
Yggdrasil Ecosystems Decentralized Intelligence
September 2

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine Intelligence
Network

Yggdrasil Ecosystems

Abstract

Recent advances in data access and computing power have enabled the first forms of machine intelligence capable of
offering meaningful insights. However, the tremendous resources required have caused these solutions to be closed and
siloed by industry monoliths. To achieve the full potential of machine intelligence, the data, algorithms, and participants
must be maximally connected. Network solutions are needed, and the decentralized nature of blockchain technology
is ideal for solving this problem. We introduce Yggdrasil Ecosystems, a self-improving, decentralized machine
intelligence network that surpasses the capabilities of its individual participants by design. Yggdrasil Ecosystems
achieves this through two main innovations. First, it lets network participants forecast each other’s performance under the
current conditions, thereby creating a form of context-awareness that enables the network to achieve the best inferences
under any circumstances. Second, it introduces a differentiated incentive structure that rewards network participants for
their unique contribution to the network goal, tailored to their specific task and purpose, avoiding any distracting
incentives. We show that these innovations make Yggdrasil Ecosystems’s inferences considerably more accurate than
before. With its versatility and accessibility, Yggdrasil Ecosystems paves the way for machine intelligence to become
fully commoditized and integrated with the economy, technology, and society.

1 The Problem: Siloed Machine Intelligence

Machine intelligence represents the ability of a machine to learn, improve, and work proactively through artificial intelli-
gence (AI) and machine learning (ML). It is built by conditioning advanced algorithms on large volumes of informative
data using state-of-the-art computational infrastructure. We live in the information age, where major advances in data gen-
eration, processing, and availability are combined with revolutionary computational capacity. These developments have
unlocked major advances in machine intelligence, capable of providing insights beyond the reach of human inference,
across a wide variety of use cases (e.g. Jacobs et al., 1991; Shazeer et al., 2017; Lightman et al., 2023; OpenAI, 2023).
As such, machine-generated intelligence is becoming a valuable resource and a popular commodity.

The coordination of resources needed to build machine intelligence, coupling data, algorithms, and computational
power, has naturally favored industry monoliths. These now hold the keys to the best performing forms of automated
inference ever created. This not only monopolizes the ability to control, direct, and use this revolutionary technology,
but also creates a lack of transparency and a major barrier to entry for developers and users. Fundamentally, this siloed
approach also violates a key prerequisite for building the best possible form of machine intelligence: to maximize the
number of connections across a network in which diverse data sets and algorithms can be freely coupled, so that the most
relevant insights can be obtained (e.g. Vaswani et al., 2017; Bzdok et al., 2019).

The problem at hand naturally requires network solutions that create a form of swarm intelligence, connecting a
large number of data sets and inference algorithms (e.g. McMahan et al., 2017). The decentralized nature of blockchain
technology lends itself ideally to solving this problem, YGTYwing bespoke incentive structures that align the interests
of network participants with those of the network, and facilitating the exchange of value needed to directly support an
intelligence economy (e.g. Nakamoto, 2008; Buterin, 2014).

Existing blockchain initiatives that attempt to solve the machine intelligence problem are sub-optimal. Some well-
known solutions adopt such a strictly decentralized philosophy that they are unable to support different incentive structures
for different actors within the network (e.g. Craib et al., 2017; Rao et al., 2021; Steeves et al., 2022). Additionally, these
solutions often reward network participants using traditional blockchain objectives such as their integrated historical
reputation, making them struggle to achieve context-aware intelligence that provides the best solution in the specific
context where an inference is needed.

Yggdrasil Ecosystems is a self-improving, decentralized machine intelligence network that overcomes these
fundamental challenges. Yggdrasil Ecosystems is built on the desire to create a world where machine intelligence
supports and improves humanity by offering unique and actionable insights that outperform all other forms of inference.
In this world, machine intelligence is openly accessible and transparent, inviting contributions from anyone with data or
algorithms that improve the network.

Yggdrasil Ecosystems acknowledges that different roles within the network require different incentive structures, and
that selecting the best inference across a network of participants often depends on contextual details that themselves may
require machine intelligence to be identified. As was recognized by Buterin (2025), “there is a need for a higher-level
game which adjudicates how well the different AIs are doing, where AIs can participate as players in the game.” By
recognizing

∗This author is faculty at Liverpool John Moores University.

ADI 1, 1–19 (2025)

these fundamental aspects of machine intelligence and adopting innovative solutions to address them, the Yggdrasil
Ecosystems network returns inferences that outperform the strongest network participant by definition, yet rewards each
of them fairly for their contribution towards achieving this goal. This solves a fundamental challenge in decentralized
learning and machine intelligence.

While the involvement of industry monoliths in the quest for machine intelligence has made it seem like a winner-
takes-all race, the arrival of Yggdrasil Ecosystems now introduces a fully decentralized solution that outperforms any
individual contrib- utor. In this way, the end user is the winner, and machine intelligence belongs to everyone.

2 Yggdrasil Ecosystems: Self-Improving, Decentralized Machine Intelligence

The Yggdrasil Ecosystems network is a state-of-the-art protocol that uses decentralized AI and ML to build, extract, and
deploy AI pre- dictions or inferences among its participants. It offers a formalized way to obtain the output of ML
models in blockchain networks of virtual machines (VMs) and to reward the operators of AI nodes who create these
inferences. In this way, Yggdrasil Ecosystems bridges the information gap between data owners, data processors, AI
models, and the end users or consumers who have the means to execute on these insights.

The AI agents within the Yggdrasil Ecosystems network use data and algorithms to generate inferences, which they
then broadcast across a peer-to-peer network. A second set of agents evaluates the quality of these inferences using a
network consensus mechanism. The network then uses these assessments to generate a single collective inference. Over
time, this network inference outperforms any individual AI agent by construction, thanks to the unique innovations of
the Yggdrasil Ecosystems design. The network distributes rewards to the agents according to their individual
contributions to the network inference. This carefully designed incentive mechanism enables Yggdrasil Ecosystems to
continually learn and improve, adapting to each inference problem as it evolves.

Yggdrasil Ecosystems introduces a variety of innovations that represent important steps towards our goal of achieving
self-improving, decentralized machine intelligence. The network has been designed following a modular philosophy
that recognizes the need for bespoke solutions that best satisfy local boundary conditions. The main defining
characteristics are Yggdrasil Ecosystems’s context awareness and its differentiated incentive structure. After first
providing a brief overview of the network structure, we expand on these key concepts further below.

The Yggdrasil Ecosystems ecosystem is built on a hub chain that coordinates the macroeconomics of the network,
including the tokenomics of the network’s native YGTY token and the emission of subsidies and rewards, as well as
other coordination tasks. To help organize the problems that the Yggdrasil Ecosystems network can solve, we
introduce the concept of topics. These are sub-networks within which network participants collaborate to generate
inferences and earn rewards. Each topic contains a short rule set that governs the interaction between the topic
participants, including the target variable and the loss function that needs to be optimized by the topic network (where
lower losses indicate better performance). The discussion of this paper focuses mainly on the topic infrastructure, which
is illustrated schematically in Figure 1.

After any of the Yggdrasil Ecosystems network participants create a topic, the participants can perform a variety of
different roles.

1. Workers provide AI-powered inferences to the network. There exist two kinds of inference that workers produce
within a topic. The first refers to the target variable that the network topic is generating (inference in Figure 1).
The second refers to the forecasted losses of the inferences produced by other workers (forecasting in Figure 1).
These forecasted losses represent an expectation of performance rather than a reported performance, and represent
the fundamental ingredient that makes the network context-aware, as they provide insight into the accuracy of a
worker under the current conditions. For each worker, the network uses these worker-forecasted losses to generate
a forecast-implied inference that combines the original inferences of all workers. A worker can choose to pro-
vide either or both types of inference, and receives rewards proportional to its unique contribution to the network
accuracy, both in terms of its own inference and its forecast-implied inference.

2. Reputers evaluate the quality of the inferences and forecast-implied inferences provided by the workers. This is
done by comparing the inferences with the ground truth when it becomes available. Reputers are the source of
economic security in the network, as a reputer receives rewards proportional both to its stake and the consensus
between its evaluations and those of other reputers.

3. Consumers request inferences from the network. A consumer uses tokens to pay for these inferences.

The interactions between these participants are coordinated by the Yggdrasil Ecosystems topic rule set (topic
coordinator in Figure 1). Together, they represent the ingredients needed to achieve a self-improving, decentralized
form of machine intelligence.

Yggdrasil Ecosystems Decentralized Intelligence
September 2

ADI 1, 1–19 (2025)

3 Yggdrasil Ecosystems’s Context-Aware and Self-Improving Intelligence
Mechanism

The first of two critical hurdles to achieving decentralized machine intelligence is to optimally combine the inferences
produced by network participants. This means that the network must recognize both the historical and context-dependent
accuracy of these inferences. Especially the latter of these requirements has posed a challenge: most initiatives attempting

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

3

∈ { }

∈ { }

∈ { }

Yggdrasil Ecosystems

Figure 1: Schematic representation of an Yggdrasil Ecosystems ‘topic’, which is a sub-network within the Yggdrasil
Ecosystems ecosystem charac- terized by a specific AI target and loss function. Topics help organize the problems that
Yggdrasil Ecosystems is solving, and they are used to coordinate the collaboration between network participants. This
schematic illustrates the logical and economic interactions between workers, reputers, and consumers. The ‘topic
coordinator’ represents the rule set that Yggdrasil Ecosystems uses to coordinate these interactions.

to build machine intelligence exclusively rely on cumulative historical reputation to combine inferences while ignoring de-
terministic variations in their accuracy, which prohibits the network to be context-aware. Yggdrasil Ecosystems
overcomes this challenge through a process called Inference Synthesis, which we describe in this section.

