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Abstract—The rapid pace of AI development has highlighted 
significant challenges in its creation and deployment, primarily 
due to the centralized control maintained by a few large corpora- 
tions. Such an approach exacerbates biases within AI models due 
to a lack of effective governance and oversight. Furthermore, it 
diminishes public engagement and raises serious data protection 
concerns. The resulting monopolistic control over data and model 
outputs also poses a threat to innovation and equitable data 
usage, as users unknowingly contribute to data sets that serve 
the interests of these corporations. 

ODIN AI democratizes AI development and alignment 
through on-chain incentive mechanisms. By promoting open-
source development and data ownership, ODIN AI facilitates an 
open and collaborative environment where participants can 
contribute models, data, and computing resources with rewards 
determined by on-chain consensus. This approach improves 
transparency and collaboration at scale without introducing 
biases from centralized entities. Ultimately, ODIN AI enables 
diverse communities to develop purpose-built AI models, offering 
bespoke solutions tailored to their specific needs, revolutionizing 
the landscape of AI development and deployment. 

I. INTRODUCTION 

Spanning all fields, collaboration has historically catalyzed 
innovation. This is manifest in the case of the scientific and 
the digital. By pooling collective expertise, we have forged 
disruptive solutions at speed. At present, this ideal faces barri- 
ers when applied to AI development and deployment: notably, 
diminished public engagement, pervasive concerns regarding 
concentrated control, and data protection exerted by a handful 
of corporations. Meanwhile, blockchain technology [1], [2] has 
demonstrated its efficacy in multiple areas needing distributed 
corporations, such as decentralized finance [3], voting and 
governance. Research into and deployment of blockchain to 
transform AI development is now underway. 

ODIN AI, predicated on community involvement and a 
staunch commitment to data protection, is poised to spearhead 
the democratization of AI ecosystem by using blockchain. 

A. The Problems with Centralized Control over AI Creation 

In the present day, the primary obstacle to innovation in 
the realm of AI is its centralized control. This centralized 
structure mandates that all AI training, decision-making pro- 
cesses, and data storage are controlled within a single entity 
or location [4]. This results in the following pitfalls: 

Single Point of Failure: Vulnerability to disruptions from 
technical issues and cyberattacks. 

Value Plurality: Lack of value plurality means biases of 
single entities are reflected in AI. With centralized insti- 
tutions exerting absolute control over models [5], [6], the 

 

 
Fig. 1: ODIN AI System Logic. Upon a task creation, the model 
is first trained and validated in AI Arena, a blockchain-based 
de- centralized training platform, and then optionally further 
fine- tuned in FL Alliance using participants’ local data. 
Finally, the model is deployed by applications in the AI 
Marketplace, where feedback will be used to further improve 
the model. 

 
 

values of the output models are also centralized [7]. For 
instance, the world reimagined by Google’s generative AI 
tool, Gemini, is widely criticized [8]. 

Data Protection: Providers of closed-source Large Language 
Models (LLMs) [9], such as OpenAI, have the capability 
to monitor all user interactions with their models, thereby 
raising significant data protection concerns. In addition, 
under this centralized framework, every user who inter- 
acts with a LLM becomes an unwitting contributor of 
data to these vast corporations that maintain ownership 
of the models. There is a pressing need to enhance the 
fairness of contribution incentives and to more accurately 
assess the value of user-contributed data. 

Governance: Recent research [10], [11], [12] has highlighted 
a concerning trend in which the lack of governance 
has led to a pronounced exacerbation of biases and 
inaccuracies within the models. 

Scalability: As the volume of data and complexity of tasks 
increase, limited processing power acts as a bottleneck. 

Innovation: Progress is stifled in an environment where a 
limited number of entities have the means to experiment. 

