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Fundamentals 

  

Chapter 1. The fundamentals. 
This chapter provides a foundation for the topics that will be discussed as the book progresses. 

It is reasonably general, staying away from any specific architecture. 

Pre-requisites are not too demanding; however, knowledge of the following areas will ease the 

journey. 

• Familiarity with basic computer hardware  

• Microprocessor architecture 

o Memory and data buses, register, ALUs, … 

• Knowledge of Linux ® 

o Installation of the Operating System and applications 

o Bash 

• Basic knowledge of the C programming language 

• High school, level mathematics, although college level is helpful for some of the 

material in chapter 8. 

• An inexpensive computing device such as the Raspberry Pi. 

What is assembly language? 

Many high-level languages place a strong emphasis on abstraction, treating functions as 

impenetrable black boxes and hiding the inner working. Assembly language takes a different 

approach and allows (indeed mandates) the coder to familiarize themself with the innards of 

the system.  

The former method is similar to Rapid Application Development (RAD) methodology that works 

well with teams whereas the second approach often includes smaller groups with specialized 

knowledge. Both approaches have their place. Digital computers inherently process data in 

one of two states (binary) so it is essential that we understand the low level world of one’s and 

zero’s.  

Processors have different architectures and they each understand their own machine code 

instructions – at their very heart these instructions are combinations of binary numbers that 

instruct the processor how to proceed. Binary numbers are cumbersome for human operators 

and instead a set of mnemonic instructions are used. A hypothetical example could be an 

instruction such as add r1, r2,r3 which would add two numbers together that are contained 
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in register21 and register3, placing the result in register1 or  add r1, r2, 45 which could add 

the value 45 to the value contained in register2, placing the result in register1. The 

corresponding native machine code (again hypothetical) could be the binary code 10101100 

00010010 00101100. The mnemonic instructions make up the assembly language. 

The role of the assembler (program) is to convert programmer-readable assembly instructions 

into the corresponding machine code instructions. The output code is termed an object file. 

Conversely a disassembler converts machine code instructions back into assembly language. 

The assembler has additional roles such as understanding a set of directives that can define 

and place data into the computer’s memory locations. An example could be a set of error 

codes defined as textual informational messages. These messages are defined by the 

programmer rather than the specific processor itself. There are a number of these directives, 

and they will be discussed in more detail as the document progresses. 

Higher-level languages use compilers to translate to machine code. After the assembly or 

compilation process the object files are linked to form an executable program. The linker may 

act on individual or multiple files. High level language instructions do not normally have a one-

to-one correspondence with the underlying machine code instructions. They are designed to 

be more instinctive to the programmer by providing English like keywords such as if ... then, 

while, and print. High level languages can be interpretive and translated into machine code 

instructions during runtime, or pre-compiled before runtime into native machine-code. 

Why use assembly? 

Assembly language has a direct relationship with the CPU that it is running on and as a result 

the programs will be more compact and efficient. It is also more suited to system-level 

programming. A disadvantage is that many lines of code may be required when compared to 

high level languages and as a result a hybrid approach may be deployed where the bulk of the 

code could be written using C or Python which can pass parameters to and accept return 

values from a smaller section of assembly code. Portability is also an issue since the assembly 

language is tightly coupled with the CPU that it is running on.  

 

 

 

1 Registers are low-capacity storage elements (typically anywhere from one to eight bytes in 

size) high-speed devices contained within the processor architecture.  
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Experienced system-level coders may wish to skip this chapter or treat it as a refresher. The 

material discussed in this chapter is general and does not necessarily apply to any specific 

system.   

Hardware Vs Software Vs Firmware 

Hardware 

In computer terms hardware refers to the physical components that make up the system. 

Hardware is something that can be seen and touched. 

Software 

Software refers to the actual instructions that are loaded into the computer’s memory. These 

instructions may direct the hardware to perform certain tasks. For example, the system 

software is responsible for displaying the result of an operation onto a hardware output device 

such as a display screen or printer and for taking input from a device such as a keyboard. Most 

users are more familiar with application software such as word processors, email, 

spreadsheets, etc. 

Firmware 

Firmware can be thought of as a set of instructions residing in hardware. This definition has 

become somewhat blurred as these instructions were originally loaded onto read only devices 

(ROMs). These devices would be physically replaced when new upgrade code was required. 

Over time Erasable Programmable integrated circuits (IC’s) (EPROMs) were introduced, which 

as the name implies could be written over with new code. Today, non-volatile random-access 

memory (NVRAM) devices are used and can often be upgraded on-line without even requiring a 

reboot. This process is sometimes referred to as flashing since the underlying device is often 

Flash memory. 

Number Systems 

Anthropologists may make a claim that we count in base 10 as this is the number of digits on 

our hands. Other cultures have used base 60 and base 20 (possibly using both fingers and 
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toes). These number systems are not as well suited to computer systems and today2 base 2 

and base 16 dominate when using low-level assembly programming. 

Binary, Octal, Hexadecimal 

Consider the base 10 number 467310 – this breaks down into: 

 4 x 103 

+  

6 x 102 

+ 

7 x 101 

+ 

3 x 100 

= 4000 + 600 + 70 + 3 = 4673 

The use of ten (0-9) different characters along with their position represented a major advance 

in computation when compared to systems such as the Roman counting method. 

Digital electronic systems naturally gravitate towards a two-state binary system where current 

either flows or it does not. These two states are represented by the symbols 0 or 1.  

Each binary digit is termed a bit(b). For convenience, binary digits are often grouped into 8 bits 

termed a Byte(B). Since eight bits can represent numbers ranging from 00000000 through 

11111111, the decimal values translate to 0 through 255. A disadvantage of binary numbers is 

that a three-digit decimal number may require an equivalent binary number up to ten binary 

digits. A more compact numbering system is base 16 (hexadecimal) which treats a group of 

four binary numbers as a single hexadecimal number. This means that two hexadecimal 

numbers will represent a single byte3. Hexadecimal numbers use the same symbols as 

decimal up to the value 9, and then use the characters A through F to represent the decimal 

numbers 10 through 15. The hex number 1016 corresponds to decimal number 1610. 

 

 

 

2 Base 8 - Octal was also used  on many  earlier computers such as Digital Equipment 

Corporation’s PDP family of minicomputers. 

3 A single hexadecimal number is sometimes referred to as a  nibble. 
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Table 1-1 Binary, Decimal and Hexadecimal equivalents 

Binary Decimal Hexadecimal 

0000 0 0 

0001 1 1 

0010 2 2 

0011  3 3 

0100 4 4 

0101 5 5 

0110 6 6 

0111 7 7 

1000 8 8 

1001 9 9 

1010 10 A 

1011 11 B 

1100 12 C 

1101 13 D 

1110 14 E 

1111 15 F 

Converting Binary to Decimal  

Each binary digit can be converted to decimal by multiplying its value by two raised to an index 

where the index corresponds to the bit’s position.  

Table 1-2 Converting Binary to Decimal 

 The binary number 1101012 then, can be converted to decimal using the following steps. 

1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20 =  

32 + 16 + 0 + 4 + 0 + 1  

= 5310  

Converting Decimal to Binary 

The following method breaks down a decimal number into powers of two, so to convert the 

number 84310 to its equivalent binary number –  

1. First get the highest power of two contained in 843 which is 512 (29).  

Value 1 1 0 1 0 1 

Position 5 4 3 2 1 0 

Multiply by 25 24 23 22 21 20 
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2. Subtract 512 from 843 = 331, 

3. The highest power of two contained in 331 is 256 (28), 

4. Subtract 256 from 331 to get 75,  

5. The highest power of two contained in 75 is 64 (26),  

6. Subtract 64 from 75 to get 11, 

7. The highest power of two contained in 11 is 8(23), 

8. Subtract 8 from11 to get 3, 

9. The highest power of two contained in 3 is 2 (21), 

10. Subtract from 3 to get 1, 

11. The highest power of two contained in 1 is 1 (20), 

12. Subtract 1 from 1 to get 0. 

Everywhere that a power of two appears, write its index as the binary value one and where it did 

not appear write the binary value zero using the positional notation shown in Table 1-2. 
Table 1-3 Converting decimal to binary 

29 28 27 26 25 24 23 22 21 20 

1 1 0 1 0 0 1 0 1 1 

Another way of converting is a repeated division method. Divide the number repeatedly until 

zero is reached. Take note of the remainders and put the first remainder in the left-most 

position, then the second remainder into the left-most second position, repeating until all 

reminders have been recorded.  

Figure 1-1Converting Decimal to binary using repeated division by 210 

 

Now write down the remainders starting from the top to get:  

11010010112. 

2 843
2 421 Rem 1

2 210 Rem 1
2 105 Rem 0

2 52 Rem 1
2 26 Rem 0

2 13 Rem 0
2 6 Rem 1

2 3 Rem 0
2 1 Rem 1

2 0 Rem 1
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Converting Hexadecimal to Decimal 

A hex number such as 5B7C16 can be converted to decimal using a power of sixteen method – 

= 5 x 163, + B x 162, + 7 x 161, + C x 160 

= 20,480 + 2816 + 112 + 12  

= 23420 

Converting Decimal to Hexadecimal 

Take the number as shown, divide repeatedly by 1610 until zero is reached. Record the 

remainders in base 16 format (e.g. for a remainder of 1010, record “A”). Note the remainders 

and put the last remainder in the left-most position, the second from last remainder into the 

left-most second position, repeating until all reminders have been recorded. 

Figure 1-2 Converting Decimal to binary using repeated division by 1610 

 

Binary Fractions 

The binary numbers that have been dealt with up to this point are natural number equivalents 

(positive whole numbers). Positional notation is used to show the corresponding power of two 

index. 4 Fractions can be represented in binary by moving to the left of the 20. These values then 

become 2-1, 2-2, . . . 

Converting a binary fraction to decimal 

1101.01 is equivalent to the base 10 number 13.25 since we have: 

1 x 23 + 1 x 22 + 0 x 21 +1 x 20 + 0x 2-1 + 1x2-2.  

 

 

 

4 Recall that negative indices can be resolved by changing the sign of the index and changing 

the operation from division to multiplication and vice versa so that 1 / 2-2 becomes 1 x 22 = 4 

and 4 x 22 = 4/2-2 = 16 

16 23420
16 1463 Rem C

16 91 Rem 7
16 5 Rem B

16 0 Rem 5



Fundamentals 

1-8 

Converting a decimal fraction to binary. 

Repeatedly multiply the fractional part by two until it becomes zero, taking note of the value to 

the left (integer portion) of the decimal point. Accumulate the values of the integer part from 

top to bottom to get the binary fractional part. 

Example 0.62510 

0.625 x 2 = 1.25 

0.25 x 2 = 0.5 

0.5 x 2 = 1.0  

Stop since the value to the right of the decimal point =0 

Take the integer value from top to bottom = 0.1012 

The next example shows a recurring fraction 

Example  0.3 

0.3 x 2 = 0.6 

0.6 x 2 = 1.2 

0.2 x 2 = 0.4 

0.4 x 2 = 0.8 

0.8 x 2 = 1.6 

0.6 x 2 = 1.2  

0.2 x 2 = 0.4 

0.4 x 2 = 0.8 

0.8 x 2 = 1.6 

0.6 x 2 = 1.2 

This highlighted value has been met before, so this is a recurring fraction with the pattern 0011 

repeating - .0100110011… This means that when evaluating,  a halt counter should be added. 

The logic would be to end when the fractional part  = 0 or when the required degree of precision 

has been reached. 

One and Two’s complement 

An eight-bit byte can represent any one of 256 values ranging from 0 – 25510. This is known as 

unsigned notation. Another representation is to use half of the range as positive integers and 
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the other half as negative, in this case the range is from +1275 through -128. This method uses 

the most significant bit to represent the sign and is known as signed notation. The number line 

for an eight-bit signed number is: 

-128, -127, …, 0, 1, 2, …, 127 

 

Table 1-4 Signed number representation. 

27 26 25 24 23 22 21 20 

Sign bit Magnitude Bits 

Interpreting the value of a signed number is straightforward –  

 The procedure is to add the corresponding powers of two of each bit’s place value but leave 

out the sign bit. The next step is to add in the value of the sign bit. For positive numbers it 

makes no difference since the value of the sign bit is zero, but for negative numbers the value 

of the sign bit is -128.  

Example  

• Take the positive binary number 00101100  

• Add the magnitude bits together 

0x26 + 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20 

= 32 + 8 + 4 = 44 

• Add in the value of the magnitude bit (27) to get:- 

0 + 44 = 44 

• For the negative number 10011001 

• Add the magnitude bits together. 

0x26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20 

= 16 + 8 + 1 = 25 

• Add in the value of the magnitude bit (27)to get 

 

 

 

5 Zero is treated as a positive number here 
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-128 + 25 = -103 

Converting from a signed number to an unsigned number is a simple operation, the procedure 

is to invert the bits and then add the binary value 1.  

So, to convert the positive number 6310 to negative 6310. 

• Convert the number to an eight-bit binary number  - 

00111111 

• Invert the bits to get - 

11000000 (one’s complement) 

• Add 1 to get – 

11000001 (two’s complement) 

• Convert back to decimal to get:- 

-128+64+1 = 63 

The first stage of inverting the bits - obtains the one’s complement, adding the binary digit 1 to 

the one’s complement - obtains the two’s complement. 

The following table shows an extract of the first few signed numbers. 

Table 1-5 Signed and unsigned numbers 

Signed Binary Number Decimal Equivalent 

0111 1111 127 

0111 1110 126 

0111 1101 125 

. . . 

0000 0000 0 

1111 1111 -1 

1111 1110 -2 

.. . . 

1000 0010 -126 

1000 0001 -127 

1000 0000 -128 

Addition and subtraction of binary numbers 

Binary Addition 

To add two binary numbers together is straightforward, there are only four outcomes. 
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• 0 + 0 = 0 

• 0 + 1 = 1 

• 1+ 0 = 1 

• 1 + 1 =10 (0+ carry) 

An example of an unsigned binary addition follows- 

0 0 1 0 1 1 0 1 

0 1 1 1 0 1 0 0 

1 0 1 0 0 0 0 1 

Checking by adding the decimal number equivalents together – 

45 + 116 = 161 

Consider if these numbers being added were in signed notation – here adding two positive 

numbers together would result in a negative number since the sign bit of the result = 1. This is 

an overflow condition since the result of 161 is clearly outside of the maximum positive 

number that can be represented in signed eight-bit binary arithmetic. This is something that 

needs to be checked and there are conditions built-in to the processor architecture to detect 

this kind of situation.  

Larger numbers can be dealt with by using two bytes for storage, treating the second byte as 

having the values 28 through 215. Assemblers and compilers will refer to groups of bytes by 

designations such as long int, word etc. It is important to check the definitions.  

One such definition is: 
Table 1-6 Data type sizes 

Unit Width 

Doubleword 64 bits 

Word 32 bits 

Halfword 16 bits 

Byte 8 bits 

Of course, it is important to specify signed or unsigned, again a definition for an unsigned 

integer in the programmer’s documentation might be referred to as uint. 
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Binary subtraction 

Binary subtraction can be dealt with using elementary rules for small numbers and then taking 

into account “borrows” rather than “carrys” but using the two’s complement method described 

on page 1-8 is by far the preferred method for larger numbers.  

 The steps for binary subtraction are: 

1. Obtain the two’s complement of the subtrahend (the number that will be taken away) 

2. Add this to the minuend (the number that will be subtracted from).  

3. Add the two’s complement of the subtrahend to the minuend. 

4. If there is a carry after the addition, then drop the carry (final result is positive) 

5. If there is no carry, then compute the two’s complement of the result (final result is 

negative) 

Taking a concrete example of subtracting 00100100 (3610) from 00000010 (210) 

• Two’s complement of the subtrahend 

1101 1011 +1 = 1101 1100 

• Add to the minuend 

0 0 0 0 0 0 1 0 Minuend 

1 1 0 1 1 1 0 0 Two’s complement of subtrahend 

1 1 0 1 1 1 1 0  

(Carry = 0) 

Two’s complement of the result is  

00100001+1 = 00100010 

Result is negative since the carry was false = -34 

Another example - 

• Subtract 4510 from 12010 

• Convert numbers to eight-bit binary 

4510= 0010 11012 

12010 = 0111 10002 

• Two’s complement of 00101101  
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1101 0011 

• Add to 0111 1000 

0 1 1 1 1 0 0 0 

1 1 0 1 0 0 1 1 

0 1 0 0 1 0 1 1 

(carry = 1) 

The result is positive since carry was zero, 01001011 = 7510 

Binary multiplication 

The rules for multiplication of two bits are 

0 x 0 = 0 

0 x 1 = 0 

1 x 0 =0 

1 x 1 =1 

Note anything multiplied by zero is of course zero. 

 

Example multiply binary 10 (210) by 11 (310)  

 1 0 

 1 1 x 

 1 0 

1 0    

1 1 0  

= 610 

Note this is the same as decimal multiplication where we multiply by each of the 

digits and then add these results together. 

Binary Division 

The rules for division of two bits are as follows (recall that division by zero is invalid) 

• 0 / 0 invalid 

• 0 / 1 = 0 

• 1 / 0 invalid 

• 1 / 1 =1 

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
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Division example 

Divide 1 1011 (Dividend) by 00111 (Divisor) 

Using long division -  

 

Shift/ Rotate instructions to perform multiply and divide operations 

Consider an eight-bit byte 00101110 which has the decimal equivalent of 46. Next take each 

bit of the byte and shift them over one place to the left, filling in the now vacant bit 0 with the 

padded value 0 as shown below. Bit 7 has nowhere to go since it has no bit 8 position to 

occupy. The newly vacated bit 0 position is filled with a binary zero.  

By shifting all the bits to the left the original number has been multiplied by two since the bit 0 

value of 20 has been moved to the 21 position, bit 1’s value of 21 has been moved to 22, etc. 

 Note that if the original bit 7 had a value of 1 then it would have been lost giving 

an incorrect result. This is a condition that must be checked for by the 

programmer and this will be covered in a later section.  

Division by two is accomplished by shifting the bit values to the right.  

Figure 1-3 Using shift operations to multiply and divide by two 

 

bit 0 → bit 1→ bit 2 → bit 3 → bit 4 → bit 5 → bit 6 → bit 7 → bit 0, . . .  

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
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For simplicity the registers shown are byte-wide. In reality the width is more often 32 or 64 bits. 

 Other rotates are possible where the shifted-out bit feeds back to the input, giving a circular 

action. 

Other types of shifting involves wrap around rotates where the  pattern is: 

Bit0→Bit1→Bit2→Bit3→Bit4→Bit5→Bit6→Bit7→Bit0→Bit1… 

Binary Coded Decimal (BCD) 

Binary Coded Decimal represents decimal numbers in groups of bits, the encoding is normally 

done in four-bit nibbles. Each bit represents a power of two weight (23, 22, 21, 20, or 8,4,2,1). 

Since four bits can represent 16 distinct numbers, and there are only ten decimal digits, 

wastage occurs with this method. An alternative known as packed BCD may be used but is less 

common.  

Converting Binary Coded Decimal to Decimal 

BCD is similar to hexadecimal except that hex characters a through are illegal. A binary 

grouping of BCD characters could look like: 

1001 0111 1000. Each group of 4 bits (nibbles) are read off as follows – 

• 1001 = 9 

• 0111 = 7 

• 1000 =8 

This corresponds to the decimal number 978.  

BCD addition 

Adding is straightforward, however if the addition of two nibbles results in a value greater than 

9 (1010, 1011, 1100,1101, 1110, 1111)  then it is an invalid decimal number. The resolution is to 

add 6 (0110) which will bring it back to a valid number. The carry will be added to the next 

nibble. 

Addition examples –  

1. 
14 + 22 = 36 = 0011 0110 
Verify by binary addition 
0001 0100 (14) 
0010 0010 (22) + 
 0011 0110 (36) 
 



Fundamentals 

1-16 

2. 
20 +20 = 40 = 0100 0000 
0010 0000 (20) 
0010 0000 (20) + 
0100 0000 (40) 
 
3. 
26+25 = 51 = 0101 0001 
0010 0110 (26) 
0010 0101 (25)+ 
0100 1011 Least significant nibble is greater than 9 so add 6 
0000 0110 + (6) 
01010001 (51) 
 
4.  
121 + 157 = 278 = 0010 0111 1000 
0001 0010 0001 (121) 
0001 0101 0111 (157)+ 
 0010 0111 1000 (278) 
 
5. 
199 + 933 = 1132 = 0001 0001 0011 0010 
             0001 1001 1001(199) 
            1001 0011 0011 (933)+ 
             1010 1100 1100 (Two nibbles invalid add 0110 0110 
             0000 0110 0110 +  
              1011 0011 0010 Now, the most significant nibble is invalid so add 6 to it 
             0110 0000 0000 + 
  0001 0001 0011 0010 (1132) Brings in a fourth nibble! 

Conversion from Hex/Pure Binary to BCD 

One way of converting a hex number to BCD is to convert the hex number to decimal and then 

to BCD. An alternative is to use the double-dabble method. 

Double-Dabble 

The double-dabble algorithm is fairly simple to implement, it consists of a series of shift6 

operations and additions. Note that an n digit hex number can translate into more than n 

decimal digits, (8516 = 13310, FFF16 = 409510). The method sets up a register to hold n binary 

 

 

 

6 Shift/Rotate operations are discussed on page 1-13. 
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digits and partitions to hold the decimal powers of two – units, tens, hundreds, thousands, … 

The partitions are cleared to hold all zeros and then the binary digits are shifted in one bit at a 

time, adjustments (addition of decimal 3) are made to the partition values dependent on their 

magnitude (>4). Once all bits have been shifted7 the algorithm has completed. 

An example follows: 

Consider the binary number 00011011 = hex 1B = decimal 27. The steps to convert from pure 

binary to BCD are shown in Table 1-7. 

Table 1-7 Double-Dabble example 

Hundreds 
Partition 

Tens 
Partition 

Units 
Partition 

Binary 
Register 

Action 

0000 0000 0000 00011011  
0000 0000 0000 00110110 Shift left-most bit over to partitions (shift1) 
0000 0000 0000 01101100 Shift left-most bit over to partitions (shift2) 
0000 0000 0000 11011000 Shift left-most bit over to partitions (shift3) 
0000 0000 0001 10110000 Shift left-most bit over to partitions (shift4) 
0000 0000 0011 01100000 Shift left-most bit over to partitions (shift5) 
0000 0000 0110 11000000 Shift left-most bit over to partitions (shift6) 
0000 0000 1001 11000000 Add 3 to units, since unit is 5 or greater 
0000 0001 0011 10000000 Shift left-most bit over to partitions (shift7) 
0000 0010 0111 00000000 Shift left-most bit over to partitions (shift8) 

Reading off the tens and unit columns gives the value 2710. 

Note 3 is added rather than 6 since the shift left operation multiplies by two! 

 

A more complex 12-bit example is shown in Table 1-8. 

 

 

 

7 The number of shifts is equal to the number of binary digits 

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
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Table 1-8 Three digit double dabble example 

 

Floating Point 

An integer is a whole, complete and exact number such as 107 or 456. There is a limit to 

magnitude within a simple unit of storage such as a register. With floating -point representation 

a range of extremely large or extremely small numbers can be represented at the expense of 

precision. This means that a floating-point number may be an approximation that introduces 

rounding to nearest digits. There are two main parts to a floating-point number, the significand 

or mantissa and the exponent. There is also provision for a sign bit.  The form is significand 

multiplied by the base raised to a power, an example being 3,450,000 = 345 X 104. Here 345 is 

the significand, ten is the base and four is the exponent.  

There is a standard IEEE 754 (https://standards.ieee.org/ieee/754/6210/) which is a 

specification for floating-point arithmetic. The standard defines Single and Double floating-

Double Dabble Three digit Hex (200) number
12 binary digits so 12 shifts are required
Hundreds Tens Units Binary

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  0 0 0 0  0 0 0 0 Initial State
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Shift #1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  0 0 0 0 0 0 0 0 Shift #2
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Shift #3
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #4
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #5
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #6
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #7
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add  3 to units
0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #8
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #9
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to tens
0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #10
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #11
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to Tens
0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Add 3 to units
0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Shift #12

 5 1  2 200 hex = 001000000000 binary = 512 decimal

https://standards.ieee.org/ieee/754/6210/
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point formats8as shown in Table 1-9. There is also provision to include Not-a-Number9 (NaNs) 

and ±Infinity. 

 A 32-bit single precision floating-point binary number within IEEE 754 is defined as: 

Sign Bit (1 bit) Exponent (8 bits) Significand (23 bits) 

A 64-bit double precision floating-point binary number within IEEE 754  is defined as: 

Sign Bit (1 bit) Exponent (11 bits) Significand (52 bits) 

This is summarized in Table 1-9. 

Table 1-9 Floating-Point formats 

Format Bits Significand Unbiased Exponent Decimal Precision 

Single 32 24 10 (23+1) 8 6-9 digits 

Double 64 53 (52+1) 11 15-17 digits 

Biased exponents 

The use of a  biased exponent can represent negative exponents. For single precision the 

values range from decimal +127 to -126.   The bias is normally given as 2n-1-1 where n is the 

number of exponent bits, so here we have 27-1= 127. The value of the biased exponent is the  

unbiased exponent minus 127, so that an exponent of 10011011 gives a biased exponent of 

(128+16+8+2+1) – 127 = 155-127 = 28. 

 See Table 1-10 and Figure 1-4 for more on bias. 

Infinity and Not-a-number representation 

A biased exponent of all ones and a significand of all zeros (-127) represents infinity. The sign 

bit differentiates between negative and positive infinity. 

 

 

 

8 Other  formats are defined but they will not be discussed here. 

9 This could arise from operations such as divide by zero or the square root of a negative 

number. 

10 There is an implied bit, since the normalized format is always 1.X then there is no need to 

specify the “1” value to the left of the decimal point.  
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 Not-a-number is represented by the biased exponent being equal to all ones (+128)and the 

significand being non-zero. The sign bit is don’t care. 

Table 1-10 BIAS within single precision IEEE 754 

 

Understanding bias 

The diagram shown in Figure 1-4 shows how varying the bias affects the ratio of negative to 

positive numbers. The bias is chosen in the standard to give similar ranges of positive and 

negative exponents. 

Figure 1-4 Interpretation of Bias with floating point 
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With double precision numbers the bias is 1023 since the unbiased component shown in Table 

1-9 is 11-bits wide. 

Exponent field
Binary Decimal Exponent
00000001 1 2-126

… …
01111011 123 2-4

01111100 124 2-3

10000011 01111101 125 2-2

10000001 01111110 126 2-1

01111111 127 20 Bias set to mid way point
10000000 128 21

10000001 129 22

100000010 130 23

b= 2n-1-1 =127 where number of bits is 8 100000011 131 24

… …
11111110 254 2127
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Normalized 

A normalized number has the form 1.XXXXX… The steps are to convert the number to binary 

and then perform shifts to give the desired result. Normalization shifts to the left or right 

depending on where the decimal point is  

Example 410.625 

Steps - 

1. Convert to binary (See page 1-8, if needed. for a refresher on converting decimal 

fractions)   

= 110011010.101 

2. Perform repeated shift until desired pattern us reached. 

110011010.101 x 2 (shift right operation) 

= 11001101.0101 x2 

= 1100110.10101 x2 

= 110011.010101 x2 

= 11001.1010101 x2 

= 1100.11010101 x2 

= 110.011010101 x2 

= 11.0011010101 x2 

=1.10011010101 

This took a total of 8 shift operations. Add this number to 127 to get 135. Convert to binary to 

get: 

10000111. 

