
then subtracts the product from the third operand register.

Listing 4-24 Use of MSUB

//1listing4-25

// This example illustrates the MSUB instruction which multiplies two operands and

then subtracts the product from a third operand.
.text

.global start

_start:
mov x4, #0x5a5 // Load up first 16 bits to reg w4
mov x5, #0x4 // Now load reg x5
mov x6, #0xaa // Value to be subtracted from
MSUB x3, x4, x5, x6 // Multiplies the contents of x4 and x5 together,

subtracting the product from x6
mov w8, #0x5d //Time to go.
svc #0

Dissassembly

$ objdump -d -M no-aliases multll

multll: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400078 < start>:

400078: d280b4dad movz x4, #0x5ab
40007c: d2800085 movz x5, #0x4
400080: d2801546 movz x6, #0xaa

Page 4-26

Arithmetic and logic operations

400084 : 90059883 msub x3, x4, x5, x6
400088: 52800ba8 movz w8, #0x5d
40008c: d4000001 svc #0x0

When MNEG is used it is equivalent to using XZR as the third operand, so it negates the

product.
2] x1 0x0
0x0
Bx0
¢} axe
¢} axe
¢] Xx17 0x0
¢] %19 2x0
€] x21 0x0
¢] x23 0x0
&] x25 0x0
2] x27 0x0
¢] x29 0x0
8 sp gx7fffffffeffo
X4, #0Ox5a5 // Load up first 16 bits to reg w4
X5, #0Ox4 // Now load reg x5
10V X6, #Oxaa // Value to be subtracted from
MSUB %3, X4, X5, X6 // Multiplies the contents of x4 and x5 together, subtracting the product from o

Listing 4-25 Use of MNEG

//listing4-25

// This example illustrates the MNEG instruction which multiplies two operands and

then subtracts the product from XZR.
.text

.global start

_Btarts
mov x4, #0x5ab // Load up reg wi
mov x5, #0x4 // Now load reg x5
mov x6, #0xaa // Value to be subtracted from
MNEG x3, x4, x5 // Multiplies the contents of x4 and x5 together,

subtracting the product from 0 (XZR)
mov w8, #0x5d //Time to go.
svc #0

S objdump -d -M no-aliases multll

multll: file format elf64-littleaarchod

Disassembly of section .text:

Page 4-27

Arithmetic and logic operations

0000000000400078 < start>:

400078: d280b4a4 movz x4, #0x5ab
40007c: d2800085 movz x5, #0x4
400080: d2801546 movz x6, #0xaa
400084 : 9p05£fc83 msub x3, x4, x5, xzr
400088: 52800ba8 movz w8, #0x5d
40008c: d4000001 svc #0x0

UMNEGL and SMNEGL

These instructions multiply two 32-bit (w) registers, negate the product placing the resultin a
64-bit (X) register. UMNEGL and SMNEGL are aliases for UNSUBL and SMSUBL, respectively.

Division
Division operations can be signed or unsigned using the instructions unpiv and sp1v. The format

is SDIV|UDIV Rd, Rn, Rm where Rd is the destination, Rn contains the numerator and Rm

contains the denominator. Registers can be 32-bit or 64-bit.

Note dividing by zero does not give an error, it returns the value 0, so it needs to be tested
separately.

Listing 4-26 Using UDIV

// listing4-26

// This example illustrates the UDIV instruction which uses two operands as the

numerator and denominator.
.text

.global start

_Btarts
mov x4, #2000 // Load up reg x4 (number to be divided)
mov x5, #0x4 // Now load reg x5 (number that will divide)
UDIV x3, x4, x5 // Divides x4 by x5 together, result goes into x3
mov x4, #1999 // x4 no longer evenly divisble by contents of x5
UDIV x3, x4, x5 // No remainder recorded
mov x5, #0 // Dividing by zero does not error, but returns zero

UDIV x3, x4, x5

Page 4-28

Arithmetic and logic operations

mov w8, #0x5d

svc #0

//Time to go.

Note there is no provision made for recording the remainder, this needs to be calculated

separately.

In the second part of Listing 4-26 where x4 contains 1999, the remainder is calculated by

subtracting the product of x3 and x5 from x4:

e x3=499
e x4=1999
e x5=14

o Remainder =1999 - (499*4) = 1999 — 1996 = 3.

Shift and Rotate

Some of the listings have used shift/rotate instruction already but this section will formally

introduce them. The instructions and their descriptions are shown in Table 4-3

Table 4-3 Rotate and shift instructions

Operation

Logical Shift Left

Example

sl rd, rn, #shift

Description

Shift bits left by specified amount, zeros move in

from the right, can be immediate or register

Logical Shift Right

lsr Rd, Rn, #shift

Shift bits right by specified amount, zeros move in

from the left, can be immediate or register

Arithmetic Shift
Right

asr rd, rn, #shift

Shift bits right by specified amount, maintaining
the sign bit. Use for signed integers, can be

immediate or register.

Rotate Right

rorrd, rn, rm

Rotate right in that the bit shifted from bit0 moves
into the most significant bit, can be immediate or

register

Examples are shown in Li

Listing 4-27 Examples of Shift and Rotate instructions

// listing4-27
.text
.global start

_start:

Page 4-29

sting 4-27.

Arithmetic and logic operations

mov w0,
mov wl,
mov w2,
mov w3,

mov w4,

1sl w5,
1sl wo,
asr w7,
ror w3,
mov w8,

svc 0

#0xaaaa
#0x33333333
#0x44444444
#0x55555555
#0x66666666

wl, #3 // w5
wl, wO // w6
w2, #3 // Wl
w3, #5 // w3
#93 //Time to go

= 0x99999998

Oxccceccec00

0x88888888

= Oxaaaaaaaa

Disassembly shows the non-aliased form of the instructions.

rotate:

Disassembly of section

0000000000400078 < start>:

400078

40007c:

400080:

400084 :

400088:

40008c:

400090:

400094 :

400098:

40009c:

4000a0:

file format elfo64-littleaarch64d

52955540

3200e7el

3202e3e2

3200£3e3

3203e7e4

531d7025

lac02026

13037c47

13831463

52800ba8

d4000001

.text:

movz

orr

orr

orr

orr

ubfm

1slv

sbfm

extr

movz

sSvC

w0, #Oxaaaa

wl, wzr, #0x33333333
w2, wzr, #0x44444444
w3, wzr, #0x55555555
w4, wzr, #0x66666666
w5, wl, #29, #28

w6, wl, wO

w7, w2, #3, #31

w3, w3, w3, #5

w8, #0x5d

#0x0

The instruction results are straightforward except for 1s1 w6, wl, w0.Here register w0, which

holds the value Oxaaaa, is divided by the data size which in this case is 32. The remainder of

the division is used to specify the rotation. The remainder is Oxa, so the rotation will be applied

10 times.

Page 4-30

Arithmetic and logic operations

1 0 0 0 0 01T O 1 0 1 o1 0 1 01 0 1 0 1 0
1T 0 0 0 O 0
0 0 1 0 1 0 1 0
1 0 O 0 0 O
0o 0 1 o1 0 1 0
1 0 0 0 0 O
0 o1 0 1 0 1 O

Shift by Remainder = 1 0 1 0

Rotate by 10 positions to get Oxcccccc00

oo0o1t10O01710O01T17001T17001T100O017 1001100 11

110011001 10©O01T10O0110O0T111000O0O0O0TO0O0OTCO0OTO

[¢] (o] o] o] c c 0 0

Page 4-31

Arithmetic and logic operations

Logic Operations — AND/OR/EOR
Truth tables for AND and OR operations are shown in Table 1-11 and Table 1-12.

e Totest whether a bitis a one or a zero, the bit can be AND’ed with a binary one. If the
result of the AND is a one then the tested bit is also one, since this is the only AND

operation that will generate a binary one, otherwise it has the value zero.

e Similarly, if a bitis OR’ed with a zero and the result is a zero then the tested bit is also

zero since the OR operation only produces a zero when both bits are zero.
To summarize:
e 1ANDX=1iff?° X=1
e 0ORX=0iff X=0
Multiple bits can be cleared or set by the use of a bitmask.

The format of the Bitwise AND (immediate) instruction is shown in Figure 4-2. The immediate
data is 12 bits in size, limiting the size of the bitmask for OR/AND instructions. There is though,
a form of immediate termed logical immediate that provides for larger bitmask sizes. The

approach is to provide a pattern with some compromises on the data that can be represented.

Figure 4-2 Format of AND (immediate) instruction

st Jopcode TN [im imms Rn Rd

31 30 22 21 15 9 4 0
sf 1==64bit 0&&N=0==32 bhit

Opcode

00100100= Bitwise AND immediate

n=1=64 bits wide Only 1 caseforthis allothers are 32bit2,4,8,16,32

32 bitimm encoded inimms:immr

B4bitimm encoded in N:imms:immr

Rn Source Register

Rd Destination Register

The ARM architecture reference manual?®' states:

20|ff — if and only if!
2 Text may be version dependent.

Page 4-32

Arithmetic and logic operations

“Logical (immediate)

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern
or a 64-bit pattern viewed as a vector of identical elements of size e =2, 4, 8, 16, 32 or, 64 bits.
Each element contains the same sub-pattern, that is a single run of 1 to (e - 1) nonzero bits
from bit 0 followed by zero bits, then rotated by 0 to (e - 1) bits. This mechanism can generate

5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.”

This means that there are repeated patterns of bits with varying sizes. The elements can be
made up of 2 bits, 4 bits, 8 bits, 16 bits, 32 bits or 64 bits.

The two-bit element contains 32 x 1 bit sub-patterns which looks like:
01

There is only one possible (base) pattern since the rule states that the sub pattern is a single
run of 1 to e-1 nonzero bits, and since size element e is 2, thentherunis 1to (2-1) = 1. The
pattern starts with a 1 at the bit zero position followed by zero bits. The pattern can be right

rotated, however giving a second sub-pattern as shown:
10

Other patterns give a wider range, for example when e = size 4, there can be 1 to 3ones (1 to e-

1) in the sub pattern. A subset of patterns is shown in Figure 4-3.

Another way of using large bitmasks is to use a series of movk instructions into a register and
then use this register (with an optional shift) to perform the logic operation. This is often
preferred than the use of logical immediate instructions. Examples of logical operations using

registers are covered later in this chapter.

Page 4-33

Arithmetic and logic operations

Figure 4-3 Examples of Logical immediate values

32 Recurring 2 bit patterns

No Rotation
01 01 91 91 91 01 01 01 01 B1 @1 @1 V1 V1 01 01 A1 61 @1 €1 A1 91 01 A1 A1 61 @1 01 81 @1 .1
Sub pattern 1x1 bit 01

One Rotation
16 18 16 16 10 16 16 1@ 16 1 16 16 10 1 16 10 16 1€ 1@ 16 18 10 16 10 16 168 1@ 16 18 18 16
Sub patternonex1 bit 10

16 Recurring 4 bit patterns
No Rotation

Sub pattern 1x1 bit 0001 0001 001 0EO1 0001 0001 001 0ROl G001 6061 001 0eA1 EEe1 0001 061 eeel1

Sub pattern 2x1 bits
Sub pattern3x1 bits £111 0111 0111 €111 0111 111 6111 6111 8111 6111 6111 €111 0111 €111 0111 6111
One Rotation

Sub pattern 1x1 bit 1000 1000 1000 1000 1000 1008 16080 1000 1000 1008 1060 1000 1008 1000 1060 1600

Sub pattern2x1 bits
Sub pattern 3x1 bits 1011 1011 1611 1011 1611 1611 16011 1811 1011 1611 1011 1811 1011 1011 1011 1eil
Two Rotations

Sub pattern 1x1 bit 0100 016060 01600 0100 0100 0106 0160 0100 0100 0166 0160 0160 0100 0100 0160 6100

Sub pattern 2x1 bits
Sub pattern3x1 bits 1101 1161 1161 1101 1161 1161 1181 1161 1161 1161 11681 1161 1161 1161 1181 1181
Three Rotations

Sub pattern 1x1 bit 0010 0016 0010 0010 0016 0016 0010 0e10 0010 0016 0010 010 fR10 0016 0616 Be10

Sub pattern2x1 bits

Sub pattern 3x1 bits 1110 11160 1110 1110 1116 1116 11160 11160 11160 1116 1110 1110 11160 1116 1116 1110

8 Recurring 8 bit
patterns

Mo Rotation

Sub pattern one 1 bit 00000001 QOEREEE1 EEEEEEE1 BREOOERE1 AEEEEE01 EEEELOR1 0NEREEEE1 00EEEeA1

Note that the patterns are identical as stated in the ARM documents, therefore a pattern such
as OxOfffOfffOfffOfffO would be valid (recurring consecutive ones) but OxfffOfffOfffO0fff would
not.

The actual encoding for the bitwise AND instruction is shown in Table 4-4 below.
The logical immediate is made up of the N, immr and imms fields.
e The single bit N field is set to 1 if the element size is 64 bits.

e The 6-bitimmr field specifies the rotation amount and since there are 6 bits then 0-63

rotations are possible.

Page 4-34

Arithmetic and logic operations

The 6-bit imms field (in conjunction with the N bit is used to specify the element size
and the sub patterns. Table 4-4shows examples of the patterns generated by the imms
field bits.