 
B. ODIN AI ’s Solution 

ODIN AI [13], [14] is a blockchain-based platform for 
decentralized AI. As shown in Figure 1 and 2, ODIN AI 
eliminates obstacles that prevent active participation in AI 
systems, em- 
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Fig. 2: ODIN AI  System Overview. When a task is created in AI Arena, it is first trained by training nodes. These nodes then 
submit their models to validators, who evaluate and propose scores for each submission. The validators reach a consensus on 
these scores to determine the ranking of the submitted models. The consensus model can then be assigned to FL clients, who 
fine-tune and improve it using their local data, resulting in the FL global model. The AI Arena consensus model or the FL 
global model can be deployed and hosted in the AI Marketplace, providing interfaces to various applications. AI Arena train 
nodes, validators and FL clients need to stake to participate the system, and will be rewarded based on their performance. 

 

powering communities to contribute models, data, or comput- 
ing resources in a modular and decentralized way. AI models 
can be trained and validated in AI Arena and further refined 
in Federated Learning (FL) Alliance. Harnessing blockchain 
technology, ODIN AI introduces incentive mechanisms for 
participants, fostering a collaborative environment. This 
results in the development of a wide range of purpose-built 
models, created by, with, and for the communities, offering 
tailored solutions to meet specific needs. 

II. ODIN AI S Y S T E M  OVERVIEW 

The ODIN AI system consists of the blockchain layer, AI 
layer, and various participants. Each component plays an 
essential role in ensuring the system’s functionality and 
security. 

A. Blockchain Layer 

ODIN AI ’s tokenomics incorporates a blockchain-based 
reward mechanism designed to enhance resilience against 
malicious user attacks. This robust security feature is 
underpinned by a carefully designed incentive mechanism. 
The blockchain layer acts as the foundation for both 
stakeholder participation and the distribution of rewards. This 
layer employs smart contracts to ensure that participants can 
securely lock in their stakes, fostering an environment of trust 
and transparency. The process is designed to incentivize 
participation by allocating rewards based on contributions, 
thus encouraging a more engaged and active community. 

The blockchain layer’s inherent security features safeguard 
against fraudulent activities, ensuring uncompromised integrity 

of staking and reward distribution. It is a critical component to 
support the model safety and improve resilience against 
malicious user attacks. By leveraging smart contracts, the 
system automates an efficient and fair rewards process. 
Automation reduces human error and ensures that rewards are 
distributed in a timely and fair manner. 

B. AI Layer 

The AI layer offers infrastructure for decentralized training, 
extracting and monetizing knowledge from data. It encourages 
compute and data contributions from the community, using 
blockchain for rewards based on their contributions. 

• AI Arena. AI layer supports a conventional machine 
learning (ML) model training paradigm, optimizing mod- 
ells directly on users’ devices with their own or public 
data. To maximize the generalization ability and 
performance of the final trained models, this layer is 
designed to encourage community members to contribute 
various public or local data, harnessing the broader 
community’s power. By leveraging blockchain, it ensures 
contributors are continually engaged and rewarded based 
on the quantifiable impact of their data on improving the 
models. 

• FL Alliance. Utilizing the FL [15] approach, the AI layer 
enables thousands of participants to collaboratively train 
a global model, where data sovereignty is preserved by 
ensuring that no local data are transmitted at any stage of 
the training process. Within the AI layer, a model aggre- 
gation component allows participants to upload weights 

 

 
2 



ODIN AI: Federated Machine Learning on Blockchain (Version Feb 15, 2025) 

 

from models trained on their unique local data. These 
weights are then aggregated to build an optimal global 
model, enhancing its generalization capabilities and per- 
formance. The integration of training task automation 
and deployment orchestration components simplifies the 
process for users to join tasks and contribute valuable 
knowledge extracted from their data. 

In ODIN AI , AI Arena tasks will engage participants from 
the Web2 AI community, who possess the necessary computa- 
tional resources to train and validate models using publicly 
available datasets. These trained models can be further refined 
through FL Alliance tasks, which draw in participants capable 
of contributing their own local data. 