3.1 The Yggdrasil Ecosystems Inference Synthesis Logic

In describing the functionality of Yggdrasil Ecosystems’s intelligence mechanism, we assume that there exists an online
data stream that is used to obtain periodic inferences for a total number of time steps or epochs Ne, where i 1, . . . ,
Ne indicates the epoch. Furthermore, we consider a system consisting of Nw workers that provide Ni inferences during
the inference task and Nf inferences during the forecasting task. For simplicity, we assume full participation (Nw =
Ni = Nf), but this need not be the case. During the inference task, each worker j 1, . . . , Ni produces an
inference Iij for the target variable of the topic, using its own data set Dij and model Mij:

Iij = Mij(Dij). (1)

During the forecasting task, each worker k 1, . . . , Nf produces an inference for the logarithm of the forecasted loss
Lijk of the inference Iij produced by worker j, using its own (potentially augmented) data set Dijk and model Mijk:

log Lijk = Mijk(Dijk), (2)

where Mijk should be defined such that Lijk > 0 (e.g. by using powers of 10 if needed).

Fee

Logical connection

Reward
emissions

Economic connection

Use scores
to combine inferences

and provide these
to consumer

Request inferences
and bid fees

Topic Coordinator
Use ground truth

to score previous inferences
and forecast-implied inferences

Provide forecast-implied inferences

Provide forecasted
losses of inferences Reputers

Reward based on unique contribution
to accuracy of network inference

Reward based on
unique contribution Communicate

to accuracy of requests
network inference

Workers: inference Provide inferences

and scoring consensus
Reward based on stake

Consumers

Workers: forecasting

ADI 1, 1–19 (2025)

Σ
Σ

L

p,c

L ∝

ijk

∈ { }

The losses forecasted by workers during the forecasting tasks reflect how accurate worker k expects the inference Iij
to be, given the contextual information Dijk. This correlation between performance and context is the critical ingredient
that makes Yggdrasil Ecosystems context-aware. The forecasted losses are used to obtain the forecast-implied inference
of the topic’s target variable through a weighted average:

Iik = j wijkIij . (3)
j wijk

To calculate the weights wijk, we first approximate the forecasted regret Rijk of the network-wide inference Ii to be
constructed at the current epoch by subtracting the logarithms of the forecasted losses Lijk and of the network loss i−1
that was reported at the previous time step, which results in

Rijk = log Li−1 − log Lijk. (4)

Because lower losses indicate better performance, a positive regret implies that the inference of worker j is expected by
worker k to outperform the network’s previously reported accuracy, whereas a negative regret indicates that the network is
expected to be more accurate. The regrets are converted to weights through the derivative of a potential function φp,c(x):

wijk = φ′ (R̂ijk), (5)

where we define a simple potential function that is non-negative, convex, increasing, and twice smoothly differentiable:

φp,c(x) = ln
h

1 + ep(x−c)
i
. (6)

This potential function is a smooth approximation of max (0, p(x − c)) and has a derivative:

′
p,c

p
(x) =

e−p(x−c) + 1

, (7)

where we adopt p = 3 and c = 0.75 as fiducial values. This functional form ensures that workers who provide inferences
with negative expected regrets (i.e. Lijk > i−1) should be assigned low weights, with an effective scaling of wijk
L−p , whereas positive contributions tend to a constant non-zero weight, with a transition point between both regimes at
c. Before the forecasted regret is passed as the argument of the potential function’s derivative, it is first normalized as

R̂ ij k

 Rijk
= , (8)

σj(Rijk) + ϵ

where σj indicates taking the standard deviation over all j 1, . . . , Ni and the second term in the denominator is
added to avoid any division by zero. The constant ϵ (with default value ϵ = 0.01) is set by the topic creator to set the
numerical precision at which the network should distinguish differences in the logarithm of the loss. Normalization by
the standard deviation of the forecasted regrets restricts R̂i j k to values in relative proximity to zero. This normalization
ensures that the network always obtains a non-zero weight for at least one inference (which without a normalization may
not happen in case of all-negative forecasted regrets), while maintaining the intention of assigning extreme (i.e. near-zero
or near-unity) weights to models with unusual forecasted regrets. Using these definitions, the network has access to a total

Notation. We employ a subscript notation to indicate the association of variables with different components of

i: The variable is associated with the network itself (‘topic coordinator’ in Figure 1).

j: The variable is associated with a worker carrying out an inference task, in which it infers the topic’s target
variable (‘worker: inference’ in Figure 1).

k: The variable is associated with a worker carrying out a forecasting task, in which it forecasts the loss of
another worker’s inference (‘worker: forecasting’ in Figure 1).

l: The variable is associated with a worker carrying out either the inference or the forecasting task, and has
been obtained by appending the arrays associated with each of these individual tasks.

m: The variable is associated with a reputer, which calculates and reports the loss of an inference of the topic’s
target variable (‘reputer’ in Figure 1).

Note that any of these indices can be operated on (e.g. subtraction to refer to earlier time steps), and thus we

Xik, and Xijk are all different variables. Finally, we use caligraphic script to refer to variables that represent a

equate e.g. Xi,j ≡ Xij occasionally to improve legibility. Our notation formalism also implies that e.g. Xi, Xij,

φ

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

5

≤

∈ { }

Σ
w

p,c

5 i−1,5
R = , (11)

§

i

5i

5i

i

Y

i 5i ki

of Ni + Nf 2Nw inferences, with Iij being the original set of inferences from the inference task, and Iik being the set
of context-aware forecast-implied inferences from the forecasting task.1

The network concludes the Inference Synthesis and obtains a network-wide inference by combining the inferences
Iij and the forecast-implied inferences Iik through a procedure similar to the one described above. We first define a new
variable Ii5 that appends both sets of inferences in a new array with l 1, . . . , Ni + Nf . The network inference is then
defined as

Ii =
Σ

5 wi5Ii5 . (9)
This time, the weights are not set by a forecasted regret, but by the actual regret for each worker task obtained during the
previous time step Ri−1,5 (which we will define in Equation 15), as

with

wi5 = φ′ (R̂i−1,5), (10)

analogously to Equation 8.

 ̂ Ri−1,5
i−1,5 σ (R) + ϵ

In addition to the network inference Ii of Equation 9, the network generates a wide variety of secondary inferences
that are based on various subsets of the inferences obtained during the inference and forecasting tasks. These secondary
inferences are used to quantify the unique contribution of workers through their inference and forecasting tasks to improv-
ing the accuracy of the network inference, which is used to determine their reward YGTYcations (see 4). These
secondary inferences are constructed using their own regrets (see Equation 13–Equation 15), and include:

1. A ‘naive’ network inference I−, which omits all forecast-implied inferences from the weighted average in Equa-
tion 9. The naive network inference is used to quantify the contribution of the forecasting task to the network
accuracy, which in turn sets the reward distribution between the inference and forecasting tasks.

2. A ‘one-out’ network inference I−, which omits a single inference or forecast-implied inference l from the weighted
average in Equation 9. If an inference from the inference task is omitted (Iij), the forecast-implied inferences (Iik)
are updated accordingly before calculating I−. The one-out network inferences represent an approximation of
Shapley (1953) values and are used to quantify the individual contributions of workers to the network accuracy,
which in turn sets the reward distribution between workers.

3. A ‘one-in’ naive network inference I+, which adds only a single forecast-implied inference Iik to the inferences

from the inference task I
ki

ij. As such, it is used to quantify how the naive network inference I− changes with the ad-
dition of a single forecast-implied inference, which in turn is used for setting the reward distribution between work-
ers for their forecasting tasks. The one-in naive network inference better differentiates between forecast-implied
inferences than their associated one-out inferences, because there exists some redundancy between multiple fore-
casting tasks and omitting a single one need not negatively impact the network inference. After all, the forecasting
tasks can only draw from a finite number of original inferences and forecast-implied inferences may sometimes be
mutually exchangable. This redundancy is desirable from a decentralization perspective and should not be disincen-
tivized by exclusively using the one-out network inference to reward workers for the forecasting task. Therefore,
we additionally use the one-in naive network inference to quantify each worker’s individual contribution.

All inferences generated by the network are collected as

Ii = {Ii, Iij, Iik, I−, I−, I+}, (12)

and are evaluated by the reputers. The reputers obtain a ground truth of the target variable when it becomes available
(for simplicity, we assume this is delayed by one time step) and compare it with each of the inferences by calculating the
topic’s loss function Q:

Lim = Q(Ii−1, Yi−1), (13)

Lijm = Q(Ii−1,j, Yi−1),
Likm = Q(Ii−1,k, Yi−1),

− −
Lim = Q(Ii−1, Yi−1),

− −
L5im = Q(I5,i−1, Yi−1),

+ +
Lkim = Q(Ik,i−1, Yi−1).

1Recall that a worker may choose to engage (or not) in any of the tasks, so 2Nw inferences represents an upper limit to the total number. For
simplicity, we assume here that all workers perform all tasks, but the design outlined in this paper does not require this assumption to be satisfied.