From our shifts earlier we had the value 10011010101, extend this to 23 bits to get 

10011010101000000000000 giving the value: 

S Exponent Significand 

0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

=410.625 

Addition of floating-point numbers 

Addition is reasonably straightforward; the main concern is when the exponent differs. To 

equalize the exponents, take the lower number and shift over the binary point the required 

amount of  positions. So, if one exponent is 136-Bias and the second is 134-Bias, the second 

number needs to be shifted two places to the left. 
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Figure 1-5 Addition of two floating point numbers 

 

Logic operations – and, OR, Exclusive OR, NOT 

Logic operations are often used in decision making for example –  

1. “If I feel hungry AND I have enough money, then I will order food in”.  

2. “If it is cold OR it is raining, then I will wear a coat to go outside”. 

3. “I can get a car discount if I pay the total amount in cash OR a I can get a lower interest 

rate if I take out a loan”.  

Statement 1 is an AND condition and the decision to order food holds true if I am hungry AND I 

have enough money. Both conditions must be true. 

0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 Number 1
0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Number2

Step 1. Convert exponents to decimal
134 Number 1
131 Number 2 Note the exponents differ

2. Prepend the implicit "1" to the significand

1. 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 X 2 134-bias Number1

1. 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 131-bias Number2

Step 2 Take number 2 and left shift the binary point three places to make the exponents the same

0. 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 134-bias

Step 3 Now  add number 1 to the shifted number two

1. 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 X 2 134-bias

0. 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 2 134-bias

1 0. 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 X 2 134-bias

Step 4 Normalize

1. 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 x 2 135-bias

Step 5 Rounding is necessary since there are too many digits in the significand

1. 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 x 2 135-bias

1. 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 x 2 135-bias

Round down
Step 6 Convert exponent back to a binary number

135 = 10000111

Step 7 Re-assemble

0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0
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Statement 2 is an OR condition and it states that I will wear a coat if either of these (or both) 

conditions are true. 

Statement 3 is like statement 2 except that it is an either-or situation. Statement 2 applies 

equally well to both conditions in that it could be cold and also raining, and it would be similar 

to the AND condition. Statement 3 exclusively applies to the OR situation and is referred to as 

Exclusive OR (XOR). 

These conditions are normally represented by Truth Tables such as if condition A is true AND 

condition B is true then result C is true. True and false values can be conveniently mapped to 

the binary values 1 and 0. These are known as Boolean variables. 

Table 1-11 Truth table - AND 

A B C 

False (0) False (0) False (0) 

True (1) False (0) False (0) 

False (0) True (1) False (0) 

True (1) True (1) True (1) 

Table 1-12 Truth table - OR 

A B C 

False (0) False (0) False (0) 

True (1) False (0) True (1) 

False (0) True (1) True (1) 

True (1) True (1) True (1) 

Table 1-13 Truth table - XOR 

A B C 

False (0) False (0) False (0) 

True (1) False (0) True (1) 

False (0) True (1) True (1) 

True (1) True (1) False (0) 

Other logic functions exist such as NOT which inverts the value, so a binary zero becomes a 

binary one. Repeating the operation, of course gets back to the original value. Boolean algebra 

is a complex topic by itself – which is dealt with in set theory.  

For fun - a simple encoding can be done with XOR – take the word “Plaintext”, converting this to 

seven-bit ASCII code becomes – 

Table 1-14 Simple example of encoding text using XOR 
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Text 

string 

ASCII code 

(decimal) 

ASCII code 

(binary) 

Apply XOR function 

with 10101010 

Resultant ASCII code 

letter 

P 80 1010000 1111010 z 

l 108 1101100 1000110 . 

a 97 1100001 1001011 K 

i 105 1101001 1000011 C 

n 110 1101110 1000100 D 

t 116 1110100 1011110 ^ 

e 101 1100101 1001111 O 

x 120 1111000 1010010 4 

t 116 1110100 1011110 ^ 

So, the encoded string “Plaintext” becomes “z.KCD^O4^”.  

Of course, this is easily cracked and decoded! 

The following rules show the resulting bitwise values: 

• X AND 0 = 0 

• X AND 1 = X 

• X OR 0 = X 

• X OR 1 = 1 

Now that the foundation is in place it is time to move from generic concepts to programming on 

a specific architecture! 
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Summary of chapter 1 

• Introduction to Assembly language 

• Number Systems 

• Shift Operations 

• Logic and Truth tables 
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Exercises for chapter1 

1. Divide 10111101 by 111 using manual long division 

2. Convert 11.110 to base 10 

3. Covert 0x1fd to BCD 

4. Convert 35.65 to single precision floating-point according to IEEE 754 

5. Write pseudo code to convert lower case ASCII characters a-z to upper case ASCII 

character A_Z. 

6. Convert the signed binary byte to base10 

7. Convert the octal number 341 to base 16 

8. What are mnemonics? 

9. Describe the advantages of a high-level language over assembly language 

10. Describe the advantages of assembly language over higher level languages. 
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Chapter 2. Getting Started 

This chapter is aimed at gaining familiarity with the ARM64 assembly language architecture. 

Subsequent chapters will concentrate on low level details and focus on topics in a more 

structured manner. The code snippets are short to allow for an easier grasp of the concepts 

presented. 

Origin of ARM 

In the early 1980’s IBM introduced the IBM personal computer. Realizing that personal 

computing, would soon spread to the masses, the British Broadcasting Corporation (BBC) in 

the United Kingdom commissioned a company called Acorn computers to build a 

microcomputer for their TV series aimed at promoting computer literacy. This system was 

referred to as the BBC microcomputer. 

Many UK schools adopted the computer part of this computer literacy thrust. The BBC Micro 

used a 6502 microprocessor and featured BBC Basic as its default programming language. 

Acorn then decided to embark on their own design, initially known as the Acorn RISC Machine. 

ARM (Advanced RISC Machines) was formed in late 1990. 

The design used a Reduced Instruction Set Computer (RISC) design which differed from the 

Complex Instruction Set (CISC) design of other leading microprocessors such as the Z-80 from 

Zilog, the 6800 from Motorola and the 8080 from Intel®11. RISC has the advantage of a simpler 

design with lower power consumption making it ideal for use in embedded systems. Success 

came with the 32-bit design used in Apple and Android phones. The 64-bit ARM (ARM64) was 

announced in late 2011 and is the focus of this book. 

Figure 2-1 BBC Micro 

 

 

 

 

11 Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries 
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 Currently there are three ARM architecture profiles – 

• A-Profile for applications,  

• R-Profile for Real-Time applications  

• M-Profile for small deployments where power consumption is a primary concern, 

examples are microcontrollers. 

The ARM business model is to license their intellectual property to other manufacturers. 

Choosing a candidate platform 

The examples shown here will run quite happily on Raspberry Pi systems. Raspberry PI models 

4 and 5 are recommended although the 64-bit Raspberry Pi 3 system can be used if needed. 

The recommended Operating System12 is Raspberry Pi OS (64-bit) which includes the GNU 

tools that will be used.  

Once the Pi13 has been set up verify - 

The command below shows that the architecture is indeed ARM64 (aarch64). 

uname -a 

Linux pi5a 6.1.0-rpi8-rpi-2712 #1 SMP PREEMPT Debian 1:6.1.73-1+rpt1 (2024-01-25) 

aarch64 GNU/Linux 

$ lscpu 

Architecture:            aarch64 

  CPU op-mode(s):        32-bit, 64-bit 

  Byte Order:            Little Endian 

CPU(s):                  4 

  On-line CPU(s) list:   0-3 

Vendor ID:               ARM 

  Model name:            Cortex-A76 

    Model:               1 

 

 

 

12 Refer to https://www.raspberrypi.com/software/operating-systems/ for a compatibility list of 

Raspberry Pi’s that can run a 64-bit O/S. 

13 See https://www.raspberrypi.com/documentation/computers/getting-started.html 

https://www.raspberrypi.com/software/operating-systems/
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    Thread(s) per core:  1 

    Core(s) per cluster: 4 

    Socket(s):           - 

    Cluster(s):          1 

    Stepping:            r4p1 

    CPU(s) scaling MHz:  100% 

    CPU max MHz:         2400.0000 

    CPU min MHz:         1500.0000 

    BogoMIPS:            108.00 

    Flags:               fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp 

                          asimdhp cpuid asimdrdm lrcpc dcpop asimddp 

Architecture 

From an assembly language programmer’s perspective, the architecture refers to the make-up 

of the system. It includes higher level areas such as memory addressing, CPU behavior, 

register layout, and the instruction set. A lower level is the micro-architecture which discusses 

how the instructions are executed and the interconnections (the datapath) through which the 

data traverses. 

ARM64 Registers 

Registers are locations that store values that are similar to variables in high-level languages. 

The primary way of interfacing with the ARM64 system is via the register set. Generically they 

may be referred to as Rd (destination register), Rn (first source register), Rm (second source 

register). 

ARM64 provides 31 general purpose registers 0 through 30. The registers can be used as 32- bit 

or 64-bit. If a register is addressed with an “x” prefix then it functions as 64-bit using bits 63 

through bit 0, if it is addressed with a “w” prefix then it is designated as a 32-bit register using 

bits 31 through bit 0. The registers can be designated as wn or xn for any of the w and x registers 

or more specifically as x4 for the fifth 64-bit general purpose register. Again, a more generic 

reference is rn which does not specify whether the 32-bit or 64-bit register is used. 

The 32-bit w register forms the lower half of the corresponding 64-bit x register. That is, w0 

maps onto the lower word of x0, and w1 maps onto the lower word of x1. 

When reading from a 32-bit w register the higher 32 bits of the x register are ignored. A write 

operation however, to a 32-bit w register will set the higher 32 bits of the x register to zero.  
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Register x30 is known as the link register (LR) and holds the return address of a function so it 

should be used with care. The 64-bit XZR and 32-bit WZR registers will return zero when read.  

Write operations will not change the value. 

The program counter (PC) keeps track of program execution and is not used as a general-

purpose register. Not all registers are programmer accessible. 

Table 2-1 Register width. 

. . . 
Figure 2-2 Floating Point and Vector Registers 

 

There are 32 additional registers used for floating point and vector operations. These registers 

have a width of 128 bits, but can be addressed with 8, 16, 32, 64 or 128 bits. Like the w and x 

general purpose registers a prefix is also used to determine the width. The smallest value of 8 

bits is Bx up to Qx which has a width of 128 bits. These vector registers can operate on multiple 

data streams in parallel and are discussed in chapter 8. 
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PSTATE and Exception levels 

ARM64 defines four exception levels – EL0 through EL3. Not all of these levels may be 

implemented; so a system might only implement ELO and EL1. These exception levels are 

privilege levels with the highest EL number corresponding to the highest privilege level. User 

code typically runs at EL0 and kernel code runs at EL1. If EL2 and EL3 are implemented, they 

typically are used for Hypervisor and lower-level firmware functions. 

The Processor state (PSTATE) shows the current state of the processor. The PSTATE includes 

flags that convey event information. These flags are single bit Boolean variables conveying True 

or False conditions. 

These flags are: 

• Negative (N) True when signed number is negative, false if positive. 

• Zero (Z)  True if result such as comparison of values are equal, false if not equal. 

• Carry (C) True If carry or no borrow condition occurs, shifted out bit 

• Overflow (V) True if and overflow condition occurs. 

The flags are held in a special purpose register Saved 

Program Status Register (SPSR) .   

These are known as condition flags and occupy bit 

positions 31 through 28. 

Other fields are used for exception masking (DAIF) and are:- 

• Debug (D) Enable/Disable debug exceptions. 

• Asynchronous (A) Enable/Disable external asynchronous events (interrupts). 

• IRQ (I) Enable/Disable interrupt requests. 

• FIQ (F) Enable/Disable fast interrupt requests. FIQ takes priority over IRQ! 

To summarize:- 

Table 2-2 ARM64 Flags 

Name  Description 

N  Negative condition flag. 

Z. Zero condition flag 

C  Carry condition flag. 

V  oVerflow condition flag. 

D  Debug mask bit. 
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A  SError mask bit. 

I  IRQ mask bit. 

F  FIQ mask bit. 

In AArch64, the ERET instruction is used to return from an exception. The PSTATE. Flags N, Z, C, 

V are accessible at Exception Level 0. Accessing the other PSTATE fields requires exception 

levels higher than EL0. 

For more information and bit field definitions, a good starting point is Arm Armv8-A 

Architecture Registers14, specifically looking at Saved Program  Status Register sections. 

A Slight change of notation! 

A programming note – From now on in this document the number’s base will no longer have a 

subscript to differentiate them. Programmers use the more convenient shorthand 0b for binary 

and 0x for hexadecimal so the byte 00110100 is written as 0b0110100, hexadecimal numbers 

are written with the prefix 0x such as 0xF3AD and decimal numbers are devoid of a prefix.  In 

addition, the abbreviation “hex” will be used for base 16 rather than the more cumbersome 

term “hexadecimal”.  

This is shown below: 

Table 2-3 preferred number base notation 

Binary Decimal Hexadecimal 

0b00101111 47 0x2F 

Assembling and Linking 

Prior to looking at the instruction set in depth, it is beneficial to create some program snippets 

and then analyze the results. The code following does very little except for some register 

manipulation, nevertheless it will provide a good introduction for technical discussion and 

understanding. The ARM64 architecture uses 64 bits for the memory address and instructions 

are 32 bits in length. Data is processed within the registers rather than memory directly. This 

means that data must be loaded from memory into the registers and stored in memory from 

the registers forming a Load and Store architecture. 

 

 

 

14 https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en 

https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en
https://developer.arm.com/documentation/ddi0595/2020-12/AArch64-Registers?lang=en
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mov Instruction 

Using the editor of your choice create and edit the file moveregisters.s with the following lines 

– 

Listing  2-1 Using the mov instruction 

.global _start 

_start: 

.text 

 mov x3, 0XFFFF 

 mov x4, x3  

 mov w8, 93 //ARM64 Syscall to exit 

 svc #0 

The first line includes an assembler directive (.global) using a label _start which defines the 

program’s entry point and is declared as .global allowing external access to other files. Only 

one global _start label should appear when multiple files are involved. Instructions starting 

with “.” are directives that communicate with the assembler program. The next directive .text 

introduces the actual code.  

The first instruction (mov)places the value FFFF (hex) into the 64-bit register x3. This is a 16-bit 

value and is the largest number that can be placed into the register at any one time. 

The second instruction takes the contents of the x3 register and copies it to the 64-bit register 

x4. After this has been executed, register x3 and x4 will have identical contents. 

The third instruction invokes the exit system call. System Calls (syscalls) are dependent on the 

underlying architecture/operating system, and they specify how and where the call/return 

values are to be configured. Table 2-4 below shows an extract from Linux15. These are privileged 

instructions. User-mode programs interact with system resources via an Application 

Programming Interface (API). User-mode applications typically run in Exception Level zero 

(EL0) and this is the lowest level of privilege. The application calls the Operating System to 

perform the task on its behalf. These applications interact with the operating system’s kernel 

resources by running under a higher level of privilege - Exception Level one (EL1). 

 

 

 

15 Invoke with man syscall. 
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The ARM64 architecture passes the system call via register w8. 

Table 2-4 Registers for system calls and return values 

The fourth instruction is the supervisor call to trigger the system call. 

The program is converted to object code by the command – 

as -o moveregisters.o moveregisters.s 

The meaning of the instruction is to assemble the source file (.s) to an object file(.o) which is 

the binary code. 

The next step is to link and create the executable file –  

ld -o moveregisters moveregisters.o 

Here the object code moveregister.s.o is linked to create the executable file moveregisters. 

Finally make the code executable with the command: 

chmod 777 moveregisters 

Run the code with – 

./moveregisters 

The program has completed, but did it really do what we asked it? To find out there is a 

debugging (GDB) tool which allows us to interactively display the registers and execute the 

code one step at a time. 

Recreate the object code but this time add the -g switch (debug) as shown – 

as -g -o  moveregisters.o moveregisters.s 

ld -o  moveregisters moveregisters.o 

Next invoke the debugger 

$ gdb moveregisters   

GNU gdb (Debian 13.1-3) 13.1 

Copyright (C) 2023 Free Software Foundation, Inc. 
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License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> 

This is free software: you are free to change and redistribute it. 

There is NO WARRANTY, to the extent permitted by law. 

Type "show copying" and "show warranty" for details. 

This GDB was configured as "aarch64-linux-gnu". 

Type "show configuration" for configuration details. 

For bug reporting instructions, please see: 

<https://www.gnu.org/software/gdb/bugs/>. 

Find the GDB manual and other documentation resources online at: 

    <http://www.gnu.org/software/gdb/documentation/>. 

 

For help, type "help". 

Type "apropos word" to search for commands related to "word"... 

Reading symbols from moveregisters... 

List the code (l) 

(gdb) l 

1 .global _start 

2 _start: 

3 .text 

4  mov x3, 0XFFFF 

5  mov x4, x3  

6  mov w8, 93 //ARM64 Syscall to exit 

7  svc #0 

Set a breakpoint to stop the program (b) 

(gdb) b 1 

Breakpoint 1 at 0x400078: file moveregisters.s, line 4. 

Note line 4 is the first line of actual code. 

Start the program (run) 

(gdb) run 

Starting program: /home/alan/asm/moveregisters  

Breakpoint 1, _start () at moveregisters.s:4 

4  mov x3, 0XFFFF 

(gdb) 
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The program has stopped at our first line of code, show the register contents by (i)nfo 

(r)egisters. 

(gdb) i r 

x0             0x0                 0 

x1             0x0                 0 

x2             0x0                 0 

x3             0x0                 0 

x4             0x0                 0 

x5             0x0                 0 

x6             0x0                 0 

. . . 

x29            0x0                 0 

x30            0x0                 0 

sp             0x7ffffffff140      0x7ffffffff140 

pc             0x400078            0x400078 <_start> 

cpsr           0x1000              [ EL=0 BTYPE=0 SSBS ] 

fpsr           0x0                 [ ] 

fpcr           0x0                 [ Len=0 Stride=0 RMode=0 ] 

tpidr          0x0                 0x0 

tpidr2         0x0                 0x0 

Hit (s)tep to step into the next line of code 

(gdb) s 

5  mov x4, x3 

Show register 3 and 4 only 

(gdb) i r x3 

x3             0xffff              65535 

(gdb) i r x4 

x4             0x0                 0 

We can see that x3 has the content 0xffff, hit s to execute the next line of code and show 

registers 3 and 4 again. 

(gdb) i r x3 

x3             0xffff              65535 

(gdb) i r x4 
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x4             0xffff              65535 

Register x4 now has the content ffff and register x3 has been left untouched. 

Show all the registers again – 

(gdb) i r 

x0             0x0                 0 

x1             0x0                 0 

x2             0x0                 0 

x3             0xffff              65535 

x4             0xffff              65535 

x5             0x0                 0 

x6             0x0                 0 

x7             0x0                 0 

x8             0x5d                93 

x9             0x0                 0 

x10            0x0                 0 

x11            0x0                 0 

.. . 

x29            0x0                 0 

x30            0x0                 0 

sp             0x7ffffffff140      0x7ffffffff140 

pc             0x400084            0x400084 <_start+12> 

cpsr           0x201000            [ EL=0 BTYPE=0 SSBS SS ] 

fpsr           0x0                 [ ] 

fpcr           0x0                 [ Len=0 Stride=0 RMode=0 ] 

tpidr          0x0                 0x0 

tpidr2         0x0                 0x0 

Aliases 

With assembly code there are often multiple ways of accomplishing the same task, for 

example the CMP (Compare instruction) is an alias of the Sub (Subtract instruction).The  CMP 

Compare (immediate) subtracts an immediate value from a register value. The SUB Subtract 

(immediate), subtracts an immediate value from a register value, and writes the result to the 

destination register. Rather than have the programmer work out the equivalency, the assembler 
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will perform the substitution allowing the coder to continue using (perhaps) mnemonics that 

they are more used to. Again, with RISC architectures there is limited space for instructions. 

Re-assemble the program again, without the -g option (to remove debug information). 

as -o  moveregisters.o moveregisters.s 

ld -o moveregisters moveregisters.o 

Now run the objdump program with the -D(issasemble)  option – 

$ objdump -D moveregisters 

 

moveregisters:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d29fffe3  mov x3, #0xffff                 // #65535 

  40007c: aa0303e4  mov x4, x3 

  400080: 52800ba8  mov w8, #0x5d                   // #93 

  400084: d4000001  svc #0x0 

Re-run objdump again but this time use -M no-aliases. 

$ objdump -D -M no-aliases moveregisters 

moveregisters:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d29fffe3  movz x3, #0xffff 

  40007c: aa0303e4  orr x4, xzr, x3 

  400080: 52800ba8  movz w8, #0x5d 

  400084: d4000001  svc #0x0 

Typically,16, instructions in ARM64 are of the form – Instruction <Rd> <Rn>, 2nd operand. Rd 

is the destination register followed by a source register and a possible second operand that 

can be a register or an immediate (literal value). The use of R indicates that the registers can be 

 

 

 

16 Not always, see str instructions! 
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either X or W registers.  Modification can be made to a source register such as performing a 

shift operation. 

The output of the utility objdump as shown above has the following format – 

Address in memory  Instruction (Hex)  ARM64 instruction 

Notice that the memory location increments by four bytes (corresponding to the 32-bit wide 

ARM64 instruction) after each instruction is executed. 

Figure 2-3 Format of MOVZ instruction 

 

Referring to the ARM64 instruction set architecture documentation17 the MOVZ instruction 

states that “This instruction is used by the alias mov (wide immediate).” So, there is no actual 

mov instruction as such, however it transparently accomplishes the action that is to be 

executed.  The format of the MOVZ (Move wide with zero) instruction is :- 

Breaking down the bits d29fffe3 (first line of objdump non-aliased code shown on page 2-12 ) 

gives a binary value of – 

sf  opcode  hw Immediate Xd 

1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 

• 64-bit 

• Opcode is A5 

• Immediate value is FFFF 

• Register is x3 

 

 

 

17 See https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/  

https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/


Starting out with ARM 

2-14 

Instruction Aliases 

Note that when the no-aliases option is used the disassembly process listed the 

code as an actual ARM64 instruction rather than pseudo-code. Aliases are 

mnemonics that are familiar to the programmer and the assembler will replace 

them with an actual ARM.instruction. 

Moving 32-bit and 64-bit immediate values 

Question - Since there are only 16 bits available for the immediate value, how would a register 

be loaded with the 32-bit value 0X12345678? 

Response - The approach is to move the values in stages with the movk instruction. This 

instruction moves data 16 bits at a time and optionally puts the values into the register with a 

shifted offset value; this offset can be 0, 16, 32 or 48 bits as defined by the 2-bit hw field and 

leaves the other bits alone.  

Our plan is to move in the first 16 bits with a default shift of zero, followed by another move of 

16 bits but in the second quarter of the register. 

Example –  

Listing  2-2 Using the movk instruction 

.global _start 

.text 

_start: movk x3, #1234, lsl #0 

  movk x3, #5678, lsl #16 

  mov  x8, #93 

  svc 0 

After execution of the code movk x3, #5678, lsl #16 the content of x3 is: 

x3             0x162e04d2          372114642 

(gdb) i r 

x0             0x0                 0 

x1             0x0                 0 

x2             0x0                 0 

x3             0x162e04d2          372114642 

Checking → 0x162e = 5678 and 0x04d2 = 1234. 

objdump shows – 

Disassembly of section .text: 

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
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0000000000400078 <_start>: 

  400078: f2809a43  movk x3, #0x4d2 

  40007c: f2a2c5c3  movk x3, #0x162e, lsl #16 

  400080: d2800ba8  mov x8, #0x5d                   // #93 

  400084: d4000001  svc #0x0 

Looking at the second line movk x3, #0x162e, lsl #16 

• 64-bit 

• The format of movk (Move wide with keep) instruction is 

• Opcode is E5 

• Immediate value is 162e 

• Register is x3 

Figure 2-4 Format of movk instruction 

 

The next example shows the MOVN instruction – The listing is included in GDB’s output. 

Comments can be placed on the same line by appending “//” after the instruction (as shown 

below) or block style starting with “/*” and ending with “*/”. 

MOVE Negated instruction (MOVN) 

(gdb) list 

Listing  2-3 Using the MOVN instruction 

1 .global _start 

2 _start: 

3  MOVN  x2, #0xfedc //This is the move negated instruction 

4  NOP   //after execution it will change the value above 

to 
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5  NOP   //0xffffffffffff0123 

6  NOP   //can be useful with bitmask operations 

7  mov w8, #0x5d //Time to go. 

8  svc #0 

(gdb) b _start 

Breakpoint 1 at 0x400078: file moven.s, line 3. 

(gdb) b 7 

Breakpoint 2 at 0x400088: file moven.s, line 7. 

(gdb) run 

Starting program: /home/alan/asm/moven  

 

Breakpoint 1, _start () at moven.s:3 

3  MOVN  x2, #0xfedc //This is the move negated instruction 

(gdb) continue 

Continuing. 

Breakpoint 2, _start () at moven.s:7 

7  mov w8, #0x5d //Time to go. 

(gdb) i r x2 

x2             0xffffffffffff0123  -65245 

Effectively, this has produced the one’s complement of our number. 

Displaying output 

Listing  2-4 Displaying output with the Write syscall 

// listing2-4 

/* This example shows how to write a string to the screen. It uses the write 

system call for this. The call expects three arguments - 

- x0 holds the file descriptor (1=stdout),  

- x1 holds the starting address in memory of the string to be written 

- x2 holds the length of the string */ 

.text 

.global _start 

_start: 

 mov x0, #1 //stdout 

 ldr x1, =result 
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 mov x2, #6  //Print 6 characters  

 mov w8, #64 //This is the write system call 

 svc #0  //Put it out to screen 

 mov  x0, #0  //Return code of 0 

 mov w8, #0x5d //Time to go. 

 svc  #0 

 

.data 

result: .ascii "Hello\n" 

.align 4 

This program uses the write syscall (0x40) to output a string of text to stdout. This works by 

loading register x0 with the value 1 corresponding to stdout. Register x1 points to the starting 

address in memory to where the string of is located and register x2 is loaded with the length of 

the string. After the string has been written, register x0 is loaded with a return code of 0 

(success) and the exit service call is triggered. 

The assembler directive .data defines the start of memory. 

objdump -s -d -M no-aliases printhello 

printhello:     file format elf64-littleaarch64 

Contents of section .text: 

 4000b0 200080d2 e1000058 c20080d2 08088052   ......X.......R 

 4000c0 010000d4 000080d2 a80b8052 010000d4  ...........R.... 

 4000d0 e0004100 00000000                    ..A.....         

