

This question paper contains 2 printed pages]

SA-75-2025

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. (Second Year) (Third Semester) EXAMINATION

APRIL/MAY, 2025

(New/CBCS Pattern)

ZOOLOGY

Paper VII

(Biochemistry)

(Wednesday, 23-4-2025)

Time: 2.00 p.m. to 4.00 p.m.

Time—Two Hours

Maximum Marks—40

Note: (i) Attempt all questions.

- (ii) Illustrate your answers with suitable labelled diagram wherever necessary.
- 1. Explain in detail classification of carbohydrates.

15

Or

(a) Describe in detail classification of enzymes.

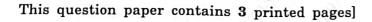
8

(b) Explain in detail lock and key model and induced fit hypothesis. 7

P.T.O.

X315Y9B1A40X315Y9B1A40X315Y9B1A40X315Y9B1A40

WT	1	(2)	SA-75-2025
2.	Expla	ain in detail glycolysis.	15
		Or Or	10 35 B
	(a)	Describe in detail β-oxidation pathway.	8
	(b)	Deamination and decarboxylation.	18 F. T.
3.	Atten	npt any two of the four (each of 5 marks):	3 10 mg
	(a)	Properties of lipids	18 E. E.
	(b)	Glycogenesis	Mr. M.
	(c)	Ketolysis	180 E.


Effect of temperature and pH on enzyme activity.

SA - 75 - 2025

(d)

2

X315Y9B1A40X315Y9B1A40X315Y9B1A40X315Y9B1A40

SA-94-2025

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION APRIL/MAY, 2025

MATHEMATICS

Paper XI

(Partial Differential Equations)

(Saturday, 26-4-2025)

Time: 2.00 p.m. to 4.00 p.m.

Time—Two Hours

Maximum Marks-40

Note: (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Explain the rules for finding the complementary function of the equation:

$$a_0 \frac{\partial^2 z}{\partial x^2} + a_1 \frac{\partial^2 z}{\partial x \partial y} + a_2 \frac{\partial^2 z}{\partial y^2} = 0.$$

Explain the rule for finding the particular integral of the partial differential equation:

$$f(D, D') = F(x, y)$$

when:

$$F(x, y) = x^m y^n.$$

P.T.O.

X315YE9AE16X315YE9AE16X315YE9AE16X315YE9AE16

Or

(a) Explain the working rule of Lagrange's linear equation is an equation of type:

$$P_n + Q_n = R$$

(b) Solve

7

$$p(1+q) = qz$$

2. Explain the Chartpit's method to solve partial differential equation :15

$$f(x, y, z, p, q) = 0$$

Or

(a) Obtain the solution of the wave equation:

Q

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

by D' Alembert's method.

(b) Solve the wave equation:

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

such that $y = P_0 \cos pt$, $(P_0 \text{ is constant})$ when x = l and y = 0 when x = 0.

3. Attempt any two of the following:

10

(a) Form a partial differential equation from:

$$x^2 + y^2 + (z - c)^2 = a^2$$

X315YE9AE16X315YE9AE16X315YE9AE16X315YE9AE16

(b) Solve:

$$(D - D' - 2) (D - D' - 3)z = e^{3x} - 2y$$

(c) Solve:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

which satisfies the conditions:

$$u(0, y) = u(l, y) = u(x, 0) = 0$$

and

$$u(x, a) = \sin \frac{n\pi x}{l}.$$

(d) Find the general solution of:

$$\frac{\partial^2 z}{\partial x^2} + \frac{3\partial^2 z}{\partial x \partial y} + \frac{2\partial^2 z}{\partial y^2} = x + y.$$

SA-94-2025

9

X315YE9AE16X315YE9AE16X315YE9AE16X315YE9AE16

This question paper contains 3 printed pages]

SA-89-2025

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION

APRIL/MAY, 2025

(CBCS/New Pattern)

MATHEMATICS

(Ordinary Differential Equations-VIII)

(Friday, 25-4-2025)

Time: 2.00 p.m. to 4.00 p.m.

Time-2 Hours

Maximum Marks-40

- N.B. :- (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Attempt (A) or (B: a, b) in question Nos. 1 and 2.
- 1. (A) Define linear differential equation with example and explain method to solve the linear equation of the first order is $\frac{dy}{dx} + Py = Q$, where P and Q are functions of x or constant and $\cos^2 x \frac{dy}{dx} + y = \tan x.15$

Or

(B) (a) Define Clairaut's equation and solve it.

8

(b) Solve:

$$(x^2 - 4xy - 2y^2), dx + (y^2 - 4xy - 2x^2) dy = 0.$$

7

P.T.O.

X315Y2ECCC3X315Y2ECCC3X315Y2ECCC3X315Y2ECCC3

(A) Explain the method for finding particular integral corresponding to a term of the form sin ax or cos ax in the second member.

Solve:

$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = \cos 2x.$$

Or

(B) (a) Explain the method for solving:

8

$$\frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + P_n y = 0$$

where the coefficients P_1 , P_2 ,, P_n are constants and auxiliary equation having equal roots.

(b) Solve:

7

$$\frac{d^2y}{dx^2} - y = 2 + 5x.$$

3. Attempt any two out of the four the following:

5 marks each

(a) Explain the method of solving:

$$\frac{dy}{dx} = \frac{f_1(x, y)}{f_2(x, y)}$$

where f_1 , f_2 are expressions homogeneous and of the same degree in x and y.