C. AI Marketplace 

Once models are trained and fine-tuned through AI Arena 
and FL Alliance, they can be hosted on our platform. This 
platform serves as a comprehensive environment for deploy- 
ing ML models, making them accessible within blockchain 
networks of virtual machines (VMs). By integrating with 
these networks, the platform facilitates the seamless execution 
and inference of complex ML models, providing real-time, 
scalable, and secure solutions. 

The infrastructure for model management includes version 
control, model monitoring, and automated updates, ensuring 
that the models remain accurate and efficient over time. It can 
provide inference APIs or SDKs that developers can use to 
integrate these models into their applications. 

Model hosts are compensated based on the quality and 
frequency of their contributions. They play a crucial role in 
generating inferences and maintaining the infrastructure. 

D. Participants 

There are various categories of participants in ODIN AI . 

1) Task Creators: Task creators will define the training 
tasks. Any participant who is willing to stake sufficient 
assets into the system or has already contributed to the 
system can potentially selected as a task creator. This 
broadens the range of stakeholders, conferring a sense of 
ownership and active involvement. 

2) Training Nodes: Training nodes compete in AI task 
training and are required stake tokens to be eligible. This 
requirement ensures a commitment to the network’s in- 
tegrity and facilitates a distributed, trust-based mechanism 
for task assignment. This stake acts both as a gatekeeper 
to maintain a high standard and as a foundational element 
in the network’s security protocol, ensuring that nodes 
have a vested interest in proper execution and the overall 
health of the ecosystem. 

3) Validators: Validators are responsible for evaluating 
work done by training nodes, submitting validation scores 
that influence reward distribution. They participate by 
staking tokens, which grants them the opportunity to 
validate tasks assigned to them, ensuring hardware com- 
patibility and fair task distribution proportional to their 
stake. Upon completion of a task, they can withdraw 

their stake and claim rewards, which are calculated based 
on their performance and adherence to the expected 
outcomes. The design ensures that validators are incen- 
tivised to provide accurate and honest validations, thereby 
maintaining the quality and reliability of the network’s 
computational tasks. 

4) Delegators: Delegators contribute to the ODIN AI 
system by supporting other participants’ staking process, 
enhancing the network’s validation capacity without 
directly participating in the task training or validation 
process. Delegators share in the rewards earned by their 
associated delegates, based on predefined algorithms that 
account for their staked contribution. Note that training 
nodes and validators who choose to accept delegation are 
free to choose a reward share ratio. The higher the ratio, 
the bigger the reward share their delegators will receive. 
The role of delegators allows individuals to participate in 
the network’s training, validation and economic 
activities, leveraging their tokens to support delegates, 
without needing the technical capabilities to train or 
validate tasks themselves. 

5) FL Clients: With a FL framework, FL clients will 
contribute their local data to enhance the model trained 
for the AI Arena task. In each FL task, participants will 
be randomly designated as either proposers or voters. 
Proposers will be tasked with training the model within 
a FL framework, while voters will assess the training 
outcomes produced by the proposers. Both proposers 
and voters will receive rewards or face penalties based 
on their respective performances. ODIN AI ensures that 
all participants are motivated to contribute effectively to 
the overall model improvement. 

6) Model Hosts: The role of a model host in AI Market- 
place involves deploying and managing trained models, 
providing infrastructure for secure and scalable execution, 
and enabling access through APIs and SDKs. The host 
ensures the models are kept up-to-date, monitors their 
performance, and facilitates integration into applications. 
Additionally, they will be compensated for their con- 
tributions to generating inferences and maintaining the 
system’s integrity. 

III. ODIN AI  TOKENOMICS 

ODIN AI aims to build a fair and incentive-compatible 
ecosystem, designed to foster collaboration and ensure long-
term alignment within its community. This vision is realized 
through a strategically designed reward allocation system, an 
effective slashing mechanism for accountability, and the 
cultivation of active token demand. 