Contents of section .data: 

 4100e0 48656c6c 6f0a0000 00000000 00000000  Hello........... 

Disassembly of section .text: 

00000000004000b0 <_start>: 

  4000b0: d2800020  movz x0, #0x1 

  4000b4: 580000e1  ldr x1, 4000d0 <_start+0x20> 

  4000b8: d28000c2  movz x2, #0x6 

  4000bc: 52800808  movz w8, #0x40 

  4000c0: d4000001  svc #0x0 

  4000c4: d2800000  movz x0, #0x0 

  4000c8: 52800ba8  movz w8, #0x5d 

  4000cc: d4000001  svc #0x0 
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  4000d0: 004100e0  .word 0x004100e0 

  4000d4: 00000000  .word 0x00000000 

The data section is located at memory address 0x4100e0 and the hex codes for the ASCII string 

(Hello) is highlighted above. 

Make 

The commands that have been used so far for assembling and linking (as,ld) have worked well 

enough for our situation, however when multiple files are involved it is normal to use a build 

tool to accomplish this. The make utility keeps track of what has been done and will only apply 

actions to the changed portions. The instructions are conveyed to the utility using a makefile. 

The makefile below can be used to assemble link the program moveregister.s. 

Simple makefile 

moveregisters: moveregisters.o 

 ld -o moveregisters moveregisters.o 

moveregisters.o: moveregisters.s 

 as -o moveregisters.o moveregisters.s 

The line at the top denotes the target file which depends on the object file which in turn is 

dependent on the source file. The rules on how to create the target file are shown above, so the 

flow is :- 

Create the target file (moveregister.s)  from the object file (moveregister.o) which is created 

from the source file (moveregister.s). The first target (here moveregister) is termed the default 

goal.  

Note use Tab characters for indentation in the makefile.  

The next example assembles and links two programs into a single executable file, 

OBJECTS = program1.o program2.o 

all: myprogram 

%.o : %.s 

 as $< -g -o $@ 

myprogram: $(OBJECTS) 

 ld -o myprogram $(OBJECTS) 

This example will allow the target to be passed to the makefile:- 

TARGETFILE = $(targetfile) 

print: $(TARGETFILE).o 
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 ld -o $(TARGETFILE) $(TARGETFILE).o 

$(TARGETFILE).o: $(TARGETFILE).s 

 as -o $(TARGETFILE).o $(TARGETFILE).s 

 

$ make targetfile=print 

make: 'print' is up to date. 

$ ls 

makefile  print  print.o  print.s 

Make will be revisited in more depth later on! 

Using strace 

The strace utility can be used to monitor which syscalls have been invoked by a particular 

program or process:- 

$ strace -c ./print 

Hello again! 

% time     seconds  usecs/call     calls    errors syscall 

------ ----------- ----------- --------- --------- ---------------- 

  0.00    0.000000           0         1           write 

  0.00    0.000000           0         1           execve 

------ ----------- ----------- --------- --------- ---------------- 

100.00    0.000000           0         2           total 

With this particular program strace shows that the syscalls write and exit were invoked once. 
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Summary of chapter 2 

• Register Set  

• Assembling and linking 

• Makefiles 

• Aliases and pseudo code 

• Debugging with GDB  
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Exercises for chapter 2 

1. Install Raspberry PI OS on a 64-bit Raspberry PI system 

2. What  qualifier would you add to the as command to embed debug information? 

3. What is the purpose of a linker? 

4. How many w registers are available for general purpose use? 

5. What are assembly directives? 

6. Describe two ways of loading the value 0x1256 into the  top 16 bits of register x3 

7. What are syscalls? 

8. What is the function of a makefile? 

9. What are  ARM assembly aliases? 

10. What tool  is used to disassemble  an ARM executable program? 

11. Describe two flags that the ARM instruction set uses to convey conditions.
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Chapter 3. Dealing with memory 
Chapter 3 delves further into the architecture and discusses memory topics , addressing 

modes with LDR and STR instructions. Graphical debuggers are introduced. 

Load and Store instructions 

ARM64 deals with register operations, to work with memory, addresses are loaded into 

registers, and stored back from registers to memory. Operations are with respect to memory so 

loading from memory to registers is a read operation and storing from registers is a write 

operation. The method by which memory addresses are derived is known as addressing modes 

and there are several. The code fragments in this chapter will show how to communicate with 

memory and will also introduce various addressing modes.   

Load and store instructions can access memory. Data is loaded (ldr) from memory, acted on 

and then stored (str) back to memory. This is termed load-store architecture. 

LOAD Instructions (Memory → Registers) 

Examining memory with GDB 

GDB can be used to examine memory. The format of the command is x/nfu addr. Here the 

parameters have the following meaning: 

Table 3-1 Using GDB to display memory contents 

n How much memory to display in units, with a default value of one. 

f This is the display format; default is to display in hex. The main options are o(octal), 

x(hex), d(decimal), u(unsigned decimal), t(binary), f(float), a(address), i(instruction), 

c(char), s(string) 

u Unit size b = byte h = halfword (2 bytes) w = word (4 bytes) g = giant (8 bytes) 

Example  

(gdb) x/16w  0x4100e0 

0x4100e0: 0x6c6c6548 0x00000a6f 0x00000000 0x00000000 

0x4100f0: 0x0000002c 0x00000002 0x00080000 0x00000000 

0x410100: 0x004000b0 0x00000000 0x00000028 0x00000000 

0x410110: 0x00000000 0x00000000 0x00000000 0x00000000 

This is the contents of memory after running the printhello program shown on page 2-12. 
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This shows the ASCII data highlighted in default hex values, strings can be shown more clearly 

by using the x/s command – 

gdb) x/s  0x4100e0 

0x4100e0: "Hello\n" 

Consider a similar program (printhelloARM64.s) that writes out a slightly longer string.  

Listing  3-1 String printing 

/* This example shows how to write a string to the screen. It uses the write 

system call 

2 for this. The call expects three arguments - 

3  

4 - x0 holds the file descriptor (1=stdout),  

5 - x1 holds the starting address in memory of the string to be written 

6 - x2 holds the length of the string  */ 

7  

8 .text 

9  

10 .global _start 

11  

12 _start: 

13  mov x0, #1 //stdout 

14  ldr x1, =string1 

15  mov x2, #13 //Print 13 characters  

16  mov w8, #64 //This is the write system call 

17  svc #0  //Put it out to screen 

18  mov  x0, #0 //Return code of 0 

19  mov w8, #0x5d //Time to go. 

20  svc  #0 

21  

22 .data 

23 string1: .ascii "Hello ARM64!\n" 

24 .align 4 

 

Using gdb shows :- 
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(gdb) list 1,30 

1 /* This example shows how to write a string to the screen. It uses the 

write system call 

2 for this. The call expects three arguments - 

3  

4 - x0 holds the file descriptor (1=stdout),  

5 - x1 holds the starting address in memory of the string to be written 

6 - x2 holds the length of the string  */ 

7  

8 .text 

9  

10 .global _start 

11  

12 _start: 

13  mov x0, #1 //stdout 

14  ldr x1, =string1 

15  mov x2, #13 //Print 13 characters  

16  mov w8, #64 //This is the write system call 

17  svc #0  //Put it out to screen 

18  mov  x0, #0 //Return code of 0 

19  mov w8, #0x5d //Time to go. 

20  svc  #0 

21  

22 .data 

23 string1: .ascii "Hello ARM64!\n" 

24 .align 4 

gdb) b 20 

Breakpoint 1 at 0x4000cc: file helloARM64.s, line 20. 

(gdb) run 

Starting program: /home/alan/asm/helloARM  

Hello ARM64! 

 

Breakpoint 1, _start () at helloARM64.s:20 
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20  svc  #0 

gdb) x/s 0x4100e0 

0x4100e0: "Hello ARM64!\n" 

(gdb) x/16xb 0x4100e0 

0x4100e0: 0x48 0x65 0x6c 0x6c 0x6f 0x20 0x41 0x52 

0x4100e8: 0x4d 0x36 0x34 0x21 0x0a 0x00 0x00 0x00 

Individual characters of the string can be shown by issuing x/1q 

c <address>. The memory layout is actually:- 

0x4100e0: 72 'H' 

0x4100e1: 101 'e' 

0x4100e2: 108 'l' 

0x4100e3: 108 'l' 

0x4100e4: 111 'o' 

0x4100e5: 32 ' ' 

0x4100e6: 65 'A' 

0x4100e7: 82 'R' 

0x4100e8: 77 'M' 

0x4100e9: 54 '6' 

0x4100ea: 52 '4' 

0x4100eb: 33 '!' 

0x4100ec 10 '\n' 

The directive .data placed the starting character of the string is placed at the lowest memory 

location. This is termed little-endian18 where the least significant byte is stored at the lowest 

address. 

 

 

 

18 This term originally comes from Jonathan Swift’s novel Gulliver’s travels and refers to which 

end a boiled egg is broken from. 
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The debugger shows us the bytes in increasing address order, starting from the left, (the same 

order as when reading a book published in English). 

(gdb) x/16xc 0x4100e0 

0x4100e0: 72 'H' 101 'e' 108 'l' 108 'l' 111 'o' 32 ' ' 65 'A' 82 'R' 

0x4100e8: 77 'M' 54 '6' 52 '4' 33 '!' 10 '\n' 0 '\000' 0 '\000' 0 '\000'  

 

 

Disassembly produces :- 

objdump -d -M no-aliases printhelloARM64 

 

printhelloARM64:     file format elf64-littleaarch64 

Disassembly of section .text: 

00000000004000b0 <_start>: 

  4000b0: d2800020  movz x0, #0x1 

  4000b4: 580000e1  ldr x1, 4000d0 <_start+0x20> 

  4000b8: d28001a2  movz x2, #0xd 

  4000bc: 52800808  movz w8, #0x40 

  4000c0: d4000001  svc #0x0 

  4000c4: d2800000  movz x0, #0x0 

  4000c8: 52800ba8  movz w8, #0x5d 

  4000cc: d4000001  svc #0x0 

  4000d0: 004100d8  .word 0x004100d8  < Start of Data section 

  4000d4: 00000000  .word 0x00000000 

The first line puts the value of one into register x0  

 

The second line loads register x1 with contents of the memory pointed to by the current 

instruction’s location (as pointed to by the Program Counter (PC with an offset of 0x20 which is 

where the first part of our data resides. Note this is 8 instructions from the start label or 7 

instructions away from the current instruction. Recall that each instruction takes 4 bytes, so 

the offset is 28 bytes or 0x1c bytes. 

0x4000b0+0x20 = 0x4000d0 
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The way that memory is addressed by the ldr instruction is termed PC Relative addressing, if 

no offset is given, then it defaults to an immediate value of 0x0. 

The ldr instruction as we have used it puts the address of the string into register x1. The next 

program uses ldr to put the contents of the string into register x4. The instruction is: 

ldr x4, [x1] as highlighted below: 

Breakpoint 1, _start () at printhelloARM2.s: 

    mov x0, #1 //stdout 

(gdb) s   ldr x1, =string1 //This loads the address string1 

into x1 

(gdb) s   ldr x4, [x1] //This loads the actual data into x4  

(gdb) s   mov x2, #13 //Print 13 characters  

(gdb) i r 

x0             0x1                 1 

x1             0x4100e0            4260064 

x2             0x0                 0 

x3             0x0                 0 

x4             0x5241206f6c6c6548  5927054247528785224 

x5             0x0                 0 

. . . 

x30            0x0                 0 

sp             0x7ffffffff0a0      0x7ffffffff0a0 

pc             0x4000bc            0x4000bc <_start+12> 

cpsr           0x201000            [ EL=0 BTYPE=0 SSBS SS ] 

fpsr           0x0                 [ ] 

fpcr           0x0                 [ Len=0 Stride=0 RMode=0 ] 

tpidr          0x0                 0x0 

tpidr2         0x0                 0x0 
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Decoding the contents of register x4 shows:- 

  

Since the register is 64-bits only eight characters of the string can be accommodated. Altering 

the line to add an offset of two (=string1 + 2) will cause the string to skip the first two characters 

(He) as shown below. 

Breakpoint 1, _start () at printhelloARM3.s:12 

  mov x0, #1 //stdout 

  ldr x1, =string1 + 2 //This loads the address string1 into x1 

  ldr x4, [x1, #4] //This loads the actual data into x4  

  mov x2, #26 //Print 26 characters 

  mov w8, #64 //This is the write system call 

  svc #0 //Put it out to screen 

llo ARM64! 

Hello again! 

18   mov  x0, #0 //Return code of 0 

 

 

 

.text 

.global _start 

 _start: 

  mov x0, #1 //stdout 

  ldr x1, =string1 //This loads the address string1 into x1 

  ldr x4, [x1, #4] //This loads the actual data into x4  

  mov x2, #26 //Print 26 characters 

  mov w8, #64 //This is the write system call 

Byte ASCII 

0x48 H 

0x65 e 

0x6c l 

0x6c l 

0x6f 0 

0x20 <Space> 

0x41 A 

0x52 R 
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  svc #0 //Put it out to screen 

  mov  x0, #0 //Return code of 0 

  mov w8, #0x5d //Time to go. 

  svc  #0 

.data 

 string1: .ascii "Hello ARM64!\n" 

 string2: .ascii "Hello again!\n" 

$ objdump -d -M no-aliases printhelloARM2 

 

printhelloARM2:     file format elf64-littleaarch64 

 

 

 

Disassembly of section .text: 

 

00000000004000b0 <_start>: 

  4000b0: d2800020  movz x0, #0x1 

  4000b4: 58000121  ldr x1, 4000d8 <_start+0x28> 

  4000b8: f8404024  ldur x4, [x1, #4] 

  4000bc: d2800342  movz x2, #0x1a 

  4000c0: 52800808  movz w8, #0x40 

  4000c4: d4000001  svc #0x0 

  4000c8: d2800000  movz x0, #0x0 

  4000cc: 52800ba8  movz w8, #0x5d 

  4000d0: d4000001  svc #0x0 

  4000d4: 00000000  udf #0 

  4000d8: 004100e0  .word 0x004100e0 

  4000dc: 00000000  .word 0x00000000 

Note Rt is the transfer register and Rn is the base register. 

 

To summarize :- 

• Register x1 holds the address of the text by using program counter relative addressing. 

http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
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• Register x4 holds the value of the memory address pointed to by register x1 using 

register indirect with offset addressing 

• The square brackets are used to show indirect memory addressing 

• Indirect addressing refers to loading the data stored at the address pointed to by the 

register. 

o This is similar to a book index which points the reader to the page where the 

content is stored. 

• Note where there is an offset no-aliases gives the instruction ldur x4, [x1, #4] 

• A summary of addressing modes is given in Table 3-3 

The instruction LDUR is load unscaled register. In this case the 64-bit value from register x1 

plus an offset of 4 is loaded into register x4. 

   mov x0, #1 //stdout 

(gdb) s 

   ldr x1, =string1 //This loads the address string1 into x1 

(gdb) s 

   ldr x4, [x1, #4] //This loads the actual data into x4  

(gdb) s 

   mov x2, #26 //Print 26 characters 

(gdb) i r 

x0             0x1                 1 

x1             0x4100e0            4260064 

x2             0x0                 0 

x3             0x0                 0 

x4             0x2134364d5241206f  2392597007760957551 

!46MRA o 

Skipping “Hell” 

The ldr instruction is actually ldr {type} where type is actually an unsigned byte (B), a signed 

byte (SB), unsigned halfword (H), signed halfword (SH). 

Store Instructions (Registers → Memory) 

We have already shown how to define memory contents using the .data directive on page 2-17. 

The format of the data can be specified in multiple ways, some examples include: - 
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.data 

 msg:   .ascii “Hello ARM” 

 randombytes: .byte 52, 35, 46, 95, 0x42  

 characters: .byte ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ 

 somewords: .word 0x0123456789abcdef 

 negnumbers: .byte -0xaa,0xff 

 blanks: .space 8 

The next program generates a string and loads it into memory, previously a string was defined 

using the .ascii directive. In this example 8 bytes of memory will be reserved using the .space 

directive. The default will be to zero out these bytes but they can be set to other values by using 

.space <number_of_bytes> {,<fill_byte>} for example message1: .space 8, 0x55 

Listing  3-2 str example 

// Listing3-2 

/* This example shows how to write a string to the screen. It uses the write 

system call 

for this. The call expects three arguments - 

  

- x0 holds the file descriptor (1=stdout),  

- x1 holds the starting address in memory of the string to be written 

- x2 holds the length of the string  

A block of memory is reserved using the .data directive with the label message1. 

It is initialized with 8 bytes of zero value 

The string is loaded into register x4 2 bytes at a time via movk 

and then stored into the memory location pointed to by x1  

*/ 

.text 

 

.global _start 

 _start: 

  mov x0, #1 //stdout 

  ldr x1, =message1 //This loads the address of the label message1 

into x1 

  mov w4, #0x6548  //Load first two bytes "He" just use w4 

for this rather than x4 
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  movk x4, #0x6C6c, lsl #16 //Load next two bytes "ll" 

  movk x4, #0x206f, lsl #32 //Next two bytes "o " 

  movk x4, #0x654d, lsl #48 //Next two "Me " 

  str x4, [x1]  // Put the eight byte string into memory 

pointed to by register x1 

  mov x2, #8 //Print 8 characters 

  mov w8, #64 //This is the write system call 

  svc #0 //Put it out to screen 

  mov  x0, #0 //Return code of 0 

  mov w8, #0x5d //Time to go. 

  svc  #0 

.data 

 message1: .space 8 

Output -  

$ ./store1 

 

Hello Me 

The output of gdb up until the str command has been executed shows:- 

$ gdb store1 

. . . 

Type "apropos word" to search for commands related to "word"... 

Reading symbols from store1... 

(gdb) b 1 

Breakpoint 1 at 0x4000b0: file store1.s, line 16. 

(gdb) run 

Starting program: /home/alan/asm/stores/store1  

 

Breakpoint 1, _start () at store1.s:16 

16   mov x0, #1 //stdout 

17   ldr x1, =message1 //This loads the address of the label 

message1 into x1 

18   mov w4, #0x6548 //Load first two bytes "He" just use w4 

for this rather than x4 

19   movk x4, #0x6C6c, lsl #16 //Load next two bytes "ll" 



Memory Operations   

Page 3-12 

 

20   movk x4, #0x206f, lsl #32 //Next two bytes "o " 

21   movk x4, #0x654d, lsl #48 //Next two "Me " 

22   str x4, [x1] // Put the eight byte string into memory 

pointed to by register x1 

23   mov x2, #8 //Print 8 characters 

(gdb) i r  

x0             0x1                 1 

x1             0x4100f0            4260080 

x2             0x0                 0 

x3             0x0                 0 

x4             0x654d206f6c6c6548  7299526233969943880 

x5             0x0                 0 

. . . 

x30            0x0                 0 

sp             0x7ffffffff060      0x7ffffffff060 

pc             0x4000cc            0x4000cc <_start+28> 

cpsr           0x201000            [ EL=0 BTYPE=0 SSBS SS ] 

fpsr           0x0                 [ ] 

fpcr           0x0                 [ Len=0 Stride=0 RMode=0 ] 

tpidr          0x0                 0x0 

tpidr2         0x0                 0x0 

(gdb) x/s 0x4100f0 

0x4100f0: "Hello Me" 

The figure below shows how the memory contents change after the str instruction has been 

executed. 
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Table 3-2 Action of str instruction to memory 

Referring to the ARM instruction document, Rt corresponds to register x4 and register Rn 

corresponds to register x1. 

Disassembly shows:- 

4000b0: d2800020  movz x0, #0x1 

  4000b4: 580001a1  ldr x1, 4000e8 <_start+0x38> 

  4000b8: 528ca904  movz w4, #0x6548 

  4000bc: f2ad8d84  movk x4, #0x6c6c, lsl #16 

  4000c0: f2c40de4  movk x4, #0x206f, lsl #32 

  4000c4: f2eca9a4  movk x4, #0x654d, lsl #48 

  4000c8: f9000024  str x4, [x1] 

The instruction f9400024 ldr x4, [x1] breaks down as follows:- 

 

Addressing modes 

The table below summarizes various addressing modes used with ARM64 architecture – 
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Table 3-3 Summary of addressing modes 

Addressing 

Mode 

Parameters Meaning Format 

Simple 

(Pc relative 

addressing) 

Register Register x1 is loaded with the contents of the 

address pointed to by base register x0. The base 

register is always 64-bit, since the addresses are 

64-bit wide. 

ldr x1, [x0] 

ldr        x1, 

=mylabel 

Offset Register plus 

an offset 

Register w2 is loaded with the contents of the 

address pointed to by base register x0 plus an 

offset. The offset may be a constant (immediate 

value) or another register 

ldrh w2, [x0, #8] 

ldrb w2, [x0, x10] 

Pre-indexed Offset Similar to the offset address mode, except that 

the base register(x0)  is updated with the new 

calculated address and data is loaded from the 

new location. The update happens before 

fetching the data 

ldrh w2, [x0, 

#8]! 

Post-index Offset Similar to the pre-indexed mode, except that the 

data is loaded from the current base register and 

the base register is updated only then with the 

new calculated address. Update happens after 

fetching the data. 

ldrh w2, [x0], 

#7 

• [ ] signifies indirection 

• ! signifies pre-indexing, offset inside brackets 

• Post indexing, offset outside of brackets 

The next listing shows examples of these addressing modes and resulting register contents 

using the data in the layout shown below. 

Listing  3-3 Addressing modes 

/* This example shows ARM64 addressing modes- 

.text 

.global _start 

_start:   

 ldr x0, =baselocation //This loads the address baselocation (0x4100d8) 

into x0 
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// Simple Addressing Mode 

 ldr x1, [x0] //This loads the actual data (0x1817161514131211) from 

baselocation into x1 

//Offset addressing with a constant as an offset 

 ldrh     w2, [x0, #8] // Loads contents (0x1a19) of location 4100d8+8) 

into w2  

//Offset addressing with a register as an offset 

 mov x10, #4 // Move offset value into register x10 

 ldrb w2, [x0, x10] // Loads contents (0x15) of location 4100d8+4) into w2 

//Pre-Index Addressing Mode 

 ldrh w2, [x0, #8]! // Similar to offset except that x0 is updated with the 

new calculated address. x0 now contains the address 0x4100e0 and w2 with the data 

0x1a19 

 

//Post-index Addressing mode 

 ldrh w2, [x0], #7 // Picks up the data at location 0x4100e0 and only then 

updates x0 to 0x4100ef 

  mov w8, #0x5d //Time to go. 

  svc  #0 

.data 

 baselocation:   .byte 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 

0x18 

 baselocationwithoffset:  .byte 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 

0x20  
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Table 3-4 Effect of addressing modes on pointer registers 

Addressing 

Mode 

Register x0 

contents after 

instruction 

Register x1 

contents 

Register w2 

contents 

Comments 

Simple 0x4100d8 0x1817161514131

211 

- Loads full 64 bits 

Offset with 

constant 

0x4100d8 - 0x1a19  Loads halfword  

Offset with 

register 

0x4100d8 - 0x15 (byte) Loads byte  

Pre-index 0x4100e0 - 0x1a19 

halfword 

Loads halfword from new 

address 

Post-index 0x4100ef - 0x1a19 

halfword 

Loads halfword from 

address prior to update 

Simple addressing is really Program Counter relative with an offset? 

The instruction ldr x0, = baselocation, actually disassembles to ldr x0, 4000d8 

<_start+0x28> where the program counter corresponds to the location 0x4000d8 and 0x28 

being the offset where the data is located. The offset must be a multiple of four! 

The difference between pre and post indexing is the order in which the data comes from. 

• Pre-index - the pointer register location is first updated, and the data is then fetched 

from the updated location. 

• Post-index – the data is fetched from the current location and only then is the update 

applied to the pointer register. 

Other modifications are possible with the ldr and str instructions which are fully documented 

in the ARM architecture guides. 

Enhancements to GDB 

So far GDB has been used as the default tool for analyzing code. The following commands 

entered into the file ~/.gdbinit will give a better (TUI)  layout experience. 

layout split 

layout regs 

set history save on 

set history filename ~/gdbhistory 

set logging enabled on 
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Note that if using the GDB TUI then the up and down arrows are no longer 

available for command history; use Ctrl-P(revious) and Ctrl-N(ext) instead. 

Figure 3-1 GDB using TUI 

 

There are several enhancements/alternatives to GDB. One such tool that enhances the 

debugging experience is gdbgui. Installation instructions for installation can be found at 
www.gdbgui. 

Start gdbgui from the command line by entering the following command:- 

gdbgui --args ./asm/printhelloARM3/printhelloARM3 

The  screenshot is a snapshot of the program midway through. The memory location shows the 

values in hex and in character format. The GDB command window (not shown) is at the bottom 

left. Registers x0 through x8 are shown along with the source code: - 

http://www.gdbgui/
http://www.bing.com/images/search?q=note+icons%26id=E6E47B0DAE15B95A530BFAF7DA4057939CE3A905%26FORM=IQFRBA
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Figure 3-2 GDBGUI 

 

Another alternative is gdbfrontend. This can be installed from  

https://github.com/rohanrhu/gdb-frontend 

Figure 3-3 GDB Frontend 

 

https://github.com/rohanrhu/gdb-frontend
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Summary of chapter 3 

• Memory layout 

• Load and Store Instruction 

• Outputting text 

• Addressing Modes 

• Graphical Debuggers 
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Exercises for chapter3 

1. How many bits are contained in an ARM64 instruction? 

2. What does the command x/32w  0x4100f0 do when executed in GDB? 

3. What is the significance of the square [ ] brackets when used with ldr or str instructions? 

4. What assembly directive is used to define a string of characters within an assembly 

language program? 

5. Describe the purpose of the instruction ldrh w2, [x0, #8]! 

6. What is the role of the x2 register when using the write syscall to print a string of text to the 

screen?
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Chapter 4. Arithmetic operations (First Pass) 
This section will introduce the arithmetic instruction capabilities of ARM64. A subsequent 

chapter discusses more advanced operation utilizing vector registers. Logic instructions such 

as AND, OR and EOR are also covered. 

Floating Point operations are not covered in this section. 

Recall the bit sizes as defined in Byte, . . . Quadword 

Table 4-1 ARM64 Data Types 

# of bits Definition 

8 Byte 

16 Halfword 

32 Word 

64 Doubleword 

128 Quadword 

Add Instruction 

– First start with add. Two numbers are placed in registers x4 and x5 with the result being stored 

in register x6. 

Listing  4-1Add (Extended Register) 

* This example shows various addition instructions */ 

.text 

.global _start 

_start: 

 mov x4, #1024   

//This moves the number 1024 to reg x4 

 mov x5, #60   

// This moves the number 60 to reg x5 

 add x6, x4, x5  

//Adds the contents of x4 and x5 placing the result in x6 

 mov w8, #0x5d 

svc #0  

//Time to go. 

Disassembly produces objdump -d -M no-aliases add1 
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add1:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d2808004  movz x4, #0x400 

  40007c: d2800785  movz x5, #0x3c 

  400080: 8b050086  add x6, x4, x5 

  400084: 52800ba8  movz w8, #0x5d 

  400088: d4000001  svc #0x0 

  Note that even though three distinct registers were used, using an instruction 

such as add x5, x4, x5 is perfectly valid. 