Table 4-4 imms field examples

32-bit

32-bit

32-bit

32-bit

32-bit

32-bit

32-bit

32-bit

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Sub pattern

1 1 1 1 0 010101...
2-bit element size One “1”

1 1 1 0 - 00010001
4-bit element size One “1”

4-bit element size Two “1s”

1 1 1 0 - 01110111...

4-bit element size Three “1s”

1 1 0 00000001 00000001 . ..

8-bit element size One “1”

1 1 0 00000011 00000011 ...
8-bit element size Two “1s”

1 1 0 00000111 00000111 ...

8-bit element size Three “1s”

1 1 0 00001111 00001111 ...

8-bit element size Four “1s”

1 0 0000001111111111......

16-bit element size Ten “1s”

: DEREES

32-bit element size sixteen “1’s” 00000000000000001111111111111111

64-bit element size two “1s” 00000000000000000000000000000000000000PPPPVVVEPRRP0000EEA 11

Page 4-35

Arithmetic and logic operations

The relevant bits for the element size are shown in Table 4-5. The bits that do not correspond to
the element sizes are used for positioning the 1’s values. Listing 4-29 shows the results of

using the values shown in Figure 4-3.
Table 4-5 Interpreting the imms field bits

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Element size
1 1 1 1 0 - 2

1 1 1 0 - - 4

1 1 0 - - - 8

1 0 - - - - 16

0 - - - - - 32

- - - - - - 6422

The listing below shows the orr instruction in operation

Listing 4-28 Use of the orr and ORN instructions
//listing 4-28

.text

.global start

_Btarts

// orr (Bitwise OR immediate)

mov w0, #0xaaaaaaaa

orr wl, w0, #0x55555555 // wl=0xffffffff
orr wl, w0, #0xaaaaaaaa // wl=0xaaaaaaaa
orr wl, w0, #0xO0000ffff // wl=0xaaaaffff

orr wl, w0, #0xffff0000 // wl=0xffffaaaa

//orr (Bitwise OR shifted register)
mov w0, #3

orr wl, w0, w0, 1sl #6 // wl = 0xc3 = 0b11000011

22 |n this case N=1

Page 4-36

Arithmetic and logic operations

Note the disassembly aliases —

Listing 4-29 Using logical immediates with and/orr instructions

Arithmetic and logic operations

// and (Bitwise and immediate)

mov x4, #0xffff

movk x4, #0x0000, 1lsl 16

movk x4, #0x0000, 1lsl 32

movk x4, #0xfff, 1sl 48

// Use objdump to see encoding for logical immediates

// Format is N, immr, imms. If N = 1 then pattern is 64 bit

// If N = 0 then pattern is 32 bit repeating n times, where n is specified in the

imms field

// imms = 11110X then 2 bit pattern recurring 32 times, one "1",

// imms = 1110xx then 4 bit pattern recurring 16 times, one thru three "1s"

// imms = 110xxx then 8 bit pattern recurring 8 times, one thru seven "1s"

// imms = 10xxxx then 16 bit pattern recurring 4 times, one thru 15 "1ls"

// imms - Oxxxxx then 32 bit pattern recurring 2 times, one thru 31 "1ls"

// x field = # of ones, where the # of ones is one less than the x value,00 = 1

"l", 01 = 2 "lS", 10 = 3 u,

// so for imms = 111001 pattern is 4 bits and the # of ones is 2 = 0011 0011 0011

// for imms = 110110 pattern is 8 bits and # of ones is 7 = 01111111 01111111
01111111

// immr is the rotate field where 000000 = no rotation and 111111 =sixty-three

rotations

// Note for imms 11110x then 1 rotation is possible
// Note for imms = 110xxx then 1 thru 7 rotations are possible
// Examples follow

and x3, x4, #0x5555555555555555 // r3 = 555000000005555

// Pattern is 2 bits wide imms, = 111100, one sequential one, immr = 000000, no
rotate

and x3, x4, #0xaaaaaaaaaaaaaaaa, // r3 = 0xaaa00000000aaaa

// Pattern is 2 bits wide imms, = 111100, one sequential one, immr = 000001, one
rotate

and x3, x4, #0x1111111111111111 // r3 = 0x1110000000001111

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000000, no

rotates
and x3, x4, #0x3333333333333333 // r3 = 0x3330000000003333

Page 4-38

Arithmetic and logic operations

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 00000, no

rotate
and x3, x4, #0x7777777777777777 // r3 = 0x7770000000007777

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000000, no

rotate
and x3, x4, #0x8888888888888888 // r3 = 0x8880000000008888

// Pattern is 4 bits wide imms = 111000, one sequential one, immr = 000001, one

rotate
and x3, x4, #0x9999999999999999 // r3 = 0x9990000000009999

// Pattern is 4 bits wide imms = 111001, two sequential ones, immr = 000001, one

rotate
and x3, x4, #0xbbbbbbbbbbbbbbbb // r3 = 0xbbb000000000bbbb

// Pattern is 4 bits wide,imms = 111010, three sequential ones, immr = 000001, one

rotate

orr x3, x4, #0x4444444444444444 /) r3 = Ox4fff44444444FFfFF

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000010, two
rotates

orr x3, x4, #0xccccccccececceeee // r3 = Oxcfffcccccececffff

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 000010, two
rotates

orr x3, x4, #0xdddddddddddddddd // r3 = Oxdfffddddddddffff

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000010,

two rotates
orr x3, x4, #0x2222222222222222 // r3 = 0x2fff22222222ffff

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000011, three
rotates

orr x3, x4, #0x6666666666666666 // r3 = 0x6fff66666666ffff

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 000111,

three rotates
orr x3, x4, #0xeeeceeceececeeceeceeece // r3 = Oxefffeecececeeceffff

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000111,

three rotates
orr x3, x4, #0x0101010101010101 // r3 = Oxfff01010101ffff

// Pattern is 8 bits wide, imms = 110000, one sequential one, immr = 000000, no
rotate

orr x3, x4, #0b01100110011001100110011001100110011001100110011001100110011001100
//r3 = Oxcfffccccccecffff

Page 4-39

Arithmetic and logic operations

//Same as orr x3,x4,

#0x44444444444444 but expressed in binary

working with bitmasks)

and x3, x4, #0x0000000000000001 // r3 = 0x1

// N=1, One 64 -bit pattern of one one, imms = 000000, immr =

and x3, x4, #0x1000000000000000 // r3 = 0xO

// N=1, One 64-bit pattern of one one, imms = 000000, immr =

rotations (0001 - 0001 . . .)

mov w8, #93 //Time to go

sve 0

The imms and immr fields can be shown from the disassembly :

$ objdump -d -M no-aliases examples

examples: file format elf64-littleaarcho64d

Disassembly of section .text:

0000000000400078 < start>:
400078: dz29fffed movz x4, #Oxffff
40007c: £2a00004 movk x4, #0x0, 1lsl #16
400080: £2c00004 movk x4, #0x0, 1sl #32
400084 : f2elffed movk x4, #0xfff, 1sl #48
400088: 9200£083 and %3, x4, #0x5555555555555555
40008c: 9201£083 and x3, x4, #0xaaaaaaaaaaaaaaaa
400090: 9200e083 and %3, x4, #0x1111111111111111
400094: 9200e483 and x3, x4, #0x3333333333333333
400098: 9200e883 and x3, x4, #0x7777777777777777
40009c: 9201e083 and x3, x4, #0x8888888888888888
4000a0: 9201e483 and x3, x4, #0x9999999999999999
4000a4: 9201e883 and x3, x4, #0xbbbbbbbbbbbbbbbb
4000a8: p202e083 orr %3, x4, #0x4444444444444444
4000ac: b202e483 orr x3, x4, #0xcccccecccececccccec
4000b0: b202e883 orr %3, x4, #0xdddddddddddddddd
4000b4: b203e083 orr x3, x4, #0x2222222222222222
4000b8: b203e483 orr %3, x4, #0x6666666666666666
4000bc: b203e883 orr x3, x4, #0xeeceececeeceececeeceecece
4000c0: b200c083 orr x3, x4, #0x101010101010101

Page 4-40

000000,

000100,

(often easier when

no rotation

four

Arithmetic and logic operations

4000c4: b202e483 orr x3, x4, #0xccccccececcecececeec
4000c8: 92400083 and x3, x4, #0x1

4000cc: 92440083 and x3, x4, #0x1000000000000000
4000d0: 52800ba8 movz w8, #0x5d

4000d4: d4000001 svc #0x0

Exercise — Try using a logical immediate with a mov instruction.
and shifted register instruction
The and shifted instruction and’s two registers together. Placing the result in the destination

register. The second register can also have an optional shift applied to it prior to the AND

operation. The format is:

and <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
ANDS instructions

The ands instruction is used to set flags.

orr shifted register instruction

The orr shifted instruction OR’s two registers together. Placing the result in the destination
register. The second register can also have an optional shift applied to it prior to the orr

operation. The format is:

orr <Xd>, <Xn>, <Xm>, <shift> #<amount>

ORN bitwise shifted register
The orn bitwise is similar to the and and orr bitwise shifted register instructions, except that it
inverts the bits in the second register prior to applying the ORN instruction

EOR instructions
Exclusive or instructions can be used as bitwise immediate or in shifted register forms.

Listing 4-30 shows more logical instruction examples.

Listing 4-30 Example of logical instruction with shifted register operands
//1listing4-30

.text

.global start

_Start:

// and (Bitwise and immediate)

mov w4, #0xcccccccce

Page 4-41

https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XdOrXZR__6
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XnOrXZR__12
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XmOrXZR__4
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#shift_option__3
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#amount__7
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XdOrXZR__6
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XnOrXZR__12
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XmOrXZR__4
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#shift_option__3
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#amount__7

Arithmetic and logic operations

mov

w5, #0x55555555

// Examples follow

and

orr

and

orr

orn

eor

mov

SvC

w3, w4, wS // w3 = 0x44444444
w3, w4, w5 // w3 = 0Oxdddddddd

w3, w4, w5, 1sl 4 // w3

0x44444440

w3, w4, w5, lsr 2 // w3 0xdddddddd
w3, w4, w5, asr 1 // w3 = dddddddddd

w3, w4, w5, ror 6 // w3 0x99999999

w8, #93 //Time to go

0

BIC and BFl instructions

Bitwise bit clear BIc can clear bits by executing the AND instruction with the inverse of the

contents of an optionally shifted register. The format is:

BIC

Xd, Xn, Xm, shift type amount

The bitfield insert (BF1) instruction copies a set of bits (from the least significant positions)

specified in the width field in the source register to a bit position (specified in the lsb field) in

the target register. BFI is an alias for BrM (bitfield move).

Examples are shown in Listing 4-31.

Listing 4-31 BIC and BFl instructions

//listing4-31

//

mov
mov
bic
bfi
mov

sSvC

BIC instruction

x3, #0x5555

x4, #0x6666666666666666

x5, x3, x4, 1sl1l 3 // x5 = 0x4445
x5, x4, 6,5 // x5 = 0x4185
w8, #93 //Time to go

0

The instruction format and steps are shown in Figure 4-3.

The disassembly shows -

objdump -d -M no-aliases bic

bic:

file format elf64-littleaarcho4d

Page 4-42

Arithmetic and logic operations

Page 4-43

Arithmetic and logic operations

Summary of chapter 4

e Arithmetic operations
o Add, Subtract, Multiply and Divide
e Logical Operations
o Bitwise operators
e Shift and Rotate instructions
e |Logical Immediate instructions

e Condition flags

Page 4-44

Arithmetic and logic operations

Exercises for chapter4d

1. Describe the difference between the add and ADDs instruction?

2. After executing the following code what value ends up in register x6
mov x4, #1024 //This moves the number 1024 to reg x4

mov x5, #64 // Move 64 into reg x5

add x6, x4, x5, LSL #6

3. Whatis the value in w3 after the code below has been executed.

// and (Bitwise and immediate)
mov w4, #0xcccccccc
mov w5, #0x55555555

and w3, w4, w5

4. Describe two ways to place the immediate value Oxbbbbbbbb into register X6

Page 4-45

Loops, Branches and Decisions

Chapter 5. Loops, Branches and Conditions

This chapter will show how to use iteration and decision making with ARM64 assembly code.

The next listing shows how to compare two numbers and will print out an appropriate message.

Listing 5-1 Simple comparison and branch example

//listing5-1
// This example
.text

.global start

shows how basic comparison and branch instructions work

_start:
mov x4, #0X8000 // Load up reg x4
mov X5, #0x4000 // Now load reg x5
cmp x4, x5
bgt printlower
ldr x1, =lower // Point x1 to lower string location
mov x2, #22 // Length of lower string
B printit
printlower:
1ldr x1, =upper // Point x1 to upper string location
mov x2, #23 // Length of upper string
printit:
mov x0, #1
mov w8, #64 // Invoke the Write system call
sve #0
mov w8, #0x5d // Time to go.
svc #0
.data
lower: .ascii "First number is lower\n"
.align
upper: .ascii "First number is higher\n".
Output: - First number is higher

Page 5-1

Loops, Branches and Decisions

This snippet compares two numbers held in register x4 and x5. It does a comparison and if the
second number is lower than the first number then it branches to the code located at the label
printlower. The instruction bgt is a conditional branch. If the number is not greater, then the
write parameters are set up (string location and its length) and the code performs an
unconditional branch to the label printit, skipping over the printlower code. Regardless of the
comparison the code at printit is common and its function is to invoke the Write System call

and then exit.