A. Token Supply 

1) Emission: ODIN AI ’s ecosystem will feature $ODIN 
AI to- kens, set to be distributed to various stakeholders 
through an initial token emission and a strategically designed 
reward allocation system over time. Participants will receive 
rewards in $ODIN AI tokens based on their contributions to 
the system. 
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Participants in the ODIN AI system, such as training nodes 
and validators, are required to contribute computing or storage 
resources to complete model training and validation in order 
to receive rewards. This means that the value of the $ODIN 
AI token will, at a minimum, correspond to the value of the 
resources consumed during these processes. 

2) Slash: ODIN AI robust mechanisms ensure the integrity 
and reliability of the system by penalizing participants that 
engage in malicious activities. In AI Arena, if a participant 
is identified as acting against the system’s rules or attempting 
to undermine the system through malicious actions, they are 
subjected to “slashing”. Slashed tokens will be rewarded to the 
honest participants. Slashing protects the system from Immedi- 
ate threats by disincentivizing malicious actors and reinforces 
a culture of trust and cooperation among participants. 

B. Token Demand 

Active token demand is encouraged through multifaceted 
approachs as follows, showing the value of circulating tokens 
within the ecosystem. 

1) Utility: Participants are required to stake $ODIN AI 
to play a role. This reflects their vested interest in the integrity 
and success of operations. For task creators facing urgent 
needs to gather top-notch trainers for their model training or 
operating under tight deadlines, they may opt to pay additional 
$ODIN AI as bounties. These bounties will then be 
distributed as payments to participants involved in those 
specific tasks to prioritize the training processes. Participants 
can be also supported by delegators through $ODIN AI 
token delegation. By doing so, the system boosts the 
participants’ stake within the ODIN AI system and 
incentivizes a symbiotic relationship. Delegators, in turn, earn 
a share of the rewards earned by their participants, fostering a 
competitive environment where participants are motivated to 
offer attractive terms to potential delegators. 

2) Payment: Community members are able to access and 
utilize winning models which are trained and fine-tuned in 
AI Arena and FL Alliance, and hosted on AI Marketplace. 
End users enjoy rate limit in their access to such models 
based on their stake amount, beyond which they will be 
charged in $ODIN AI as payment. On the other hand, 
model hosts need to stake $ODIN AI in order to host 
winning models. They are able to customize whether and how 
to charge end users of these models. At inception phase, 
model hosts will receive part of the daily emission in order to 
incentivize their participation. Yet such incentives are expected 
to diminish over time. Overall, such design creates a 
sustainable and competitive environment in which demand 
and supply for cutting- edge models are dynamically 
balanced, fostering innovation and ensuring that the latest 
advancements continue to meet 

ture through participation in the Decentralised Autonomous 
Organization (DAO) governance. This not only decentralizes 
decision-making but also adds a layer of utility and value to 
the tokens, as they become a key to shaping the ecosystem’s 
development. 

IV. ODIN AI I N C E N T I V E  AND SECURITY 

A. Incentive 

ODIN AI leverages well-designed incentive mechanisms to 
reward participants. The distribution of newly emitted tokens is 
carefully orchestrated across AI Arena tasks and FL Alliance 
tasks, reflecting a strategic allocation that hinges on the staking 
dynamics within each task category. 

In our system, verified tasks are granted a share of daily 
rewards, serving as an incentive to foster the growth of the task 
creation ecosystem. This reward distribution is intentionally 
restricted to tasks approved by the DAO to safeguard the 
protocol from being exploited by low-quality or malicious 
tasks that could otherwise drain emissions without contributing 
meaningful value. 

Each newly created AI Arena and FL Alliance task has 
the option to undergo a verification process conducted by the 
community-led DAO. This process is designed to ensure that 
tasks meet the necessary standards of quality and alignment 
with the ecosystem’s goals. Once a task successfully passes 
verification, it becomes eligible for $ODIN AI ’s daily 
emissions, providing the task creator with additional resources 
to incentivize participation and collaboration. 