  

The next listing gives a similar result, the difference being that instead of a third register an 

immediate value is added. 

Listing  4-2 Add (immediate) 

// listing4-2 

.text 

.global _start 

 _start: 

  mov x4, #1024  //This moves the number 1024 to reg x4 
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  add x6, x4, #60 //Adds the contents of reg x4 and an immediate 

value of 60 placing the result in reg x6 

  mov w8, #0x5d //Time to go. 

  svc  #0 

In Listing  4-3 a 12-bit offset is used – here the immediate value of 6 is left shifted by 12 places 

giving the value:- 0110 0000 0000 0000 = 0x6000 and then this is added to the content of reg x4 

(0x400) = 0x6400. 

 

  

Listing  4-3 Add immediate with a left shift 

// listing4-3 

.text 

.global _start 

_start: 
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 mov x4, #1024  

//This moves the number 1024 to reg x4 

 add x6, x4, #6, LSL #12  

//Adds the contents of reg x4 and an immediate value of 60 

left shifted by 12, placing the result in reg x6*/ 

 mov w8, #0x5d //Time to go. 

 svc  #0 

Listing  4-4 Add with a left shifted register 

// listing4-4 

.text 

.global _start 

_start: 

 mov x4, #1024 //This moves the number 1024 to reg x4 

 mov x5,#64 // Move 64 into reg x5 

 add x6, x4, x5, LSL #6  

 

/*Adds the contents of reg x4 and reg x5 left shifted by 6 places placing the 

result in reg x6*/ 

 mov w8, #0x5d //Time to go. 

 svc  #0 
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The next example introduces the extend operators. Values that can be extended are bytes, 

halfwords and words. In addition, they can be signed or unsigned. One further operation is to 

shift the values by one through four bits. The operations are shown in Table 4-2. 

Table 4-2 Extend Operators 

The next listing shows the effect of a UXTB byte operation shifted by four places. 

Listing  4-5 UXTB byte operation 

// listing4-5 

.text 

.global _start 

 _start: 

  mov x4, #0x400  //This moves the number 1024 to reg x4 

  mov x5, #0x55  // Move into reg x5 

  add x6, x4, x5, UXTB #4 /* Unsign extends the byte in reg x5 (0x55), 

shifting it four places, adding it to reg 4 placing the result in reg x6*/ 

  mov w8, #0x5d //Time to go. 

  svc  #0 

The value ending up in register x6 is 0x950. A breakdown follows:- 

• x5 = 0x55 = 0b01010101 

• Shift the value of x5 by four places to the left = 0b010101010000 = 0x550 

 

 

 

19 For “|” read or. 

Operator Meaning Optional Shift 

UXTB Unsigned byte 8 bits to 64 bits N = 1|2|3|419 

SXTB Signed byte 8 bits to 64 bits N = 1|2|3|4 

UXTH Unsigned halfword 16 bits to 64 bits N = 1|2|3|4 

SXTH Signed halfword 16bits to 64 bits N = 1|2|3|4 

UXTW Unsigned word 32 bits to 64 bits N = 1|2|3|4 

SXTW Signed word  32bits to 64 bits N = 1|2|3|4 
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• Add 0x550 to the contents of register x4 (0x400) to get 0x950.  

NOTE register x5 is unchanged, only its value is acted on. 

The following example shows the operation of Unsigned to byte when a 16-bit value is 

contained in reg x5. 

Listing  4-6 Add extended using UXTB on a halfword value 

// listing4-6 

.text 

.global _start 

_start: 

 mov x4, #0x400   

//This moves the number 1024 to reg x4 

 mov x5, #0xaaaa  

// Move 0Xaaaa into reg x5 

 add x6, x4, x5, UXTB     

/* Unsign extend the byte in reg x5 (0xaaaa), placing the result in reg x6*/ 

  mov w8, #0x5d //Time to go. 

  svc  #0 

Here the instruction sign extended a byte value so only 8 bits were extended not 16 bits! 

  

The next example uses UXTH to extend the full halfword value. 

Listing  4-7 Add extended using UXTH on a halfword value 

// listing4-7 
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.text 

.global _start 

 _start: 

  mov x4, #0x400   //This moves the number 1024 to reg x4 

  mov x5, #0xaaaa  // Move 0X5555 into reg x5 

  add x6, x4, x5, UXTW    /* Unsign extend the byte in reg x5 (0xaaaa), 

placing the result in reg x6*/ 

  mov w8, #0x5d //Time to go. 

svc  #0 

 

Changing the listing to SXTH extends the sign bit. Previously the extend operation was unsigned 

so the extended leading zeroes were simply dropped. The value 0xaaaa is 1010 1010 1010 1010 

in binary so the leading bit is a one denoting that it is a negative number using signed binary. 

Listing  4-8 Add extended using SXTH on a negative number 

//listing4-8 

.text 

.global _start 

 _start: 

  mov x4, #0x400   //This moves the number 1024 to reg x4 

  mov x5, #0xaaaa  // Move 0Xaaaa into reg x5 

  add x6, x4, x5, SXTH    /* Unsign extend the byte in reg x5 (0xaaaa), 

placing the result in reg x6*/ 
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  mov w8, #0x5d //Time to go. 

  svc #0 

  

Changing the sign bit to zero gives :- 

Listing  4-9 Add extended using SXTH on a positive number 

//listing4-9 

.text 

.global _start 

 _start: 

  mov x4, #0x400   //This moves the number 1024 to reg x4 

  mov x5, #0x7aaa // Move 0X7aaa into reg x5 giving a signed 

positive number 

  add x6, x4, x5, SXTH    /* Sign extend the halfword in reg x5 

(0x7aaa), placing the result in reg x6*/ 

  mov w8, #0x5d //Time to go. 

  svc #0 
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Listing  4-10 Add extended SXTW with a 4-place shift  

// listing4-10 

.text 

.global _start 

_start: 

 mov x, #0   //Clear reg x4 

 mov x5, #0xaaaa // Move into reg x5 

 movk x5,#0xaaaa, LSL 16 

 add x6, x4, x5, SXTW #4 /* Sign extend the word in reg x5 (0xaaaaaaaa),  

shifting it four places, adding it to reg 4 placing the result in reg x6*/ 

 mov w8, #0x5d //Time to go. 

 svc  #0 

Here 0xaaaaaaaa is shifted four places to give 0xaaaaaaaa0 and then sign extended (since the 

leading bit is a one) to get 0xfffffffaaaaaaaa0. 
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ADDS instruction. 

So far, the instructions that have been used do not set the condition flags. The adds instruction 

will do this. Consider the first listing where the add instruction is used, after execution of the 

add instruction the CPSR bits are unchanged.  

Due to the large data sizes involved many operations do not have to take the condition flags 

into account. An example could be the number of employees in a company – using a 32-bit 

data size is never going to reach an overflow condition! This will also speed up operations 

without having to carry out checks.  

Listing  4-11 Leaving condition flags unchanged with the add instruction. 

//listing4-11 

.text 

.global _start 

 _start: 

  mov x4, #0xb000  //Add #0xb000 reg x4 

  mov x5, #0xaaaa // Move into reg x5 

  movk x5,#0xaaaa, LSL 16 

  movk x5, #0xaaaa, LSL 32 

  movk x5, #0xb000, LSL 48 

  add x6, x4, x5 // Does not set the N flag 

  mov  w8, #0x5d //Time to go. 

  svc  #0 
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Note that the adds instruction does change the CPSR status. 

Listing  4-12 Setting the negative flag using the adds instruction 

//listing4-12 

.text 

.global _start 

 _start: 

  mov x4, #0xb000 //Add #0xb000 reg x4 

  mov x5, #0xaaaa // Move into reg x5 

  movk x5,#0xaaaa, LSL 16 

  movk x5, #0xaaaa, LSL 32 

  movk x5, #0xb000, LSL 48 

  adds x6, x4, x5 // Sets the N flag 
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  mov  w8, #0x5d //Time to go. 

  svc  #0 

 

The next snippet causes an overflow condition as well as setting the negative flag:- 

Listing  4-13 Setting the overflow flag using the adds instruction 

//listing4-13 

text 

.global _start 

 _start: 

  mov x4, #0xffff // Load up x4 

  movk x4, #0xffff 

  movk x4, #0xffff, LSL16 

  movk x4, #0xffff, LSL 32 

  movk x4, #0x7fff, LSL 48 

  mov x5, # 0xffff // Load up  x5 

  movk x5,# 0xffff, LSL 16 

  movk x5, #0xffff, LSL 32 
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  movk x5, #0x7fff, LSL 48 

  adds  x6, x4, x5 // Sets N and V flags 

  mov  w8, #0x5d //Time to go. 

  svc  #0 

 

The next listing will differentiate between ADCS, ADC and add instructions. 

Listing  4-14 Effect of  ADCS, ADC and add instructions 

// listing4-14 

.text 

_start: 

  mov x4, #0xffff // Load up x4 

  movk x4, #0xffff 

  movk x4, #0xffff, LSL16 

  movk x4, #0xffff, LSL 32 

  movk x4, #0x8fff, LSL 48 

  mov x5, # 0xffff // Load up  x5 

  movk x5,# 0xffff, LSL 16 

  movk x5, #0xffff, LSL 32 

  movk x5, #0x7fff, LSL 48 

  ADCS x6, x4, x5 //  
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  ADC x6, x4, x5 

  add x6, x4, x5 

  mov  w8, #0x5d //Time to go. 

  svc  #0 

After execution of ADCS, register x6 contains the value 0xfffffffffffffffe and the Carry bit has been 

set (CPSR = 0x20201000. 

 

The instruction ADC also adds x4 and x5 but this time it includes the C bit giving the result in x6 

of 0xffffffffffffffff. The last instruction add does not include the C bit; giving the result in x6 of 

0xfffffffffffffffe. 
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SUB Instruction 

Subtraction instructions are similar to addition, consequently not too much time will be spent 

here. 

Listing  4-15 SUB (extended register) 

//listing4-15 

.text 

.global _start 

 _start: 

  mov x4, #1024  //This moves the number 1024 to reg x4 

  mov x5, #60  // This moves the number 60 to reg x5 

 SUB x5, x4, x5 //Subtracts the contents of reg x4 from x5 placing the 

result in reg x5 

  mov w8, #0x5d //Time to go. 

svc #0 
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Listing  4-16 SUB (immediate instruction) 

//listing4-16 

.text 

.global _start 

 _start: 

  mov x4, #1024  //This moves the number 1024 to reg x4 

 SUB x5, x4, #1000  //Subtracts the contents of reg x4 from 80 placing the 

result in reg x5 

  mov w8, #0x5d //Time to go. 

  svc  #0 

MUL Instruction and variants 

Note Multiply and divide instructions do not set flags! 

madd 

The MUL instruction is an alias of madd. madd takes two registers, multiplies their contents 

together, then adds a third value placing the result in the destination. If no addition is required, 

then this operand will have a value of zero (see note on page 4-19).  

The format of the instruction is madd Xd, Xn, Xm, Xa.  
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Note that the first two operands are 64 registers and so is the destination.  Since a 128-bit 

destination would be required, the action is to discard the upper 64 bits. Now this is often 

acceptable for smaller numbers that do not cross a 64-bit threshold, but it is an issue that the 

programmer needs to be aware of.  

Listing  4-17  madd Instruction 

// listing4-17 

.text 

.global _start 

_start: 

 mov x4, #1024  //This moves the number 1024 to reg x4 

 mov x5, #60  // This moves the number 60 to reg x5 

 mov x6, #1000  // This number will be added 

 madd x2, x4, x5, x6 /*Multiplies the contents of x4 and x5 together, adding 

the contents of x6 and placing the result in x2*/ 

 mov w8, #0x5d //Time to go. 

 svc  #0 

Disassembly shows – 

objdump -d mul1 

mul1:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d2808004  mov x4, #0x400                  // #1024 

  40007c: d2800785  mov x5, #0x3c                   // #60 

  400080: d2807d06  mov x6, #0x3e8                  // #1000 

  400084: 9b051882  madd x2, x4, x5, x6 

  400088: 52800ba8  mov w8, #0x5d                   // #93 

  40008c: d4000001  svc #0x0 



Arithmetic and logic operations 

Page 4-18 

 

 

Without the add (third operand) component:- 

Listing  4-18 MUL instruction 

//listing4-18 

.text 

.global _start 

 _start: 

  mov x4, #1024  //This moves the number 1024 to reg x4 

  mov x5, #60  // This moves the number 60 to reg x5 

  MUL x2, x4, x5  /*Multiplies the contents of x4 and x5 together, 

placing the result in reg x2*/ 

  mov w8, #0x5d //Time to go. 

  svc  #0 
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Note how the unaliased disassembly for MUL produces the instruction madd x2, x4, x5, 

xzr.  Recall from page 2-4 that the XZR register returns zero when read. 

 

$ objdump -d -M no-aliases mult2 

mult2:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d2808004  movz x4, #0x400 

  40007c: d2800785  movz x5, #0x3c 

  400080: 9b057c82  madd x2, x4, x5, xzr 

  400084: 52800ba8  movz w8, #0x5d 

  400088: d4000001  svc #0x0 

 

Aliased disassembly produces :-  

~/asm/addition $ objdump -d mult2 

mult2:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d2808004  mov x4, #0x400                  // #1024 

  40007c: d2800785  mov x5, #0x3c                   // #60 

  400080: 9b057c82  mul x2, x4, x5 
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  400084: 52800ba8  mov w8, #0x5d                   // #93 

  400088: d4000001  svc #0x0 

Multiply two 32-bit numbers using madd – 

Listing  4-19 Using madd to multiply two 32-bit numbers. 

//listing4-19 

.text 

.global _start 

_start: 

 mov x4, #0xffff  // Load up first 16 bits to reg x4 

 movk x4,#0xffff,lsl #16 //Load up next set of 16 bits 

 mov x5, #0xffff  // Now load reg x5 

 movk x5,#0xffff,lsl #16 

 MUL x2, x4, x5  /*Multiplies the contents of x4 and x5 together, 

placing the result in reg x2*/ 

 mov w8, #0x5d //Time to go. 

  svc  #0 

Disassembly produces –  

objdump -d -M no-aliases mult4 

mult4:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d29fffe4  movz x4, #0xffff 

  40007c: 72bfffe4  movk x4, #0xffff, lsl #16 

  400080: d29fffe5  movz x5, #0xffff 

  400084: 72bfffe5  movk x5, #0xffff, lsl #16 

  400088: 9b057c82  madd x2, x4, x5, xzr 

  40008c: 52800ba8  movz w8, #0x5d 

  400090: d4000001  svc #0x0 

The result of the multiplication is: 

0XFFFFFFFE00000001. 
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UMULL and SMULL 

The instructions UMULL(Unsigned Multiply Long)  and SMULL (Signed Multiply Long) are used to 

multiply two 32-bit w registers, giving a 64-bit (placing the result in an x register)  unsigned or 

signed result. 

Listing  4-20 Unsigned Multiply Long 

//listing 4-20 

.text 

.global _start 

_start: 

 mov w4, #0xffff  // Load up first 16 bits to reg w4 

 movk w4,#0xffff,lsl #16 //Load up next set of 16 bits 

 mov w5, #0xffff  // Now load reg w5 

 movk 5,#0xffff,lsl #16 

 UMULL x2, w4, w5   /*Multiplies the contents of w4 and w5 together, 

placing the unsigned result in reg x2*/ 

  mov w8, #0x5d //Time to go. 

  svc  #0 

$ objdump -d -M no-aliases mult3 

mult3:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: 529fffe4  movz w4, #0xffff 

  40007c: 72bfffe4  movk w4, #0xffff, lsl #16 

  400080: 529fffe5  movz w5, #0xffff 

  400084: 72bfffe5  movk w5, #0xffff, lsl #16 

  400088: 9ba57c82  umaddl x2, w4, w5, xzr 

  40008c: 52800ba8  movz w8, #0x5d 

  400090: d4000001  svc #0x0 

Note the unaliased UMULL instruction is umaddl which is the mnemonic for Unsigned Multiply-

Add Long. The format is UMAADDL Xd, Wn, Wm, Xa. In this example Xd = x2, wn = w4, wm = w5, 

xa =0. 

After execution the contents of x2 is 0xFFFFFFFE00000001. 
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Using SMULL gives the signed number 1. 

 

Listing  4-21 Signed Multiply Long 

//listing4-21 

.text 

.global _start 

 _start: 

  mov w4, #0xffff  // Load up first 16 bits to reg x4 

  movk w4,#0xffff,lsl #16 //Load up next set of 16 bits 

  mov w5, #0xffff  // Now load reg x5 

  movk w5,#0xffff,lsl #16 

  SMULL x2, w4, w5   /*Multiplies the contents of x4 and x5 

together, placing the result in reg x2*/ 

  mov w8, #0x5d //Time to go. 

  svc  #0 

$ objdump -d -M no-aliases mult3 

mult3:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: 529fffe4  movz w4, #0xffff 

  40007c: 72bfffe4  movk w4, #0xffff, lsl #16 

  400080: 529fffe5  movz w5, #0xffff 

  400084: 72bfffe5  movk w5, #0xffff, lsl #16 

  400088: 9b257c82  smaddl x2, w4, w5, xzr 

  40008c: 52800ba8  movz w8, #0x5d 

  400090: d4000001  svc #0x0 

 

Multiplication of two 64-bit numbers to give a 128-bit result. 

The instructions UMULH (Unsigned Multiply High) and SMULH (Signed Multiply High) calculate the 

upper 64 bits of a 64-bit multiplication. UMULL and SMULL are used to multiply two 32-bit (w 

registers) together to get a 64-bit result. The U prefix signifies unsigned while the S prefix 

signifies signed. In this example UMULH is used to calculate the high order bits and MUL is 

used to calculate the low order bits. 
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Note that UMULH and SMULH are not complementary to UMULL and SMULL . 

Listing  4-22 Multiplying two 64-bit numbers to give a 128-bit result (Unsigned) 

/* listing4-22 

This example shows how to multiply two 64-bit numbers, placing the 128-bit result 

in two 64-bit registers. 

MUL is used for the lower 64 bits and UMULH is used for the higher 64 bits */ 

.text 

.global _start 

_start: 

 mov x4, #0xffff  // Load up first 16 bits to reg x4 

 movk x4,#0x00ff,lsl #16 // Load up next set of 16 bits 

 movk x4,#0xffff,lsl #32 // Next 16 bits 

 movk x4,#0x1234,lsl #48 // Last 16 bits 

  

 mov x5, #0xffff  // Now load reg x5 

 movk x5, #0x00ff,lsl #16 

 movk x5, #0xffff,lsl #32 

 movk x5, #0x5678,lsl #48 

MUL x2, x4, x5  /*Multiplies the contents of x4 and x5 together, placing the 

lower 64-bit result in reg x2*/ 

 UMULH x3, x4, x5 /*Multiplies the contents of x4 and x5 together, placing 

the higher unsigned 64-bit result (64:127) result in reg x3, discarding lower 64 

bits (0:63)*/ 

 mov w8, #0x5d //Time to go. 

 svc  #0 

The complete 128-bit result is: 0x0626 690c 97ba ae00 9553 0001 fe00 0001. 

Note that UMULL is an alias of UMADDL 
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Another Example  -  

Listing  4-23 Second example - Multiplying two 64-bit numbers to give a 128-bit result (Unsigned) 

/* listing4-23 

This example shows how to multiply two 64-bit numbers, placing the 128-bit result 

in two 64-bit registers. 

MUL is used for the lower 64 bits and UMULH is used for the higher 64 bits */ 

.text 

.global _start 

_start: 

 mov x4, #0x1  // Load up first 16 bits to reg x4 

 movk x4,#0x0000,lsl #16 // Load up next set of 16 bits 

 movk x4,#0x0001,lsl #32 // Next 16 bits 

 movk x4,#0x0000,lsl #48 // Last 16 bits 

 mov x5, #0x2  // Now load reg x5 

 movk x5, #0x0000,lsl #16 

 movk x5, #0x0002,lsl #32 

 movk x5, #0x0000, lsl #48 

 MUL  x2, x4, x5  /*Multiplies the contents of x4 and x5 together, 

placing the 64-bit result in reg x2*/ 

UMULH x3, x4, x5 /*Multiplies the contents of x4 and x5 together, placing the 

higher unsigned 64-bit result (64:127) result in reg x3, discarding lower 64 bits 

(0:63)*/ 

 mov w8, #0x5d //Time to go. 

 svc  #0 
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Figure 4-1 64-bit multiplication (verified by hand) 

  

Disassembly shows: 

$ objdump -d -M no-aliases mult8 

mult8:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d2800024  movz x4, #0x1 

  40007c: f2a00004  movk x4, #0x0, lsl #16 

  400080: f2c00024  movk x4, #0x1, lsl #32 

  400084: f2e00004  movk x4, #0x0, lsl #48 

  400088: d2800045  movz x5, #0x2 

  40008c: f2a00005  movk x5, #0x0, lsl #16 

  400090: f2c00045  movk x5, #0x2, lsl #32 

  400094: f2e00005  movk x5, #0x0, lsl #48 



Arithmetic and logic operations 

Page 4-26 

 

  400098: 9b057c82  madd x2, x4, x5, xzr 

  40009c: 9bc57c83  umulh x3, x4, x5 

  4000a0: 52800ba8  movz w8, #0x5d 

  4000a4: d4000001  svc #0x0 

MSUB and MNEG 

MNEG (Multiply-Negate)  is an alias of MSUB. The format is MSUB Xd, Xn, Xm, Xa, where  Xd is the 

64bit destination register, Xm is the first operand  (multiplicand) , Xn is the second  operand 

(multiplier) , Xa is the third operand holding the minuend. The operation multiplies Xm and Xn, 

then subtracts the product from the third operand register.   

Listing  4-24 Use of MSUB 

//listing4-25 

// This example illustrates the MSUB instruction which multiplies two operands and 

then subtracts the product from a third operand. 

.text 

.global _start 

_start: 

 mov x4, #0x5a5  // Load up first 16 bits to reg w4 

 mov x5, #0x4  // Now load reg x5 

 mov x6, #0xaa  // Value to be subtracted from  

 

 MSUB x3, x4, x5, x6     // Multiplies the contents of x4 and x5 together, 

subtracting the product from x6 

 mov   w8, #0x5d //Time to go. 

 svc  #0 

Dissassembly 

$ objdump -d -M no-aliases mult11 

mult11:     file format elf64-littleaarch64 

Disassembly of section .text: 

 

0000000000400078 <_start>: 

  400078: d280b4a4  movz x4, #0x5a5 

  40007c: d2800085  movz x5, #0x4 

  400080: d2801546  movz x6, #0xaa 
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  400084: 9b059883  msub x3, x4, x5, x6 

  400088: 52800ba8  movz w8, #0x5d 

  40008c: d4000001  svc #0x0 

When MNEG is used it is equivalent to using XZR as the third operand, so it negates the 

product. 

Listing  4-25 Use of MNEG 

//listing4-25 

// This example illustrates the MNEG instruction which multiplies two operands and 

then subtracts the product from XZR. 

.text 

.global _start 

_start: 

 mov x4, #0x5a5   // Load up reg w4 

 mov x5, #0x4  // Now load reg x5 

 mov x6, #0xaa  // Value to be subtracted from  

 MNEG x3, x4, x5  // Multiplies the contents of x4 and x5 together, 

subtracting the product from 0 (XZR) 

 mov   w8, #0x5d  //Time to go. 

 svc  #0 

$ objdump -d -M no-aliases mult11 

 

mult11:     file format elf64-littleaarch64 

Disassembly of section .text: 
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0000000000400078 <_start>: 

  400078: d280b4a4  movz x4, #0x5a5 

  40007c: d2800085  movz x5, #0x4 

  400080: d2801546  movz x6, #0xaa 

  400084: 9b05fc83  msub x3, x4, x5, xzr 

  400088: 52800ba8  movz w8, #0x5d 

  40008c: d4000001  svc #0x0 

UMNEGL and SMNEGL 

These instructions multiply two 32-bit (w) registers, negate the product placing the result in a 

64-bit (X) register. UMNEGL and SMNEGL are aliases for UNSUBL and SMSUBL, respectively. 

Division 

Division operations can be signed or unsigned using the instructions UDIV and SDIV. The format 

is SDIV|UDIV Rd, Rn, Rm where Rd is the destination, Rn contains the numerator and Rm 

contains the denominator. Registers can be 32-bit or 64-bit. 

Note dividing by zero does not give an error, it returns the value 0, so it needs to be tested 

separately. 

Listing  4-26 Using UDIV 

// listing4-26 

// This example illustrates the UDIV instruction which uses two operands as the 

numerator and denominator. 

.text 

.global _start 

_start: 

 mov x4, #2000   // Load up reg x4 (number to be divided) 

 mov x5, #0x4  // Now load reg x5 (number that will divide) 

 

 UDIV x3, x4, x5  // Divides x4 by x5 together, result goes into x3 

 

 mov x4, #1999  // x4 no longer evenly divisble by contents of x5 

 UDIV x3, x4, x5  // No remainder recorded 

 mov x5, #0  // Dividing by zero does not error, but returns zero 

 UDIV x3, x4, x5 
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 mov   w8, #0x5d  //Time to go. 

 svc  #0 

Note there is no provision made for recording the remainder, this needs to be calculated 

separately.  

In the second part of  Listing  4-26 where x4 contains 1999, the remainder is calculated by 

subtracting the product of x3 and x5 from x4: 

• x3 = 499 

• x4 = 1999 

• x5 = 4 

o Remainder = 1999 – (499*4) = 1999 – 1996 = 3. 

Shift and Rotate 

Some of the listings have used shift/rotate instruction already but this section will formally 

introduce them. The instructions and their descriptions are shown in Table 4-3 

Table 4-3 Rotate and shift instructions 

Operation Example Description 

Logical Shift Left lsl rd, rn, #shift Shift bits left by specified amount, zeros move in 

from the right, can be immediate or register 

Logical Shift Right lsr Rd, Rn, #shift Shift bits right by specified amount, zeros move in 

from the left, can be immediate or register 

Arithmetic Shift 

Right 

asr rd, rn, #shift Shift bits right by specified amount, maintaining 

the sign bit. Use for signed integers, can be 

immediate or register. 

Rotate Right ror rd, rn, rm Rotate right in that the bit shifted from bit0 moves 

into the most significant bit, can be immediate or 

register 

Examples are shown in Listing  4-27. 