Disassembling the code is instructive:

objdump -d -M no-aliases cmpl

cmpl : file format elf64-littleaarch64d

Disassembly of section .text:

00000000004000b0 < starté>:

4000b0: d2900004 movz x4, #0x8000

4000b4: d2880005 movz x5, #0x4000

4000b8: eb05009f subs xzr, x4, x5

4000bc: 5400008c b.gt 4000cc <printlower>
4000c0: 58000141 ldr x1, 4000e8 <printit+0x14>
4000c4: d28002c2 movz %2, #0x1l6

4000c8: 14000003 b 4000d4 <printit>

00000000004000cc <printlower>:
4000cc: 58000121 ldr x1, 4000f0 <printit+0xlc>
4000d0: d28002e2 movz x2, #0x17

00000000004000d4 <printit>:

4000d4: d2800020 movz x0, #0x1

4000d8: 52800808 movz w8, #0x40
4000dc: d4000001 svc #0x0

4000e0: 52800ba8 movz w8, #0x5d
4000e4: d4000001 svc #0x0

4000e8: 004100£8 .word 0x004100£8
4000ec: 00000000 .word 0x00000000
4000£0: 0041010e .word 0x0041010e
4000£4: 00000000 .word 0x00000000./cmpl

Page 5-2

Loops, Branches and Decisions

Note that the cmp instruction is an alias of suBs which performs a subtraction;

using the xzr register to discard the result.

Adding in the command Mrs X9, NZCV shows which flags are set, in the case where the value of
X4 is higher than the value in x5 then the Carry bit is set (X9=0x20000000), in the second case
where the value of X4 is lower than the value of x5 then the Negative bit is set (x9=0x80201000).

Case1 (x4 > x5)

Example x4 = 0X8000, x5 = 0x4000 Negative bit is clear, Zero bit is clear, Carry bit is set,

Overflow bit is clear

Ox40 64 X9 Ox20000000 536870912
0x0e Q x11 Ox0 ¢}
0x0 6] x13 Ox0 [¢]
0x0 0 x15 0x0 Preserving an
gig g ﬁ; g;g g intermediate flag
0x0) x21 0x0 0 resultin X9
0x0e Q X23 Ox0 ¢}
0x0] x25 Ox0 [¢]
ox0 ¢} xX27 ax0 [¢]
0x0e Q X29 Ox0 ¢}
ox0 [c] sp Ax7frfffffefze Ox7fffffffef2e
0x4000e4 0x4000e4 <printit+12> 0x20001000 [EL=0 BTYPE=0 SSBS C]
ax0 [] fper axe [Len=0 Stride=0 RMode=0]
r ox0 Ox0 tpidr2 axe ox0
ting5-1.s
18
19
20 LDR x1, =upper // Point x1 to upper string location
21 X2, #23 /f of upper string
22
23
24 x0, #1
25 w8, #64 // Invoke the Write system
26 SVC #0
27 8, // Time to go.
28 SVC #e
29
30
31 .ascil "First number is lower\n"
32
33 .ascii "First number is higher\n"
Case2 (x4 < x5)

Example x4=0X8000, x5=0X9000,Negative bit is set, Zero bit is clear, Carry bit is clear, Overflow

bitis clear.

For conditional branches the format is Branch on condition to label (B.condition label) so in
Listing 5-1 the command bgt printlower was used with GT being the condition <Greater

Than> and <printlower> being the label to branch to.

Table 5-1 shows the applicable conditional branches as determined by flag settings.

Page 5-3

Loops, Branches and Decisions

Table 5-1 Conditional branches
Command Condition Flags
B.CS/B.HS Unsigned greater than or equal Carry Set
to
B.CC/B.LO Unsigned less than (lower) Carry Clear
B.Mi Negative (Minus) Negative Set
B.PL Plus (Positive, note zero is Negative Clear
positive)
B.EQ Equal Zero set
B.NE Not equal Zero clear
B.VS Overflow set Overflow set
B.VC No Overflow Overflow clear
B.HI Higher Carry Set, Zero clear
B.LS Lower or the same Carry clear, Zero set
B.GE Signed greater than or equal to Negative and Overflow the same
B.LT Signed less than Negative and Overflow different
B.GT Signed greater than Zero clear, Negative and Overflow the
same
B.LE Signed less than or equal to Zero set, Negative and Overflow

different

From Table 5-1 the listing has been adapted to include Branch if equal (B.EQ)

Listing 5-2 Using B.EQ condition

//listing5-2

// This example shows how basic comparison and branch instructions work

.text

.global start

_start:

mov x4, #0X8000 // Load up reg x4

mov x5, #0x8000 // Now load reg x5

cmp x4, x5
mrs X9,NZCV // Get Flags

b.mi printlower

b.eq printthesame // Position B.EQ before B.PL since zero is considered

positive

Page 5-4

Loops, Branches and Decisions

b.pl printhigher
printlower:
1ldr x1, =lower // Point x1 to lower string location
mov x2, #22 // Length of lower string
B printit
printhigher:
ldr x1, =higher // Point x1 to higher string location
mov x2, #23 // Length of higher string
B.AL printit
printthesame:
1dr x1, =same// Point to the same string location
mov x2, #22
printit:
mov x0, #1
mov w8, #64 // Invoke the Write system call
svc #0
mov w8, #0x5d// Time to go.
svc #0
.data
lower: .ascii "First number is lower\n"
higher: .ascii "First number is higher\n"

same: .ascii "The numbers are equal\n"

Nested Loops

Programming often involves iterative algorithms where multiple loops are employed. The next
listing shows two loops (inner and outer) and outputs the loop value to the screen as they are
being calculated.

Listing 5-3 Nested For loop

// listing 5-3

/* This example shows a Nested For Loop in action

Both loops start with an index of 1 and count up to 3

- w3 holds the index value for the inner loop

- w4 holds the index value for the outer loop

Page 5-5

Loops, Branches and Decisions

M ——

Loops, Branches and Decisions

M ——

Loops, Branches and Decisions

mov w8, #64 // Invoke the Write system call
svc #0
mov w8, #0x5d // Time to go.
svc #0
.data
printheader: .ascii "\nInner Outer\n"
printvalues: .space 8
Output:

Inner Outer

1 1
2 1
3 1
1 2
2 2
3 2
1 3
2 3
3 3

Two data regions have been defined — printheader which is used to print out a heading and
then printvalues which is an area of memory that reserves empty space to hold the calculated
loop values. Prior to printing out the values the numbers are converted to ASCII text by adding

the value 48%, placing the result in w5.

Each character is stored into the empty printvalues space by the instruction strb w5, [x1,#0%].

This instruction stores the value held in w5 to the memory location pointed to by x1 with an

2 This because the ASCII numeric characters are consecutive in value and the ASCII character
for zero is 48 (0x30).

24 Note When the offset is zero, then GDB will assume this if no immediate value is given, hence

the listing omits #0 in the strb commands.

Page 5-8

Loops, Branches and Decisions

offset of 0. The addressing mode calculates a register plus an offset. Square brackets signify
indirection. This program stored each character at the same memory location, destroying the
previous contents. The Pre-index addressing mode preserves the data that was generated by
incrementing the memory location, thereby storing data in consecutive locations. The format
of the instruction is highlighted in Listing 5-4. The instruction stores the byte held in register ws

at the memory location pointed to by register x1.

This is different from other instructions, in that the first register is the source.

Listing 5-4 Nested loops with pre-index addressing mode

//listing 5-4

/* This example shows a Nested For Loop in action

Both loops start with an index of 1 and count up to 3

- w3 holds the index value for the inner loop

- w4 holds the index value for the outer loop

- w9 holds the termination loop value

- w5 holds the ASCII equivalent of the current index value
For writing -

w0 = 1 <stdout>

wl = Character location in memory

w2 = Character count for output to stdout
*/

.text

.global start

_start:
mov W9, #4 //ending value for loop
mov w7, #1 // For loop iteration value
mov w0, #1 //stdout

ldr wl, =printheader

mov w2, #14 // Character count of printheader string
mov w8, #64 // Write out header text
svc #0

ldr wl, =printvalues // Now that the header has been printed get ready to

print values

mov w3, #0xl // Load up reg w3 with starting inner loop value

Page 5-9

Loops, Branches and Decisions

M ——

Page 5-10

Loops, Branches and Decisions

M ——

At Program completion - ’bQO

Loops, Branches and Decisions

Output GQQ

Page 5-12

Loops, Branches and Decisions

Summary of chapter 5

e Compare instructions

e Conditional branching

® Nested loops

Page 5-13

Loops, Branches and Decisions

Exercises for chapter5
Describe the difference between a conditional and unconditional branch
Which instruction is cmp an alias for?
How does the flag condition signify that the signed less than condition is true?

Modify listing 5-2 to accept user input (hint think syscalls)

Page 5-14

Macros and Functions

Chapter 6. The Stack, Macros and Functions

Macros and Functions

This chapter introduces areas that are used by real-world (and other coders) to better manage
and clarify their programs. Now that the listings are getting longer, it makes sense to introduce
the concept of macros and functions. The concepts are similar but the way that the programs

are assembled leads to tradeoffs behind performance and code size.

Listing 6-1 shows a print macro which requires two parameters —the location of the string to be
printed and its location. Output goes to stdout. The macro is called twice, each time with
different parameters. This basic example does not save much in typing, but the benefit is
significant when larger macros are used. The macro code is enclosed between the assembler
directives .macro and .endm. Macros are used to repeat frequently used instructions using
different parameters

Listing 6-1 A simple macro

* This shows an example of a macro

The macro prints to stdout, input parameters are the location of the string and

its character count
It is called twice, to print both strings*/
.text
.global start
_BEtarts
mov w2, #39

.macro print location, length // Macro expects string location
and its length

mov w0, #1 //stdout
ldr wl, =\location //Pass location
mov w2, \length //Pass length

mov w8, #64
sve #0
.endm
print stringl, w2 // Call macro with parameters stringl and 39!
mov w2, 16

print string2, w2 // Call macro with parameters string2 and 18

Page 6-1

Macros and Functions

Output - QJQ

Disassembly shows:

The highlighted sections show the macro, which has been written inline twice. In line code can

be fast but will generate larger code when called extensively.

Page 6-2

Macros and Functions

Itis also possible to break out the macro into a separate file which can be called using the

- directive.

Listing 6-2 Separate macro file

Listing 6-3 Calling a macro using the include directive. \&

Page 6-3

Macros and Functions

The Stack

Functions will make use of the stack. The stack is a data structure which stores datain a
structured manner. As an example, a register’s contents can be Pushed on to the stack and
can be restored by Popping the data from the stack back to the register again. Push and Pop
operations are performed in a Last in First out (LIFO) manner, in that if multiple registers were
pushed on to the stack the last register pushed would be the first one restored. The stackis a

location in memory.

A stack pointer will show where in memory the top of the stack is situated. When data is
pushed the stack pointer will be decremented to a lower memory location and when data is
popped, the stack pointer will be incremented. A push to the stack is accomplished using the
str instruction and a pop is accomplished using the 1dr instruction. Both these instructions
are familiar, the only difference being that the stack pointer is used as the operand rather than
a normal register. With ARM64, the stack grows downwards in memory and must be 16-byte

aligned.
¢ The ARM64 documentation states that

o Formally, sp must lie in the range stack_limit < sp <= stack_base, though the

values of stack_limit and stack_base are often inaccessible.
e The memory below sp (but above stack_limit) must not be accessed by your code.

Listing 6-4 shows examples of push and pop operations.

Listing 6-4 Push and Pop operations using str and ldr
.text

.global start
_start:
//This program shows how to interact with the stack
mov x4, #0xffff
movk x4, #0x0000, 1sl 16
movk x4, #0x0000, 1lsl 32

movk x4, #0xfff, 1sl 48

mov x3, Sp // Move stack to register x3. SP at Ox7fffffffef20
str x4, [SP, #-16]! // SP now at Ox7fffffffefl0 (lower memory location)
mov x4, #0 //Clobber X4

1dr x4, [sp]l, #16 // Restore x4, SP now back to O0x7fffffffe20

Page 6-4

Macros and Functions

stp x3,x4, [sp, #-16]! // Store register x3 and x4 on to the stack SP =
Ox7fffffffeflO0

mov X3, Xzr // Clobber x3

mov x4, Xzr // Clobber x4

1ldp x3, x4, [spl, 16 // Restore both, SP = Ox7fffffffe20

mov w8, #93 //Time to go

svc 0

The stack could also push to higher memory addresses as shown in Error! Reference source n

ot found.. The actual implementation is architecture dependent!