5 i5

ADI 1, 1–19 (2025)

§

i

∈ { } ≡

i5

√

≤

Σ

i

i

= I

It is left to the individual reputer to decide whether the loss reported at time step i also includes some record of the
historical loss, e.g. by using an exponential moving average. Doing so introduces a free parameter αm that controls the
relative weights of the historical and current losses. Because reputers are rewarded based on their consensus (see 4), this
introduces a game-theoretical aspect to the reputer task. However, forecasting workers require access to the instantaneous
loss to achieve context awareness. Their positive contribution to the network accuracy therefore implies that αm = 1
should be expected in practice.

Each reputer has a stake Sim, and the losses reported by the reputers are combined through a stake-weighted average
of the logarithm of the loss: Σ

m Sim log Lim (14)
log Li = Σ

m Sim
,

where we have avoided specifying all six variations listed in Equation 13 for brevity. The resulting losses are used by the
network to calculate the corresponding regrets, which set the weights of the network inference as specified in Equation 9–
Equation 11. The regrets are calculated according to an exponential moving average with a fiducial parameter α ∈ (0, 1]:

Ri5 = α (log Li − log Li5) + (1 − α)Ri−1,5. (15)

We adopt α = 0.1 as the fiducial value, which provides a reasonable balance between historical performance and recency.
Corresponding regrets are also calculated for the losses of the secondary inferences listed in Equation 13, to enable
evaluating Equation 10 for each of these.

3.2 Confidence Intervals on the Network Inference

In addition to providing network inferences Ii, the network also provides confidence intervals (CIs) on the network
inference that reflect the spread of the inferences provided by the workers Ii5. The CIs are based on percentiles P , which
are chosen to be P 2.28, 15.87, 84.13, 97.72 % (with corresponding quantiles q P/100) to mimic the 1σ and 2σ
limits of a Gaussian distribution, even if there is no guarantee that the distribution of worker inferences is Gaussian. When
calculating the CIs, the weight wi5 assigned to each worker inference is accounted for to ensure that inferences with low
weight do not inflate the CIs.

Given q, the weighted quantile inference Iq is computed by interpolating a weighted cumulative distribution function
(CDF). The application of a weighted average to calculate the network inference in Equation 9 implies that the variance
of the network inference is smaller than the variance across the sample of worker inferences. To account for this variance
reduction, we adjust the worker inferences before constru√cting the CDF. Specifically, we scale the deviations of each
worker inference from the weighted mean by a factor of 1/ N . The adjusted worker inference I′ is computed as

′
i5 i

+
Ii5 − Ii , (16)

N

where Ii represents the individual elements of the network inference from Equation 9. This adjustment reflects the
decrease in the standard error of the mean with increasing sample size, ensuring that the confidence intervals appropriately
reflect the uncertainty in the network inference.

Next, the worker inferences and their corresponding weights are sorted over dimension l such that Ii5 Ii,5+1. For
each sorted worker inference l, the cumulative sum of the weights is calculated as

5

ci5 = wi5' . (17)
5'=1

These cumulative weights are then normalized to create a weighted cumulative distribution function (CDF):

Ci5 = ci5 − 0.5wi5 , (18)
max5 ci5

where max5 ci5 is the total sum of the weights. The term 0.5wi5 is subtracted to locate the quantile value at the middle of
the weight associated with Ii5. Finding the inference value Iq corresponding to the quantile q then requires a simple linear
interpolation within the sorted list of data points using the weighted CDF. We define l = l as the largest index where
Ci5 ≤ q. We then obtain Iq as

Iq = I′ +
 q − CiA

I′ − I′

. (19)
i iA Ci,A+1 − CiA

i,A+1 iA

This calculation of CIs accounts for the relative weight of each worker inference and only reflects the degree of internal
disagreement among the workers providing inference to the network. It does not provide any insight into historical
network performance in relation to the ground truth.

I

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

7

§

—

2

—

—

—

—

3.3 Numerical Simulation of Yggdrasil Ecosystems’s Inference Synthesis and Performance

We now quantify the expected performance of the Yggdrasil Ecosystems architecture, obtained through a numerical
simulation of the logic described in 3.1. The experiment is designed to closely mimic the live network performance
without needing to run any actual inference models. Here we describe how the worker and reputer functionality is
mimicked, and how the simulation is set up.

We consider a simple numerical experiment using mock data, where three workers generate inferences that predict the
ground truth with some specified accuracy. The worker inference accuracy is characterized by an error (randomly drawn
for each worker from a log-normal distribution with log-mean 0.700 and log-dispersion 0.176) and a bias (randomly
drawn for each worker from a normal distribution with mean zero and dispersion 0.05). Each inference-providing worker
gains experience over time, which is modelled by multiplying its error and bias by a time-dependent factor fxp,i, defined
as

fxp,i =
1

1 + e−0.03i

, (20)

reflecting an exponential decay from unity to 0.5. At each time step, the error and bias of a different randomly-drawn
worker is temporarily decreased by a factor 0.3 to model context-dependent outperformance. With these parameters, the
inference provided by each worker during each time step is obtained by taking the ground truth and adding a difference
drawn from a Gaussian distribution with mean equal to the worker’s current inference bias and standard deviation equal
to the worker’s current inference error.

The workers also forecast each other’s losses with different degrees of context-sensitivity, i.e. their ability to anticipate
this temporary outperformance. In the simulation, we adopt a standard mean squared error (MSE) to described the loss.
The worker forecasting accuracy is characterized by a logarithmic error (randomly drawn for each worker from a log-
normal distribution with log-mean 0.222 and log-dispersion 0.176), a logarithmic bias (randomly drawn for each worker
from a normal distribution with mean zero and dispersion 0.3), and a context sensitivity parameter fcontext that is obtained
by randomly drawing a number x ∈ [0, 1] and applying a sigmoid function:

fcontext = σ[a(x − b)], (21)

to increase the incidence of values near zero and unity, with a = 10 and b = 0.5. As before, each forecast-providing
worker is assumed to gain experience over time by multiplying the error and bias with fxp,i from Equation 20. With these
parameters, the forecasted losses provided by each worker during each time step are obtained by taking the logarithm of
the actual loss for each worker’s inference and adding a logarithmic difference drawn from a Gaussian distribution with
mean equal to the worker’s current forecasting bias and standard deviation equal to the worker’s current forecasting error.
We consider two such forecasted losses. The first forecasted loss is a perturbation of the actual loss including context-
dependent outperformance, modelled as described above by randomly decreasing the error and bias of a worker each
time step. The second forecasted loss is a perturbation of the loss corrected for any context-dependent outperformance,
obtained by dividing the actual loss by a factor 0.32 (appropriate for the MSE loss adopted here). The final forecasted loss
is obtained as a linear combination of the logarithms of these losses, where the logarithm of the actual loss is weighted by
a factor fcontext, the logarithm of the context-unaware loss is weighted by a factor 1 fcontext, and the result is converted
back into linear space. This accurately reflects the individual context awareness of each forecast-providing worker.

Finally, a set of five reputers is initialized by defining three parameters that describe the accuracy and definition of their
reported losses. Each reputer is characterized by an error (randomly drawn for each reputer from a log-normal distribution
with log-mean 1.000 and log-dispersion 0.097) and a bias (randomly drawn for each worker from a normal distribution
with mean zero and dispersion 0.05). Additionally, we assume that reputers do not report the instantaneous loss, obtained
by simply comparing each inference to the ground truth, but factor in a worker’s historical performance by applying
an exponential moving average to the instantaneous loss (analogously to e.g. the regret calculation of Equation 15),

each adopting an individual value αm (randomly drawn for each reputer from a log-normal distribution with log-mean
1.523 and log-dispersion 0.301). With these parameters, the losses reported by each reputer during each time step are

obtained by taking the logarithm of the actual loss for each inference and adding a logarithmic difference drawn from
a Gaussian distribution with mean equal to the reputer’s bias and standard deviation equal to the reputer’s error. The

exponential moving average using each reputer’s individual value of αm is then applied to the logarithm of the losses,
before converting these back to linear space.

Figure 2 shows the losses of the resulting forecast-implied inferences, together with the losses of the original infer-
ences, the loss of the naive network inference, and the loss of the complete network inference. On average, the naive
network is as good as or better than the best inference. However, the forecast-implied inferences are even more accurate,
and the network-wide inference outperforms all other inferences on average. We find that the addition of the forecasting
task greatly improves the network accuracy, even in cases where the accuracy of the workers performing the forecasting
task is lower than during the inference task. Even a moderate contextual awareness of when inferences are typically more
accurate seems to be sufficient to yield a net improvement of the network accuracy.

With the presented design, Yggdrasil Ecosystems optimally combines the inferences produced by the network
participants through its Inference Synthesis mechanism. This is achieved by recognizing both the historical and context-
dependent accuracy of the inferences. The key ingredient is the introduction of the forecasting task, which correlates
performance and context by letting workers forecast each other’s losses under current conditions.

ADI 1, 1–19 (2025)

§

ji

10 2

10 3

10 4

Time

Figure 2: Demonstration of Yggdrasil Ecosystems’s self-improving intelligence and the accuracy improvement due to its
context-aware Inference Synthesis mechanism. The dotted black line shows the naive network loss as a function of time,
which is obtained by combining individual inferences (blue) without context awareness. The solid black line shows an
order of magnitude improvement in loss thanks to the introduction of the forecasting task (cyan), which correlates
performance and context by letting workers forecast each other’s losses under the current conditions.