Listing  4-27 Examples of Shift and Rotate instructions 

// listing4-27 

.text 

.global _start 

_start: 
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mov w0, #0xaaaa 

mov w1, #0x33333333 

mov w2, #0x44444444 

mov w3, #0x55555555 

mov w4, #0x66666666 

 

lsl w5, w1, #3  // w5 = 0x99999998   

lsl w6, w1, w0  // w6 = 0xcccccc00 

asr w7, w2, #3   // w7 = 0x88888888 

ror w3, w3, #5   // w3 = 0xaaaaaaaa  

mov w8, #93 //Time to go  

svc 0 

Disassembly shows the non-aliased form of the instructions. 

rotate:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: 52955540  movz w0, #0xaaaa 

  40007c: 3200e7e1  orr w1, wzr, #0x33333333 

  400080: 3202e3e2  orr w2, wzr, #0x44444444 

  400084: 3200f3e3  orr w3, wzr, #0x55555555 

  400088: 3203e7e4  orr w4, wzr, #0x66666666 

  40008c: 531d7025  ubfm w5, w1, #29, #28 

  400090: 1ac02026  lslv w6, w1, w0 

  400094: 13037c47  sbfm w7, w2, #3, #31 

  400098: 13831463  extr w3, w3, w3, #5 

  40009c: 52800ba8  movz w8, #0x5d 

  4000a0: d4000001  svc #0x0 

The instruction results are straightforward except for lsl w6, w1, w0. Here register w0, which 

holds the value 0xaaaa, is divided by the data size which in this case is 32. The remainder of 

the division is used to specify the rotation. The remainder is 0xa, so the rotation will be applied 

10 times. 
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Rotate by 10 positions to get 0xcccccc00 

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

c 
   

c 
   

c 
   

c 
   

c 
   

c 
   

0 
   

0 
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Logic Operations – AND/OR/EOR 

Truth tables for AND and OR operations are shown in Table 1-11 and Table 1-12.  

• To test whether a bit is a one or a zero, the bit can be AND’ed with a binary one. If the 

result of the AND is a one then the tested bit is also one, since this is the only AND 

operation that will generate a binary one, otherwise it has the value zero. 

• Similarly, if a bit is OR’ed with a zero and the result is a zero then the tested bit is also 

zero since the OR operation only produces a zero when both bits are zero. 

To summarize: 

• 1 AND X = 1 iff20 X=1 

• 0 OR X = 0 iff X=0 

Multiple bits can be cleared or set by the use of a bitmask.  

The format of the Bitwise AND (immediate) instruction is shown in Figure 4-2. The immediate 

data is 12 bits in size, limiting the size of the bitmask for OR/AND instructions. There is though, 

a form of immediate termed logical immediate that provides for larger bitmask sizes. The 

approach is to provide a pattern with some compromises on the data that can be represented.  

Figure 4-2 Format of AND (immediate) instruction 

 

The ARM architecture reference manual21 states: 

 

 

 

20 Iff – if and only if! 

21 Text may be version dependent. 
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“Logical (immediate) 

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern 

or a 64-bit pattern viewed as a vector of identical elements of size e = 2, 4, 8, 16, 32 or, 64 bits. 

Each element contains the same sub-pattern, that is a single run of 1 to (e - 1) nonzero bits 

from bit 0 followed by zero bits, then rotated by 0 to (e - 1) bits. This mechanism can generate 

5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.” 

 This means that there are repeated patterns of bits with varying sizes. The elements can be 

made up of 2 bits, 4 bits, 8 bits, 16 bits, 32 bits or 64 bits. 

 The two-bit element contains 32 x 1 bit sub-patterns which looks like: 

01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 

There is only one possible (base) pattern since the rule states that the sub pattern is a single 

run of 1 to e-1 nonzero bits, and since size element e is 2, then the run is 1 to (2-1) = 1. The 

pattern starts with a 1 at the bit zero position followed by zero bits. The pattern can be right 

rotated, however giving a second sub-pattern as shown: 

1 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 010 

Other patterns give a wider range, for example when e = size 4, there can be 1 to 3 ones (1 to e-

1) in the sub pattern. A subset of patterns is shown in Figure 4-3. 

Another way of using large bitmasks is to use a series of movk instructions into a register and 

then use this  register (with an optional shift) to perform the logic operation. This is often 

preferred than the use of logical immediate instructions. Examples of logical operations using 

registers are covered later in this chapter.  
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Figure 4-3 Examples of Logical immediate values 

 

Note that the patterns are identical as stated in the ARM documents, therefore a pattern such 

as 0x0fff0fff0fff0fff0 would be valid (recurring consecutive ones) but 0xfff0fff0fff00fff would 

not. 

The actual encoding for the bitwise AND instruction is shown in Table 4-4 below.  

The logical immediate is made up of the N, immr and imms fields. 

• The single bit N field is set to 1 if the element size is 64 bits. 

•  The 6-bit immr field specifies the rotation amount and since there are 6 bits then 0-63 

rotations are possible.  
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• The 6-bit imms field (in conjunction with the N bit is used to specify the element size 

and the sub patterns. Table 4-4shows examples of the patterns generated by the imms 

field bits. 

Table 4-4 imms field examples 

   

N Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Sub pattern 

0 1 1 1 1 0 0 01 01 01 . . . 

32-bit 2-bit element size One “1”  

0 1 1 1 0 0 0 0001 0001 . . . 

32-bit 4-bit element size One “1”  

0 1 1 1 0 0 1 0011 0011 . . . 

32-bit 4-bit element size Two “1s”  

0 1 1 1 0 1 0 0111 0111 . . . 

 4-bit element size Three “1s”  

0 1 1 0 0 0 0 00000001 00000001 . . . 

32-bit 8-bit element size One “1”  

0 1 1 0 0 0 1 00000011 00000011 . . . 

32-bit 8-bit element size Two “1s”  

0 1 1 0 0 1 0 00000111 00000111 . . . 

32-bit 8-bit element size Three “1s”  

0 1 1 0 0 1 1 00001111 00001111 . . . 

32-bit 8-bit element size Four “1s”  

0 1 0 1 0 0 1 0000001111111111 . . . 

32-bit 16-bit element size Ten “1s”  

0 0 0 1 1 1 1  

 32-bit element size sixteen “1’s” 00000000000000001111111111111111 . . . 

1 0 0 0 0 0 1  

 64-bit element size two “1s” 00000000000000000000000000000000000000000000000000000000000000011 
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The relevant bits for the element size are shown in Table 4-5. The bits that do not correspond to 

the element sizes are used for positioning the 1’s values. Listing  4-29 shows the results of 

using the values shown in Figure 4-3. 
Table 4-5 Interpreting the imms field bits 

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Element size 

1 1 1 1 0 - 2 

1 1 1 0 - - 4 

1 1 0 - - - 8 

1 0 - - - - 16 

0 - - - - - 32 

- - - - - - 6422 

The listing below shows the orr instruction in operation 

Listing  4-28 Use of the orr and ORN instructions 

//listing 4-28 

.text 

.global _start 

_start: 

// orr (Bitwise OR immediate) 

mov w0, #0xaaaaaaaa 

orr w1, w0, #0x55555555 // w1=0xffffffff 

orr w1, w0, #0xaaaaaaaa // w1=0xaaaaaaaa 

orr w1, w0, #0x0000ffff // w1=0xaaaaffff 

orr w1, w0, #0xffff0000 // w1=0xffffaaaa 

 

//orr (Bitwise OR shifted register) 

mov w0,#3 

orr w1, w0, w0, lsl #6 // w1 = 0xc3 = 0b11000011 

 

 

 

22 In this case N = 1 
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mov w0, #9 

orr w1, w0, w0, lsl #8 // w1 = 0x909 = 0b100100001001 

 

//ORN (Bitwise OR NOT shifted register) 

mov x0, #0x1122 

ORN x1, x0, x0, lsl #8 //x1 = 0xffffffffffeeddff, note 0x1122 gets inverted 

mov w8, #93 

svc 0 

Note the disassembly aliases –  

Orr wo, wzr, #aaaaaaaa = mov w0, #0xaaaaaaaa 

. . . 

$ objdump -d -M no-aliases orr 

orr:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: 3201f3e0  orr w0, wzr, #0xaaaaaaaa 

  40007c: 3200f001  orr w1, w0, #0x55555555 

  400080: 3201f001  orr w1, w0, #0xaaaaaaaa 

  400084: 32003c01  orr w1, w0, #0xffff 

  400088: 32103c01  orr w1, w0, #0xffff0000 

  40008c: 52800060  movz w0, #0x3 

  400090: 2a001801  orr w1, w0, w0, lsl #6 

  400094: 52800120  movz w0, #0x9 

  400098: 2a002001  orr w1, w0, w0, lsl #8 

  40009c: d2822440  movz x0, #0x1122 

  4000a0: aa202001  orn x1, x0, x0, lsl #8 

  4000a4: 52800ba8  movz w8, #0x5d 

  4000a8: d4000001  svc #0x0 

Listing  4-29 Using logical immediates with and/orr instructions 

$ //listing4-29 

.text 

.global _start 

_start: 
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//  and (Bitwise and immediate) 

mov x4, #0xffff 

movk x4, #0x0000, lsl 16 

movk x4, #0x0000, lsl 32 

movk x4, #0xfff, lsl 48 

// Use objdump to see encoding for logical immediates 

// Format is N, immr, imms. If N = 1 then pattern is 64 bit 

// If N = 0 then pattern is 32 bit repeating n times, where n is specified in the 

imms field 

// imms = 11110X then 2 bit pattern recurring 32 times, one "1", 

// imms = 1110xx then 4 bit pattern recurring 16 times, one thru three "1s" 

// imms = 110xxx then 8 bit pattern recurring 8 times, one thru seven "1s" 

// imms = 10xxxx then 16 bit pattern recurring 4 times, one thru 15 "1s" 

// imms - 0xxxxx then 32 bit pattern recurring 2 times, one thru 31 "1s"   

// x field = # of ones, where the # of ones is one less than the x value,00 = 1 

"1", 01 = 2 "1s", 10 = 3 ", . . . 

// so for imms = 111001 pattern is 4 bits and the # of ones is 2 = 0011 0011 0011 

. . . 

// for imms = 110110 pattern is 8 bits and # of ones is 7 = 01111111 01111111 

01111111 . . . 

// immr is the rotate field where 000000 = no rotation and 111111 =sixty-three 

rotations 

// Note for imms = 11110x then 1 rotation is possible 

// Note for imms = 110xxx then 1 thru 7 rotations are possible 

// Examples follow 

and x3, x4, #0x5555555555555555 // r3 = 555000000005555  

// Pattern is 2 bits wide imms, = 111100, one sequential one, immr = 000000, no 

rotate 

and x3, x4, #0xaaaaaaaaaaaaaaaa, // r3 = 0xaaa00000000aaaa   

// Pattern is 2 bits wide imms, = 111100, one sequential one, immr = 000001, one 

rotate 

 

and x3, x4, #0x1111111111111111 // r3 = 0x1110000000001111 

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000000, no 

rotates 

and x3, x4, #0x3333333333333333 // r3 = 0x3330000000003333 



Arithmetic and logic operations 

Page 4-39 

 

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 00000, no 

rotate 

and x3, x4, #0x7777777777777777 // r3 = 0x7770000000007777 

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000000, no 

rotate  

and x3, x4, #0x8888888888888888 // r3 = 0x8880000000008888 

// Pattern is 4 bits wide imms = 111000, one sequential one, immr = 000001, one 

rotate 

and x3, x4, #0x9999999999999999 // r3 = 0x9990000000009999 

// Pattern is 4 bits wide imms = 111001, two sequential ones, immr = 000001, one 

rotate 

and x3, x4, #0xbbbbbbbbbbbbbbbb // r3 = 0xbbb000000000bbbb  

// Pattern is 4 bits wide,imms = 111010, three sequential ones, immr = 000001, one 

rotate 

orr x3, x4, #0x4444444444444444 // r3 = 0x4fff44444444ffff 

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000010, two 

rotates 

orr x3, x4, #0xcccccccccccccccc // r3 = 0xcfffccccccccffff 

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 000010, two 

rotates 

orr x3, x4, #0xdddddddddddddddd // r3 = 0xdfffddddddddffff 

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000010, 

two rotates 

orr x3, x4, #0x2222222222222222 // r3 = 0x2fff22222222ffff 

// Pattern is 4 bits wide, imms = 111000, one sequential one, immr = 000011, three 

rotates 

orr x3, x4, #0x6666666666666666 // r3 = 0x6fff66666666ffff  

// Pattern is 4 bits wide, imms = 111001, two sequential ones, immr = 000111, 

three rotates 

orr x3, x4, #0xeeeeeeeeeeeeeeee // r3 = 0xefffeeeeeeeeffff 

// Pattern is 4 bits wide, imms = 111010, three sequential ones, immr = 000111, 

three rotates 

orr x3, x4, #0x0101010101010101 // r3 = 0xfff01010101ffff 

// Pattern is 8 bits wide, imms = 110000, one sequential one, immr = 000000, no 

rotate 

orr x3, x4, #0b01100110011001100110011001100110011001100110011001100110011001100 

//r3 = 0xcfffccccccccffff 
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//Same as orr x3,x4, #0x44444444444444 but expressed in binary (often easier when 

working with bitmasks) 

and x3, x4, #0x0000000000000001 // r3 = 0x1 

// N=1, One 64 -bit pattern of one one, imms = 000000, immr = 000000, no rotation 

and x3, x4, #0x1000000000000000 // r3 = 0x0 

// N=1, One 64-bit pattern of one one, imms = 000000, immr = 000100, four 

rotations (0001 - 0001 . . .)  

mov w8, #93 //Time to go  

svc 0 

The imms and immr fields can be shown from the disassembly : 

$ objdump -d -M no-aliases examples 

examples:     file format elf64-littleaarch64 

Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d29fffe4  movz x4, #0xffff 

  40007c: f2a00004  movk x4, #0x0, lsl #16 

  400080: f2c00004  movk x4, #0x0, lsl #32 

  400084: f2e1ffe4  movk x4, #0xfff, lsl #48 

  400088: 9200f083  and x3, x4, #0x5555555555555555 

  40008c: 9201f083  and x3, x4, #0xaaaaaaaaaaaaaaaa 

  400090: 9200e083  and x3, x4, #0x1111111111111111 

  400094: 9200e483  and x3, x4, #0x3333333333333333 

  400098: 9200e883  and x3, x4, #0x7777777777777777 

  40009c: 9201e083  and x3, x4, #0x8888888888888888 

  4000a0: 9201e483  and x3, x4, #0x9999999999999999 

  4000a4: 9201e883  and x3, x4, #0xbbbbbbbbbbbbbbbb 

  4000a8: b202e083  orr x3, x4, #0x4444444444444444 

  4000ac: b202e483  orr x3, x4, #0xcccccccccccccccc 

  4000b0: b202e883  orr x3, x4, #0xdddddddddddddddd 

  4000b4: b203e083  orr x3, x4, #0x2222222222222222 

  4000b8: b203e483  orr x3, x4, #0x6666666666666666 

  4000bc: b203e883  orr x3, x4, #0xeeeeeeeeeeeeeeee 

  4000c0: b200c083  orr x3, x4, #0x101010101010101 
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  4000c4: b202e483  orr x3, x4, #0xcccccccccccccccc 

  4000c8: 92400083  and x3, x4, #0x1 

  4000cc: 92440083  and x3, x4, #0x1000000000000000 

  4000d0: 52800ba8  movz w8, #0x5d 

  4000d4: d4000001  svc #0x0 

Exercise – Try using a logical immediate with a mov instruction. 

and shifted register instruction  

The and shifted instruction and’s two registers together. Placing the result in  the destination 

register. The second register can also have an optional shift applied to it prior to the AND 

operation. The format is: 

and <Xd>, <Xn>, <Xm>{, <shift> #<amount>} 

ANDS instructions 

The ands instruction is used to set flags. 

orr shifted register instruction  

The orr shifted instruction OR’s two registers together. Placing the result in  the destination 

register. The second register can also have an optional shift applied to it prior to the orr 

operation. The format is: 

orr <Xd>, <Xn>, <Xm>, <shift> #<amount> 

 ORN bitwise shifted register 

The orn bitwise is similar to the and and orr bitwise shifted register instructions, except that it 

inverts the bits in the second register prior to applying the ORN instruction 

EOR instructions 

Exclusive or instructions can be used as bitwise immediate or in shifted register forms. 

Listing  4-30 shows more logical instruction examples. 

Listing  4-30 Example of logical instruction with shifted register operands 

//listing4-30 

.text 

.global _start 

_start: 

//  and (Bitwise and immediate) 

mov w4, #0xcccccccc 

https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XdOrXZR__6
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XnOrXZR__12
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XmOrXZR__4
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#shift_option__3
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#amount__7
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XdOrXZR__6
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XnOrXZR__12
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#XmOrXZR__4
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#shift_option__3
https://developer.arm.com/documentation/ddi0602/2023-12/Base-Instructions/AND--shifted-register---Bitwise-AND--shifted-register--?lang=en#amount__7
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mov w5, #0x55555555 

// Examples follow 

and w3, w4, w5 // w3 = 0x44444444   

orr w3, w4, w5 // w3 = 0xdddddddd 

and w3, w4, w5, lsl 4 // w3 = 0x44444440 

orr w3, w4, w5, lsr 2 // w3 = 0xdddddddd 

orn w3, w4, w5, asr 1 // w3 = dddddddddd 

eor w3, w4, w5, ror 6 // w3 = 0x99999999 

mov w8, #93 //Time to go  

svc 0 

BIC and BFI instructions 

Bitwise bit clear  BIC can clear bits by executing the AND instruction with the inverse of the 

contents of an optionally shifted register. The format is: 

BIC Xd, Xn, Xm, shift type  amount 

The bitfield insert (BFI) instruction copies a set of bits (from the least significant positions) 

specified in the width field in the source register  to a bit position (specified in the lsb field) in 

the target register. BFI is an alias for BFM  (bitfield move). 

Examples are shown in Listing  4-31. 

Listing  4-31 BIC and BFI instructions 

//listing4-31 

//  BIC instruction 

mov x3, #0x5555 

mov x4, #0x6666666666666666 

bic x5, x3, x4, lsl 3  // x5 = 0x4445  

bfi x5, x4, 6,5  // x5 = 0x4185 

mov w8, #93 //Time to go  

svc 0 

 

The instruction format and steps are shown in Figure 4-3. 

The disassembly shows – 

objdump -d -M no-aliases bic 

bic:     file format elf64-littleaarch64 
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Disassembly of section .text: 

0000000000400078 <_start>: 

  400078: d28aaaa3  movz x3, #0x5555 

  40007c: b203e7e4  orr x4, xzr, #0x6666666666666666 

  400080: 8a240c65  bic x5, x3, x4, lsl #3 

  400084: b37a1086  bfm x6, x4, #58, #4 

  400088: 52800ba8  movz w8, #0x5d 

  40008c: d4000001  svc #0x0 
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Summary of chapter 4 

• Arithmetic operations 

o Add, Subtract, Multiply and Divide 

• Logical Operations 

o Bitwise operators 

• Shift and Rotate instructions 

• Logical Immediate instructions 

• Condition flags 
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Exercises for chapter4 

1. Describe the difference between the add and ADDs instruction? 

2. After executing the following code what value ends up in register x6 

mov x4, #1024 //This moves the number 1024 to reg x4 

mov x5,#64 // Move 64 into reg x5 

add x6, x4, x5, LSL #6 

3. What is the value in w3  after the code below has been executed. 

//  and (Bitwise and immediate) 

mov w4, #0xcccccccc 

mov w5, #0x55555555 

and w3, w4, w5 

4. Describe two ways to place the immediate value 0xbbbbbbbb into  register X6
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Chapter 5. Loops, Branches and Conditions 
This chapter will show how to use iteration and decision making with ARM64 assembly code.   

The next listing shows how to compare two numbers and will print out an appropriate message. 

Listing  5-1 Simple comparison and branch example 

//listing5-1 

// This example shows how basic comparison and branch instructions work 

.text 

.global _start 

_start: 

        mov x4, #0X8000 // Load up reg x4 

        mov X5, #0x4000 // Now load reg x5 

        cmp x4, x5 

        bgt printlower 

        ldr x1, =lower  // Point x1 to lower string location 

        mov x2, #22     // Length of lower string 

        B printit 

printlower: 

        ldr x1, =upper  // Point x1 to upper string location 

        mov x2, #23     // Length of upper string 

printit: 

        mov x0, #1 

        mov w8, #64     // Invoke the Write system call 

        svc #0 

        mov w8, #0x5d   // Time to go. 

        svc #0 

.data 

        lower: .ascii "First number is lower\n" 

.align 

        upper: .ascii "First number is higher\n". 

Output: - First number is higher 
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This snippet compares two numbers held in register x4 and x5. It does a comparison and if the 

second number is lower than the first number then it branches to the code located at the label 

printlower. The instruction bgt is a conditional branch. If the number is not greater, then the 

write parameters are set up (string location and its length) and the code performs an 

unconditional branch to the label printit, skipping over the printlower code. Regardless of the 

comparison  the code at printit is common and its function is to invoke the Write System call 

and then exit. 

Disassembling the code is instructive: 

objdump -d -M no-aliases cmp1 

cmp1:     file format elf64-littleaarch64 

Disassembly of section .text: 

00000000004000b0 &lt;_start&gt;: 

  4000b0: d2900004  movz x4, #0x8000 

  4000b4: d2880005  movz x5, #0x4000 

  4000b8: eb05009f  subs xzr, x4, x5 

  4000bc: 5400008c  b.gt 4000cc <printlower> 

  4000c0: 58000141  ldr x1, 4000e8 <printit+0x14> 

  4000c4: d28002c2  movz x2, #0x16 

  4000c8: 14000003  b 4000d4 <printit> 

00000000004000cc <printlower>: 

  4000cc: 58000121  ldr x1, 4000f0 <printit+0x1c> 

  4000d0: d28002e2  movz x2, #0x17 

00000000004000d4 <printit>: 

  4000d4: d2800020  movz x0, #0x1 

  4000d8: 52800808  movz w8, #0x40 

  4000dc: d4000001  svc #0x0 

  4000e0: 52800ba8  movz w8, #0x5d 

  4000e4: d4000001  svc #0x0 

  4000e8: 004100f8  .word 0x004100f8 

  4000ec: 00000000  .word 0x00000000 

  4000f0: 0041010e  .word 0x0041010e 

  4000f4: 00000000  .word 0x00000000./cmp1 
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Note that the cmp instruction is an alias of SUBS which performs a subtraction; 

using the xzr register to discard the result. 

 

Adding in the command MRS X9, NZCV shows which flags are set, in the case where the value of 

X4 is higher than the value in x5 then the Carry bit is set (X9=0x20000000), in the second case 

where the value of X4 is lower than the value of x5 then the Negative bit is set (x9=0x80201000). 

Case1 (x4 > x5) 

Example x4 = 0X8000, x5 = 0x4000 Negative bit is clear, Zero bit is clear, Carry bit is set, 

Overflow bit is clear 

 

Case2 (x4 < x5) 

Example x4=0X8000, x5=0X9000,Negative bit is set, Zero bit is clear, Carry bit is clear, Overflow 

bit is clear. 

For conditional branches the format is Branch on condition to label (B.condition label) so in 

Listing  5-1 the command bgt printlower was used with GT being the condition <Greater 

Than> and <printlower> being the label to branch to. 

Table 5-1 shows the applicable conditional branches as determined by flag settings. 
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Table 5-1 Conditional branches 

Command Condition Flags 

B.CS/B.HS Unsigned greater than or equal 

to 

Carry Set 

B.CC/ B.LO Unsigned less than (lower) Carry Clear 

B.MI Negative (Minus) Negative Set 

B.PL Plus (Positive, note zero is 

positive) 

Negative Clear 

B.EQ Equal Zero set 

B.NE Not equal Zero clear 

B.VS Overflow set Overflow set 

B.VC No Overflow Overflow clear 

B.HI Higher Carry Set, Zero clear 

B.LS Lower or the same Carry clear, Zero set 

B.GE Signed greater than or equal to Negative and Overflow the same 

B.LT Signed less than Negative and Overflow different 

B.GT Signed greater than Zero clear, Negative and Overflow the 

same 

B.LE Signed less than or equal to Zero set, Negative and Overflow 

different 

From Table 5-1 the listing has been adapted to include Branch if equal (B.EQ) 

Listing  5-2 Using  B.EQ condition 

//listing5-2 

// This example shows how basic comparison and branch instructions work 

.text 

.global _start 

_start: 

 mov x4, #0X8000 // Load up reg x4  

 mov x5, #0x8000 // Now load reg x5  

 cmp x4, x5  

 mrs X9,NZCV // Get Flags 

 b.mi printlower 

 b.eq printthesame // Position B.EQ before B.PL since zero is considered 

positive 
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 b.pl printhigher 

printlower: 

 ldr x1, =lower // Point x1 to lower string location 

 mov x2, #22 // Length of lower string 

 B printit 

printhigher:  

 ldr x1, =higher // Point x1 to higher string location 

 mov x2, #23 // Length of higher string 

 B.AL printit 

printthesame: 

 ldr x1, =same // Point to the same string location 

 mov x2, #22 

printit:  

 mov x0, #1 

 mov w8, #64 // Invoke the Write system call 

 svc #0 

 mov w8, #0x5d // Time to go. 

 svc #0 

.data 

 lower: .ascii "First number is lower\n" 

 higher: .ascii "First number is higher\n" 

 same: .ascii "The numbers are equal\n" 

Nested Loops 

Programming often involves iterative algorithms where multiple loops are employed. The next 

listing shows two loops (inner and outer) and outputs the loop value to the screen as they are 

being calculated. 

Listing  5-3 Nested For loop 

// listing 5-3 

/* This example shows a Nested For Loop in action                                               

Both loops start with an index of 1 and count up to 3 

- w3 holds the index value for the inner loop  

- w4 holds the index value for the outer loop 
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- w9 holds the termination loop value 

- w5 holds the ASCII equivalent of the current index value  

For writing - 

w0 = 1 <stdout> 

w1 = Character location in memory 

w2 = Character count for output to stdout 

*/ 

.text 

.global _start 

_start: 

 mov w9, #4  //ending value for loop 

 mov w7, #1  // For loop iteration value 

 mov w0, #1 //stdout 

 ldr w1, =printheader 

 mov w2, #14  // Character count of printheader string 

 mov w8, #64  // Write out header text 

 svc #0 

 ldr w1, =printvalues // Now that the header has been printed get ready 

to print values 

 mov w3, #0x1   // Load up reg w3 with starting inner loop value 

 mov w4, #0x1   // Load up reg w4 with starting outer loop value 

incrementinner: 

 add w5, w3, #48  // Convert inner index to ascii 

 add w6, w4, #48  // Convert outer index to ascii 

 mov w0, #1  // stdout, don't assume x0 is preserved after svc call 

 strb w5, [x1]  // Put character into string space 

 mov w2, #2  // One character at a time 

 mov w8, #64  // Write out inner index 

 svc #0    

 mov w0, #1 

 mov w2, #1 

 mov w5, #9  // Tab for neatness 

 strb w5, [x1]  //Load up a tab character 
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 mov w8, #64  // Write out the Tab 

 svc #0  

 add w5, w4, #48  // Convert outer index to ASCII 

 mov w0, #1 

 mov w2, #1 

 strb w5, [x1]  // Put outer index ascii value into string space 

 mov w8, #64 

 svc #0 

 mov w5, #10 

 strb w5, [x1]  // Newline character 

 mov w8, #64 

 svc #0 

 add w3, w7, w3  // incrementinner loop 

 cmp w3, w9  // End of inner loop index reached?  