Figure 6-1 Stack memory contents after stp x3, x4, [sp, #-16]! instruction

X3 x4

(gdb) x/16fxg Ox7fffffffeflio ‘\\l
ox7fFfffffef10:| OXOBOOOTFFfffffer2o ox0fffO00ee0e0FFff
ox7fFfffffef20: 0xPO0OOOROEOOOROOL 0x00007FFFFFfff269
Ox7fFfffffef30: 0xP00OOOROEODOROOO 0x00007FFFFFfff28h
Ox7FFfffffef40: 0x0E0O7FFFFFfff29b 0x00007FFFFffff2af
Ox7fffffffef50: OxPEEO7FFffffff2e9 Ox00007fFFfffff302
Ox7fffffffef60: OxPEEO7TFffffff328 Ox00007FfFfffff33d
Ox7fffffffef70: Ox0E0O7FFffffff36c Ox00007FFFFFfff391
Ox7fffffffef80: Ox0EEO7FFffffff3bl Ox00007fFFffffff3cs

Stack after x3 and x4 push operations

The stack supports nested operations, as shown in Listing 6-5

Listing 6-5 Nested stack operations
// listing6-5 1

.text

.global start

_start:

// This program shows nested stack operations

mov x4, #0xffff

movk x4, #0x0000, 1lsl 16

movk x4, #0x0000, 1lsl 32

movk x4, #0xfff, 1sl 48

// Move stack to register x3. SP at Ox7fffffffef20

mov x3, sSp

stp x3,x4, [sp, #-16]! // Store register x3 and x4 on to the stack SP =

Ox7fffffffefl0

Page 6-5

Macros and Functions

mov x3, #0x1234 // Fresh write to x3
mov x4, #0x5678 // Fresh write to x4

stp x3, x4, [sp, #-16]!

mov X3, Xzr // Clobber x3

mov x4, xzr // Clobber x4

ldp x3, x4, [spl,1l6 // Resore most recent value of x3 and x4

1ldp x3, x4, [sp]l, 16 // Restore next most recent values of x3 and x4

mov w8, #93 //Time to go
svc 0

Figure 6-2 Stack contents with nested operations

‘gdb) x/16fxg Ox7fffffffefoo

IXTTTTTTfTefo0: OX0000000000001234 0x000EEEEREERR5678 NMostrecent
IXTFFFffffef10: OxOOOOTTFfffffef20 Ox0fffE0000000TFFT Leastrecent
ITTFfffffef20: 0x0000000000000001 OxEeEQT7FTfffTff267

Functions are used to promote coding efficiency and clarity. They are sections of code that
can be included in a program and shared with others as libraries. Over time a coder will usually
generate their own functions for use in their code. When using external functions, registers can
be saved on the stack prior to calling the function, thus ensuring that on return from the
function code everything has been restored and coding will continue from where it left off. The
Program Counter (PC) keeps track of the location in memory where the code is next to be
executed. When a portion of code calls a function, it is termed the caller. The code that was
called (the function itself) is termed the callee. When calling a function there are several tasks

that the caller must perform and similarly the callee has its own responsibilities.
The registers follow certain conventions:

e Parameters are passed via registers x0 through x7%.

e Values are returned through register x0.

o Other parameters can be stored in memory using the return register to point to

the address.

% Additional parameters can be passed using the stack. The parameters are pushed and then
popped

Page 6-6

Macros and Functions

e The x8register (in Linux) is used for svc calls.
o Registers x19 through x28 are to be preserved for the caller.
o The callee will save these values.
e Register X29 is the frame pointer register and will be discussed later.
o Register X30 is the link register and is discussed below.

The rules are documented in the ARM Procedure Call Standard (PCS). The standard also
defines which registers are corruptible and which are not. A called function can overwrite
corruptible registers. If the function uses non-corruptible registers, then it will perform a stack
push and then a stack pop prior to returning.

Link Register

The link register (LR) is register x30 and is used to hold the address of the next instruction to be
executed after the function has been returned from. The Branch with link (BL) instruction is

used to call the function and put the returning address into the link register.

The next program consists of a main program (main.s) which call two functions®® (cubit.s)
and dubdab. s). A set of integers ranging from 1 to 10 are passed to the cubeit function which
calculates the cube of the numbers. There are several locations in memory used for specific
purposes —

Table 6-1 Memory locations used by the listcubes program

Location Name Purpose ‘
numberlist Holds the bye values 1 through 10

cubeslist Holds the calculated cubes held in numberlist
bedlist Holds the list of cubes converted to BCD

Figure 6-3 shows the memory regions and associated values prior to formatting.

% In most case functions accept inputs and return value. The listings cubeit and dubdab are

more like routines and could be implemented as macros.

Page 6-7

Macros and Functions

Figure 6-3 Memory locations for the cube program and their values

¥ memory

0x410190 0x4101dc 20
address hex

more
Px41019¢ 81 02 63 B4 05 06 07 B8 09 Ba @1 €0 B8 o0 1b 60 48 c6 7d oe

Dx4101a4d d8 60 57 @1 0@ 62 d9 02 e8 B@.BB Be 0@. b6 e @@-30

9x4101b8 00 ea. e 00 ee-ae e(- 0o @e-ae @<-
px4101cc 80 @a- 00 00 ee-e@ 90 00 00 00 00 00 00

Ox410190 - 0x41099 Numbers to be cubed

041019a - 0x4109ad Cubed numbers (Hex format)

The cubeit routine is simple, it takes a value from the memory location numberlist pointed to

by register x1. It multiplies the number by itself twice, storing the value in register w0. Main will
store the returned value into cubeslist, incrementing it to the next location and the calls cubit

again until the loop count has reached zero?.

The next routine to be called is dubdab which performs the double dabble routine. Each
number has room for a units weight, a tens weight and a hundreds weight. These partitions
take up 4 bits so a total of 12 shifts are used?®. The double-dabble algorithm is covered on page
1-16. The routine is responsible for storing the bcd number in the memory location bcdlist

pointed to by register x19. This is done at the label putbcd.

The final task is to separate the nibbles into bytes and then apply offsets corresponding to
ASCll values.

27 Make sure that instruction SUBS is used and not SUB to set the flags appropriately.

2 Note it is not necessary to perform 12 shifts if only single or double digits will result, however
rather than parse out the number of digits and then calculate the required shift count, it was
considered “cleaner to have a fixed worst case shift number. Of course, if performance were a

consideration, then significant savings would be realized by reducing the shift count.

Page 6-8

Macros and Functions

This is done by the function convert (inmain.s)which extracts the values from bcdlist starting
at the label getbcd. The first task is to separate the nibbles and put them into byte form, thatis
to say where the digits previously occupied four bits they now require an eight bit space. This is
because they are to be converted to ASCII format which requires byte space. A lot of bit
twiddling is performed here to move the bytes into the correct position. After this the rev
instruction is used to reverse the byte order putting them in the correct locations. In between

each store a line feed/carriage return is inserted to improve formatting.
Stripping away the leading zeros is not performed!

The output looks like —

./listcubes

00000001

00000008

00000027

00000064

00000125

00000216

00000343

00000512

00000729

00001000

Listing 6-6 Main program to print out cubed numbers

main.s

text

numbercount=10

.global start

_start:

// This program shows how to call functions
// The program will print out the first 10 cubes of 1-10.
// Two functions are called, the first to calculate the cubes
// and the second to convert the cubes to BCD
// main.s

1ldr x1, =numberlist

Page 6-9

Macros and Functions

Macros and Functions

Macros and Functions

Listing 6-7 Routine to calculate cube numbers

Listing 6-8 Double-Dabble routine to convert hex/bing@bmary coded decimal

Page 6-12

Macros and Functions

Macros and Functions

The makefile combines the three @gs into the program listcubes and is as follows:

Page 6-14

Macros and Functions

Summary of chapter 6

e Use of the stack

e Macros

e Functions

e Calling conventions

o Caller and callee

Page 6-15

Macros and Functions

Exercises for chapter6
What is the purpose of the Link register?
What is the ARM Procedure call standard used for?
Modify the 1istcubes program to strip out leading zeros
Explain the difference between a function and a macro
Which directives signify the start and end of a macro?
When is the .include directive used?

What instruction can be used to push values on the stack?

Page 6-16

Mixing assembly code with high-level languages

Chapter 7. Calling assembly functions from a high-

level language

However instructive the previous 1istcubes code was, outputting the text was complex, often
it would not be practical to code in all parts of a program assembly language. Some of the

many disadvantages include:
o Complexity
e Difficult to debug
e Hardto test
e Time to develop, optimize and document

In the real world, a more pragmatic approach is used. Code is more often (than not) written in a
higher-level language such as C, C++ or Python, which has many built-in functions and
libraries that the programmer can call upon. A hybrid approach is often taken where assembly
code might be used for time critical parts or for direct access to the target machine’s hardware.
The GNU Compiler Collection (GCC) allows compilation of a mixture of code. The following

example shows how to call ARM64 assembly from C code.

First develop a simple assembly language function which cubes a number and then adds an
offset.

Listing 7-1 Cube and add assembly code

.global cubeandadd

cubeandadd:

mov w2, w0

mul w0, wO, wO // Arguments are in r0 and rl

mul w0, w2, wO

add w0, w0, wl

ret

The function cubeandadd has been declared as a global function to allow for external access.
It receives its parameters from the c code shown in Listing 7-2.

Listing 7-2 Cube and add C code

#include <stdio.h>

Page 7-1

Mixing assembly code with high-level languages

extern int cubeandadd(int a, int b);
int main ()
{
int a = 5;
int b = 10;
printf ("\n The cube and add function, calls assembly code to cube the
first number %d and then add the second number %d, the result is %d\n", a, b,

cubeandadd (a, b)) ;
return (0);

}

The assembly function (cubeandadd) has been declared as external and it passes its

parameters (a and b to the assembly code.

The output code is generated by gcc using the command:

gcc -g -o cubeandadd ./listing7-2.c ./listing7-1.s

The debugger shows the code midway through execution.

x0 0x5 5
x1 Oxa 10
%2 0x5 5
x3 Bx555555550754 93824992216916
x4 OxX7FFff7fTfe40 1408737354133568
x5 0x4058c82d63765F3F 4636675913645711167
X6 Ox7fFff7f820b8 1408737353621688
X7 0x4554415649 297766311497
x8 Oxd7 215
x9 Oxe [}
x10 Oxe [}
x11 Oxe [}
x12 Ox24 36
I—./cubeandadd.s
1
2 cubeandadd
3 cubeandadd, "function"
4
5
6 w2, wo
> 7 wl, wl // Arguments are in r@ and ri
8 wo, w2, wo
9 wo, wo, wl
10

The C library function printf is defined within <stdio.h>as int printf (const char

*format,..) Itis avariadic function which means that it can take a variable number of

arguments. This is conveyed by the ellipsis... in the prototype. The function takes a minimum of

one argument which is a pointer to the location of the starting character of the text. The text

itself can embed formatting tags which specify how the arguments that are passed are to be

printed —for example a variable using “%d” will be formatted as a signed base 10 integer. To

Page 7-2

Mixing assembly code with high-level languages

print a string, register xO will have been loaded with the address of the text (see Listing 7-5),

variables are passed into the other registers (see Listing 7-6).

A non-exhaustive list of format specifiers are shown in Table 7-1.

Table 7-1 printf format specifiers

Format specifier interpretation

%d Signed decimal number

%u Unsigned decimal number

%s Pointer to an array of characters

%c Outputs a single character

%Xx Represents an unsigned integer in lower case hexadecimal form
%X Represents an unsigned integer in upper case hexadecimal form
%% Outputs a literal “%” character

%e Represents floating point as decimal exponent notation

%f Represents floating point as decimal

Using in-line code
Basic and Extended ASM

Listing 7-3 makes use of assembly instructions with operands. This is known as Extended ASM

as opposed to Basic ASM
Basic ASM

Basic ASM is a set of assembly instructions. With inline code the asm keyword is not an actual
C keyword?® but it is understood by the assembler. Note that non-GNU assemblers may use an
alternative keyword. An example is shown below:
asm (

"mov w4, #5\n\t"

"mov w5, #15\n\t"

"add w6, w4, w5\n\t"

)G

2 This is not the case with C++.

Page 7-3

Mixing assembly code with high-level languages

Note that the instructions are separated by the combination of /n and /t.

Extended ASM

Extended ASM can use variables from the C source code. Extended ASM cannot be used

outside of C functions The assembler template consists of:
asm(code template : output operand(s) : input operand(s) : clobber list);
Table 7-2 gives an explanation.

Table 7-2 Inline assembly template

Phase Example Description

Code - Assembler Regular assembly instruction

mov w0, wl

Instruction

Code Template Using parameters passed as

mov % [inputal,

% [inputb] inputs to the code template
Output Operand(S) List

74

[answer] “r” (result) List of output operand(s)

Can be left empty using [answer] is a symbolic name, ris
a constraint string meaning
register and (result) is returned
to the Calling code.

Input Operands List Similar syntax to operand list

inputa] "r" (a),
[inputb] "r" (b)
Clobber List wg57, NxEn Optional list of registers, that

may not be preserved

A significant advantage of using inline assembly code like this is that the task of procedure call

handling (see page 6-7) is left to the compiler.

Listing 7-3 shows an example of assembly code being executed in-line with the C code. This
code cubes a number and then adds a constant (x®+y). Here the number 5 is cubed and then
the constant 10 is added.
Listing 7-3 Using inline assembly code with C
int cubeandadd (int a, int b, int c)
{

int res = 0;

/*Assembly Template is as follows:

Code (Assembly language instruction such as add x0, X0, X3)

Page 7-4

Mixing assembly code with high-level languages

Code template (add %result, %[inputl], S%[input2], . . .)