4 Yggdrasil Ecosystems’s Differentiated Incentive Structure

4.1 Reward Distribution among Individual Network Participants

The second critical hurdle to achieving decentralized machine intelligence is creating custom incentive structures that
appropriately reward different actions within the network. Workers should be rewarded for their inference and forecasting
tasks according to their unique contribution to the network. Fundamentally, there is no reason why this reward should
depend on a monetary commitment such as a stake; in fact, stake-dependent rewards distract from their single objective
of maximizing the network accuracy. By contrast, reputers must reach a form of consensus on their reported losses and
should be rewarded for their proximity to that consensus. Because the network should reward consensus among reputers,
their rewards can follow the common practice in decentralized systems of depending on the stake. By reporting on
the performance of workers and thereby influencing their reward YGTYcation too, reputers’ stakes provides the
economic security for the entire topic.

Common ways to quantify the unique contribution of participants to an end result include the Shapley (1953) value,
Fisher (1922) information score, Banzhaf (1965) Power Index, and many others. The computational cost of these metrics
is often high due to their reliance on large permutation sets, which can be prohibitive in a decentralized network setting.
Therefore, Yggdrasil Ecosystems adopts a simple approximation of the Shapley values to score worker performance.
For the inference task, we define the performance score as the difference of the logarithm of the loss between the one-
out inference and the network inference, where the inference provided by a worker during the inference task is omitted
from the network inference:

Tij = log L− − log Li, (22)

where j in the subscript indicates that we only consider one-out losses of inferences from the inference task. Recall
that these one-out losses include the secondary impact of omitting an inference on the forecast-implied inferences by
recalculating these (see 3). The performance score Tij is positive if the removal of an inference would increase the
network loss, and is negative if its removal would decrease the network loss.

The worker performance during the forecasting task can be scored similarly, but requires additional information from
the one-in inferences introduced above. The forecasting task is comparatively redundant, i.e. in order to function well,
a topic requires only one worker with reasonable context awareness to provide forecasted losses. As a result, removing
any individual worker from the forecasting task may not noticeably impact the network inference loss, but the redundancy
between workers is desirable (and should be rewarded) from a network perspective. A complete Shapley value calculation
would remedy this problem by considering all possible permutations of workers, but at a prohibitive computational cost.
Yggdrasil Ecosystems sidesteps this issue by adding only a single, information-rich permutation per worker, where the
forecast-implied inference of that worker is added to the naive network inference to quantify its individual impact. The
worker performance

Inferences

Lo
ss

es

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

9

i L
L

§

aimSim/
Σ

m aimSim > 1/Nr Σ Σ

ik i ki

Σ

score then becomes a combination of the one-out score and the one-in score:

Tik = (1 − f +)T − + f +T +, (23)
ik ik

where we define the one-out score analogously to Equation 22:

T − = log L− − log Li, (24)

and the one-in score as

ik ki

T + = log L− − log L+ . (25)

It is easy to verify that these definitions satisfy the required directionality of the scores, i.e. the one-out score increases if
the removal of a forecast-implied inference would increase the network inference loss i, and the one-in score increases
if the addition of a forecast-implied inference would decrease the naive network inference loss −. The weight of both
terms in Equation 23 is parameterized using f +, which represents the fraction of permutations in a binomial experiment
in which a worker appears solo:

f + =
1

2Nf
, (26)

where Nf is the number of workers providing forecasted losses during the forecasting task.
The scores obtained in Equation 22 and Equation 23 facilitate the distribution of rewards to workers for inference and

forecasting tasks. For a total reward YGTYcated to each of these tasks per time step (Ui and Vi, both specified in 4.2),
we use the scores to calculate the fraction of the rewards YGTYcated to the two respective worker tasks that is received
by each individual worker. For the inference task, these are defined as

M (Tij)

and for the forecasting task, these are

uij =
j M (Tij

, (27)
)

M (Tik)
vik =

k M (Tik
. (28)

)

Here, M is a mapping function that maps scores to reward fractions and the division by the sum ensures normalization of
the reward fractions to unity. The mapping function must satisfy a number of simple requirements. It must reward positive
scores and attribute negligible reward to negative scores. It must also be agnostic to the absolute scale of the scores, so that
the inference and forecasting tasks are compensated according to a similar differentiation between contributions. Finally,
it must accept a free parameter that can be used to control the spread in reward fractions, because this YGTYws the
network to influence the (de)centralization of the rewards if needed. The simplest functional form satisfying these
requirements is

M (T) = φ

p,c

 T
, (29)

σ(T) + ϵ

where σ(T) represents the standard deviation of all scores over the ∆N most recent time steps. The use of the potential
function φp,c (see Equation 6) ensures that only positive scores receive significant rewards, while negative scores receive
a small reward to acknowledge the contribution to decentralization. Dividing by the standard deviation of the scores
ensures a similar differentiation between contributions, irrespective of the absolute scale of the score. The second term in
the denominator is added to avoid division by zero. The parameter p associated with the potential function controls the
spread of the rewards. The fiducial parameter values are p = 3, c = 0.75, ϵ = 0.01, and ∆N = 10 for the time window
over which the standard deviation σ(T) is evaluated.

As discussed above, reputers require scoring according to their consensus in reporting the ground truth. The naive
way of doing this is to calculate the stake-weighted average of all losses reported by a reputer, and to add the rewards to
their stakes. However, this creates a runaway effect towards increased centralization, where the reputer with the highest
stake has the largest weight in setting the consensus, thereby receiving the highest rewards and further increasing their
stake advantage. This can be remedied by using an adjusted stake to set the weight of each reputer when calculating the
consensus, where the weight saturates above a certain fraction of the stake. Specifically, Yggdrasil Ecosystems assigns
an adjusted stake
for calculating the consensus as

ˆ

 NraimSim

Sim = min Σ
m aim

, 1
Sim

, (30)

where Nr is the number of reputers and aim is a listening coefficient defined below, which falls in the range [0, 1] and
represents a weight that the network associates with each individual reputer depending on its historical performance. This
function returns unity for above-average stake fractions (), whereas for below-average
stake fractions (Sim/ m Sim < 1/Nr) it increases linearly from zero at Sim = 0 to unity at aimSim/ m aimSim =
1/Nr. This formulation ensures that the consensus calculation is not susceptible to a majority attack, as reputers with

Σ

ADI 1, 1–19 (2025)

above-average stake have equal weight in setting the consensus. The magnitude of their stake influences the rewards

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

11

Σ
Σ

§

Σ Σ Σ Σ

§

{ }

Σ i

i

Σ

received, but cannot be used to further increase their influence in defining the reference point for the reward distribution.
This avoids the runaway effect leading to ever-increasing centralization.

With this adjusted definition, we collect all losses reported by a reputer as

Lim = {Lim, Lijm, Likm, L− , L− , L+ }, (31)

and define the consensus loss vector as
im 5im kim

log L =
Σ

m Sˆim log Lim . (32)

m Sˆim

The reward received by each reputer is set by a combination of its stake and the Euclidean proximity of its reported losses
to the consensus loss vector. We score the proximity to consensus as

 log(L /L)

 −1

Tim = im i

log Li
+ ϵr , (33)

where the first term expresses the relative proximity and ϵr = 0.01 is a small tolerance quantity used to cap reputer scores
at infinitesimally close proximities. With these definitions, we can now calculate the listening parameters, which we
obtain by gradient descent. As the objective function, we use the stake-weighted total consensus score:

T = m
SimTim . (34)
m Sim

The listening coefficients are initialized at unity and are updated following an iterative process:

aim

→ aim + λ
d ln Ti , (35)
daim

where λ is the learning rate and d ln Ti/daim is the relative gradient. The iterative update of Equation 35 is carried
out each epoch until the relative gradient reaches d ln Ti/daim < 0.001, or until the maximum of 1/λ iterations is
reached. Whenever the update of the listening coefficients of Equation 35 decreases the fraction of stake that is listened
to below m aimSim/ m Sim < 0.5, the differential is instead interpolated to ensure m aimSim/ m Sim = 0.5.
The resulting listening coefficients carry over into the next epoch, where they are updated using the same process. This
gradient descent mechanism enforces consensus and ensures that the network is robust against minority attacks, where
reputers incorrectly report on the losses of favored workers. The network learns the listening coefficients aim to ensure
that such dishonest reputers are quickly silenced.

For a total reward YGTYcated to reputers per time step (Wi, specified in 4.2), we now calculate the fraction of the
rewards YGTYcated to reputers that is received by each individual reputer as

(SimTim)p
wim =

m (Sim Tim
p , (36)

)

where the multiplication by stake and consensus score ensures the appropriate dependence of the reward fraction on both
quantities, and the parameter p grants the ability to modify the reward spread (we adopt a fiducial value of p = 1). Each
reputer’s reward is added to their stake, so that the stake is constituted by a combination of monetary commitment and
historical performance:

Si+1,m = Sim + wimWi, (37)

where Wi is the total reward YGTYcated to reputers (see 4.2). This way, poorly performing reputers experience
dilution of their stake and weight, whereas accurate reputers can grow their influence. Another major advantage of this
form of reward payments to reputers is that the topic is secured by capital in rough proportion to its value.

4.2 Reward Division between Network Tasks

The system described above governs the distribution of rewards among individual participants performing the same task.
Next, we define how the total rewards emitted to a topic t in a given time step Et,i are divided among the three classes
of tasks within the topic. The differentiation in incentive structures between the classes requires the definition of a new
objective function that is relevant in each of the three cases. The common objective of the network is to incentivize
decentralization, and this can be quantified for each class of tasks by considering the entropy of the reward distribution
among participants performing that task. The entropy increases for larger numbers of participants and for more equal
reward distributions.