 B.EQ incrementouter // Time to increment adjacent for loop 

 B incrementinner 

incrementouter: 

 mov w3, #1  // Set innerloop index back to starting value 

 add w4, w7, w4  // Increment adjacent loop index 

 cmp w4, w9  // End of outer loop finished? 

 b.ne incrementinner 

exit:  

 mov w0, #1 

 mov w10, #10 

 mov w11, #13 

 strb w10, [x1]  

 mov w2, #1 

 mov w8, #64 

 svc 0 

 mov w0, #1 

 strb w11, [x1] 

 mov w2, #1 
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 mov w8, #64  // Invoke the Write system call 

 svc #0 

 mov w8, #0x5d  // Time to go. 

 svc #0 

.data 

 printheader: .ascii "\nInner Outer\n" 

 printvalues: .space 8 

Output: 

Inner Outer 

1 1 

2 1 

3 1 

1 2 

2 2 

3 2 

1 3 

2 3 

3 3 

Two data regions have been defined – printheader which is used to print out a heading and 

then printvalues which is an area of memory that reserves empty space to hold the calculated 

loop values. Prior to printing out the values the numbers are converted to ASCII text by adding 

the value 4823, placing the result in w5. 

Each character is stored into the empty printvalues space by the instruction strb w5, [x1,#024]. 

This instruction stores the value held in  w5 to the memory location pointed to by x1 with an 

 

 

 

23 This because the ASCII numeric characters are consecutive in value and the ASCII character 

for zero is 48 (0x30). 

24 Note When the offset is zero, then GDB will assume this if no immediate value is given, hence 

the listing omits #0 in the strb commands. 
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offset of 0. The addressing mode calculates a register plus an offset. Square brackets signify 

indirection. This program stored each character at the same memory location, destroying the 

previous contents. The Pre-index addressing mode preserves the data that was generated by 

incrementing the memory location, thereby storing data in consecutive locations. The format 

of the instruction is highlighted in Listing  5-4. The instruction stores the byte held in register w5 

at the memory location pointed to by register x1.  

This is different from other instructions, in that the first register is the source.  

Listing  5-4 Nested loops with pre-index addressing mode 

//listing 5-4 

/* This example shows a Nested For Loop in action                                               

Both loops start with an index of 1 and count up to 3 

- w3 holds the index value for the inner loop  

- w4 holds the index value for the outer loop 

- w9 holds the termination loop value 

- w5 holds the ASCII equivalent of the current index value  

For writing - 

w0 = 1 <stdout> 

w1 = Character location in memory 

w2 = Character count for output to stdout 

*/ 

.text 

.global _start 

_start: 

 mov W9, #4  //ending value for loop 

 mov w7, #1  // For loop iteration value 

 mov w0, #1   //stdout 

 ldr w1, =printheader 

 mov w2, #14  // Character count of printheader string 

 mov w8, #64  // Write out header text 

 svc #0 

 ldr w1, =printvalues // Now that the header has been printed get ready to 

print values 

 mov w3, #0x1  // Load up reg w3 with starting inner loop value 
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 mov w4, #0x1  // Load up reg w4 with starting outer loop value 

incrementinner: 

 add w5, w3, #48  // Convert inner index to ascii 

 add w6, w4, #48  // Convert outer index to ascii 

 mov w0, #1  // stdout, don't assume x0 is preserved after svc call 

 strb w5, [x1,#1]!  // Put character into string space 

 mov w2, #2  // One character at a time 

 mov w8, #64  // Write out inner index 

 svc #0    

 mov w0, #1 

 mov w2, #1 

 mov w5, #9  // Tab for neatness 

 strb w5, [x1,#1]!  //Load up a tab character 

 mov w8, #64  // Write out the Tab 

 svc #0  

 add w5, w4, #48  // Convert outer index to ASCII 

 mov w0, #1 

 mov w2, #1 

 strb w5, [x1,#1]!  // Put outer index ascii value into string space 

 mov w8, #64 

 svc #0 

 mov w5, #10 

 strb w5, [x1,#1]!  // Newline character 

 mov w8, #64 

 svc #0 

 add w3, w7, w3  // incrementinner loop 

 cmp w3, w9  // End of inner loop index reached?  

 B.EQ incrementouter // Time to increment adjacent for loop 

 B incrementinner 

incrementouter: 

 mov w3, #1  // Set innerloop index back to starting value 

 add w4, w7, w4  // Increment adjacent loop index 
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 cmp w4, w9  // End of outer loop finished? 

 b.ne incrementinner 

exit:  

 mov w0, #1 

 mov w10, #10 

 mov w11, #13 

 strb w10, [x1,#1]!  

 mov w2, #1 

 mov w8, #64 

 svc 0 

 mov w0, #1 

 strb w11, [x1,#1]! 

 mov w2, #1 

 mov w8, #64  // Invoke the Write system call 

 svc #0 

 mov w8, #0x5d  // Time to go. 

 svc #0 

.data 

 printheader: .ascii "\nInner Outer\n" 

 printvalues: .space 48  

At Program completion - 

memory address hex        char  

0x4101a1  00 31 09 31 0a 32 09 31 0a 33 09 31 0a 31 09 32

 .1.1.2.1.3.1.1.2 

0x4101b1  0a 32 09 32 0a 33 09 32 0a 31 09 33 0a 32 09 33

 .2.2.3.2.1.3.2.3 

R 

Registers 

name value (hex)  

x0 0x1  

x1 0x4101c4  

x2 0x1   

x3 0x3   
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x4 0x3   

x5 0xa   

x6 0x33   

x7 0x1   

x8 0x40   

x9 0x4  

x10 0x0   

. . . 

x30 0x0   

sp 0x7ffffffff080 

pc 0x400128 

cpsr 0x80201000  

Output 

Inner Outer 

1       1 

2       1 

3       1 

1       2 

2       2 

3       2 

1       3 

2       3 

3       3 
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Summary of chapter 5 

• Compare  instructions 

• Conditional branching 

• Nested loops
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Exercises for chapter5 

1. Describe the difference between a conditional and unconditional branch 

2. Which instruction is cmp an alias for? 

3. How does the flag condition signify that the signed less than condition is true? 

4. Modify listing 5-2 to accept user input (hint think syscalls) 
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Chapter 6. The Stack, Macros and Functions 

Macros and Functions 

This chapter introduces areas that are used by real-world (and other coders) to better manage 

and clarify their programs. Now that the listings are getting longer, it makes sense to introduce 

the concept of macros and functions.  The concepts are similar but the way that the programs 

are assembled leads to tradeoffs behind performance and code size. 

Listing  6-1 shows a print macro which requires two parameters – the location of the string to be 

printed and its location. Output goes to stdout. The macro is called twice, each time with 

different parameters. This basic example does not save much in typing, but the benefit is 

significant when larger macros are used. The macro code is enclosed between the assembler 

directives .macro and .endm. Macros are used to repeat frequently used instructions using 

different parameters 

Listing  6-1 A simple macro 

* This shows an example of a macro 

The macro prints to stdout, input parameters are the location of the string and 

its character count 

It is called twice, to print both strings*/ 

.text 

.global _start 

 _start: 

  mov w2, #39 

  .macro print location, length  // Macro expects string location 

and its length 

   mov w0, #1  //stdout 

   ldr w1, =\location  //Pass location 

   mov w2, \length  //Pass length 

   mov w8, #64 

   svc #0 

  .endm 

 print string1, w2 // Call macro with parameters string1 and 39! 

 mov w2, 16 

 print string2, w2 // Call macro with parameters string2 and 18 
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 mov w8, #93  // Exit the program 

 svc 0 

.data 

 string1: .ascii "\nThis string was printed using a macro\n" 

  string2: .ascii "and so was this\n" 

Output – 

This string was printed using a macro 

and so was this 

Disassembly shows: 

$ objdump -d -M no-aliases macro2 

macro2:     file format elf64-littleaarch64 

Disassembly of section .text: 

00000000004000b0 <_start>: 

  4000b0: 528004e2  movz w2, #0x27 

  4000b4: 52800020  movz w0, #0x1 

  4000b8: 18000181  ldr w1, 4000e8 <_start+0x38> 

  4000bc: 2a0203e2  orr w2, wzr, w2 

  4000c0: 52800808  movz w8, #0x40 

  4000c4: d4000001  svc #0x0 

  4000c8: 52800202  movz w2, #0x10 

ca  4000cc: 52800020  movz w0, #0x1 

  4000d0: 180000e1  ldr w1, 4000ec <_start+0x3c> 

  4000d4: 2a0203e2  orr w2, wzr, w2 

  4000d8: 52800808  movz w8, #0x40 

  4000dc: d4000001  svc #0x0 

  4000e0: 52800ba8  movz w8, #0x5d 

  4000e4: d4000001  svc #0x0 

  4000e8: 004100f0  .word 0x004100f0 

  4000ec: 00410117  .word 0x00410117 

The highlighted sections show the macro, which has been written inline twice. In line code can 

be fast but will generate larger code when called extensively. 
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It is also possible to break out the macro into a separate file which can be called using the 

.include directive. 

Listing  6-2 Separate macro file 

$ cat printmacro.s 

  .macro print location, length  // Macro expects string location 

and its length 

  mov w0, #1  //stdout 

  ldr w1, =\location  //Pass location 

  mov w2, \length  //Pass length 

  mov w8, #64 

  svc #0 

  .endm 

Listing  6-3 Calling a macro using the include directive. 

$ cat callmacro.s 

/* This shows an example of a macro call 

The macro prints to stdout, input parameters are the location of the string and 

its character count 

It is called twice, to print both strings*/ 

.text 

.include "printmacro.s" 

.global _start 

_start: 

 mov w2, #39 

 print string1, w2 // Call macro with parameters string1 and 39! 

 mov w2, 16 

 print string2, w2 // Call macro with parameters string2 and 18 

 mov w8, #93  // Exit the program 

  svc 0 

 .data 

  string1: .ascii "\nThis string was printed using a macro\n" 

  string2: .ascii "and so was this\n"  
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The Stack 

Functions will make use of the stack. The stack is a data structure which stores data in a 

structured manner. As an example, a register’s contents can be Pushed on to the stack and 

can be restored by Popping the data from the stack back to the register again. Push and Pop 

operations are performed in a Last in First out (LIFO) manner, in that if multiple registers were 

pushed on to the stack the last register pushed would be the first one restored. The stack is a 

location in memory. 

 A stack pointer will show where in memory the top of the stack is situated. When data is 

pushed the stack pointer will be decremented to a lower memory location and when data is 

popped, the stack pointer will be incremented. A push to the stack is accomplished using the 

str instruction and a pop is accomplished using the ldr instruction. Both these instructions 

are familiar, the only difference being that the stack pointer is used as the operand rather than 

a normal register. With ARM64, the stack grows downwards in memory and must be 16-byte 

aligned. 

• The ARM64 documentation states that  

o Formally, sp must lie in the range stack_limit < sp <= stack_base, though the 

values of stack_limit and stack_base are often inaccessible. 

• The memory below sp (but above stack_limit) must not be accessed by your code. 

Listing  6-4 shows examples of push and pop operations. 

Listing  6-4 Push and Pop operations using str and ldr 

 .text 

   .global _start 

   _start: 

   //This program shows how to interact with the stack 

   mov x4, #0xffff 

   movk x4, #0x0000, lsl 16 

   movk x4, #0x0000, lsl 32 

  movk x4, #0xfff, lsl 48 

  mov x3, sp              // Move stack to register x3. SP at 0x7fffffffef20 

  str x4, [SP, #-16]!     // SP now at 0x7fffffffef10 (lower memory location) 

  mov x4, #0      //Clobber X4 

  ldr x4, [sp], #16       // Restore x4, SP now back to 0x7fffffffe20 
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  stp x3,x4, [sp, #-16]!  // Store register x3 and x4 on to the stack SP = 

0x7fffffffef10 

  mov x3, xzr             // Clobber x3 

  mov x4, xzr             // Clobber x4 

  ldp x3, x4, [sp], 16    // Restore both, SP = 0x7fffffffe20 

  mov w8, #93 //Time to go 

  svc 0 

The stack could also push to higher memory addresses as shown in Error! Reference source n

ot found.. The actual implementation is architecture dependent! 

Figure 6-1 Stack memory contents after stp x3, x4, [sp, #-16]! instruction 

 

The stack supports nested operations, as shown in Listing  6-5 

Listing  6-5 Nested stack operations 

// listing6-5  1  

.text 

   

  .global _start  

  _start: 

  //  This program shows nested stack operations 

  mov x4, #0xffff 

  movk x4, #0x0000, lsl 16 

  movk x4, #0x0000, lsl 32 

  movk x4, #0xfff, lsl 48 

  mov x3, sp              // Move stack to register x3. SP at 0x7fffffffef20 

  stp x3,x4, [sp, #-16]!  // Store register x3 and x4 on to the stack SP = 

0x7fffffffef10 
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  mov x3, #0x1234         // Fresh write to x3  

  mov x4, #0x5678         // Fresh write to x4  

  stp x3, x4, [sp, #-16]!  

  mov x3, xzr             // Clobber x3 

  mov x4, xzr             // Clobber x4 

  ldp x3, x4, [sp],16     // Resore most recent value of x3 and x4 

  ldp x3, x4, [sp], 16    // Restore next most recent values of x3 and x4 

  mov w8, #93 //Time to go  

  svc 0 

Figure 6-2 Stack contents with nested operations 

 

 Functions are used to promote coding efficiency and clarity. They are sections of code that 

can be included in a program and shared with others as libraries. Over time a coder will usually 

generate their own functions for use in their code. When using external functions, registers can 

be saved on the stack prior to calling the function, thus ensuring that on return from the 

function code everything has been restored and coding will continue from where it left off. The 

Program Counter (PC) keeps track of the location in memory where the code is next to be 

executed. When a portion of code calls a function, it is termed the caller. The code that was 

called (the function itself) is termed the callee. When calling a function there are several tasks 

that the caller must perform and similarly the callee has its own responsibilities. 

The registers follow certain conventions: 

• Parameters are passed via registers x0 through x725.  

• Values are returned through register x0.  

o Other parameters can be stored in memory using the return register to point to 

the address.  

 

 

 

25 Additional parameters can be passed  using the stack. The parameters are pushed and then 

popped  
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• The x8 register (in Linux) is used for svc calls.  

• Registers x19 through x28 are to be preserved for the caller.  

o The callee will save these values.  

• Register X29 is the frame pointer register and will be discussed later. 

• Register X30 is the link register and is discussed below. 

The rules are documented in the ARM Procedure Call Standard (PCS). The standard also 

defines which registers are corruptible and which are not. A called function can overwrite 

corruptible registers. If the function uses non-corruptible registers, then it will perform a stack 

push and then a stack pop prior to returning. 

Link Register 

The link register  (LR) is register x30 and is used to hold the address of the next instruction to be 

executed after the function has been returned from. The Branch with link (BL) instruction is 

used to call the function and put the returning address into the link register. 

 The next program consists of a main program (main.s) which call two functions26 (cubit.s) 

and dubdab.s). A set of integers ranging from 1 to 10 are passed to the cubeit function which 

calculates the cube of the numbers.  There are several locations in memory used for specific 

purposes – 

Table 6-1 Memory locations used by the listcubes program 

Location Name Purpose 

numberlist Holds the bye values 1 through 10 

cubeslist Holds the calculated cubes held in numberlist 

bcdlist Holds the list of cubes converted to BCD  

Figure 6-3 shows the memory regions and associated values prior to formatting. 

 

 

 

26 In most case functions accept inputs and return value. The listings cubeit and dubdab are 

more like routines and could be implemented as macros. 
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Figure 6-3 Memory locations for the cube program and their values 

 

The cubeit routine is simple, it takes a value from the memory location numberlist pointed to 

by register x1. It multiplies the number by itself twice, storing the value in register w0. Main will 

store the returned value into cubeslist, incrementing it to the next location and the calls cubit 

again until the loop count has reached zero27. 

The next routine to be called is dubdab which performs the double dabble routine. Each 

number has room for a units weight, a tens weight and a hundreds weight. These partitions 

take up 4 bits so a total of 12 shifts are used28. The double-dabble algorithm is covered on page 

1-16. The routine is responsible for storing the bcd number in the memory location bcdlist 

pointed to by register x19. This is done at the label putbcd. 

The final task is to separate the nibbles into bytes and then apply offsets corresponding to 

ASCII values. 

 

 

 

27 Make sure that instruction SUBS is used and not SUB to set the flags appropriately. 

28 Note it is not necessary to perform 12 shifts if only single or double digits will result, however 

rather than parse out the number of digits and then calculate the required shift count, it was 

considered “cleaner to have a fixed worst case shift number. Of course, if performance were a 

consideration, then significant savings would be realized by reducing the shift count.  
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This is done by the function convert (in main.s) which extracts the values from bcdlist starting 

at the label getbcd. The first task is to separate the nibbles and put them into byte form, that is 

to say where the digits previously occupied four bits they now require an eight bit space. This is 

because they are to be converted to ASCII format which requires byte space. A lot of bit 

twiddling is performed here to move the bytes into the correct position. After this the rev 

instruction is used to reverse the byte order putting them in the correct locations. In between 

each store a line feed/carriage return is inserted to improve formatting. 

Stripping away the leading zeros is not performed! 

The output looks like – 

./listcubes 

00000001 

00000008 

00000027 

00000064 

00000125 

00000216 

00000343 

00000512 

00000729 

00001000 

Listing  6-6 Main program to print out cubed numbers 

main.s 

text 

numbercount=10 

.global _start 

_start: 

//  This program shows how to call functions 

// The program will print out the first 10 cubes of 1-10. 

// Two functions are called, the first to calculate the cubes 

// and the second to convert the cubes to BCD 

// main.s 

ldr x1, =numberlist 
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ldr x2, =numbercount 

ldr x3, = cubeslist 

ldr x19, = bcdlist 

loop: 

bl cubeit //Call function cubeit 

strh w0, [x3], #2 //Put the returned cube from w0 into cubeslist 

subs x2, x2, #1 

bne loop 

//Reset registers 

ldr x2, =numbercount 

ldr x3, = cubeslist //all cube results are now stored in word space  

bl dubdab 

convert: 

mov w7, #10 // Get all ten BCD cube numbers 

ldr w19, = bcdlist 

ldr w20, = cubes 

mov x4, #0x3030 // ASCII adjustment 

movk x4, #0x3030, lsl #16 

movk x4, #0x3030, lsl #32 

movk x4, #0x3030, lsl #48 

mov x14, #0xff // Use for masking out leading zeros 

mov w6, #0x0a0d // Line feed and carriage return 

getbcd: 

ldr x10, [x19], #4  // Get entry from BCD list 

and x15, x10, #0xf  // mask out all but first nibble 

mov x16, x15   // w16 holds first byte 

and x15, x10, #0xf0  // Mask out all but second nibble 

lsl x15, x15, #4  // Nibble2 now in second byte position 

orr x16, x15, x16  // Don't destroy existing data in w16 

and x15, x10, 0xf00 // Mask out all but third nibble 

lsl x15, x15, #8  // Nibble3 now in third byte position 

orr x16, x15, x16  // Don't destroy existing data in w16 
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and x15, x10, #0xf000  // Mask out all but fourth nibble 

lsl x15, x15, #12 // Nibble 4 now in fourth byte position 

orr x16, x15, x16 // Don't destroy existing data in x16 

and x15, x10, #0xf0000  // mask out all but fifth nibble 

lsl x15, x15, #20 // Nibble5 now in fifth byte position 

orr x16, x15, x16       // Don't destroy existing data in x16  

and x15, x10, #0xf00000 // Mask out all but sixth nibble 

lsl x15, x15, #24       // Nibble6 now in sixth byte position 

orr x16, x15, x16       // Don't destroy existing data in w16 

and x15, x10, 0xf000000 // Mask out all but seventh nibble 

lsl x15, x15, #28        // Nibble7 now in seventh byte position 

orr x16, x15, x16       // Don't destroy existing data in w16 

and x15, x10, #0xf0000000   // Mask out all but eighth nibble 

lsl x15, x15, #32        // Nibble8 now in eighth byte position 

orr x16, x15, x16       // Don't destroy existing data in x16 

add x16, x16,x4 // Convert bytes to ASCII format 

rev x17, x16  // The low shall become high and the high become low! 

str x17, [x20], #8 

strh w6, [x20], #2 // Put in line feed  

subs w7, w7, #1 

b.ne getbcd 

printbuffer: 

mov x0, #1 

ldr x1, =cubes 

mov x2, #150 

mov x8, #64 

svc #0 

exit: 

mov w8, #93 //Time to go  

svc 0 

.data 

numberlist: .byte 1,2,3,4,5,6,7,8,9,10 
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.align 

cubeslist: .space 200 

.align 

bcdlist: .space 40 

cubes: .space 110 

linefeed: .ASCII "\n" 

Listing  6-7 Routine to calculate cube numbers 

cubeit.s 

// Simple function to cube a number 

// cubeit.s 

.global cubeit 

cubeit: 

ldrb w5, [x1], #1 

mul w0, w5, w5 

mul w0, w5, w0 

ret 

Listing  6-8 Double-Dabble routine to convert hex/binary to binary coded decimal 

dubbdabb.s 

.text 

//  This function implements the double dabble algorithm 

// It takes a list of 10 numbers and converts them to BCD 

// w9 holds the hex number to be shifted 

// w10 holds the BCD number 

// w11 for the unitsmask 

// w12 for the tensmask 

// w13 for the hundredsmask 

// W14 holds the number of cubes to be converted 

// w15 holds the number of binary digits that the cube has (here n =12) 

// w16 is a scratchpad to hold the result of anding in routine getnumberofdigits 

// X17 is a counter for the number of shifts performed in double dabble 

// w19 points to the location where the BCD cubes are stored 

// dubbdabb.s 
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.global gethexnumbers 

.global getnumberofdigits 

.global dodoubledabble 

.global dubdab 

dubdab: 

unitsmask=0xf000 

tensmask=0xf0000 

hundredsmask=0xf00000 

numberofshifts=12 

numberofcubes=10 

mov w11, #unitsmask 

mov x12, #tensmask 

mov x13, #hundredsmask 

mov w14 ,#numberofcubes 

mov x15, #numberofshifts 

gethexnumbers: 

ldrh w9, [x1], #2 //load cube 

dodoubledabble: 

// Start pushing 

mov w17, w15 // Use w17 as the shift counter 

shiftnbits: // n is held in w17 

lsl w9, w9,  #1 //shift into units, tens and hundreds area 

subs w17, w17, #1 

beq putbcd 

checkhundreds: 

and w16, w9, w13 // Only look at hundreds column 

cmp w16, 0x500000   // Dabble needed ? 

b.lt checktens  // If not try the tens column 

add w9, w9, #0x300000 //Dabble the hundreds column 

checktens: 

and w16, w9, w12 // Only look at the tens column 

cmp w16, 0x50000 
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b.lt checkunits 

add w9, w9, #0x30000 // Dabble the tens column 

checkunits: 

and w16, w9, w11  // Only look at units column 

cmp w16, 0x5000 

b.lt skipunits 

add w9, w9, #0x3000 

skipunits: 

b shiftnbits 

putbcd: 

mov w10, w9 //Put the double dabble number into x10 (units) 

lsr w10, w10, w15 // Discard bits 0-11 and move bcd number into its place 

str w10, [x19], #4 

subs w14, w14, #1 

b.eq exitdd  

b gethexnumbers 

exitdd: 

ret 

 

The makefile combines the three listings into the program listcubes and is as follows: 

OBJECTS = main.o cubeit.o dubbdabb.o 

all: listcubes 

%.o : %.s # Any .o .s 

 as $< -g -o $@ # $< source file $@ output file 

listcubes: $(OBJECTS) 

 ld -o listcubes $(OBJECTS) 
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Summary of chapter 6 

• Use of the stack 

• Macros 

• Functions 

• Calling conventions 

o Caller and callee
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Exercises for chapter6 

1. What is the purpose of the Link register? 

2. What is the ARM Procedure call standard used for? 

3. Modify the listcubes program to strip out leading zeros 

4. Explain the difference between a function and a macro 

5. Which directives  signify the start and end of a macro? 

6. When is the .include directive used? 

7. What instruction can be used to push values on the  stack?
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Chapter 7. Calling assembly functions from a high-

level language 
However instructive the previous listcubes code was, outputting the text was complex, often  

it would not be practical to code in all parts of a program assembly language. Some of the 

many disadvantages include: 

• Complexity 

• Difficult to debug 

• Hard to test 

• Time to develop, optimize and document 

In the real world, a more pragmatic approach is used. Code is more often (than not) written in a 

higher-level language such as C, C++ or Python, which has many built-in functions and 

libraries that the programmer can call upon. A hybrid approach is often taken where assembly 

code might be used for time critical parts or for direct access to the target machine’s hardware. 

The GNU Compiler Collection (GCC) allows compilation of a mixture of code. The following 

example shows how to call ARM64 assembly from C code. 

First develop a simple assembly language function which cubes a number and then adds an 

offset.  

Listing  7-1 Cube and add assembly code 

.global cubeandadd 

cubeandadd: 

mov w2, w0 

mul w0, w0, w0  // Arguments are in r0 and r1 

mul w0, w2, w0 

add w0, w0, w1 

ret 

The function cubeandadd has been declared as a global function to allow for external access. 

It receives its parameters from the c code shown in Listing  7-2. 

Listing  7-2 Cube and add C code 

#include <stdio.h> 
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extern int cubeandadd(int a, int b); 

int main() 

{ 

     int a = 5; 

 int b = 10; 

     printf ("\n The cube and add function, calls assembly code to cube the 

first number %d and then add the second number %d, the result is %d\n", a, b, 

cubeandadd(a,b)); 

    return (0); 

} 

The assembly function (cubeandadd) has been declared as external and it passes its 

parameters (a and b to the assembly code. 

The output code is generated by gcc using the command: 

gcc -g -o cubeandadd ./listing7-2.c ./listing7-1.s 

The debugger shows the code midway through execution. 

 

The C library function printf is defined within <stdio.h> as int printf(const char 

*format,…) It is a variadic function which means that it can take a variable number of 

arguments. This is conveyed by the ellipsis… in the prototype. The function takes a minimum of 

one argument which is a pointer to  the location of the starting character of the text. The text 

itself can embed formatting tags which specify how the arguments that are passed are to be 

printed – for example a variable using “%d” will be formatted as a signed base 10 integer. To 
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print a string, register x0 will have been loaded with the address of the text (see Listing  7-5), 

variables are passed into the other registers (see Listing  7-6). 

A non-exhaustive list of  format specifiers are shown in Table 7-1. 

Table 7-1 printf format specifiers 

Format specifier interpretation 

%d Signed decimal number 

%u Unsigned decimal number 

%s Pointer to an array of characters 

%c Outputs a single character 

%x Represents an unsigned integer in lower case hexadecimal form 

%X Represents an unsigned integer in upper case hexadecimal form 

%% Outputs a literal “%” character 

%e Represents floating point as decimal exponent notation 

%f Represents floating point as decimal 

Using in-line code 

Basic and Extended ASM 

Listing  7-3 makes use of assembly instructions with operands. This is known as Extended ASM 

as opposed to Basic ASM  

Basic ASM 

Basic ASM is a set of assembly instructions. With inline code the asm keyword is not an actual 

C keyword29 but it is understood by the assembler. Note that non-GNU assemblers may use an 

alternative keyword.  An example is shown below: 

asm( 

 "mov w4, #5\n\t" 

 "mov w5, #15\n\t" 

 "add w6, w4, w5\n\t" 

 ); 

 

 

 

29 This is not the case with C++. 
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Note that the instructions are separated by the combination of /n and /t.  