Output Operands ([result] "=r" (res); r is a constraint string which is a

general purpose 64-bit X register

= is a constraint modifier for writing, + is for read and write

Input Operands ([inputa] "r" (a) [inputb] "r" (b); two input operands a and
b*/
asm (
"mov %[inputc], %$[inputa]\n"
"mul $[inputa], $%[inputal, %[inputa]\n\t"
"mul $[inputa], %[inputal, %[inputc]\n\t"
"add $[result], %[inputal, %[inputb]\n\t"
[result] "=r" (res) // Output Operand(s) list r = general registers
[inputa] "r" (a), [inputb] "r" (b), [inputc] "r" (c) // Input Operand (s)
list

)7

return res;
}
int main (void)
{

int a

I
o
~

int b = 10;

int ¢ = 0;

int result = cubeandadd(a,b,c);

printf ("Cubing %d and adding %d = %d\n", a,b,result);
}
Using the gcc option gcc -save-temps listing7-3.c will allow the preservation of the
intermediate files that were generated during the compilation process. An extract of the
assembly file is shown below:
cubeandadd:
.LFBO:

.cfi startproc

sub sp, sp, #32

.cfi def cfa offset 32

Page 7-5

Mixing assembly code with high-level languages

str w0, [sp, 12]

str wl, [sp, 8]

str w2, [sp, 4]

str wzr, [sp, 28]

ldr w0, [sp, 12]

1dr wl, [sp, 8]

ldr w2, [sp, 4]
#APP
// 15 "listing6-12.c" 1

mov x2, x0
mul x0, x0, x0

mul x0, x0, x2

add x0, x0, x1
Looking at the cubeandadd routine, it can be seen that registers x0, x1 and x2 are used.
Register X0 holds the first parameter (5), a copy of X0 is placed in register X2. X0 is then
multiplied by itself with the result 25 being stored in register X0. The updated X0) value (25) is
then multiplied by the original value of X0 (which is stored in X2) and X0 now holds the value
125. The second operand passed in X1 is added to X0 giving the final result of 135.
The is shown in Table 7-3.

Table 7-3 In line assembly converted

Source Assembled code

“mov %[inputc], %[inputa]” mov x2, x0

"mul %[inputa], %[inputa], %[inputa]” mul x0, x0, x0
"mul %[inputa], %[inputa], %[inputc]” mul x0, x0, x2
“add %[result], %[inputa], %[inputb]” add x0, x0, x1

The next listing revisits Listing 6-6 that cubed the first ten numbers —
Listing 7-4 Cube numbers revisited
include <stdio.h>

int cubenumbers (int counter, int index)

{
int res;

asm (

Page 7-6

Mixing assembly code with high-level languages

_— e

Compilation String

>
Output g!

C.)

N

Mixing assembly code with high-level languages

512

Cubing 8

Cubing 9 = 729

Cubing 10 = 1000
Much more concise!

The next two listings use printf to print out values. Arguments are passed to printf via the X
registers or the vector registers in the case of floating-point numbers.
Listing 7-5 Using printf to print a string from assembly

// listing 7-5

.text

.global start

_start:

ldr x0, =stringl

bl printf // Use -nostartfiles when linking with gcc

mov w8, #93

svc #0

stringl: .asciz "This string was printed from assembly using printf\n"

Use the following commands to build the program

as -g -o listing7-5.0 listing7-5.s

gcc -nostartfiles -o listing7-5 listing7-5.0

The -nostartfiles option means do not use the standard system startup files when linking.

The listing passes the location of the string to printf and outputs:
“This string was printed from assembly using printf”
The next listing uses registers x0, x1, x2 and x3.

Listing 7-6 Using printf to print numbers
// listing7-6

.text

.global start

_Start:

ldr x0, =stringl

mov x1,#5

mov x2, #15

Page 7-8

Mixing assembly code with high-level languages

add x3, x1, x2

ldr x0, =stringl

bl printf // Use -nostartfiles when linking with gcc

mov w8, #93

svc #0

stringl: .asciz "The first number is %d, the second number is %d, the addition of

the two numbers is: %d\n"

Use the following commands to build the program
as -g -o listing7-6.0 listing7-6.s

gcc -nostartfiles -o listing7-6 listing7-6.o0
The outputis:

“The first number is 5, the second numberis 15, the addition of the two numbers is: 20”.

Another example shows output using some of the format specifiers shown in Table 7-1

Listing 7-7 Use of format specifiers
//1listing7-7

.text

.global start

_start:

ldr x0, =stringl

mov x1,#-140

mov x2, #15

add x3, x1, x2

ldr x0, =stringl

str x1, [SP, #-16]!

str x2, [SP, #-16]!

str x3, [SP, #-16]!

bl printf // Use -nostartfiles when linking with gcc
ldr x0, =string2

1ldr x3, [spl, #16

1dr x2, [sp]l, #16

1dr x1, [sp]l, #16

bl printf

Page 7-9

Mixing assembly code with high-level languages

mov w8, #93
svc #0
.data

stringl: .asciz "The first number represented as signed decimal is %d, the
second number represented as lower case hexadecimal is %$x, the addition of the two

numbers represented as upper case hexadecimal is: $X\n"

string2: .asciz "\nThe first number represented as unsigned decimal is %u,
the second number represented as signed decimal is %d, the addition of the two

numbers represented as upper case hexadecimal is: $X\n"

Output:

The first number represented as signed decimal is -140, the second number
represented as lower case hexadecimal is f, the addition of the two numbers

represented as upper case hexadecimal is: FFFFFF83

The first number represented as unsigned decimal is 4294967156, the second number
represented as signed decimal is 15, the addition of the two numbers represented

as upper case hexadecimal is: FFFFFF83.

Page 7-10

Mixing assembly code with high-level languages

Summary of chapter 7

e Usinginline assembly code
e Compiling C and assembly code together

e Printf and variants

Page 7-11

Mixing assembly code with high-level languages

e Exercises for chapter7
How would you print the literal character “%” with printf
Which register is used to convey the location of the string to be printed when using printf?

How would you preserve intermediate files that were generated during the compilation

process?

What is the purpose of -nostartfiles, try compilation without using it

Page 7-12

Floating-point operations and the Neon Co-Processor

Chapter 8. Floating Point and Neon Coprocessor

This section discusses the vector registers and the concept of Single Instruction Multiple Data
(SIMD) with emphasis on arithmetic operations. ARM64 adheres to the floating-point IEEE 754
standard as discussed earlier (see page 1-18). There are 32 x 128-bit vector registers (see page
2-4). These registers have a width of 128 bits, and can be addressed with 8, 16, 32, 64 or 128

bits as shown in Figure 8-1. The smallest value of 8 bits is Bx up to Qx which has a width of 128

bits. Even though there are 128 bits, floating point operations are limited to 64-bits.

Figure 8-1 V Register layout

BO
HO
50
DO
QO

8 hits (Byte)

16 bits (Halfword)

32 bits (Single word)
64 bits (Double word)
128 bits (Quad word)

VO

The following listing will show the layout of data in the vector registers and confirm that the
single precision layout of IEEE 754 is followed

Listing 8-1 Loading floating point values into vector registers (single precision)
//listing8-1

// Single precision floating-point

.text

.global start

_Btarts

ldr x0, = floatingOl

ldr x1, = floating02

1dr s0, [x0] // Load into single precision s0 fp register

1dr sl1, [x1l] // Load into single precision sl fp register

fadd s2, s0,sl // Perform fp addition putting the result into s2

fmul s3, s0,sl // Perform fp multiplication putting the result into s3
mov x8, #93

svc #0

.data

Page 8-1

Floating-point operations and the Neon Co-Processor

floatingO1l: .single 1.414

floating02: .single 3.14
Listing 8-1 shows:
e Two single precision floating point numbers have been defined - 1.414 and 3.14.
e The addresses of these values are loaded into registers x0 and x1.

e The contents of the locations pointed to by the x registers are stored in the single word

registers sO and s1
e An addition of sO and s1 is performed with the result shown in register s2
e A multiplication of registers 0 and s1 is performed with the result showing in s3

Use the GDB command info vector to show the contents of the vector registers®.

v0 {d = {f = {0x3fb4fdf4, 0x0}, u = {0x3fb4fdf4, 0x0}, s =
{0x3fb4fdf4, 0x0}}, § = {f = {0x3fb4fdf4, 0x0, 0x0, 0x0}, W = {0x3fb4fdf4, 0x0,
0x0, 0x0}, s = {0x3fb4fdf4, 0x0, 0x0, 0x0}}, h = {bf = {0xfdf4, 0x3fb4, 0x0, 0xO0,
0x0, 0x0, 0x0, 0x0}, f = {Oxfdf4, 0x3fb4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, W =
{0xfdf4, O0x3fb4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, § = {0xfdf4, Ox3fb4, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0}}, B = {@ = {0xf4, 0xfd, Oxb4, 0x3f, 0x0 <repeats 12 times>}, B
= {0xf4, 0xfd, Oxb4, 0x3f, 0x0 <repeats 12 times>}}, @ = {fl = (0x3fb4fdf4}, B =
{0x3fb4fdf4}}}

s0@ s = Ox3fb4afdf4} {f = 1.41400003,
sl S = 0x4048f5c3} {f = 3.1400001,
s2 s = 0x4091ba5e} {f = 4.5539999,
s3 S = 0x408e1428} {f = 4.43996048,

If using the TUI with GDB then the command tui reg float will show the relevant floating-point

registers®’

There is a lot of information shown in the vector registers, normally we are only interested in a

subset. The values shown in the full vector VO list correspond to the unsigned and signed

%0 Use p svnto show a specific vector register such asp $vi.Use $v3.d orjustp $d3tojust

show the d part of the vector register. P /d $v1.b will show bytes in decimal format/
%' The command tui reg next will cycle through the various register groups.

Page 8-2

Floating-point operations and the Neon Co-Processor

entries of the D,S,H,B and Q registers along with their signed and unsigned values. There are
floating point representations given in the single precision (s) and double precision (d)

registers.

The next listing uses print £ to display three floating-point operations —
e Addition
e Multiplication
e Square root

Listing 8-2 Using printf to display floating-point values.
//listing 8-2

// Double precision floating-point
.text

.global start

_start:
ldr x0, = floatingO1l
ldr x1, = floating02
1dr d0, [x0] // Load into double precision dO fp register
1dr di1, [x1] // Load into double precision dl fp register

ldr x0, =stringl // Free to use x0 again
// Add and Multiply
fadd d2, d0,dl // Perform fp addition putting the result into d2

fmul d3, d0,dl // Perform fp multiplication putting the result into d3

stp d0,d1, [sp, #-16]! // Save d0 and dl
stp d2,d3, [sp, #-16]! // save d2 and d3
bl printf

1ldp d2,d3, [spl,16 // Bring back the registers, observing LIFO

ldp d0,dl, [spl,16

// Square root
ldr x0, =string2

fsqgrt dl1, dO

stp d0,d1, [sp, #-16]! // Save d0 and dl
stp d2,d3, [sp, #-16]! // save d2 and d3
bl printf

Page 8-3

Floating-point operations and the Neon Co-Processor

ldp d2,d3, [spl,16 // Bring back the registers, observing LIFO
1dp do0,d1, [spl,16

mov x8, #0x5d

svc #0
.data
floatingO1l: .double 1.414
floating02: .double 3.14

stringl: .asciz "The floating point number %$f, added to the floating point

number $f, is %f,when multiplied the result is %f\n"

string2: .asciz "The square root of register dO0 containing %f, is %f\n"

Output
./listing8-2

The floating point number 1.414000, added to the floating point number 3.140000,
is 4.554000,when multiplied the result is 4.439960

The square root of register dO0 containing 1.414000, is 1.189117

There are also precision specifiers that can be used for floats with print £. The default value is
6 (base 10) digits of precision which can be overridden by placing a point after % followed by a

number to the left of the specifier as shown in the code snippet below.

stringl: .asciz "The floating point number %.3f, added to the floating

o)

point number %.3f, is %.2f,when multiplied the result is %.2f\n"

string2: .asciz "The square root of register dO0 containing %.8f, is %.8f\n"
Output

The floating point number 1.414, added to the floating point number 3.140, is
4.55,when multiplied the result is 4.44

The square root of register dO containing 1.41400000, is 1.18911732

Neon Coprocessor

The Neon coprocessor allows for parallel processing of operations. This is termed Single
Instruction Multiple Data *(SIMD) since a single instruction operates on multiple pieces of
data. The register set is shown in Figure 8-1 and allows for 128-bit processing across multiple
lanes of data. There are 32 x 128-bit registers available referenced as vn.t where n stands for
the vector register in question, t stands for the number of lanes and the data width. To take a
specific example, v2.4s refers to vector register 2 broken up into 4 X 32-bit (S) paths. The data

types available are:

Page 8-4

Floating-point operations and the Neon Co-Processor

8 bits (B) uint8 or sint8
e 16 bits (H) uint16 or sint16
e 32 bits (S)
e 64 bits (D)
e Single and double precision floats

A single128-bit vector register (bits 127:0) supports 2 X 64-bit, 4 X 32-bit, 8 X 16-bit, or 16 X 8-
bit integer simultaneous operations. A single 64-bit bit vector register (bits 0:63) supports 2 X

32-bit, 4 X 16-bit, or 8 X 8-bit integer simultaneous operations.
Table 8-1 shows possible lane configurations.

Table 8-1 Lane division in 128-bit / 64 bit vector registers

Register Lane Width (B) Lane Width (H) Lane Width (S) Lane Width (D)

Size

128-bits (Q) | 16 lanesx 8 (16B) | 8lanesx 16 (8H) | 4lanesx 32 (4S) | 2lanes x 64 (2D)

64-bits (D) 8 lanes x 8 (8B) 4 lanesx 16 (4H) | 2 lanes x 32 (25)

A single lane represents a scalar value. Using only the low order 64-bits maintains 32-bit
backward compatibility. Operations are performed in parallel on the individual lanes
separately, not as a complete 64-bit or 128-bit register operation. The data size and lane layout
is shown in Figure 8-2. Vector values are composed of multiple groups of numbers, for example

a three-dimensional x,y,z co-ordinate could look like: 23, 42, -9 and be held in 3 different lanes.