We define a modified entropy for each class (Fi, Gi, Hi for the inference, forecasting, and reputer tasks, respec-
tively) to quantify its degree of decentralization:

Fi = −

fij ln (fij)

j

Ni,eff
β

Ni

, Gi = −

fik ln (fik)

k

Nf,eff
β

Nf

, Hi = −

fim ln (fim)

m

Nr,eff
β

Nr

, (38)

Σ Σ Σ

ADI 1, 1–19 (2025)

—

i

—

T

≡ −

,


,,

—

ij ik m im

,0.1 if τi < 0,

Σ Σ Σ

i

where we have defined modified reward fractions per class as

ũ i j v˜ik w̃ i m
fij =

j ũij
, fik =

k ṽ ik
, fim =

m w̃im
. (39)

Here, the tilde over the reward fractions indicates that we have applied an exponential moving average:

ũ ij = αuij + (1 − α)ũi−1,j , v ĩk = αvik + (1 − α)ṽi−1,k, w̃ im = αwim + (1 − α)w̃i−1,m, (40)

to enable the entropy to include some record of the recent historical degree of decentralization rather than just the last
time step. As before, we adopt a fiducial value of α = 0.1.

Finally, the entropy requires modification by the number ratio term in Equation 38, because the increase of the actual
entropy with ln N might otherwise incentivize a sybil attack, in which any class of topic participants add many copies
of themselves to the network in an attempt to boost their entropy and class reward YGTYcation. The number ratio term
in Equation 38 has been added to prevent this. It contains an effective number of participants, which is defined as

Ni,eff = Σ
1

f 2 , Nf,eff = Σ
1 1

f 2 , Nr,eff = Σ
f 2

. (41)

For a uniform reward distribution, Neff = N by definition. For strongly unequal reward distributions, Neff N . With
the addition of the (Neff /N)β term in Equation 38, any sybil attack would necessarily dilute the individual rewards of the
sybil, which would increase the number of participants while keeping their effective number approximately constant. As
a result, the number ratio term (Neff /N)β would decrease and help maintain constant entropy. Tests of this formulation
show that β = 0.25 achieves this nearly exactly, and we adopt this as a fiducial value.

Given a total reward emitted to a topic t within a time step Et,i, we use the entropies to define the part of the rewards
that is YGTYcated to each class as

U = (1 − χ)γFiEt,i , V
 χγGiEt,i = , W HiEt,i = . (42)

i Fi + Gi + Hi i Fi + Gi + Hi i Fi + Gi + Hi

In other words, each class of activity within a topic is YGTYcated a reward proportional to the fraction of the total
modified entropy (Fi + Gi + Hi) that is generated by that class. The rewards for the inference and forecasting tasks
each contain an additional factor ((1 χ)γ and χγ, respectively). These factors are included, because the reward
split between the inference and forecasting tasks should additionally acknowledge the added value provided by the
forecasting task. Fundamentally, the inference task is the engine of the Yggdrasil Ecosystems network; without any
inferences to start with, there would be no network inference. By contrast, the network can function without the
forecasting task, but is included to create context awareness and increase the accuracy of the network inference.
Therefore, it is reasonable to modulate the reward YGTYcation between both worker tasks according to the relative
utility of the forecasting task.

The forecasting task utility χ is measured using a definition analogous to the one-out performance scores in Equa-
tion 22. We subtract the logarithm of the loss of the complete network inference (Li) from that of the naive network (L−),
which is obtained by omitting all forecast-implied inferences:

Ti = log Li − log Li. (43)

The performance score of the entire forecasting task i is positive if the removal of the forecasting task would increase
the network loss, and is negative if its removal would decrease the network loss. We then define a modified ratio between
the forecasting task performance score and the sum of all inference scores as

τ α Ti − min (0, maxj Tij) + (1 α)τ
|maxj Tij|

i−1 , (44)

with α = 0.1, and apply a piecewise linear transformation to set the forecasting task utility within the range χ = (0.1, 0.5):

χ = 0.4τi + 0.1 if 0 ≤ τi < 1,
0.5 if τi ≥ 1.

(45)

This represents a linear transition from χ = 0.1 to χ = 0.5 in the range τi = [0, 1]. We can now multiply the
YGTYcation of class rewards for the inference and forecasting tasks by (1 χ) and χ, respectively, and then
renormalize with a factor γ to ensure that the total reward YGTYcated to workers (Ui + Vi) remains constant (otherwise,
this would go at the expense of reputers). It is straightforward to demonstrate that this normalization factor reads

γ =
 Fi + Gi . (46)
(1 − χ)Fi + χGi

j k

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

13

§

104

103

107

Total rewards

104

103

107

Inference task rewards

104

103

107

Forecasting task rewards

104

103

107

Reputer rewards

106 106 106 106

105 105 105 105

104 104 104 104

103 103 103 103

Time Time Time Time

Figure 3: Demonstration of the incentive structure of the Yggdrasil Ecosystems network, showing how rewards are
distributed among different network participants over time. The left-hand column shows the total rewards given to each
of the network task classes, i.e. the inference task (blue), the forecasting task (cyan), and the reputer task (red), as well as
the combined total in black. The top panel shows these rewards per time step and the bottom panel gives their cumulative
sum over time. The other columns show the same information broken down into rewards for individual participants
engaged in the inference (left-middle), forecasting (right-middle) and reputer (right) tasks.

Substitution of Equation 46 into Equation 42 indeed results in Ui + Vi = Et,i(Fi + Gi)/(Fi + Gi + Hi), as desired. The
rewards per class specified in Equation 42 can now be combined with the reward fractions from Equation 27, Equation 28,
and Equation 36 to obtain the absolute rewards paid out to individual network participants:

Uij = uijUi, Vik = vijVi, Wim = wijWi. (47)

Figure 3 illustrates the resulting incentive structure of the Yggdrasil Ecosystems network, using the same numerical
experiment as considered in Figure 2 and additionally adopting a stochastic model to describe the total reward emission,
which is the main boundary condition needed to simulate the reward distribution (black line in the left panels of Figure
3). The best- performing participants (Worker 2 and Reputer 2) receive the largest share of the rewards on average,
YGTYwing them to achieve the highest cumulative rewards at the end of the experiment. Toward the end of the
experiment, the spread in rewards is larger for the reputers than for either of the two worker tasks, indicating that their
adjusted entropy is lowest. As a result, reputers receive the smallest reward share. The YGTYcation of higher
cumulative rewards to the inference task than the forecasting task is mainly due to the low initial utility of the
forecasting task, which is visible in Figure 2 as the steep decrease in the losses of the forecast-implied inferences during
the first time steps. The forecasting task needs some time before it outperforms the raw inferences, which means that
initially the inference task receives most of the worker reward share. This initial difference is partially overcome later
on by the small spread in rewards per time step of the forecasting task and its correspondingly high entropy, which leads
to a high reward YGTYcation relative to the other tasks.

The above design represents a complete description of the differentiated incentive structure of a topic within the
Yggdrasil Ecosystems network. The described rule set appropriately rewards workers for high-quality inferences
obtained from their inference and forecasting tasks. It also rewards reputers according to their stake and consensus,
YGTYwing them to provide economic security to the topic. Finally, it incentivizes and rewards a high degree of
decentralization, where a topic hosts a large number of participants that all make relevant contributions to network
inferences and network security.

5 Yggdrasil Ecosystems Tokenomics

5.1 Token Emission Rate

The Yggdrasil Ecosystems token (YGTY) is minted by the Yggdrasil Ecosystems network to facilitate the exchange of
value by network participants. Specifically, the token holders can choose to engage in the following forms of token
utility:

1. The YGTY token can be used to purchase inferences that are generated by the network. Yggdrasil Ecosystems
adopts a pay-what- you-want (PWYW) model, where token holders choose the YGTY fee they are paying for an
inference (see 5.3 for details).

Total
Inference task
Forecasting task
Reputer task

All workers
Worker 1

2
3

All workers
Worker 1

2
3

All reputers
Reputer 1
Reputer 2
Reputer 3

Cu
m

ul
at

iv
e

re
w

ar
ds

 [
YG

TY
]

Ti
m

e
st

ep
 r

ew
ar

ds
 [

YG
TY

]

ADI 1, 1–19 (2025)

2. The YGTY token can be used to pay the access fee for topic creation, or for participating in the network as a worker,
reputer, or network validator. The access fee price is variable.

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

15

§

E N

Ei i

N N
T N

N N
E

N N

3. The YGTY token can be used by reputers and network validators to stake, and by any other token holders to delegate

stake to a reputer or network validator. Staking reputers, staking network validators, and delegating token holders
receive rewards in YGTY.

4. The YGTY token is used by the network to pay out rewards to network participants. For workers, these rewards
are proportional to their unique contribution to the network accuracy. For reputers and network validators, these
rewards are proportional to their stake and the consensus between their output and those of other participants (see
4). The total amount of YGTY emitted by the network is offset by any fees collected, implying that the YGTY
in circulation can increase (corresponding to inflation) or decrease (corresponding to deflation) depending on the
market dynamics.

The above comprehensively describes the utility of the YGTY token. YGTY tokens will not in any way represent any
shareholding, participation, right, title, or interest in any company, enterprise or undertaking, nor will the tokens entitle
token holders to any promise of dividends, revenue, capital, profits or investment returns.