Extended ASM 

Extended ASM can use variables from the C source code. Extended ASM cannot be used 

outside of C functions The assembler template consists of: 

asm(code template :  output operand(s) : input operand(s) : clobber list); 

Table 7-2 gives an explanation. 

Table 7-2 Inline assembly template 

Template 

Phase Example Description 

Code - Assembler 

Instruction 
mov w0, w1 Regular assembly instruction 

Code Template mov %[inputa], 

%[inputb] 

Using parameters passed as 

inputs to the code template 

Output Operand(S) List [answer] “r” (result) 

Can be left empty using 

: 

List of output operand(s) 

[answer] is a symbolic name, r is 

a constraint string meaning 

register and (result) is returned 

to the Calling code. 

Input Operands List inputa] "r" (a), 

[inputb] "r" (b) 

Similar syntax to operand list 

Clobber List “x5”, “x6” Optional list of registers, that 

may not be preserved 

A significant advantage of using inline assembly code like this is that the task of procedure call 

handling (see page 6-7) is left to the compiler. 

Listing  7-3 shows an example of assembly code being executed in-line with the C code. This 

code cubes a number and then adds a constant   (x3 + y). Here the number 5 is cubed and then 

the constant 10 is added. 

Listing  7-3 Using inline assembly code with C 

int cubeandadd(int a, int b, int c) 

{ 

 int res = 0; 

 /*Assembly Template is as follows: 

 Code (Assembly language instruction such as add x0, X0, X3) 
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 Code template ( add %result, %[input1], %[input2], . . .) 

 Output Operands ([result] "=r" (res); r is a constraint string which is a 

general purpose 64-bit X register 

 = is a constraint modifier for writing, + is for read and write 

 Input Operands ([inputa] "r" (a) [inputb] "r" (b); two input operands a and 

b*/ 

 asm( 

 "mov %[inputc], %[inputa]\n" 

 "mul %[inputa], %[inputa], %[inputa]\n\t" 

 "mul %[inputa], %[inputa], %[inputc]\n\t" 

 "add %[result], %[inputa], %[inputb]\n\t" 

 : [result] "=r" (res)   // Output Operand(s) list r = general registers 

 : [inputa] "r" (a), [inputb] "r" (b), [inputc] "r" (c) // Input Operand(s) 

list 

 ); 

 return res; 

} 

int main (void) 

{ 

 int a = 5; 

 int b = 10; 

 int c = 0; 

 int result = cubeandadd(a,b,c); 

 printf ("Cubing %d and adding %d = %d\n", a,b,result);   

} 

Using the gcc option gcc -save-temps listing7-3.c will allow the preservation of the 

intermediate files that were generated during the compilation process.  An extract of the 

assembly file is shown below: 

cubeandadd: 

.LFB0: 

 .cfi_startproc 

 sub sp, sp, #32 

 .cfi_def_cfa_offset 32 
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 str w0, [sp, 12] 

 str w1, [sp, 8] 

 str w2, [sp, 4] 

 str wzr, [sp, 28] 

 ldr w0, [sp, 12] 

 ldr w1, [sp, 8] 

 ldr w2, [sp, 4] 

#APP 

// 15 "listing6-12.c" 1 

 mov x2, x0 

mul x0, x0, x0 

 mul x0, x0, x2 

 add x0, x0, x1 

Looking at the cubeandadd routine , it can be seen that registers x0, x1 and x2 are used. 

Register X0 holds the first parameter (5), a copy of X0 is placed in register X2.  X0 is then 

multiplied by itself with the result 25 being stored in register X0. The updated X0) value (25) is 

then multiplied by the original value of X0 (which is stored in X2) and X0 now holds the value 

125. The second operand passed in X1 is added to X0 giving the final result of 135. 

The is shown in Table 7-3. 
Table 7-3 In line assembly converted 

The next listing revisits Listing  6-6 that cubed the first ten numbers –  

Listing  7-4 Cube numbers revisited 

include <stdio.h> 

int cubenumbers(int counter, int index) 

{ 

 int res; 

 asm( 

Source Assembled code 

“mov %[inputc], %[inputa]” mov x2, x0 

"mul %[inputa], %[inputa], %[inputa]” mul x0, x0, x0 

"mul %[inputa], %[inputa], %[inputc]” mul x0, x0, x2 

“add %[result], %[inputa], %[inputb]” add x0, x0, x1 
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 "mul %[outputresult], %[inputcounter], %[inputcounter]\n\t" 

 "mul %[outputresult], %[inputcounter], %[inputindex]\n\t" 

 : [outputresult] "=r" (res)   // Output Operand(s) list r = general 

registers 

 : [inputcounter] "r" (counter), [inputindex] "r" (index)  // Input 

Operand(s) list 

 ); 

 return res; 

} 

int main (void) 

{ 

 int counter = 1; 

 int index = 1; 

 int result = cubenumbers(counter,index); 

 while (counter <11) 

 { 

  result=cubenumbers(counter,index); 

  printf ("Cubing %d = %d\n", counter,result); 

  counter++; 

  index++; 

 }   

} 

Compilation String 

$ gcc -g -o cubenumbers ./listing7-4.c 

Output 

asm/chapter07 $ ./cubenumbers  

Cubing 1 = 1 

Cubing 2 = 8 

Cubing 3 = 27 

Cubing 4 = 64 

Cubing 5 = 125 

Cubing 6 = 216 

Cubing 7 = 343 
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Cubing 8 = 512 

Cubing 9 = 729 

Cubing 10 = 1000 

Much more concise! 

The next two listings use printf to print out values.   Arguments are passed to printf via the X 

registers or the vector registers in the case of floating-point numbers. 

Listing  7-5 Using printf to print a string from assembly 

// listing 7-5 

.text 

.global _start 

_start: 

ldr x0, =string1 

bl printf // Use -nostartfiles when linking with gcc 

mov w8, #93 

svc #0 

string1: .asciz "This string was printed from assembly using printf\n" 

Use the following commands to build the program 

as -g -o listing7-5.o listing7-5.s  

gcc  -nostartfiles -o listing7-5 listing7-5.o 

The -nostartfiles option means do not use the standard system startup files when linking. 

The listing passes the location of the string to printf and outputs: 

“This string was printed from assembly using printf” 

The next listing uses registers x0, x1, x2 and x3. 

Listing  7-6 Using printf to print numbers 

// listing7-6 

.text 

.global _start 

_start: 

ldr x0, =string1 

mov x1,#5 

mov x2, #15 
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add x3, x1, x2 

ldr x0, =string1 

bl printf // Use -nostartfiles when linking with gcc 

mov w8, #93 

svc #0 

string1: .asciz "The first number is %d, the second number is %d, the addition of 

the two numbers is: %d\n" 

Use the following commands to build the program 

as -g -o listing7-6.o listing7-6.s  

gcc  -nostartfiles -o listing7-6 listing7-6.o 

The output is: 

“The first number is 5, the second number is 15, the addition of the two numbers is: 20”. 

Another example shows output using some of the format specifiers shown in Table 7-1 

Listing  7-7 Use of format specifiers 

//listing7-7 

.text 

.global _start 

_start: 

ldr x0, =string1 

mov x1,#-140 

mov x2, #15 

add x3, x1, x2 

ldr x0, =string1 

str x1, [SP, #-16]! 

str x2, [SP, #-16]! 

str x3, [SP, #-16]! 

bl printf // Use -nostartfiles when linking with gcc 

ldr x0, =string2 

ldr x3, [sp], #16 

ldr x2, [sp], #16 

ldr x1, [sp], #16 

bl printf 
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mov w8, #93 

svc #0 

.data 

 string1: .asciz "The first number represented as signed decimal is %d, the 

second number represented as lower case hexadecimal is %x, the addition of the two 

numbers represented as upper case hexadecimal is: %X\n" 

 string2: .asciz "\nThe first number represented as unsigned decimal is %u, 

the second number represented as signed decimal is %d, the addition of the two 

numbers represented as upper case hexadecimal is: %X\n" 

 

Output: 

The first number represented as signed decimal is -140, the second number 

represented as lower case hexadecimal is f, the addition of the two numbers 

represented as upper case hexadecimal is: FFFFFF83 

The first number represented as unsigned decimal is 4294967156, the second number 

represented as signed decimal is 15, the addition of the two numbers represented 

as upper case hexadecimal is: FFFFFF83. 
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Summary of chapter 7 

• Using in line assembly code 

• Compiling C and assembly code together 

• Printf and variants 
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• Exercises for chapter7 

1. How would you print the literal character “%” with printf 

2. Which register is used to convey the location of the string to be printed when using printf? 

3. How would you preserve intermediate files that were generated during the compilation 

process? 

4. What is the purpose of -nostartfiles, try compilation without using it 
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Chapter 8. Floating Point and Neon Coprocessor 
This section discusses the vector registers and the concept of Single Instruction Multiple Data 

(SIMD) with emphasis on arithmetic operations. ARM64 adheres to the floating-point IEEE 754 

standard as discussed earlier (see page 1-18).  There are 32 x 128-bit vector registers (see page 

2-4). These registers have a width of 128 bits, and can be addressed with 8, 16, 32, 64 or 128 

bits as shown in Figure 8-1.  The smallest value of 8 bits is Bx up to Qx which has a width of 128 

bits. Even though there are 128 bits, floating point operations are limited to 64-bits. 

Figure 8-1 V Register layout 

 

The following listing will show the layout of data in the vector registers and confirm that the 

single precision layout of IEEE 754 is followed 

Listing  8-1 Loading floating point values into vector registers (single precision) 

//listing8-1 

// Single precision floating-point 

.text 

.global _start 

_start: 

ldr x0, = floating01 

ldr x1, = floating02 

ldr s0, [x0] // Load into single precision s0 fp register 

ldr s1, [x1] // Load into single precision s1 fp register 

fadd s2, s0,s1 // Perform fp addition putting the result into s2 

fmul s3, s0,s1 // Perform fp multiplication putting the result into s3 

mov x8, #93 

svc #0 

.data 
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 floating01: .single 1.414 

 floating02: .single 3.14 

 Listing  8-1 shows: 

• Two single precision floating point numbers have been defined – 1.414 and 3.14. 

• The addresses of these values are loaded into registers x0 and x1.  

• The contents of the locations pointed to by the x registers are stored in the single word 

registers s0 and s1 

• An addition of s0 and s1 is performed with the result shown in register s2 

• A multiplication of registers 0 and s1 is performed with the result showing in s3 

Use the GDB command info vector to show the contents of the vector registers30. 

v0             {d = {f = {0x3fb4fdf4, 0x0}, u = {0x3fb4fdf4, 0x0}, s = 

{0x3fb4fdf4, 0x0}}, s = {f = {0x3fb4fdf4, 0x0, 0x0, 0x0}, u = {0x3fb4fdf4, 0x0, 

0x0, 0x0}, s = {0x3fb4fdf4, 0x0, 0x0, 0x0}}, h = {bf = {0xfdf4, 0x3fb4, 0x0, 0x0, 

0x0, 0x0, 0x0, 0x0}, f = {0xfdf4, 0x3fb4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, u = 

{0xfdf4, 0x3fb4, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, s = {0xfdf4, 0x3fb4, 0x0, 0x0, 

0x0, 0x0, 0x0, 0x0}}, b = {u = {0xf4, 0xfd, 0xb4, 0x3f, 0x0 <repeats 12 times>}, s 

= {0xf4, 0xfd, 0xb4, 0x3f, 0x0 <repeats 12 times>}}, q = {u = {0x3fb4fdf4}, s = 

{0x3fb4fdf4}}} 

 . .  
s0 . . . s = 0x3fb4fdf4} {f = 1.41400003, . . . 

s1 . . . s = 0x4048f5c3} {f = 3.1400001,  . . . 

s2 . . . s = 0x4091ba5e} {f = 4.5539999,  . . . 

s3    . . . s = 0x408e1428} {f = 4.43996048, . . . 

If using the TUI with GDB then the command tui reg float will show the relevant floating-point 

registers31 

There is a lot of information shown in the vector registers, normally we are only interested in a 

subset. The values shown in the full vector V0 list correspond to the unsigned and signed 

 

 

 

30 Use p $vn to show a specific vector register such as p $v1. Use  $v3.d  or just p $d3 to just 

show the d part of the vector register. P /d $v1.b will show bytes in decimal format/ 

31 The command tui reg next will cycle through the various register groups. 
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entries of the D,S,H,B and Q registers along with their signed and unsigned values. There are 

floating point representations given in the single precision (s) and double precision (d) 

registers. 
 

The next listing uses printf to display three floating-point operations – 
• Addition 
• Multiplication  
• Square root 

Listing  8-2 Using printf to display floating-point values. 

//listing 8-2 

// Double precision floating-point   

.text 

  .global _start 

  _start: 

   ldr x0, = floating01 

   ldr x1, = floating02 

   ldr d0, [x0]    // Load into double precision d0 fp register 

   ldr d1, [x1]    // Load into double precision d1 fp register 

 ldr x0, =string1 // Free to use x0 again  

   // Add and Multiply 

  fadd d2, d0,d1  // Perform fp addition putting the result into d2 

 fmul d3, d0,d1  // Perform fp multiplication putting the result into d3 

 stp d0,d1,[sp, #-16]! // Save d0 and d1 

 stp d2,d3,[sp, #-16]! // save d2 and d3 

 bl printf 

 ldp d2,d3, [sp],16 // Bring back the registers, observing LIFO 

 ldp d0,d1, [sp],16 

  

  // Square root 

 ldr x0, =string2 

 fsqrt d1, d0 

 stp d0,d1,[sp, #-16]!   // Save d0 and d1 

      stp d2,d3,[sp, #-16]!   // save d2 and d3 

 bl printf 
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   ldp d2,d3, [sp],16      // Bring back the registers, observing LIFO  

    ldp d0,d1, [sp],16 

 mov x8, #0x5d 

   svc #0 

  .data 

        floating01:     .double 1.414 

        floating02:     .double 3.14 

 string1: .asciz "The floating point number %f, added to the floating point 

number %f, is %f,when multiplied the result is %f\n" 

 string2: .asciz "The square root of register d0 containing %f, is %f\n"  

Output 

./listing8-2 

The floating point number 1.414000, added to the floating point number 3.140000, 

is 4.554000,when multiplied the result is 4.439960 

The square root of register d0 containing 1.414000, is 1.189117 

There are also precision specifiers that can be used for floats with printf. The default value is 

6 (base 10) digits of precision which can be overridden by placing a point after % followed by a  

number to the left of the  specifier as shown in the code snippet below. 

 string1: .asciz "The floating point number %.3f, added to the floating 

point number %.3f, is %.2f,when multiplied the result is %.2f\n" 

 string2: .asciz "The square root of register d0 containing %.8f, is %.8f\n"   

Output 

The floating point number  1.414, added to the floating point number  3.140, is 

4.55,when multiplied the result is 4.44 

The square root of register d0 containing 1.41400000, is 1.18911732 

Neon Coprocessor 

The Neon coprocessor allows for parallel processing of operations. This is termed Single 

Instruction Multiple Data *(SIMD) since a single instruction operates on multiple pieces of 

data. The register set is shown in Figure 8-1 and allows for 128-bit processing across multiple 

lanes of data. There are 32 x 128-bit registers available referenced as vn.t where n stands for 

the vector register in question, t stands for the number of lanes and the data width. To take a 

specific example, v2.4s refers to vector register 2 broken up into 4 X 32-bit (S) paths. The data 

types available are: 



Floating-point operations and the Neon Co-Processor  

 

Page 8-5 

 

8 bits (B) uint8 or sint8 

• 16 bits (H) uint16 or sint16 

• 32 bits (S) 

• 64 bits (D) 

• Single and double precision floats 

A single128-bit vector register (bits 127:0) supports 2 X 64-bit, 4 X 32-bit, 8 X 16-bit, or 16 X  8-

bit integer simultaneous operations. A single 64-bit bit vector register (bits 0:63) supports  2 X 

32-bit, 4 X 16-bit, or 8 X  8-bit integer simultaneous operations.  
Table 8-1 shows possible lane configurations. 

Table 8-1 Lane division in 128-bit / 64 bit vector registers 

Register 

Size 

Lane Width (B) Lane Width (H) Lane Width (S) Lane Width (D) 

128-bits (Q) 16 lanes x 8 (16B) 8 lanes x 16 (8H) 4 lanes x 32 (4S) 2 lanes x 64 (2D) 

64-bits (D) 8 lanes x 8 (8B) 4 lanes x 16 (4H) 2 lanes x 32 (2S)  

A single lane represents a scalar value. Using only the low order 64-bits maintains 32-bit 

backward compatibility. Operations are performed in parallel on the individual lanes 

separately, not as a complete 64-bit or 128-bit register operation. The data size and lane layout 

is shown in Figure 8-2. Vector values are composed of multiple groups of numbers, for example 

a three-dimensional x,y,z co-ordinate could look like: 23, 42, -9 and be held in 3 different lanes.  

A scalar instructions include the single lane designator such as V1.h[2]. 

Figure 8-2 Vector registers lane distribution 

 

For the 128-bit vector registers there are: 

• 16 Byte-wide lanes 

• 8 Halfword-wide lanes 

32 X 64-Bit Vector Registers

Lane 1 (S) Lane 0 (S) Vn.S2

Lane 3 (H) Lane 2 (H) Lane 1 (H) Lane 0 (H) Vn.4H

Lane 7 (B) Lane 6 (B) Lane 5 (B) Lane 4 (B) Lane 3 (B) Lane 2 (B) Lane 1 (B) Lane 0 (B) Vn.8B

32 X 128-Bit VectorRegisters

Lane 3 (S) Lane 2 (S) Lane 1 (S) Lane 0 (S) Vn.S4

Lane 7 (H) Lane 6 (H) Lane 5(H) Lane 4 (H) Lane 3 (H) Lane 2 (H) Lane 1 (H) Lane 0 (H) Vn.8H

Lane 15 (B) Lane 14 (B) Lane 13 (B) Lane 12 (B) Lane 11 (B) Lane 10 (B) Lane 9 (B) Lane 8 (B) Lane 7 (B) Lane 6 (B) Lane 5 (B) Lane 4 (B) Lane 3 (B) Lane 2 (B) Lane 1 (B) Lane 0 (B) Vn.16B

Bit 127, 126,  . . . . . .1,0
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• 4 Singleword-wide lanes 

• 2 Doubleword-wide lanes 

Adding data from lane 1 in register V0 to the data in lane1 in vector register V1 is a completely 

independent operation. This is illustrated in Figure 8-3. 

Figure 8-3 Four lane 128-bit floating-point addition 

 

The code to generate the above data is shown in Listing  8-5. 

Examples: 

mov1, v0.16b, #0x55 will load the vector register V0 with 16 bytes each byte having the value 

0x55. 

(gdb) p  /x $v0.q 

$2 = {u = {0x55555555555555555555555555555555},  

s = {0x55555555555555555555555555555555}} 

Some examples of the move immediate (movi) instruction are shown in Listing  8-3. 

Listing  8-3 Vector move instruction examples 

// listing8-3 

// Vector register examples 

.text 

  .global _start 

_start: 

  mov x0,#0xaa 

  movi v0.16b, #0x55  // Q0 will contain 0x55555555555555555555555555555555 

  movi v1.8b, #0x55   // D1 will contain 0x5555555555555555 

  movi v2.8h, #0x55   // Q2 will contain 0x00550055005500550055005500550055 

  movi v3.4h, #0x55   // D3 will contain 0x0055005500550055 

  movi v4.4s, #0x55   // Q4 will contain 0x00000055000000550000005500000055 
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  movi v5.2s, #0x55   // D5 will contain 0x0000005500000055 

  ins v6.b[10], v0.b[1] // Insert vector element into v6 at index10, from v0, 

index0 

  cnt v7.16b, v0.16b  // Counts the # of ones in the specified elements of a 

vector register, placing the result in another register 

  // V7 now contains 0x0404040404040404 

  dup v8.8b, w0  // V8 contains 0xaaaaaaaaaaaaaaaa aa duplicated across eight 

bytes 

  dup v0.2d, v7.d[0]  // v0 contains 0x404040404040404 

 mov w8, #93 

 svc #0 

Note that ins is an alias for mov 

400090: 6e150c06  mov v6.b[10], v0.b[1] 

Again, single values are scalar values. 

The eight-bit immediate values in the instruction, are actually held in non-contiguous 

locations. Looking at the disassembly for the instruction (= 0x4f02e6a0)  movi v0.16b, 0x55  , 

the immediate data is held in bits: (18:16) and (9:5). These bits are designated (a,b,c) and 

(d,e,f,g,h). This is shown in Figure 8-4 where the eight bits correspond to 010 10101 = 0x55. 

 Refer to the ARM documents for a more complete breakdown of the remaining fields. 

Figure 8-4 Layout of immediate data bits in the movi instruction 

 

The next listing performs 16 addition operations. Two vector registers (V0 and V1) contain 16 

bytes each. The additive result of all 16 bytes is placed in V0 overwriting the previous contents. 

movi v0.16b 4f02e6a0
Q op a b c cmode d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Rd = V0

Imm8 = bits 18,17,16,9,8,7,6,5 = 0x55specifies 8-bit operation

cmode  1110, op 0 = 8-bit;

Q 1 = 16Bytes (T=16b)
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Listing  8-4 Adding sixteen bytes in parallel 

// listing 8-4 

// Vector register examples  

.text 

  .global _start 

  _start: 

 ldr x0,=values 

 ldp q0, q1, [x0] 

 add v0.16b, v0.16b, v1.16b 

mov w8, #93 

svc #0 

.data  

 values: .byte  1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20, After 

execution:23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0 

 

Initial contents of V0  

1,    6,  3, 4,  9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20, 1, 6, 3, 4, 9, -3, 7,12, 9, 3, -4, 19, 5, 14, 3, 20 

Initial contents of V1 

23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0, 23, 5, 7, 8, 10, 2, 4, 17,  3, 8, 45, 2, -4, 30, 4, 0 
Result in V0 

24, 11, 10, 12, 19, -1, 11, 29, 12, 11, 41, 22, 1, 45,  7, 20, 24, 11, 10, 12, 19, -1, 11, 29, 12, 11, 41, 22, 1, 45, 7, 20 

The next listing shows two operations: 

1. How to load the 128-bit Q registers Q0 and Q1 with single floating-point word values and 

then to add these values in parallel, placing the result in Q0. 

2. How to multiply each lane by a scalar quantity  

Listing  8-5 Vector register addition and multiplication examples 

   // listing 8-5 

  // Vector register examples 

  // 1. Floating point additions carried out in parallel 

  // 2. Multiply by a scalar 

  .text 

    .global _start 

    _start: 

          ldr x0,=v0values 



Floating-point operations and the Neon Co-Processor  

 

Page 8-9 

 

          ldr x1,=v2values 

          ldp q0, q1, [x0] 

          fadd v0.4s, v0.4s, v1.4s // Vector addition, lanes added in parallel 

          ldp q0,q1, [x1] 

          movi v2.4s, #5 

          mul v0.8h, v1.8h, v2.h[0] // Multiplying by a scalar, each lane of V1 is 

multiplied by 5 (lane0 of v2) with the result placed in V0 

  // V0 now holds: 7700, 2600, 12845, 6455, 3940, 2585, 3900, 7835 

  

  mov w8,#93 

  svc #0   

  .data    

          v0values: .single 1.4, 0.1, 23.2, 40.6, 0.02, 1.96, 4.2, 3.51  

          v2values: .byte 20, 34, 5, 9, -4, 10, 2, 7, 100, 40, 3, 8, 3, 4, 64, 56, 

4, 6, 8, 2, 9, 10, 11, 5, 20, 3, 5    , 2, 12, 3, 31, 6 

Note: Floating-point values can be shown within a vector register with the command p 

$v(register number>.<size>.f such as p $v0.s.f. 

Lanes and data placement 

Lanes can be referenced by an index. The ld instruction takes different forms. A non-

exhaustive summary of instructions ld1, ld2, ld3 and ld4 is presented in the following 

tables: 
Table 8-2 Sample ldx (no offset) instructions 

Instruction Description Example 

ld1{vt.b}[index],Xn] 
Loads a single 
element (8 -
bits) to a single 
lane of a vector 
register 

Ld1{v0.b}[0],[x0] // Loads v0 with 

the single byte pointed to by x0, 

placing the data in lane0 

ld1{vt.h}[index],Xn] 
Loads a single 
element (16 -
bits) to a single 
lane of a vector 
register 

Ld1{v2.h}[3],[x0] // Loads v1 with 

the halfword pointed to by x0, 

placing the data in lane3 

ld1{vt.s}[index],Xn] 
Loads a single 
element (32 -
bits) to a single 
lane of a vector 
register 

Ld1{2.s}[0],[x0] // Loads v2 with 

the singleword pointed to by x0, 

placing the data in lane0 
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ld1{vt.d}[index],Xn] 
Loads a single 
element (64 -
bits) to a single 
lane of a vector 
register 

Ld1{3.d}[0],[x0] // Loads v3 with 

the doubleword pointed to by x0 

ld2{vt.b,vt.2.b}[index],Xn] 
Loads a two-
element 
structure (8 -
bits) to a single 
lane of two 
vector registers 

Ld2{v3.b,v4.b}[6],[x0] // Loads v3 

and v4, lane6 with the byte pointed 

to by x0 and x0+1 

ld2{vt.h,vt2.h}[4],[xn] 
Loads multiple 
byte structures 
into two vector 
registers 

ld2 {v5.h,v6.h,[x0] // Loads eight, 

8-bit structures into registers v5 

and v6, alternating the values 

pointed at by x0 

Ld2{vt.b,vt2.b}[index],Xn] 
Loads a single 
two element  (8 
-bits) structure 
to a single lane 
of two vector 
registers 

ld2{v3.b,v4.b}[6],[x0] // Loads 

lane6 of v3 and v4 with the bytes 

pointed to at x0 

Ld2{vt.h,vt2.h}[index],Xn] 
Loads a single 
two element  
(16 -bits) 
structure to a 
single lane of 
two vector 
registers 

ld2{v5.h,v6.h}[4],[x0] // Loads 

lane4 of v3 and v4 with the 

halfwords pointed to by x0 

Ld2{vt.s,vt2.s}[index],Xn] 
Loads a single 
two element 
(32 -bits) 
structure to a 
single lane of 
two vector 
registers 

ld2{v7.s,v8.s}[0],[x0] // Loads 

lane0 of v3 and v4 with the word 

pointed to by x0 

Ld2{vt.d,vt2.d}[index],Xn] Loads a single 

element two 

element (64 -

bits) to a single 

lane of a vector 

register 

ld2{v3.d,v4.d}[2],[x0] // Loads 

lane2 of v3 and v4 with the 

doubleword word pointed to by x0 

Ld3{vt.b,vt2.b,vt3.b}[index],Xn] Loads a single 

three element 

structure (8 -

bits) to a single 

lane of three 

vector registers 

Ld3{v0.b,v1.b,v2.b}[0],[x0] // 

Loads lane0 of v0, lane0 of v1 and 

lane0 of v2 with the bytes pointed 

to by x0 
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Ld3{vt.h,vt2.h,vt3.h}[index],Xn] Loads a single 

three element  

(16 -bits) 

structure to a 

single lane of 

two vector 

registers 

Ld3{v5.h,v6.h,v7.h}[4],[x0] // 

Loads lane4 of v3, lane4 of 6 and 

lane4 of v7 with the halfword 

structures pointed to by x0 

ld3{vt.s,vt2.s,vt3.s}[index],Xn] Loads a single 

three element  

(32 -bits) 

structure to a 

single lane of 

two vector 

registers 

ld3{vt.h,vt2.h,vt3.h}[index],Xn] 

ld3{vt.h,vt2.h,vt3.h}[index],Xn] Loads a single 
two element  
(16 -bits) 
structure to a 
single lane of 
two vector 
registers 

ld3{vt.h,vt2.h,vt3.h}[index],Xn] 

ld4 {vt.b,vt2.b,vt3b,vt4.b},[x0] 
Multiple 4-
element 
structure, move 
to four registers 
with de-
interleaving 

ld4 

{v10.8b,v11.8b,v12,8b,v13,8b},[x0] 

Example of ldx instructions are shown in Listing  8-6. 