A scalar instructions include the single lane designator such as V1.h[2].

Figure 8-2 Vector registers lane distribution

32 X 64-Bit Vector Registers

Lane 0(S) [Vn.S2
Lane 2 (H) Lane 0 (H)[vn.aH
Lane 4 (B) Lane3(B) Lane2(B) Lane 0 (B) |Vn.8B

Lane 3 (H)
Lane 7 (B) Lane 6(B)

32X 128-Bit VectorRegisters

Lane 3(S) Lane 2 (S) Lane 0(S) [Vn.S4
Lane 7 (H) Lane 6 (H) Lane 4 (H) Lane 3 (H) Lane 2 (H) Lane 0 (H)|vn.8H
Lane 15 (B Lane 12 (B)[Lane 11 (B) |Lane 10 (B) Lane 8(B) Lane7(B)|Lanes(B) Lane 4 (B) |Lane 3 (B)|Lane 2 (B)| Lane 0 (B) [Vn.16B

Bit 127,126,10
For the 128-bit vector registers there are:

e 16 Byte-wide lanes

e 8 Halfword-wide lanes

Page 8-5

Floating-point operations and the Neon Co-Processor

e 4 Singleword-wide lanes
e 2 Doubleword-wide lanes

Adding data from lane 1 in register VO to the data in lane1 in vector register V1 is a completely

independent operation. This is illustrated in Figure 8-3.

Figure 8-3 Four lane 128-bit floating-point addition

Lane3 Lane2 Lanel LaneO
[139999998 | | 0100000001 | | 2320000008 | | 4050999985 | V/Q
| 0019999996 | | 1.96000004 | | 4.19990981 | 3.50999999 | Vi

+ + + +
= | 141999996 | | 205009994 | | 27.4000015 | | 441099968 | VO

fadd v0.45, wl.4s, vl.ds=

The code to generate the above data is shown in Listing 8-5.
Examples:

movl, v0.16b, #0x55 will load the vector register VO with 16 bytes each byte having the value
0x55.
(gdb) p /x $v0.g
$2 = {u = {0x55555555555555555555555555555555},
s = {0x555555555555555555555555555555551} }
Some examples of the move immediate (movi) instruction are shown in Listing 8-3.
Listing 8-3 Vector move instruction examples
// listing8-3
// Vector register examples
.text
.global start
_Start:

mov x0, #0xaa

movi v0.16b, #0x55 // Q0 will contain 0x55555555555555555555555555555555
movi v1.8b, #0x55 // D1 will contain 0x5555555555555555
movi v2.8h, #0x55 // Q2 will contain 0x00550055005500550055005500550055
movi v3.4h, #0x55 // D3 will contain 0x0055005500550055
movi vé4.4s, #0x55 // Q4 will contain 0x00000055000000550000005500000055

Page 8-6

Floating-point operations and the Neon Co-Processor

movi v5.2s, #0x55 // D5 will contain 0x0000005500000055

ins v6.b[10], v0.b[1] // Insert vector element into v6 at index10, from vO,
index0

cnt v7.16b, v0.16b // Counts the # of ones in the specified elements of a

vector register, placing the result in another register

// V1 now contains 0x0404040404040404

dup v8.8b, w0 // V8 contains Oxaaaaaaaaaaaaaaaa aa duplicated across eight
bytes
dup v0.2d, v7.d[0] // v0 contains 0x404040404040404

mov w8, #93

svc #0

Note that ins is an alias for mov
400090: 6e150c06 mov v6.b[10], v0.b[1]
Again, single values are scalar values.

The eight-bit immediate values in the instruction, are actually held in non-contiguous
locations. Looking at the disassembly for the instruction (= 0x4f02e6a0) movi v0.16b, 0x55 ,
the immediate data is held in bits: (18:16) and (9:5). These bits are designated (a, b, c) and

(d, e, £,g9,h). Thisis shown in Figure 8-4 where the eight bits correspond to 010 10101 = 0x55.

Refer to the ARM documents for a more complete breakdown of the remaining fields.

Figure 8-4 Layout of immediate data bits in the movi instruction

movi v0.16b 4f02e6a0
Q op cmode Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 10 3 2 1 0
o0 1 0 0 1 1 1 1 0 0 O O O i1 1 1 0 0 1 0 0 0 O

Rd =VO0

Imm8 = bits 18,17,16,9,8,7,6,5 specifies 8-bit operation

cmode 1110, op 0=8-bit;

Q 1= 16Bytes (T=16b)

The next listing performs 16 addition operations. Two vector registers (VO and V1) contain 16

bytes each. The additive result of all 16 bytes is placed in VO overwriting the previous contents.

Page 8-7

Floating-point operations and the Neon Co-Processor

Listing 8-4 Adding sixteen bytes in parallel
// listing 8-4
// Vector register examples
.text
.global start
_start:
1ldr x0,=values
ldp g0, gl, [x0]
add v0.16b, v0.16b, vl.1l6b
mov w8, #93
svc #0
.data

values: .byte 1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20, After
execution:23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, O

Initial contents of VO
1, 6,3,4,9,-3,7,12,9,3,-4,19,5,14, 3,20,1,6, 3,4,9,-3,7,12,9, 3,-4,19, 5, 14, 3, 20
Initial contents of V1
23,5,7,8,10,2,4,17,3,8,45,2,-4,30,4,0,23,5,7,8,10,2,4,17, 3,8,45,2,-4,30,4,0

Resultin VO
24,11,10,12,19,-1,11,29,12, 11, 41, 22,1, 45, 7,20, 24,11,10,12,19,-1,11, 29, 12,11, 41, 22,1, 45,7, 20

The next listing shows two operations:

1. How to load the 128-bit Q registers Q0 and Q1 with single floating-point word values and

then to add these values in parallel, placing the result in QO.

2. How to multiply each lane by a scalar quantity

Listing 8-5 Vector register addition and multiplication examples

// listing 8-5
// Vector register examples
// 1. Floating point additions carried out in parallel
// 2. Multiply by a scalar
.text

.global start

_ Sttart:

ldr x0,=v0values

Page 8-8

Floating-point operations and the Neon Co-Processor

ldr x1,=v2values

ldp g0, gl, [x0]

fadd v0.4s, v0.4s, vl.4s // Vector addition, lanes added in parallel
1ldp g0,q9l, [x1]

movi v2.4s, #5

mul v0.8h, v1.8h, v2.h[0] // Multiplying by a scalar, each lane of V1 is
multiplied by 5 (lane0 of v2) with the result placed in VO

// VO now holds: 7700, 2600, 12845, 6455, 3940, 2585, 3900, 7835

mov w8, #93
svc #0
.data
vOvalues: .single 1.4, 0.1, 23.2, 40.6, 0.02, 1.96, 4.2, 3.51

v2values: .byte 20, 34, 5, 9, -4, 10, 2, 7, 100, 40, 3, 8, 3, 4, 64, 56,
4, 6, 8, 2, 9, 10, 11, 5, 20, 3, 5 o 2y 12, 3, 31, 6

Note: Floating-point values can be shown within a vector register with the command p

$v(register number>.<size>.fsuchasp $v0.s.ft.

Lanes and data placement

Lanes can be referenced by an index. The 1d instruction takes different forms. A non-
exhaustive summary of instructions 1d1, 1d2, 1d3 and 1d4 is presented in the following

tables:

Table 8-2 Sample ldx (no offset) instructions

Instruction Description Example

Loads a single
element (8 -
bits) to a single
lane of a vector placing the data in lane0
register

Loads asingle | 44 {v2.h}[3], [x0] // Loads vl with
element (16 -

bitS) to a single the halfword pointed to by xO0,
lane of a vector placing the data in lane3
register
Loads a single

element (32 -

bits) to a single
lane of a vector placing the data in laneO

register

Ld1{v0.b}[0], [x0] // Loads v0 with
the single byte pointed to by x0,

Id1{vt.b}[index],Xn]

Id1{vt.h}[index],Xn]

Ld1{2.s}[0],[x0] // Loads v2 with
the singleword pointed to by x0,

Id1{vt.s}[index],Xn]

Page 8-9

Floating-point operations and the Neon Co-Processor

Id1{vt.d}[index],Xn]

ld2{vt.b,vt.2.b}[index],Xn]

ld2{vt.h,vt2.h}{4],[xn]

Ld2{vt.b,vt2.b}[index],Xn]

Ld2{vt.h,vt2.h}[index],Xn]

Ld2{vt.s,vt2.s}[index],Xn]

Ld2{vt.d,vt2.d}[index],Xn]

Ld3{vt.b,vt2.b,vt3.b}[index],Xn]

Page 8-10

Loads a single
element (64 -
bits) to a single
lane of a vector
register

Loads a two-
element
structure (8 -
bits) to a single
lane of two
vector registers
Loads multiple
byte structures
into two vector
registers
Loads a single
two element (8
-bits) structure
to a single lane
of two vector
registers
Loads a single
two element
(16 -bits)
structure to a
single lane of
two vector
registers
Loads a single
two element
(32 -bits)
structure to a
single lane of
two vector
registers

Loads a single
element two
element (64 -
bits) to a single
lane of a vector
register

Loads a single
three element
structure (8 -
bits) to a single
lane of three
vector registers

Ld1{3.d}[0], [x0] // Loads v3 with
the doubleword pointed to by x0

Ld2{v3.b,v4.b}[6],[x0] // Loads v3
and v4, lane6 with the byte pointed
to by x0 and x0+1

1d2 {v5.h,v6.h, [x0] // Loads eight,
8-bit structures into registers v5
and v6, alternating the wvalues
pointed at by x0

1d2{v3.b,v4.b}[6],[x0] // Loads
lane6 of v3 and v4 with the bytes
pointed to at x0

1d2{v5.h,v6.h}[4], [x0] // Loads
lane4 of v3 and v4 with the
halfwords pointed to by x0

1d2{v7.s,v8.s}[0], [x0] // Loads
lane0 of v3 and v4 with the word
pointed to by x0

1d2{v3.d,v4.d}[2], [x0] // Loads
lane2 of v3 and v4 with the
doubleword word pointed to by x0

Ld3{v0.b,vl.b,v2.b}[0], [x0] //
Loads lane0O of v0, lane0O of vl and
lane0 of v2 with the bytes pointed

to by x0

Floating-point operations and the Neon Co-Processor

Ld3{vt.h,vt2.h,vt3.h}[index],Xn]

Id3{vt.s,vt2.s,vt3.s}[index],Xn]

Id3{vt.h,vt2.h,vt3.h}[index],Xn]

Id4 {vt.b,vt2.b,vt3b,vt4.b},[x0]

Loads a single | Ld3{v5.h,v6.h,v7.h}[4], [x0] //
three element Loads laned4 of v3, laned4 of 6 and
(16-bn8) lane4 of v7 with the halfword

structures pointed to by x0
structure to a

single lane of
two vector
registers

Loads a single 1d3{vt.h,vt2.h,vt3.h} [index], Xn]

three element
(32 -bits)
structure to a
single lane of
two vector
registers

Loads a single
two element
(16 -bits)
structure to a
single lane of
two vector
registers
Multiple 4-
element
structure, move
to four registers
with de-
interleaving

1d3{vt.h,vt2.h,vt3.h} [index], Xn]

144
{v10.8b,v11.8b,v12,8b,v13,8b}, [x0]

Example of 1dx instructions are shown in Listing 8-6.

Listing 8-6 ld1, d2, l[d3 and ld4 non-offset examples

// listing 8-6

// Vector register 1ldx examples

.text
.global start

_start:

1dr x0,=values // Set x0 to point at the 48 bytes in memory location (values)

//Single Structure format of the instruction 1d1,

loading one element to one

lane.
1dl {v0.b}[0], [x0]

1d1 {vl.b}[1], [x0]

Page 8-11

//lane0 of v0 will contain the value 1

//lanel of vl will contain the value 1

Floating-point operations and the Neon Co-Processor

1d1l {v2.h}[3], [x0] //lane3 of v2 will contain the value 0x0601

1d1 {v2.h}[2],[x0] // V2 now contains the value 0x601060100000000 (lanes 2 and
3 each hold 0x601)

//This is the multiple structure format of the instruction 1dl, writing

multiple single elements to three registers

1d1l {v0.8b, v1.8b, v2.8b}, [x0] // Loads multiple (8) single element byte

structures into v0, vl and v2

// VO now holds unsigned bytes = {0x1l, 0x6, 0x3, 0x4, 0x9, Oxfd, 0x7, Oxc, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

/ v1 now holds unsigned bytes = {0x9, 0x3, 0fc, 0x13, 0x5, Oxe, 0x3, 0x14, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0x00}

// v2 now holds unsigned bytes = {0x17, 0x5, 0x7, 0x8, Oxa, 0x2, O0x4, 0Ox11,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

// Note values shown above are listed as ascending in memory contents of [x0]=
0x01, [x0]+1 = 0x06,

1dl {v0.1l6b, vl.l6b, v2.16b}, [x0] // Loads multiple (8) single element byte

structures into v0, vl and v2

// Single two-element structure format using 1d2
1d2 {v3.b,v4.b}[6],[x0] // lane6 of v3 holds 0x01 and lane6 of v4 holds 0x06

1d2 {v5.h,v6.h}[4], [x0] // Laned4 of V5 contains 0x0106 and laned4 of v6 contains
0x0304

1d2 {v7.s,v8.s}[0], [x0] // Lane7 of v7 contains 0x010603094 and lane 8 contains
0x09fd070c

1d2 {v3.d,v4.d}[0],[x0] // Lane0 of v3 contains 0x0106030409fd070c and laneO of
v4 contains 0x0903fc13050e0314

/* Multiple two-element structure format with de-interleaving. takes the data, and
puts the first element in registerl, the second element in register2, third in

register 1, . . .*/
1d2 {v5.8b,v6.8b}, [x0] // Moves eight, byte structures into registers v5 and v6
// v5 holds 0x01 0x03 0x09 0x07 0x09 Oxfc 0x05 0x03
// v6 holds 0x06 0x04 0xfd 0xOc 0x03 0x13 0OxOe 0x14
1d2 {v5.8h,v6.8h}, [x0]
// v5 holds 0x0601 0xfd09 0x0309 0x050e
// v6 holds 0x0403 0x0c07.