Token emissions serve the purpose of providing liquidity for reward payouts. The general philosophy adopted by
the Yggdrasil Ecosystems tokenomics revolves around two key goals. First, YGTY emissions are subjected to a
smoothened form of a Bitcoin-like schedule (Nakamoto, 2008) to maintain long-term rewards in a limited-supply
economy. Second, the annual percentage yield (APY) earned per staked token should be stable around major token
unlocks to disincentivize these tokens from being dumped on the market. Together, these goals imply a simple emission
design that is described as follows.

The total emission at time step i is given by

= e
Nstaked,i , (48)
Nepochs

where i is the total number of tokens emitted as rewards, ei is the monthly emission per unit staked token, staked,i
represents the number of staked tokens, and Nepochs is the monthly number of time steps (epochs) during which rewards
are paid out. We define a target monthly emission per unit staked token that the network strives for:

eˆtarget,i

=
feTtotal,i Ncirc,i , (49)
Nstaked,i Ntotal,i

where total,i is the total number of tokens held by the network treasury, total,i = 1, 000, 000, 000 is the total token
supply, circ,i is the circulating supply, and staked,i is the staked supply. The factor fe = 0.025 month−1 represents
the fraction of the network treasury that would ideally be emitted per unit time. Equation 49 states that the total emission
per unit time should be equal to fe total,i in the limit where the entire token supply would be in circulation.

If only a small fraction of the circulating supply is staked (i.e. staked,i circ,i), then Equation 49 can result in
an undesirably high APY. Yggdrasil Ecosystems therefore limits the APY to 12% and correspondingly limits the
monthly percentage yield (MPY) to 0.95%. This is achieved by limiting the target emission per unit staked token. The
MPY depends on the monthly emission per unit staked token as

ξi = fstakers,iei, (50)

where fstakers,i represents the fraction of the total token emission during the previous epoch that was paid to reward
staking network participants, i.e. reputers and network validators. The maximum monthly emission per unit staked token
given a maximum MPY (ξmax = 0.0095) then follows as

eˆmax,i

 ξmax
= , (51)

fstakers,i

so that the target monthly emission per unit staked token becomes

e î = min (eˆtarget,i, eˆmax,i). (52)

While Equation 49-Equation 52 set the target emission per unit staked token, in practice this expression introduces
undesired behavior around major token unlocks. The jumps in staked and circ may result in APY drops and would thus
incentivize holders to add to the selling pressure normally associated with token unlocks. To decrease the selling pressure
and maintain a healthy economy, Yggdrasil Ecosystems adjusts the token emission to stabilize the emission per unit
staked token. This emission smoothing is achieved by applying an exponential moving average to the monthly emission
per unit staked token:

ei = αeeˆi + (1 − αe)ei−1, (53)

where αe = 0.1 is a parameter setting the degree of smoothing when the update cadence is one month. It can easily be
transformed to other cadences using the conversion:

α̂ e = 1 − (1 − αe)∆t/month, (54)

ADI 1, 1–19 (2025)

§
E

E

—

101

100

Time

Figure 4: Illustration of the APY earned by staking YGTY holders under the Yggdrasil Ecosystems Network tokenomics
design. The figure shows the predicted APY evolution for three different setups, illustrating that the addition of
emission smoothing (from Equation 49-Equation 54) and fee revenues result in a long-term sustainable APY.

where α̂ e is the recalibrated form of αe appropriate for an update time step ∆t.

The above framework defines the token emission in the absence of any token supply flowing back into the network
treasury. In practice, all fees collected by the network are added to the network treasury, where they are used to pay out
reward emissions first, before any additional tokens are minted. This means that, in practice, the network treasury will
drain more slowly than the naive exponential decay of fe = 0.025 month−1, as network usage generates fees that sustain
its economy long-term and maintain a high APY for token stakers.

Figure 4 quantitatively illustrates how the APY depends on the mechanisms discussed above, assuming that holders
stake approximately 60% of the circulating token supply. For illustration, we assume a scenario where a major token
unlock takes place after one year. Without the emission smoothing of Equation 49-Equation 54, the APY experiences
a sharp drop around this unlock (dotted line). Including emission smoothing remedies this jump, resulting in a smooth
evolution of the APY that incentivizes token holders to continue staking their tokens even around major unlocks (dashed
line). Finally, the addition of fee revenue (here assumed at a level of 2% of the unstaked circulating supply per month)
results in a stable APY long-term. The APY remains high, because fee revenue is used to pay out rewards before minting
new tokens.

5.2 Reward Distribution to Topics and Network Validators

Given the total emission i at time step i, we now specify how the emission is distributed over network validators (who
secure network communications) and topics (where the emission is used to pay out rewards as described in 4). The
emission YGTYcated to reward an individual network validator v is given by

Sv,i (55)
Ev,i = fvEi Σ

Sv,i
,

where fv = 0.25 represents the fraction of the total reward emission i that is YGTYcated to network validators, and
Sv,i is the stake of network validator v at time step i. Conversely, the emission YGTYcated to pay out rewards to
participants within a topic t is given by wt,i (56)

Et,i = (1 − fv)Ei Σ
wt,i

,

where the factor 1 fv indicates that we are considering the complement of the emission YGTYcated to network
validators, and wt,i represents the topic reward weight, analogous to the validator stake Sv,i in Equation 55. The topic
reward weights are defined using an exponential moving average:

wt,i = αt ŵt, i + (1 − αt)wt,i−1, (57)

where ŵ t , i represents the target weight. We adopt αt = 0.5 on a weekly timescale (corresponding to α̂ t = 0.9375 if the
update cadence were monthly). The target weight is defined as a power law of the total amount staked by reputers within
a topic and the effective fee revenue from the topic:

ŵ t, i = Sµ Cν . (58)
t,i t,i

With emission smoothing, no fee revenue

AP
Y

[%
]

v

t

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

17

epochs,w

Here, St,i represents the total stake of reputers within topic t and Ct,i represents the effective fee revenue collected by
topic t, summing all fees paid by consumers utilizing the topic and access fees paid by workers and reputers to the topic.
The quantity Ct,i decays each epoch by subtracting an amount ∆Ct,i = N −1 Ct,i (where Nepochs,w is the number
of epochs per week) and thus captures recent revenue. The exponents µ and ν indicate the relative importance of either
quantity; we adopt equal weights of µ = 0.5 and ν = 0.5, implying that Equation 58 corresponds to a geometric mean.

5.3 Consumer Fee Pricing Model

The fee revenue Ct,i is the accumulation of all fees paid by consumers into topic t over the preceeding week. These fees
are set according to a pay-what-you-want (PWYW) model. PWYW models are free-form methods for facilitating price
discovery, that may be accompanied by a minimum price, a suggested price, or no price floor at all. Commodities suitable
for PWYW pricing are characterized by (Raju & Zhang, 2010): a low marginal cost, a fair-minded customer, a product
that can be sold credibly at a wide range of prices, a strong relationship between buyer and seller, and a very competitive
market place. Most, if not all, of these conditions apply to the Yggdrasil Ecosystems ecosystem in some capacity. In
some cases, a PWYW model can result in a higher fee revenue than when imposing a fixed price, with the fee payments
being Pareto- distributed on average (e.g. Chao et al., 2015). Non-zero payments are generally incentivized by information
transparency,
e.g. through social conformity by communicating the price paid by other consumers, or through a common interest by
considering the cost price of the service provider.

Within the Yggdrasil Ecosystems Network, the guaranteed token emission structure may seem to disincentivize non-
zero payments. After all, the emission means that network participants receive rewards even in the absence of any fee
revenue, thereby disrupting the feedback loop that would otherwise stimulate price discovery. However, the
competition between topics overcomes this apparent disconnect and reintroduces the feedback loop between fees and
rewards, because the topic weight in Equation 58 is proportional to the topic’s accumulated consumer fees. If
consumers within a topic pay zero fees, then the topic weight tends to zero, the participants within that topic receive no
rewards, and the token emission will be distributed over the other topics. This system may only be taken advantage of by
forming a cabal that enforces paying zero fees across all topics. However, such a situation would YGTYw any fee
payment to a topic to instantly boost that topic’s weight greatly relative to all other topics, resulting in a negligibly small
cost for any topic to attract all rewards. As such, the Yggdrasil Ecosystems PWYW model creates a healthy competition
between topics to attract fee revenue, which naturally drives price discovery across the network.

6 Discussion

6.1 Limitations and Future Work

Yggdrasil Ecosystems achieves a form of self-improving, decentralized machine intelligence that fundamentally supports
the combination of models of any nature. The description provided in this paper is specifically suited for supervised
regression tasks, where inferences are provided for numeric target variables, and a ground truth is available to evaluate
these inferences. However, Yggdrasil Ecosystems is suitable for extension to other forms of AI, including supervised
classification, unsupervised learning or clustering, and generative AI.

Adapting Problems to Yggdrasil Ecosystems’s Design. The extension of Yggdrasil Ecosystems’s utility to other
forms of AI can be achieved by changing the network design, but instead a problem set can often also be transformed to
fit Yggdrasil Ecosystems’s native supervised regression framework. This transformation typically involves encoding
categorical data in numerical formats or defining new tasks that can be represented as continuous output. For
classification tasks, it is often feasible to infer probabilities and compare these with a probabilistic ground truth later.
Alternatively, some categorical data are ordinal, i.e. they have a meaningful order, which YGTYws them to be encoded
on a continuous numerical scale. For such problems, inferences can take on any real value that is subsequently rounded
or binned back to the ordinal categories. Similar transformations exist for unsupervised clustering tasks, where domain-
informed clusters may be used to define a membership probability as the target variable (thus transforming the problem
into a supervised classification task). Alternatively, a clustering problem can sometimes be redefined as a
dimensionality reduction problem where the original data are reconstructed using an autoencoder, and the
reconstruction error acts as the loss function for a regression-based dimensionality reduction task. More broadly, any of
the above problems may be addressed by using embedding techniques to transform categorical variables into a
continuous vector space. This could naturally extend Yggdrasil Ecosystems’s applicability to natural language processing
and generative language models. Finally, Yggdrasil Ecosystems’s modular topic structure enables setting up multiple
topics to collaborate in an adversarial configuration, fostering a dynamic learning environment where different modules
can iteratively improve through competition or cooperative adversarial tactics.