Listing  8-6 ld1, ld2, ld3 and ld4 non-offset examples 

// listing 8-6 

// Vector register ldx examples 

 .text 

   .global _start 

   _start: 

   ldr x0,=values  // Set x0 to point at the 48 bytes in memory location (values) 

    

   //Single Structure format of the instruction ld1, loading one element to one 

lane. 

   ld1 {v0.b}[0],[x0] //lane0 of v0 will contain the value 1 

   ld1 {v1.b}[1],[x0] //lane1 of v1 will contain the value 1 
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   ld1 {v2.h}[3],[x0] //lane3 of v2 will contain the value 0x0601 

   ld1 {v2.h}[2],[x0] // V2 now contains the value 0x601060100000000 (lanes 2 and 

3 each    hold 0x601) 

  

   //This is the multiple structure format of the instruction ld1, writing 

multiple single elements to three registers 

  ld1 {v0.8b, v1.8b, v2.8b},[x0]  // Loads multiple (8) single element byte 

structures into v0, v1 and v2 

  // V0 now holds unsigned bytes = {0x1, 0x6, 0x3, 0x4, 0x9, 0xfd, 0x7, 0xc, 0x00, 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} 

  / v1 now holds unsigned bytes = {0x9, 0x3, 0fc, 0x13, 0x5, 0xe, 0x3, 0x14, 0x00, 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} 

  // v2 now holds unsigned bytes = {0x17, 0x5, 0x7, 0x8, 0xa, 0x2, 0x4, 0x11, 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} 

  // Note values shown above are listed as ascending in memory contents of [x0]= 

0x01, [x0]+1 = 0x06, . . . 

  ld1 {v0.16b, v1.16b, v2.16b},[x0]  // Loads multiple (8) single element byte 

structures into v0, v1 and v2 

  

  // Single two-element structure format using ld2 

  ld2 {v3.b,v4.b}[6],[x0] // lane6 of v3 holds 0x01 and lane6 of v4 holds 0x06 

   ld2 {v5.h,v6.h}[4],[x0] // Lane4 of V5 contains 0x0106 and lane4 of v6 contains 

0x0304 

   ld2 {v7.s,v8.s}[0],[x0] // Lane7 of v7 contains 0x010603094 and lane 8 contains 

0x09fd070c 

   ld2 {v3.d,v4.d}[0],[x0] // Lane0 of v3 contains 0x0106030409fd070c and lane0 of 

v4 contains 0x0903fc13050e0314 

  

/* Multiple two-element structure format with de-interleaving. takes the data, and 

puts the first element in register1, the second element in register2, third in 

register 1, . . .*/ 

  ld2 {v5.8b,v6.8b},[x0] // Moves eight, byte structures into registers v5 and v6 

  // v5 holds 0x01 0x03 0x09 0x07 0x09 0xfc 0x05 0x03 

  // v6 holds 0x06 0x04 0xfd 0x0c 0x03 0x13 0x0e 0x14 

  ld2 {v5.8h,v6.8h},[x0] 

  // v5 holds 0x0601 0xfd09 0x0309 0x050e 

  // v6 holds 0x0403 0x0c07. 
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// Multiple three-element structure move to three registers with de-interleaving 

  ld3 {v7.4H, v8.4H,v9.4H},[x0] 

  // v7 holds 0x0601, 0x070c, 0x050e, 0x0807 

  // v8 holds 0x0403, 0x0309, 0x1403, 0x200a 

  // v9 holds 0xfd09, 0x13fc, 0x0517, 0x1104 

  ld3 {v7.2d-v9.2d}, [x0] // Note the syntax Vm-Vn is also valid 

  // v7 holds 0x0106030409fd070c0 

  // v8 holds 0x0903fc13050e0314 

  // v9 holds 0x170507080a020411 

 

  // Single four-element structure to one single lane of four registers 

  ld4 {v15.s,v16.s,v17.s,v18.s}[2],[x0] 

  // v15 holds 0x04030601 

  // v16 holds 0x0c07fd09 

  // V17 holds 0x13fc0309 

  // V18 holds 0x14030e05 

 

  // Multiple four-element structure move to four registers with de-interleaving 

  ld4 {v10.8b,v11.8b,v12.8b,v13.8b},[x0] 

  // v10 holds 0x01, 0x09, 0x09, 0x05, 0x17, 0x0a, 0x03, 0xfc 

  // v11 holds 0x06, 0xfd, ox03, 0x0e, 0x05, 0x02, 0x08, 0x1e 

  // v12 holds 0x03, 0x07, 0xfc, ox03, 0x07, 0x04, 0x2d, 0x04 

  // v13 holds 0x04, 0x0c, 0x13, 0x14, 0x08, 0x11, 0x02, 0x00 

 

  mov w8, #93 

  svc #0 

.data 

 values: .byte  1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20, 23, 5, 7, 8, 

10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0, 2, 5, 9, 2, 11, 5, 14, 0, 23, 44, 21, 5, 

13, 14, 15, 16 
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Note when using multiple registers, they must be consecutive in number. The reason for this is 

that the last 5 bits of the Rt field (see Table 8-4 ) is used to encode the Vt registers. This is 

shown in Table 8-3: 

Table 8-3 ld4 instruction Rt field 

Vt encoding Vt2 encoding Vt3 encoding Vt4 encoding 

Bits 4:0 ((Bits 4:0) +1), 

modulo 32 

((Bits 4:0) +2), 

modulo 32 

((Bits 4:0) +3), 

modulo 32 

 The disassembly for the instruction ld4 {v15.s-v18.s}[2], [x0] is 4d60a00f.  

Table 8-4 gives a breakdown of the bit fields. 

Table 8-4 Bit fields of the ld4 instruction 

 

As seen the functionality of the fields is well thought out and gives a lot of capability for an 

instruction that is only 32-bits wide. 

The ldx instructions also have  Post-Index capability. The offset can be register or immediate. 

The format of ld4 with an eight-bit register offset is LD4 { vt.b,vt2.b, vt3.b,vt4.b 
}[index], [Xn|SP], <Xm>.  

Breakdown of {v15.s-v18.s}[2], [x0] Instruction 4d60a00f

Q L R Rm o2 Opcode S Size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1

Interpretation

1 Rt vt0

Rt+1, modulo32 Vt1

Rt+2, modulo32 Vt2

Rt+3, modulo32 Vt3

2 Rn Xn|SP (x0)

3 Rm Post-index register

4 Opcode 101&&S=00 = 32-bit

5 Element Index encoded in Q:S  for 32-bit (S)

Q:S = 10
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The last ldx instruction to consider is ld with replicate. Here the ld4r instruction has the no-

offset format of LD4r {vt.T,vt2.T,vt3.T,vt4.T},[Xn|SP}. Its function is to load a single 

four-element structure and replicate it to all four lanes of the four registers. 

This instruction has similar variants to the ldx instructions shown in Table 8-2. Listing  8-7 

shows a brief example. 

Listing  8-7 ld4r instruction 

// listing 8-7 

// Vector register example ld4R 

.text 

  .global _start 

  _start: 

 ldr x0,=values // Set x0 to point at the 48 bytes in memory location 

(values) 

 ld4r {v0.16b,v1.16b,v2.16b,v3.16b,[x0] 

 // v0 = 0x0101010101010101 

 // v1 = 0x0606060606060606 

 // V2 = 0x0303030303030303 

 // V3 = 0x0404040404040404 

 ld4r {v0.4h,v1.4h,v2.4h,v3.4h,[x0] 

 // v0 = 0x0601060106010601 

 // v1 = 0x0403040304030403 

 // V2 = 0xfd09fd09fd09fd09 

 // v3 = 0x0c070c070c070c07 

mov w8, #93 

svc #0 

.data  

  values: .byte  1, 6, 3, 4, 9, -3, 7, 12, 9, 3, -4, 19, 5, 14, 3, 20, 

23, 5, 7, 8, 10, 2, 4, 17, 3, 8, 45, 2, -4, 30, 4, 0, 2, 5, 9, 2, 11, 5, 14, 0, 

23, 44, 21, 5, 13, 14, 15, 16 
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Permutations and Interleaving 

Zip and uzp 

There are  several options for permuting data. The zip instruction alternatively fetches 

elements from a pair of registers, placing the result in a third register. The instruction uses two 

source registers and one destination which can only accommodate half of the data. In the case 

of 128-bit Q registers, two destination registers are required to interleave all of the 

elements.This is achieved by performing two zip instructions. The zip instruction uses two 

forms – zip1 and zip2. The first form zip1 stores the low order bytes (bytes0:byte7) into a 

destination register and the second form zip2 stores the high order bytes (byte15:byte8) into a 

second destination register. 

This is shown in Figure 8-5.  

The counterpart of zip is uzp to perform the opposite task with the instruction uzp1working on 

the low order and uzp2 working on the high order. Listing  8-8 gives an example. The bytes have 

consecutive values making for easy interpretation during the interleaving process. 

Reversing elements 

The reverse (rev) instruction preserves the order of the elements but reverses the byte order. 

Examples of word and half word reversals are shown in Figure 8-6. 

Extraction of elements extracts a number of elements from one register with the balance 

coming from another register. The combination is then placed in a destination register 

Extraction of elements is accomplished with the ext command.Listing  8-8 gives an example 

where the instruction extracts the top ten bytes from v0, writing them to the bottom ten bytes 

of v9 and then writes the lower six bytes from v1 to the remaining high order six bytes of v9. 

The  xtn instruction (extend and narrow) takes the lower 32 bits of each half of V0 and stores 

them in a destination register. 

The xtn2 instruction takes the upper 32 bits of each half of a register and stores them in a 

destination register. 
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Figure 8-5 Use of zip instruction 

 

Transposition 

Transposing elements takes an odd numbered elements (bytes) from two registers placing 

them in sequence to a third destination register. An example of the syntax is: 

trn1 v12.16b, V0.16b, v1.16b  

 The counterpart to trn1 is trn2 which takes the even numbered elements (words) from two 

registers placing them in sequence to a third destination register. 
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Figure 8-6 Rev instruction 

 

Lookup 

The final permutation instruction looked at is tbl which uses a vector register to hold lookup 

values which index into a group of registers that hold the data which will be sent to a 

destination register. An example of the syntax is: 

 tbl v17.16b, {v0.16b,v1.16b},v16.16b 

Figure 8-7 shows an example of a lookup, 

Figure 8-7 Use of a lookup table to change less structured element lists 
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Listing  8-8 Interleaving data from the vector registers 

// listing 8-8 

// Vector register permutations 

 .text 

   .global _start 

   _start: 

         ldr x0,=avalues // Set x0 to point at the 16 bytes in memory location 

(avalues) 

         ldr x1,=bvalues // Set x1 to point at the 16 bytes in memory location 

(bvalues) 

         ldr x2,=lookupvalues 

  

         ld1 {v0.2d},[x0] 

        ld1 {v1.2d},[x1]         ld1 {v16.2d},[x2]  

         // q0 = 0x100f0e0d0c0b0a09 0807060504030201 

         // q1 = 0x201f1e1d1c1b1a19 1817161514131211 

         // q2 = 0x060d0c0f0b1f0a08 13070e0014020401 

          zip1 v2.16b, v0.16b, v1.16b // q2 now has interleaved low order bytes 

from q0 and q1 

         // q2 = 0x1808170716061505 1404130312021101 

 

         zip2 v3.16b, v0.16b, v1.16b // q3 now has interleaved high order bytes 

from q0 and q1 

         // q3 = 0x20101fof1e0e1d0d 1c0c1b0b1a0a1009 

  

         zip1 v4.16b, v1.16b, v0.16b // Change order of source registers 

         // q4 = 0x0818071706160515 0414031302120111 

  

         uzp1 v5.16b, v2.16b, v3.16b //Unscramble low order bytes, result in q5 

         uzp2 v6.16b, v2.16b, v3.16b //Unscramble high order bytes, result in q6 

         // Long-winded way of copying q0 to q5 and q1 to q6 

  

         rev32 v7.16b, v5.16b // reverses bytes within each word element 

         rev16 v8.16b, v6.16b // reverses bytes within each halfword element 
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         // Extraction 

         ext v9.16b, v0.16b, v1.16b, #6 

         // Extracts top 10 bytes from v0, writing them to bottom 10 bytes of v9 

and writes the lower 6 bytes from v1 to the remaining high order bytes of v9 

         // v9 now contains 0x161514131211100f0e0d0c0b0a090807 

         xtn v10.2s, v0.2d // Extend and narrow takes the lower 32 bits of each 

half of V0 and stores them in v10 giving 0x0c0b0a0904030201 

        // v10 contains 0x0c0b0a09 04030201 

        xtn2 v10.8h, v0.4s 

         /* Takes the upper 32 bits of each half of V0 and stores them in v10 

giving 0x100f0e0d0b0a090807060504030201; 

         since the previous instruction  wrote to the lower half already and the 

instruction does not affect the other bits*/ 

 

          // Transposition 

          trn1 v12.16b, V0.16b, v1.16b // Takes the odd numbered elements (bytes) 

from v0 and v1 placing them in sequence to V12 

          // V12 contains 0x1f0f1d0d1b0b19091707150513031101 

         trn2 v13.4s, v0.4s, v1.4s // Takes the even numbered elements (words) 

from v0 and v1 placing them in sequence to V13 

         // V13 now contains 0x201f1e1d100f0e0d1817161508070605 

         // Lookup Tables 

          // tbl uses a vector register to hold lookup values which index into a 

group of registers that hold the data which will be sent to a destination register 

         tbl v17.16b, {v0.16b,v1.16b},v16.16b 

          V17 now contains 070e0d100c200b0914080f0115030502 

  mov w8, #93 

  svc #0 
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Summary of chapter 8 

• SIMD  

• Layout of the vector registers 

• Floating-point operations 

• Scalar and vector operations 

• Permutations and interleaving 
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Exercises for chapter8 

1. Generate a program to multiply 4 floating point numbers together using SIMD instructions 

2. Explain the difference between scalar and vector values 

3. Is the instruction add v0.8s, v0.8s, v1.8s valid? Explain your answer 

4. (Advanced) Generate the inverse of a three by three matrix, using single precision floats, 

then multiply the result by the original matrix, comment on the answer 

5. Explain the action of the rev instruction. 
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Chapter 9. Cross Compilation 
Cross compiling32 allows development of programs on machines with a different architecture. 

In this section cross compilation will be performed on a Linux machine running Debian – 

uname -a 

Linux debian1 6.1.0-26-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.112-1 (2024-09-30) 

x86_64 GNU/Linux 

Start by following the steps listed below 

Step 9-1. Install the necessary tools 

sudo apt install gcc make gcc-aarch64-linux-gnu binutils-aarch64-linux-gnu 

[sudo] password for alan:  

Reading package lists... Done 

Building dependency tree... Done 

Reading state information... Done 

gcc is already the newest version (4:12.2.0-3). 

gcc set to manually installed. 

make is already the newest version (4.3-4.1). 

make set to manually installed. 

The following additional packages will be installed: 

  cpp-12-aarch64-linux-gnu cpp-aarch64-linux-gnu gcc-12-aarch64-linux-gnu 

  gcc-12-aarch64-linux-gnu-base gcc-12-cross-base libasan8-arm64-cross 

  libatomic1-arm64-cross libc6-arm64-cross libc6-dev-arm64-cross 

  libgcc-12-dev-arm64-cross libgcc-s1-arm64-cross libgomp1-arm64-cross 

  libhwasan0-arm64-cross libitm1-arm64-cross liblsan0-arm64-cross 

. . . 

 

 

 

 

32 The following link may be helpful Cross-compiler | Arm Learning Paths 
https://learn.arm.com/install-guides/gcc/cross/) 

https://learn.arm.com/install-guides/gcc/cross/
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Step 9-2. Create helloworld.c file 

cat helloworld.c 

#include <stdio.h> 

int main() 

{ 

 printf("Hello World"); 

 return 0; 

} 

Step 9-3. Compile the program using the ARM64 gcc compiler 

aarch64-linux-gnu-gcc helloworld.c -o helloworld-arm6433 

Step 9-4. Execute the program 

$ ./helloworld-arm64  

bash: ./helloworld-arm64: cannot execute binary file: Exec format error 

This is to be expected as the ARM64 program is running on X86 architecture! 

Step 9-5. Check the file format 

file helloworld-arm64  

helloworld-arm64: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), 

dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, 

BuildID[sha1]=7d70ff2387ca56fe82e50f708c75aa3f47209127, for GNU/Linux 3.7.0, not 

stripped 

The output of the file command indicates that the executable is  ARM aarch64. 

Step 9-6. Verify that the program runs correctly by transferring it (if available) to an 

ARM64 based system 

 scp helloworld-arm64 pi5b:/home/alan/asm 

alan@pi5b's password:  

 

 

 

33 Appending -static to the compilation string will invoke static linking and may help since it 

includes the necessary dependencies. 
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helloworld-arm64                                                 100%   69KB   

4.0MB/s   00:00 

ssh pi5b 

alan@pi5b's password:  

Linux pi5b 6.6.31+rpt-rpi-2712 #1 SMP PREEMPT Debian 1:6.6.31-1+rpt1 (2024-05-29) 

aarch64 

 

The programs included with the Debian GNU/Linux system are free software; 

the exact distribution terms for each program are described in the 

individual files in /usr/share/doc/*/copyright. 

 

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent 

permitted by applicable law. 

Last login: Mon Oct 14 15:01:08 2024 

alan@pi5b:~ $ cd asm 

alan@pi5b:~/asm $ chmod +x helloworld-arm64  

alan@pi5b:~/asm $ ./helloworld-arm64  

Hello Worldalan@pi5b:~/asm $ 

Cross compiling assembly code 

Create the assembly file below: 

.global main 

main: mov x3, #0xf0f0f0f0f0f0f0f0 

 mov w4, w3 // Read from w3 

 mov w3, w4 // Write to w3 

 svc 0  

Assemble it with -  

aarch64-linux-gnu-as -g -o showregister.o showregister.s 

aarch64-linux-gnu-gcc -static -o showregister showregister.o 

 

Copy the file to an ARM64 system. 

scp showregister pi5b:/home/alan/asm 

The program should now run with GDB as shown in Figure 9-1 
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Figure 9-1 Running a cross-compiled program with GDB 

 

The QEMU emulator supports ARM64 based virtual machines on X86  architectures. For further 

information consult  qemu.com or the  many resources found on the Internet.  The Ubuntu 

documentation describes this and can be found at 
https://documentation.ubuntu.com/server/how-to/virtualisation/arm64-vms-on-qemu/ 
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Summary of chapter 9 

• Cross compilation tools 

• Testing and executing 

• QEMU Virtualization  
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Exercises for chapter 9 

1. Using an X86 based platform, install the necessary tools to  cross compile an ARM64 

based program and then verify that ARM64 code runs successfully on an ARM64 platform 

2. Generate an ARM based VM running on X86 under QEMU.  



Index 

 

Index 

%%, 7-3 

%c, 7-3 

%d, 7-3 

%e, 7-3 

%f, 7-3 

%s, 7-3 

%u, 7-3 

%x, 7-3 

%X, 7-3 

(PSTATE, 2-5 

.data, 2-17 

.endm, 6-1 

.global, 2-7 

.include, 6-3 

.macro, 6-1 

.space, 3-10 

_start label, 2-7 

32-bit WZR, 2-4 

64-bit XZR, 2-4 

6800, 2-1 

8080, 2-1 

a Rapid Application Development, 1-1 

Acorn, 2-1 

Acorn computers, 2-1 

ADC, 4-13 

ADCS, 4-13 

ADD., 4-1 

addressing modes, 3-1 

ADDS, 4-10 

AND, 1-22 

ANDS, 4-41 

A-Profile, 2-2 

architecture, 2-3 

Arithmetic Shift Right, 4-29 

ARM Procedure Call Standard (PCS, 6-7 

ARM64, 2-1 

ARM64 Data Types, 4-1 

ASCII, 3-2 

asm, 7-3 

assemble, 1-2 

assembler directive, 2-7 

assembler template, 7-4 

B.CC/ B.LO, 5-4 

B.CS/B.HS, 5-4 

B.EQ, 5-4 

B.GE, 5-4 

B.GT, 5-4 

B.HI, 5-4 

B.LE, 5-4 

B.LS, 5-4 

B.LT, 5-4 

B.MI, 5-4 



Index 

 

Index 

B.NE, 5-4 

B.PL, 5-4 

B.VC, 5-4 

B.VS, 5-4 

Basic ASM, 7-3 

BBC Micro, 2-1 

BFI, 4-42 

BFM, 4-42 

BGT, 5-2 

biased exponent, 1-19 

BIC, 4-42 

binary, 1-4 

Binary Coded Decimal, 1-15 

bit, 1-4 

bitmask, 4-32 

Boolean variables, 1-23 

Branch with link (BL), 6-7 

British Broadcasting Corporation, 2-1 

Byte, 1-4 

call/return, 2-7 

callee, 6-6 

caller, 6-6 

Carry (C), 2-5 

cmp, 5-3 

compilers, 1-2 

coprocessor. See Neon 

CPSR, 4-10 

DAIF, 2-5 

Debian, 9-1 

debugger, 2-8, 3-5 

Disassembly, 2-12, 2-14, 2-17, 3-5, 3-8, 3-

13, 4-1, 4-2, 4-17, 4-19, 4-20, 4-21, 4-22, 4-

25, 4-26, 4-27, 4-30, 4-37, 4-40, 4-43, 5-2, 
6-2 

double-dabble, 1-16 

Doubleword, 4-1 

exception levels, 2-5 

executable, 2-8 

exit service call, 2-17 

exit system call, 2-7 

exponent, 1-18 

ext, 8-16 

Extended ASM, 7-3 

external, 7-2 

Firmware, 1-3 

flags, 2-5 

floating -point, 1-18 

floats, 8-4 

Fractions, 1-7 

frame pointer register, 6-7 

functions, 6-1 

gcc -save-temps, 7-5 

GDB, 3-1 

GDB TUI, 3-17 

gdbfrontend, 3-18 

gdbgui, 3-17 

Halfword, 4-1 



Index 

 

Index 

hardware, 1-3 

hexadecimal, 1-4 

IBM personal computer, 2-1 

IEEE 754, 8-1 

immediate value, 3-6 

immr, 4-34 

imms, 4-34 

infinity, 1-19 

info vector, 8-2 

instructions, 2-6 

Intel, 2-1 

lanes, 8-4 

Last in First out, 6-4 

ld1, 8-9 

ld2, 8-9 

ld3, 8-9 

ld4, 8-9 

LDR, 3-6 

ldur x4, [x1, #4], 3-9 

libraries, 6-6 

link, 2-8 

link register, 2-4, 6-7 

linked, 1-2 

linker, 1-2 

little-endian, 3-4 

Load and store, 3-1 

Logical Shift Left, 4-29 

Logical Shift Right, 4-29 

machine code, 1-1 

macros, 6-1 

make utility, 2-18 

makefile, 2-18 

mantissa, 1-18 

memory address, 2-6 

micro-architecture, 2-3 

MNEG, 4-26 

mnemonic, 1-1 

Motorola, 2-1 

mov, 2-7 

MOVK, 2-14 

MOVN, 2-15 

MOVZ, 2-13 

M-Profile, 2-2 

MRS, 5-3 

MSUB, 4-26 

MUL 

MADD, 4-16 

Negative (N), 2-5 

Neon, 8-4 

nested operations, 6-5 

nibbles, 1-15 

normalized, 1-21 

-nostartfiles, 7-8 

NOT, 1-23 

Not-a-Number, 1-19 

objdump, 2-13 



Index 

 

Index 

object code, 2-8 

object file, 2-18 

Offset. See Addressing Mode 

Opcode, 2-13 

OR, 1-23 

ORN, 4-41 

ORR, 4-36 

Overflow (V), 2-5 

packed BCD, 1-15 

Post-index. See Addressing Mode 

Pre-indexed. See Addressing Mode 

printf, 7-2 

privileged instructions, 2-7 

program counter, 2-4 

Program Counter, 6-6 

program counter relative addressing, 3-8 

Push and Pop, 6-4 

QEMU, 9-4 

Quadword, 4-1 

Raspberry Pi, 1-1, 2-2 

RISC, 2-1 

Rotate Right, 4-29 

rounding, 1-18 

R-Profile, 2-2 

Saved Program Status Register, 2-5 

scalar, 8-5 

SDIV, 4-28 

set theory, 1-23 

shift, 1-14 

shift/rotate, 4-29 

shifted offset, 2-14 

signed, 1-9 

significand, 1-18 

Simple. See Addressing Mode 

SMULH, 4-22 

SMULL, 4-21 

source file, 2-18 

stack, 6-4 

stack pointer, 6-4 

stdout, 2-17 

str, 3-11 

strace, 2-19 

STRB, 5-8 

SUB, 4-15 

SUBS, 5-3 

subtrahend, 1-12 

SXTB, 4-5 

SXTH, 4-7 

SXTW, 4-5 

syscalls, 2-7 

target file, 2-18 

tbl, 8-18 

trn1, 8-17 

trn2, 8-17 

tui reg float, 8-2 

Two’s complement, 1-12 



Index 

 

Index 

UDIV, 4-28 

umaddl, 4-21 

UMULH, 4-22 

UMULL, 4-21 

unsigned, 1-8 

using register indirect with offset 

addressing, 3-9 

UXTH, 4-6 

UXTW, 4-5 

uzp1, 8-16 

uzp2, 8-16 

vector registers, 7-8 

Word, 4-1 

write syscall, 2-17 

XOR, 1-23 

Z-80, 2-1 

Zero (Z), 2-5 

Zilog, 2-1 

zip1, 8-16 

zip2, 8-16 

 