Page 8-12

Floating-point operations and the Neon Co-Processor

_—

Page 8-13

Floating-point operations and the Neon Co-Processor

Note when using multiple registers, they must be consecutive in number. The reason for this is
that the last 5 bits of the Rt field (see Table 8-4) is used to encode the Vt registers. This is

shown in Table 8-3:

Table 8-3 ld4 instruction Rt field

Vt encoding Vt2 encoding Vt3 encoding Vt4 encoding

Bits 4:0 ((Bits 4:0) +1), ((Bits 4:0) +2), ((Bits 4:0) +3),
modulo 32 modulo 32 modulo 32

The disassembly for the instruction ld4 {vl5.s-v18.s}[2], [x0] is 4d60a00f.

Table 8-4 gives a breakdown of the bit fields.

Table 8-4 Bit fields of the ld4 instruction

Breakdown of {vl5.s-v18.s}[2], [Instruction 4d60a00f

Q L R Rm 02 Opcode S Size Rn Rt

3130 29 28 27 26 25 24 23 22 2120 19 18 17 16,15 14 13 12 11 10 NONBNZ6NE 4 3 2 1 0

0100111010111 0O0O0O0O0O011O010O0O0O0O0O0O0O0O0T1T1T11

Interpretation

1|Rt vto
Rt+1, modulo32 Vil
Rt+2, modulo32 Vi2|
Rt+3, modulo32 Vi3]

2|Rn Xn|SP (x0) |

3| Rm Post-index register]

4|Opcode 101&&S=00 = 32-hit |

[¢)]

Element Index encoded in Q:S for 32-bit (S)
Q:S=10

As seen the functionality of the fields is well thought out and gives a lot of capability for an

instruction that is only 32-bits wide.

The 1dx instructions also have Post-Index capability. The offset can be register or immediate.

The format of 1d4 with an eight-bit register offset is 1p4 { vt.b,vt2.b, vt3.b,vt4.b
}[index], [Xn]|SP], <Xm>.

Page 8-14

Floating-point operations and the Neon Co-Processor

The last 1dx instruction to consideris 1d with replicate. Here the 1d4r instruction has the no-
offset format of Lp4r {vt.T,vt2.T,vt3.T,vt4.T}, [Xn|SP}. Itsfunctionisto load a single

four-element structure and replicate it to all four lanes of the four registers.

This instruction has similar variants to the 1dx instructions shown in Table 8-2. Listing 8-7
shows a brief example.
Listing 8-7 ld4r instruction
// listing 8-7
// Vector register example 1d4R
.text
.global start
_start:

1ldr x0,=values // Set x0 to point at the 48 bytes in memory location

(values)
1d4r {v0.l6b,vl1.16b,v2.16b,v3.16b, [x0]

// vO0

0x0101010101010101

// vl = 0x0606060606060606

// V2 0x0303030303030303

// V3

0x0404040404040404
1d4r {v0.4h,v1.4h,v2.4h,v3.4h, [x0]

// v0 = 0x0601060106010601

// vl = 0x0403040304030403
// V2 = 0xfd09fd09£d09£d09
// v3 = 0x0c070c070c070c07

mov w8, #93
svc #0
.data

valvues: .byte 1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20,
23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0, 2, 5, 9, 2, 11, 5, 14, O,
23, 44, 21, 5, 13, 14, 15, 16

Page 8-15

Floating-point operations and the Neon Co-Processor

Permutations and Interleaving
Zip and uzp

There are several options for permuting data. The zip instruction alternatively fetches
elements from a pair of registers, placing the result in a third register. The instruction uses two
source registers and one destination which can only accommodate half of the data. In the case
of 128-bit Q registers, two destination registers are required to interleave all of the
elements.This is achieved by performing two zip instructions. The zip instruction uses two
forms —zipl and zip2. The first form zip1 stores the low order bytes (bytes0:byte7) into a
destination register and the second form zip2 stores the high order bytes (byte15:byte8) into a

second destination register.
This is shown in Figure 8-5.

The counterpart of zip is uzp to perform the opposite task with the instruction uzpiworking on
the low order and uzp2 working on the high order. Listing 8-8 gives an example. The bytes have

consecutive values making for easy interpretation during the interleaving process.

Reversing elements

The reverse (rev) instruction preserves the order of the elements but reverses the byte order.

Examples of word and half word reversals are shown in Figure 8-6.

Extraction of elements extracts a number of elements from one register with the balance

coming from another register. The combination is then placed in a destination register

Extraction of elements is accomplished with the ext command.Listing 8-8 gives an example
where the instruction extracts the top ten bytes from v0, writing them to the bottom ten bytes

of v9 and then writes the lower six bytes from v1 to the remaining high order six bytes of v9.

The xtn instruction (extend and narrow) takes the lower 32 bits of each half of VO and stores

them in a destination register.

The xtn2 instruction takes the upper 32 bits of each half of a register and stores themin a

destination register.

Page 8-16

Floating-point operations and the Neon Co-Processor

Figure 8-5 Use of zip instruction

Vi Vo
Bit63 Bit0 Bit63 Bit0
Byte7 Byte6 Byte5 Byted Byte3 Byte2 Bytel Eyte() Byte7 Byte6 Byte5 Byted Byte3 Byte2 Bytel ByteO

AW

Byte15 Byte14 Byte13 Bytel2 Bytell BytelO ByteS Byte8 Byte7 Byte6 Byte5 Byted Byte3 Byte2? Bytel ByteO

ziplv2.16b, v0.16b, v1.16b Data is fetched alternatively from each register, filling the low order bytes from V0 and V1 into V2

Vi Vo

Bit 127 Bit64 Bit 127 Bit64
Bytel5 Bytel4 Bytel3 Bytel2 Bytell BytelO ByteS Byte8 Bytel5 Bytel4 Bytel3 Bytel2 Bytell BytelO Byte9 Byte8

A\

Bytel5 Bytel4 Bytel3 Bytel2 Bytell BytelO Byte9 Byte8 Byte7 Byte6 Byte5 Byted Byte3 Byte2 Bytel ByteD

zip2 v3.16b, v0.16b, v1.16b Data is fetched alternatively from each register, filling the high order bytes from V0 and V1 into V3

Transposition

Transposing elements takes an odd numbered elements (bytes) from two registers placing
them in sequence to a third destination register. An example of the syntax is:

trnl v12.16b, V0.16b, vl.16b

The counterpart to trni is trn2 which takes the even numbered elements (words) from two

registers placing them in sequence to a third destination register.

Page 8-17

Floating-point operations and the Neon Co-Processor

Figure 8-6 Rev instruction

S3 52 s1 S0
Byte1l5 Bytel4 Bytel3 Bytel2 Bytell BytelO ByteS9 Byte8 Byte7 Byte6 Byte5 Byted Byte3 Byte2 Bytel ByteO
V5 0 Of O 0d |oc ©Ob ©0a 09 o8 107 06 05 Joa 04 02 o1

Reverse 32-bit word S3 Reverse 32-bit word S2 Reverse 32-bit word S1 Reverse 32-bit word SO

V7 od ©0e oOf 10 [09 ©0a O o0 o5 ‘o6 o7 o8 1 2 3 4

rev32v7.16b, v5.16b

H7 H6 H5 H4 H3 H2 H1 HO
Bytel5 Byte1l4 Bytel3 Bytel2 Bytell BytelO Byte9 Byte8 Byte7 Byte6 Byte5 Byte4d Byte3 Byte2 Bytel ByteO
V6 20 1f |te 1d |ic 1 |1a 19 18 17 6 15 N4 13 12 M
Reverse H7 Reverse H6 Reverse H5 Reverse H4 Reverse H3 Reverse H2 Reverse H1 Reverse HO
v8 if 20 J1d 1 |1b 1c 19 1a [17 18 [15 e 13 14 11 12
revl16v8.16b, v6.16b
Lookup

The final permutation instruction looked at is tb1 which uses a vector register to hold lookup
values which index into a group of registers that hold the data which will be sentto a

destination register. An example of the syntax is:

tbl v17.16b, {v0.16b,v1.16b},v16.16b
Figure 8-7 shows an example of a lookup,

Figure 8-7 Use of a lookup table to change less structured element lists

Q16

Byte 15 Byte 14 Byte 13 Byte 12 Byte 11 Byte 10 Byte9 Byte8 Byte7 Byte6 Byte5 Byted Byte3 Byte2 Bytel Bytel
06 0d 0c_ bi w1 o8 07 0 0 4 2 01

Byie 15 Byte 14 Byte 13 Byte 12 Byle 11 Byte 10 ByteO ByieB Bytel Bywe6 Byied Byied Byie3 Byw2 Byel Byied
0 1 le 1d 1c b ta 19 8 7 6 G5 [ns T 1

Byte 15 Byte 14 Byte 13 Byte 12 Byte 11 Byte 10 Byte9 Byte8 Byte7 Byte6 Byte5 Byted Byte3 Byte2 Bytel Bytel
0 of e o0d oc [EMMNoa o s Gr s [N+ B3 2

Q1 Q0
vi7
VIE,BO> VOBl > 02
VIE,Bl> VOB4L > 05
VIE,B2> VOB3 > 03
VIE,B3I> VIR > 15
VIE,B4> VOB > 01
Vig,B5 > VOB > O Byte 15 Byte 14 Byte 13 Byte 12 Byte 11 Byte 10 Byte Byted Byte? Byte6 Byte5 Byted Byie3 Bye2 Byel Byte0
VIE,Bs > VOB > 08 (A 0 o0 0 o 4 B8 o M 15 3 %5 b2
VG B7 > vLB2 > 14 017
vie,B8> V08 > 09
VI6,B9 > VOBL0 > 0b
V6Bl > VLBIS > 20
VI6,Bl> VOBLL > Oc
Vi6,Bl> V0BlS > 10
VI6,Bl> VOBLZ > 0d
VI6,Bl> VOBLI > O
Vi6,Bl> V0B6 > 07

Page 8-18

Floating-point operations and the Neon Co-Processor

Listing 8-8 Interleaving data from the vector registers
// listing 8-8
// Vector register permutations
.text
.global start
_start:

ldr x0,=avalues // Set x0 to point at the 16 bytes in memory location

(avalues)

1dr x1,=bvalues // Set x1 to point at the 16 bytes in memory location

(bvalues)

1ldr x2,=lookupvalues

1d1l {v0.2d}, [x0]

1dl {vl1.2d}, [x1] 1d1 {v16.2d}, [x2]

// g0 = 0x100f0e0d0c0b0a09 0807060504030201
// gl = 0x201fleldlclblal9 1817161514131211
// a2 = 0x060d0c0f0bl1£f0a08 13070e0014020401

zipl v2.16b, v0.16b, v1.16b // g2 now has interleaved low order bytes
from g0 and gl

// g2 = 0x1808170716061505 1404130312021101

zip2 v3.16b, v0.1l6b, vl.l6b // g3 now has interleaved high order bytes
from g0 and gl

// a3 = 0x20101fofle0eld0d 1c0clb0bla0al009

zipl v4.16b, vl1.16b, v0.16b // Change order of source registers

// g4 = 0x0818071706160515 0414031302120111

uzpl v5.16b, v2.16b, v3.16b //Unscramble low order bytes, result in g5
uzp2 v6.16b, v2.16b, v3.16b //Unscramble high order bytes, result in g6

// Long-winded way of copying g0 to g5 and gl to g6

rev32 v7.16b, v5.16b // reverses bytes within each word element

revl6 v8.16b, v6.16b // reverses bytes within each halfword element

Page 8-19

Floating-point operations and the Neon Co-Processor

// Extraction
ext v9.16b, v0.16b, vl.l6b, #6

// Extracts top 10 bytes from v0, writing them to bottom 10 bytes of v9

and writes the lower 6 bytes from vl to the remaining high order bytes of v9
// v9 now contains 0x161514131211100f0e0d0c0b0a090807

xtn v10.2s, v0.2d // Extend and narrow takes the lower 32 bits of each
half of VO and stores them in v10 giving 0x0c0b0a0904030201

// v10 contains 0x0c0b0a09 04030201
xtn2 v10.8h, v0.4s

/* Takes the upper 32 bits of each half of VO and stores them in v10
giving 0x100£0e0d0b0a090807060504030201;

since the previous instruction wrote to the lower half already and the

instruction does not affect the other bits*/

// Transposition

trnl v12.16b, V0.1l6b, vl.16b // Takes the odd numbered elements (bytes)

from vO0 and vl placing them in sequence to V12
// V12 contains 0x1f0£f1d0d1b0b19091707150513031101

trn2 v13.4s, v0.4s, vl.4s // Takes the even numbered elements (words)
from vO and vl placing them in sequence to V13

// V13 now contains 0x201f1e1d100£0e0d1817161508070605
// Lookup Tables

// tbl uses a vector register to hold lookup values which index into a
group of registers that hold the data which will be sent to a destination register

tbl v17.16b, {v0.l1l6b,vl1.16b},v16.16b
V17 now contains 070e0d100c20000914080£0115030502
mov w8, #93

svc #0

Page 8-20

Floating-point operations and the Neon Co-Processor

Summary of chapter 8

« SIMD

e Layout of the vector registers
e Floating-point operations

e Scalar and vector operations

e Permutations and interleaving

Page 8-21

Floating-point operations and the Neon Co-Processor

Exercises for chapter8

1. Generate a program to multiply 4 floating point numbers together using SIMD instructions
2. Explain the difference between scalar and vector values
3. lIstheinstruction add v0.8s, v0.8s, v1.8s valid? Explain your answer

4. (Advanced) Generate the inverse of a three by three matrix, using single precision floats,

then multiply the result by the original matrix, comment on the answer

5. Explain the action of the rev instruction.

Page 8-22

Cross- Compiling

Chapter 9. Cross Compilation

Cross compiling® allows development of programs on machines with a different architecture.