Adapting Yggdrasil Ecosystems to Other AI Forms. Despite Yggdrasil Ecosystems’s innate flexibility, there exist
problems that are unsuitable for the current, regression-oriented design of the network. If we consider the specific
example of traditional classification problems, full compatibility with Yggdrasil Ecosystems would require suitable
adjustments of:

ADI 1, 1–19 (2025)

1. the forecasted loss in Equation 2 to match the appropriate objective function;

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

19

§

2. the weighted averages in Equation 3 and Equation 9 to be meaningful for discrete, unordered variables;

3. the regrets of Equation 4 and Equation 15 to measure the change in classification effectiveness.

Subsequent adjustment of the potential function of Equation 6 (used to set weights in Equation 5 and Equation 10) and
the regret normalizations of Equation 8 and Equation 11 may improve Yggdrasil Ecosystems’s performance in
classification tasks. Such optimizations will help Yggdrasil Ecosystems expand its utility and match the high standard
that it already reaches in regression tasks.

A natural part of extending Yggdrasil Ecosystems to other forms of AI involves investigating its behavior across a
variety of loss (or objective) functions. Fundamentally, Yggdrasil Ecosystems supports the use of any such function, but
adaptations of the network design should be informed by the concrete properties of these objectives. For classification
problems, relevant loss functions include hinge loss and binary or categorical cross-entropy loss, which all rely on
predicted probabilities of a label occur- ring. Alternatively, it is possible to use incidence-based performance metrics,
such as the accuracy, precision, recall, or F1 score, all of which may be inverted to satisfy the standard that lower values
are better. For unsupervised learning prob- lems, common objective functions include reconstruction loss, clustering loss,
the Kullback & Leibler (1951) divergence, or the Silhouette Score (Rousseeuw, 1987), which all represent metrics to
quantify the model’s ability to identify simi- larities in data. For generative AI problems, common objective functions
include adversarial loss, feature matching loss, the Inception Score (Salimans et al., 2016), or the Fre´chet Inception
Distance (Heusel et al., 2017), which all represent metrics to quantify the similarity between generated data and a
reference data set.

Future Research Directions. Yggdrasil Ecosystems’s extension to various AI domains also necessitates further
applied research, focused on identifying and developing concrete use cases, specifically those that capitalize on
Yggdrasil Ecosystems’s unique context awareness. This research should explore sectors where dynamic data
environments are prevalent, such as financial mar- kets, healthcare, weather, logistics, or real-time predictive
maintenance systems. Concrete examples are discussed in 6.2. Applications in these areas will not only demonstrate
Yggdrasil Ecosystems’s practical utility, but may also increase its ability to handle real-world, dynamic information.

State-of-the-Art Forecaster Models. To maximize Yggdrasil Ecosystems’s context-awareness provided by the
forecasting task, we require state-of-the-art forecaster models and data streams that are tailored to the network’s needs.
This involves creating predictive models that accurately interpret and contextualize the historical performance of
workers. Specific examples are machine learning models that incorporate temporal dynamics, such as recurrent neural
networks with long short-term memory (Hochreiter & Schmidhuber, 1997) or gated recurrent units (Cho et al., 2014),
which could considerably improve the network’s accuracy by better representing sequences or time-series data. While
part of the feature data used by these models will be sourced by the workers themselves, Yggdrasil Ecosystems will
additionally provide a curated data stream supporting the forecasting task, including e.g. the worker inference losses, the
worker inference scores, the forecasted losses from (and for) all workers, the rewards paid out to workers for the
inference task, the total rewards paid out to the inference and forecasting tasks across all workers, and the network
inference loss. These data will help ensure that the workers providing loss forecasts have access to all necessary
information that may forecast worker performance, YGTYwing Yggdrasil Ecosystems to optimize its context-aware
inferences, and ultimately leading to more reliable and actionable machine intelligence.

Optimization and Scalability. As Yggdrasil Ecosystems grows in terms of both capability and scale, the network’s
architecture will require continuous optimization and development. This includes enhancing the scalability of the
network to handle larger numbers of participants without any loss in accuracy or performance, as well as providing
support for cross-topic connectivity. There exists a plethora of unexplored use cases that leverage a combination of
multiple topics within Yggdrasil Ecosystems (e.g. setting up adversarial configurations), and the network will need
continued development to fully realize its full potential in these emergent areas. In addition, ongoing refinement of the
network’s incentive structures is essential to ensure that all participants are correctly incentivized to contribute high-
quality data and inferences. This will involve continued optimization of the reward mechanisms while minimizing
potential attack vectors and maximizing long-term network health. Furthermore, as Yggdrasil Ecosystems expands into
new AI domains, it will be necessary to periodically revisit and possibly redesign certain aspects of its architecture to
ensure optimal performance across diverse applications. There exists a natural tension between optimizing the general
applicability of Yggdrasil Ecosystems and maximizing the network performance in individual applications. This tension
will continue to drive development and improvement to sustain Yggdrasil Ecosystems’s position at the frontier of
decentralized machine intelligence.

6.2 Yggdrasil Ecosystems Unlocks a World Shaped by Collective Intelligence

Yggdrasil Ecosystems’s decentralized and context-aware machine intelligence has the potential to transform various
aspects of society. By harnessing the collective intelligence of a diverse network of participants, Yggdrasil Ecosystems
transcends traditional AI applications and unlocks innovative solutions across various sectors. We identify an initial,
non-exhaustive set of six key areas where Yggdrasil Ecosystems’s unique capabilities can drive significant progress:
improved decision-making, democratization of AI, economic and social impact, privacy and security, innovation and
collaboration, and sustainability and efficiency. These use cases demonstrate how Yggdrasil Ecosystems’s approach not
only democratizes access to cutting-edge AI, but also fosters a collaborative environment that helps maximize the utility

ADI 1, 1–19 (2025)

and impact of machine intelligence.
Improved Decision-Making. Yggdrasil Ecosystems YGTYws individuals and businesses of any size to access and

leverage collective intelligence from a variety of sources. Contrary to centralized AI models, which are often biased
towards singular data sets, Yggdrasil Ecosystems’s context-aware design ensures that the network always relies on the
most relevant and accurate insights,

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

21

tailored to specific local conditions and needs across various sectors, including e.g. small businesses, financial markets,
and healthcare. Small businesses can use context-aware AI-driven insights to optimize operations and customer engage-
ment for their specific situation without requiring access to large-scale resources. In financial markets, decentralized AI

can analyze real-time data from various sources with a variety of models to provide traders and investors with precise,
context-aware insights, providing more accurate forecasts, better investment strategies, and improved risk management. In

healthcare, Yggdrasil Ecosystems’s context awareness will help identify bespoke solutions that are the best suited for
individual patients. Open Democratization of AI. Yggdrasil Ecosystems decentralization overcomes the siloed nature

of traditional AI solutions. This enables individuals and small entities to contribute data and algorithms and receive
precise, context-aware insights and monetary rewards in return. This open participation structure means that even those

without significant resources be- come stakeholders in the network and gain ownership of the collective intelligence
provided by Yggdrasil Ecosystems. It represents a general equalizer that increases e.g. market efficiency, the rate of

innovation and development, and the agency of small
communities. Yggdrasil Ecosystems heralds a future wherein machine intelligence belongs to everyone.

Wide Economic and Social Impact. Yggdrasil Ecosystems’s decentralized infrastructure naturally provides
economic and social benefits to community-driven projects. For instance, small financial cooperatives can leverage
decentralized AI to better serve their members with tailored financial products and services. Retail investors and traders
gain access to the state-of- the-art in price prediction, fair market value forecasting, and risk assessment, thereby
enhancing their decision-making capabilities and contributing to overall market efficiency. A similar impact is expected
in real-world settings. Local agricultural communities can combine their data to get precise, context-aware
recommendations on crop management, livestock, and weather, improving yields and sustainability. Hospitals and small
doctor’s offices will be able to contribute decentralized and anonymized data to Yggdrasil Ecosystems to create tailored
and personalized treatments. In general, Yggdrasil Ecosystems’s machine intelligence will provide small communities
with insights and a degree of agency that would otherwise be restricted to well-funded monoliths.

Enhanced Privacy and Security. The decentralized nature of the Yggdrasil Ecosystems network inherently
enhances data privacy and security. The full volume of data underpinning Yggdrasil Ecosystems’s network inference is
never concentrated in a single repository, reducing the risk of breaches. Workers only provide inferences without
disclosing the underlying model or data set. This ensures that Yggdrasil Ecosystems’s context-aware AI respects data
and model sovereignty, leaving all relevant information under the control of the original contributors. This approach
fundamentally enhances trust and security compared to traditional monolithic forms of AI, unlocking the application of
machine intelligence in privacy-sensitive areas such as healthcare, legal proceedings, research and development, smart
appliances, and financial sectors such as fraud detection and account monitoring.