X315Y2ECCC3X315Y2ECCC3X315Y2ECCC3X315Y2ECCC3

WT

(3)

SA-89-2025

(b) Solve:

$$y=(1+p)x+p^2.$$

(c) Solve:

$$\frac{d^3y}{dx^3} - \frac{3d^2y}{dx^2} + 4y = 0.$$

(d) Solve:

$$\frac{d^2y}{dx^2} + y = xe^{2x}.$$

SA-89-2025

3

X315Y2ECCC3X315Y2ECCC3X315Y2ECCC3X315Y2ECCC3

This question paper contains 3 printed pages]

SA-74-2025

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION APRIL/MAY, 2025

(CBCS/New Pattern)

MATHEMATICS

Paper VII

(Group Theory)

(Wednesday, 23-4-2025)

Time: 2.00 p.m. to 4.00 p.m.

Time—Two Hours

Maximum Marks—40

Note: (i) Attempt all questions.

- (ii) Illustrate your answer with suitably labelled diagrams wherever necessary.
- (iii) Figures to the right indicate full marks.
- If A be a non-empty set and let R be an equivalence relation in A. Let
 a and b be arbitrary elements in A, then prove that:
 - (i) $a \in [a]$
 - (ii) If $b \in [a]$, then [b] = [a]
 - (iii) [a] = [b] iff $(a, b) \in \mathbb{R}$
 - (iv) Either [a] = [b] or $[a] \wedge [b] = \phi$.

P.T.O.

X315YD161DCX315YD161DCX315YD161DCX315YD161DC

Or

(a) State and prove Lagrange's theorem.

8

(b) Prove that every group of prime order is cyclic.

7

Prove that the set of residue classes modulo m is an abelian group of order
 m with respect to addition of residue classes.

100

Or

(a) Suppose G is a group and N is a normal subgroup of G. Let f be a mapping from G to G N defined by:

$$f(x) = N.x \ \forall \ x \in G$$

then prove that f is a homomorphism of G onto G|N and kernel of f is N.

- (b) Prove that intersection of any collection of normal subgroup is itself a normal subgroup.
- 3. Attempt any two of the following:

5 each

- (a) If H is any subgroup of G and $h \in H$, then prove that Hh = H = hH.
- (b) Let a be a fixed element of a group G, then prove that the mapping $f_a:G\to G$ defined by:

$$f_a(x) = a^{-1} x a \ \forall \ x \in G$$

is an automorphism of G.

X315YD161DCX315YD161DCX315YD161DCX315YD161DC

WT

SA - 74 - 2025

- (c) If I be the set of all integers and R be a relation in I defined as xR_y holds iff x y is divisible by 5, x, $y \in I$, then prove that R is an equivalence relation.
- (d) Prepare the composition table for the group:

$$G = \{0, 1, 2, 3, 4\}$$

with respect to addition modulo 5 and write down the inverse of each element of G.

SA-74-2025

3

X315YD161DCX315YD161DCX315YD161DCX315YD161DC

This question paper contains 2 printed pages]

SA-325-2025

FACULTY OF SCIENCE & TECHNOLOGY

B.Sc. (Second Year) (Third Semester) EXAMINATION

APRIL/MAY, 2025

(CBCS/New Pattern)

COMPUTER SCIENCE

Paper VII

(Programming in C++)

(Thursday, 8-5-2025)

Time: 2.00 p.m. to 4.00 p.m.

Time-2 Hours

Maximum Marks-40

N.B. :- (i) Attempt all questions.

- (ii) Assume suitable data, if necessary.
- (iii) Draw well labelled diagram, wherever necessary.
- What is OOPs? Explain principles of OPPs with advantages and disadvantages
 of POP and OOP.

Or

- (a) Explain the looping statement in C++ with example.
 - Write a program on factorial number of given integer number. 7
 - 200

P.T.O.

X315Y13FB47X315Y13FB47X315Y13FB47X315Y13FB47

WT		(2) SA—325—	2025
2.	What	is Inheritance ? Explain different types of inheritance	with
	exam	ple.	15
		or A	
	(a)	Write a program on static data member.	-8
	(b)	Write a program on Friend function.	7
3.	Write	short notes on (any two):	10
	(a)	Object oriented language	
	(b)	Operator in C++	
	(c)	Function overloading	
	(d)	Destructor.	

SA-325-2025

2

X315Y13FB47X315Y13FB47X315Y13FB47X315Y13FB47

SA-46-2025

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. (Second Year) (Third Semester) EXAMINATION

MARCH/APRIL, 2025

(New/CBCS Pattern)

BOTANY

Paper-VII

(Plant Physiology and Biochemistry)

(Thursday, 17-4-2025)	Time: 2.00 p.m. to 4.00 p.m.	
Time-2 Hours	Maximum Marks—40	
N.B. :- (i) Attempt all questions.		
(ii) Illustrate your answer with sui	table labelled diagrams wherever	
necessary.		
1. What is ascent of sap ? Write a note on	transpiration pull theory. 15	
or or	4	
Describe in brief :	Sept.	
(a) Munch-Mass flow hypothesis	8	
(b) Ion Exchange Theory.	7	
	P.T.O.	

X315YAD39E4X315YAD39E4X315YAD39E4X315YAD39E4

WT (2) SA-46-2025

2. Define seed dormancy. Explain in detail different methods of breaking seed dormancy.

15

Or

Describe in brief:

(a) Biological functions of terpenoids

(b) Biological functions of proteins

7

3. Write short notes on (any two):

(a) Diffusion

(b) Foliar nutrition

(c) Long day plants

(d) Secondary structure of proteins.

SA-46-2025

2

X315YAD39E4X315YAD39E4X315YAD39E4X315YAD39E4