In this section cross compilation will be performed on a Linux machine running Debian -
uname -—a

Linux debianl 6.1.0-26-amd64 #1 SMP PREEMPT DYNAMIC Debian 6.1.112-1 (2024-09-30)
x86_ 64 GNU/Linux

Start by following the steps listed below

Step 9-1. Install the necessary tools

sudo apt install gcc make gcc-aarch64-linux-gnu binutils-aarch64-linux-gnu

[sudo] password for alan:

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done

gcc 1s already the newest version (4:12.2.0-3).

gcc set to manually installed.

make is already the newest version (4.3-4.1).

make set to manually installed.

The following additional packages will be installed:
cpp-1l2-aarch64-linux-gnu cpp-aarch64-linux-gnu gcc-12-aarch64-linux—-gnu
gcc-12-aarch64-linux-gnu-base gcc-1l2-cross-base libasan8-arm64-cross
libatomicl-armé64-cross libc6-arm64-cross libc6-dev-armé64-cross
libgcc-12-dev-armé64-cross libgcc-sl-armé64-cross libgompl-armé64-cross

libhwasanO-arm64-cross libitml-arm64-cross liblsanO-arm64-cross

%2 The following link may be helpful cross-compiler | Arm Learning Paths

https://learn.arm.com/install-guides/gcc/cross/)

Page 9-1

https://learn.arm.com/install-guides/gcc/cross/

Cross- Compiling

Step 9-2. Create helloworld.c file
cat helloworld.c
#include <stdio.h>
int main ()

{
printf ("Hello World") ;

return O;

Step 9-3. Compile the program using the ARM64 gcc compiler
aarch64-linux-gnu-gcc helloworld.c -o helloworld-arm6433

Step 9-4. Execute the program
$./helloworld-armé64
bash: ./helloworld-arm64: cannot execute binary file: Exec format error

This is to be expected as the ARM64 program is running on X86 architecture!

Step 9-5. Check the file format
file helloworld-arm64

helloworld-arm64: ELF 64-bit LSB pie executable, ARM aarché64, version 1 (SY3V),
dynamically linked, interpreter /lib/ld-linux-aarché64.so.l,
BuildID[shal]=7d70££f2387ca56fe82e50£708c75aa3f47209127, for GNU/Linux 3.7.0, not
stripped

The output of the file command indicates that the executable is ARM aarch64.
Step 9-6. Verify that the program runs correctly by transferring it (if available) to an
ARM64 based system

scp helloworld-armé64 pi5b:/home/alan/asm

alan@pibb's password:

% Appending -static to the compilation string will invoke static linking and may help since it

includes the necessary dependencies.

Page 9-2

Cross- Compiling

helloworld-armé64 100% 69KB
4.0MB/s 00:00

ssh pibb
alan@pib5b's password:

Linux pib5b 6.6.31+rpt-rpi-2712 #1 SMP PREEMPT Debian 1:6.6.31-1+rptl (2024-05-29)
aarchoc4

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Mon Oct 14 15:01:08 2024

alan@pibb:~ $ cd asm

alan@pibb:~/asm $ chmod +x helloworld-arm64

alan@pibb:~/asm $./helloworld-arm64

Hello Worldalan@piSb:~/asm $

Cross compiling assembly code

Create the assembly file below:
.global main

main: mov x3, #0xfOfO0fO0f0f0f0f0f0

mov w4, w3 // Read from w3
mov w3, wé // Write to w3
svc 0

Assemble it with -
aarch64-linux-gnu-as -g -o showregister.o showregister.s

aarch64-linux-gnu-gcc -static -o showregister showregister.o

Copy the file to an ARM64 system.
scp showregister pi5b:/home/alan/asm

The program should now run with GDB as shown in Figure 9-1

Page 9-3

Cross- Compiling

Figure 9-1 Running a cross-compiled program with GDB

x@ ox1 1

%1 ex7ffffffff3as 140737488352056

x2 Ox7TTTTTTfT348 140737488352072

x3 exfofefefefefefefe -1885182592571150096

exfofefofe 4@ 22168
x5 @x9756c2dd5c5e7345 -7541626269992062139

x6 2x492a20 4794912
x7 ox2 2
x8 Bxe2 226
x9 ox2 2
x1@ Ox® @
x11 ex7ffffffffioe 140737488351632
'-|'-Jv\'!"'gi'.|\- -
B+ 2 x3, #exfefefefefefefefe
3 wd, w3 // Read from w3
> 4 mov w3, w4 // Write to w3
5 sve @
6
7
8
9 k
18
11
12
13
14

native process 77423 In: main

--Type <RET> for more, q to quit, c to continue without pa
(gdb) b 1

Breakpoint 1 at @x4e@6d4: file showregister.s, line 2.
(gdb) run

Starting program: /home/alan/asm/showregister

Breakpoint 1, () at showregister.s:2
(gdb) n

The QEMU emulator supports ARM64 based virtual machines on X86 architectures. For further
information consult gemu.com or the many resources found on the Internet. The Ubuntu

documentation describes this and can be found at

https://documentation.ubuntu.com/server/how-to/virtualisation/arm64-vms-on-gemu/

Page 9-4

Cross- Compiling

Summary of chapter 9

e Cross compilation tools
e Testing and executing

e QEMU Virtualization

Page 9-5

Cross- Compiling

Exercises for chapter 9

1. Using an X86 based platform, install the necessary tools to cross compile an ARM64

based program and then verify that ARM64 code runs successfully on an ARM64 platform

2. Generate an ARM based VM running on X86 under QEMU.

Page 9-6

Index

%%, 7-3 ADD., 4-1

%c, 7-3 addressing modes, 3-1
%d, 7-3 ADDS, 4-10

%e, 7-3 AND, 1-22

%f, 7-3 ANDS, 4-41

%s, 7-3 A-Profile, 2-2

%u, 7-3 architecture, 2-3

%X, 7-3 Arithmetic Shift Right, 4-29
%X, 7-3 ARM Procedure Call Standard (PCS, 6-7
(PSTATE, 2-5 ARM64, 21

.data, 2-17 ARM64 Data Types, 4-1
.endm, 6-1 ASCII, 3-2

.global, 2-7 asm, 7-3

.include, 6-3 assemble, 1-2

.macro, 6-1 assembler directive, 2-7
.space, 3-10 assembler template, 7-4
_start label, 2-7 B.CC/B.LO, 5-4

32-bit WZR, 2-4 B.CS/B.HS, 5-4

64-bit XZR, 2-4 B.EQ, 5-4

6800, 2-1 B.GE, 5-4

8080, 2-1 B.GT, 5-4

a Rapid Application Development, 1-1 B.HI, 5-4

Acorn, 2-1 B.LE, 5-4

Acorn computers, 2-1 B.LS, 5-4

ADC, 4-13 B.LT, 5-4

ADCS, 4-13 B.MI, 5-4

Index

Index

B.NE, 5-4

B.PL, 5-4

B.VC, 5-4

B.VS, 5-4

Basic ASM, 7-3

BBC Micro, 2-1

BFI, 4-42

BFM, 4-42

BGT, 5-2

biased exponent, 1-19
BIC, 4-42

binary, 1-4

Binary Coded Decimal, 1-15
bit, 1-4

bitmask, 4-32

Boolean variables, 1-23

Branch with link (BL), 6-7

British Broadcasting Corporation, 2-1

Byte, 1-4

call/return, 2-7

callee, 6-6

caller, 6-6

Carry (C), 2-5

cmp, 5-3

compilers, 1-2
coprocessor. See Neon
CPSR, 4-10

DAIF, 2-5

Index

Debian, 9-1
debugger, 2-8, 3-5

Disassembly, 2-12, 2-14, 2-17, 3-5, 3-8, 3-
13,4-1,4-2,4-17,4-19, 4-20, 4-21, 4-22, 4-

25, 4-26, 4-27,4-30, 4-37, 4-40, 4-43, 5-2,
6-2

double-dabble, 1-16
Doubleword, 4-1
exception levels, 2-5
executable, 2-8

exit service call, 2-17
exit system call, 2-7
exponent, 1-18

ext, 8-16

Extended ASM, 7-3
external, 7-2
Firmware, 1-3

flags, 2-5

floating -point, 1-18
floats, 8-4

Fractions, 1-7

frame pointer register, 6-7
functions, 6-1

gcc -save-temps, 7-5
GDB, 3-1

GDB TUI, 317
gdbfrontend, 3-18
gdbgui, 3-17

Halfword, 4-1

Index

hardware, 1-3
hexadecimal, 1-4
IBM personal computer, 2-1
IEEE 754, 8-1
immediate value, 3-6
immr, 4-34

imms, 4-34

infinity, 1-19

info vector, 8-2
instructions, 2-6
Intel, 2-1

lanes, 8-4

Last in First out, 6-4
ld1, 8-9

ld2, 8-9

ld3, 8-9

ld4, 8-9

LDR, 3-6

ldur x4, [x1, #4], 3-9
libraries, 6-6

link, 2-8

link register, 2-4, 6-7
linked, 1-2

linker, 1-2
little-endian, 3-4
Load and store, 3-1
Logical Shift Left, 4-29

Logical Shift Right, 4-29

Index

machine code, 1-1
macros, 6-1

make utility, 2-18
makefile, 2-18
mantissa, 1-18
memory address, 2-6
micro-architecture, 2-3
MNEG, 4-26
mnemonic, 1-1
Motorola, 2-1

mov, 2-7

MOVK, 2-14

MOVN, 2-15

MOVZ, 2-13
M-Profile, 2-2

MRS, 5-3

MSUB, 4-26

MUL

MADD, 4-16

Negative (N), 2-5
Neon, 8-4

nested operations, 6-5
nibbles, 1-15
normalized, 1-21
-nostartfiles, 7-8
NOT, 1-23
Not-a-Number, 1-19

objdump, 2-13

Index

object code, 2-8

object file, 2-18

Offset. See Addressing Mode
Opcode, 2-13

OR, 1-23

ORN, 4-41

ORR, 4-36

Overflow (V), 2-5

packed BCD, 1-15

Post-index. See Addressing Mode
Pre-indexed. See Addressing Mode
printf, 7-2

privileged instructions, 2-7
program counter, 2-4

Program Counter, 6-6

program counter relative addressing, 3-8
Push and Pop, 6-4

QEMU, 9-4

Quadword, 4-1

Raspberry Pi, 1-1, 2-2

RISC, 21

Rotate Right, 4-29

rounding, 1-18

R-Profile, 2-2

Saved Program Status Register, 2-5
scalar, 8-5

SDIV, 4-28

set theory, 1-23

Index

shift, 1-14
shift/rotate, 4-29
shifted offset, 2-14
signed, 1-9

significand, 1-18

Simple. See Addressing Mode

SMULH, 4-22
SMULL, 4-21
source file, 2-18
stack, 6-4

stack pointer, 6-4
stdout, 2-17

str, 3-11

strace, 2-19
STRB, 5-8

SUB, 4-15

SUBS, 5-3
subtrahend, 1-12
SXTB, 4-5

SXTH, 4-7

SXTW, 4-5
syscalls, 2-7
target file, 2-18
tbl, 8-18

trn1, 8-17
trn2,8-17

tui reg float, 8-2

Two’s complement, 1-12

Index

UDlV, 4-28

umaddl, 4-21
UMULH, 4-22
UMULL, 4-21
unsigned, 1-8

using register indirect with offset

addressing, 3-9
UXTH, 4-6
UXTW, 4-5

uzp1, 8-16

Index

uzp2, 8-16

vector registers, 7-8
Word, 4-1

write syscall, 2-17
XOR, 1-23

Z-80, 21

Zero (Z), 2-5

Zilog, 21

zip1, 8-16

zip2, 8-16