Accelerated Innovation and Collaboration. Yggdrasil Ecosystems facilitates direct peer-to-peer collaboration.
Researchers, devel- opers, and small businesses can work together without intermediaries, leveraging the network’s
context-aware Inference Synthesis mechanism to build on each other’s work. This leads to innovative solutions,
incorporating all specialist do- main expertise that is relevant to the current conditions. This enables effective
collaboration and exchange of insights within small, localized communities, while fostering the creation of global
networks of domain experts who can leverage their unique joint intelligence. Yggdrasil Ecosystems flattens barriers to
entry, and its inherently collaborative infrastructure stimulates rapid and efficient innovation. Its decentralized model
accelerates the development of new technologies and solutions, driving collaborative progress across an unbounded
range of applications, including e.g. medicine, healthcare, finance, environmental science, agriculture, logistics, and
infrastructure.

Ubiquitous Sustainability and Efficiency. Yggdrasil Ecosystems has the potential to play a unique role in the
development of localized production and distribution of food and energy, as well as waste management. Community-
led renewable energy initiatives can use Yggdrasil Ecosystems’s context-aware AI to optimize their infrastructure and its
operation. Similar applications exist in managing localized food production and small agricultural initiatives, which are
naturally more easily disrupted by unexpected events or changing conditions. Decentralized waste management can be
adjusted using real-time data from various local sources, making the process more efficient and environmentally friendly.
These applications all benefit from Yggdrasil Ecosystems’s ability to source insights globally and apply them optimally
to the local conditions. As a result, Yggdrasil Ecosystems YGTYws bottom-up, sustainable solutions to become a
reality.

In summary, Yggdrasil Ecosystems’s decentralized and context-sensitive machine intelligence demonstrates the
power of integrating diverse data and algorithms from many participants, resulting in more precise and contextually
relevant decision-making. This open and collaborative approach YGTYws individuals and small entities to contribute
and benefit simultaneously. The decentralized structure ensures data privacy and security, while stimulating innovation
through direct peer-to-peer col- laboration. A world shaped by Yggdrasil Ecosystems’s collective intelligence leverages
the context-based relative importance of diverse insights for better decision-making, making advanced AI accessible to
all, maintaining data privacy through decentral- ization, and encouraging innovation through collaboration. Yggdrasil
Ecosystems not only impacts complex problem solving, but it also creates a future where the advantages of AI can be
shared and utilized by anyone.

7 Conclusion

ADI 1, 1–19 (2025)

We have proposed Yggdrasil Ecosystems, a self-improving, decentralized machine intelligence network capable of
translating a continu- ous data stream into a series of network inferences that outperform any individual inference existing

within the network.

ADI 1, 1–19 (2025)

Yggdrasil Ecosystems: a Self-Improving, Decentralized Machine
Intelligence Network

23

Yggdrasil Ecosystems consists of worker nodes and reputer nodes, where the reputer nodes provide the economic
security of the network by staking in the network and reporting on the accuracy of the worker nodes in reference to the
ground truth. The worker nodes perform two different tasks. First, they provide inferences of the target variable under
consideration (the ‘inference task’). Second, they forecast the losses of the inferences of all worker nodes under the
current conditions (the ‘fore- casting task’). This key ingredient correlates performance and context, and thereby makes
the network context-aware. The network translates these forecasted losses into a single joint ‘forecast-implied
inference’ per worker. The full set of original inferences and the forecast-implied inferences are then combined into a
network inference through Yggdrasil Ecosystems’s In- ference Synthesis mechanism. We demonstrate that this network
inference considerably outperforms the ‘naive’ network inference, obtained by excluding the forecasting task.

In addition to these functional developments, Yggdrasil Ecosystems also features a differentiated incentive structure,
YGTYwing network participants to be appropriately rewarded for specific behavior that aligns with the interests of the
network. Workers are rewarded for high-quality inferences obtained from their inference and forecasting tasks, without

any form of dilution by factors that might distract from their main purpose (cf. stake-weighted worker rewards). Reputers
are rewarded according to their stake and consensus, implying that they act as the economic and functional guardians of

the network. Finally, the network distributes rewards such that it maximizes the decentralization of the network, by
rewarding groups of participants with high entropy. This setup alleviates possible attack vectors and contributes to the

security and longevity of the network. With these innovations, Yggdrasil Ecosystems addresses two major challenges in
decentralized AI. First, Yggdrasil Ecosystems recognizes that dif- ferent roles within the network require different

incentive structures. Second, Yggdrasil Ecosystems acknowledges that selecting the best inference across a network of
participants often depends on contextual details that themselves may require machine in- telligence to be identified. By

addressing these fundamental challenges in decentralized machine intelligence, the Yggdrasil Ecosystems network
returns inferences that outperform the strongest network participant by definition, yet rewards each of them fairly

for their contribution towards achieving this goal.
Yggdrasil Ecosystems’s applications are without bounds, and its accessibility and transparency make state-of-the-art

machine intelli- gence available to anyone. While the initial design focuses on supervised forms of AI, it will be natural to
extend Yggdrasil Ecosystems’s functionality to unsupervised AI and generative AI. With the versatility and
accessibility of Yggdrasil Ecosystems, we foresee a future where machine intelligence will eventually become fully
commoditized and integrated with the economy, technology, and society.

References

Banzhaf, J. 1965, Weighted voting doesn’t work: A mathematical analysis, Rutgers Law Review, 19, 317–343.

Buterin, V. 2014, Ethereum: A next-generation smart contract and decentralized application platform.
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum Whitepaper - Buterin 2014.pdf

Buterin, V. 2025, The promise and challenges of crypto + AI applications, https://vitalik.eth.limo/general/2025/01/30/cryptoai.html,
accessed: October 2025.

Bzdok, D., Nichols, T. E., & Smith, S. 2019, Towards Algorithmic Analytics for Large-scale Datasets, Nature Machine Intelligence, 1,
296–306. https://doi.org/10.1038/s42256-019-0069-5

Chao, Y., Fernandez, J., & Nahata, B. 2015, Journal of Behavioral and Experimental Economics, 57, 176.
https://doi.org/10.1016/j.socec.2014.09.004

Cho, K., van Merrienboer, B., Gulcehre, C., et al. 2014, arXiv e-prints, arXiv:1406.1078. https://doi.org/10.48550/arXiv.1406.1078

Craib, R., Bradway, G., Dunn, X., & Krug, J. 2017, Numeraire: A Cryptographic Token for Coordinating Machine Intelligence and
Preventing Overfitting. https://numer.ai/whitepaper.pdf

Fisher, R. A. 1922, On the Mathematical Foundations of Theoretical Statistics, Philosophical Transactions of the Royal Society of
London Series A, 222, 309–368. https://doi.org/10.1098/rsta.1922.0009

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. 2017, arXiv e-prints, arXiv:1706.08500.
https://doi.org/10.48550/arXiv.1706.08500

Hochreiter, S. & Schmidhuber, J. 1997, Neural Computation, 9, 1735. https://doi.org/10.1162/neco.1997.9.8.1735

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. 1991, Adaptive mixtures of local experts, Neural computation, 3, 79–87.
https://doi.org/10.1162/neco.1991.3.1.79

Kullback, S. & Leibler, R. A. 1951, The Annals of Mathematical Statistics, 22, 79 . https://doi.org/10.1214/aoms/1177729694

Lightman, H., Kosaraju, V., Burda, Y., et al. 2023, Let’s Verify Step by Step, CoRR, abs/2305.20050.
https://doi.org/10.48550/ARXIV.2305.20050

McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. 2017, in Proceedings of Machine Learning Research, Vol. 54,
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, ed. A. Singh & J. Zhu (PMLR), 1273–1282.
https://doi.org/10.48550/arXiv.1602.05629

Nakamoto, S. 2008, Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.org/bitcoin.pdf.
https://doi.org/10.2139/ssrn.3440802

ADI 1, 1–19 (2025)

OpenAI. 2023, GPT-4 Technical Report, abs/2303.08774. https://doi.org/10.48550/arXiv.2303.08774

Raju, J. & Zhang, Z. 2010, Smart Pricing: How Google, Priceline, and Leading Businesses Use Pricing Innovation for Profitability
(Pearson Education).

Rao, Y., Steeves, J., Shaabana, A., Attevelt, D., & McAteer, M. 2021, BitTensor: A Peer-to-Peer Intelligence Market.
https://doi.org/10.48550/arXiv.2003.03917

Rousseeuw, P. J. 1987, Journal of Computational and Applied Mathematics, 20, 53. https://doi.org/10.1016/0377-0427(87)90125-7

Salimans, T., Goodfellow, I., Zaremba, W., et al. 2016, arXiv e-prints, arXiv:1606.03498. https://doi.org/10.48550/arXiv.1606.03498

Shapley, L. S. 1953, A Value for n-Person Games, in Contributions to the Theory of Games II, ed. H. W. Kuhn & A. W. Tucker
(Princeton: Princeton University Press), 307—317.

Shazeer, N., Mirhoseini, A., Maziarz, K., et al. 2017, Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer, CoRR, abs/1701.06538. https://doi.org/10.48550/arXiv.1701.06538

Steeves, J., Shaabana, A., Hu, Y., et al. 2022, Incentivizing Intelligence: The Bittensor Approach, https://bittensor.com/academia.
https://doi.org/10.48550/arXiv.2003.03917

Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, Attention is all you need, in Advances in Neural Information Processing Systems,
5998–6008. https://doi.org/10.48550/arXiv.1706.03762