On the other hand, if a task is created permissionless 
without the ODIN AI  DAO’s verification, the responsibility 
falls on the task creator to self-fund the task. This involves 
using their own $ODIN AI to cover the costs associated 
with reward allocations for various participants. While this 
route allows for greater flexibility and decentralization in task 
creation, it also places the financial burden of supporting the 
task’s ecosystem on the creator. This mechanism is designed 
to balance innovation with quality control, ensuring that only 
well-constructed tasks benefit from community-supported 
rewards while still allowing for creative freedom in the 
ecosystem. 

In the long run, this dual approach aims to encourage 
high-quality task creation, foster a vibrant and trustworthy 
ecosystem, and maintain the integrity of the $ODIN AI 
reward system by aligning incentives with the community’s 
standards and goals. 

Once tasks are created, the distribution of rewards between 
DAO-verified AI Arena and FL Alliance tasks is dependent 
on their relative stake number of active tasks. As such, the 
rewards of $ODIN AI allocated to all active AI Arena tasks 
will be: 

the evolving needs of the market. The payment mechanism 
also creates a non-negligible financial barrier in access to 

 

RAI SAI 
= C0 · SAI + SFL 

our models, thus helps mitigate potential DoS attacks from 
malicious participants. and for all active FL Alliance tasks: 

3) Governance Participation: Holding $ODIN AI 
tokens grants members the power to influence the 
network’s fu- 
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Attacks Description ODIN AI M i t ig a t ion  

Sybil Attacks An attacker might gain disproportionate in- 
fluence in the ODIN AI system by creating 
and controlling multiple fake identities of 
participants. 

► Staking assets increases the difficulty of controlling many 
training nodes or validators. 
► Blind validation mechanism prevents collusion between 
training nodes and validators. 
► In each task, only the top k1 training nodes and the top k2 
validators will be rewarded, ensuring that participants with poor 
performance do not receive rewards. 

DoS Attacks An attacker might exhaust the ODIN AI 
system resource and make it unavailable to 
honest participants. 

► Rate limiting is implemented to restrict the frequency and 
volume of actions within a certain time frame, ensuring that no 
single participant can overwhelm the system. 

Free-rider 
Attacks 

Free riders benefit from a system without 
contributing fairly. In the ODIN AI system, a 
free rider training node may randomly sub- 
mit models without actuall training. Similarly, 
free rider validators give random scores in- 
stead of honestly evaluating models. 

► In each task, only the top k1 training nodes and the top k2 
validators will be rewarded, ensuring that participants with poor 
performance do not receive compensation. 
► ODIN AI Arena consensus guarantees that honest partic- 
ipants who contribute diligently are appropriately recognized 
and rewarded, deterring free riders from exploiting the process. 

Lookup Attacks Training nodes could cheat by learning to 
predict past validation score calculations. 

► Two datasets, i.e., Datasets A and B, are used as validation 
sets to evaluate the models. Consequently, even if a training 
node manages to optimize its performance for Dataset A, it 
could still underperform on Dataset B. By carefully calibrating 
the rewards between Dataset A and B, ODIN AI effectively 
motivates training nodes towards developing genuinely high- 
quality models. 

FL Model Poi- 
soning Attacks 

In FL Alliance, an attacker may use biased or 
corrupted data during the training process to 
degrade the model’s performance. 

► By aggregating contributions, majority voting minimizes the 
impact of single malicious participants. 
► The slashing mechanism penalizes malicious clients, deter- 
ring model poisoning by reducing their rewards and 
discouraging future attacks. 

TABLE I: Summary of how ODIN AI system mitigation against potential attacks. 

 

in which C0 is the daily emission of $ODIN AI, SAI refers 
to the total stake amount of all active AI Arena tasks and SF 

L refers to the total stake amount of all active FL Alliance 
tasks. Note that at the initial phase; to incentivize 

participation, task creators will also receive a slice of the 
reward pool. This 

reward, however, is expected to be phased out over time. 
In AI Arena, this allocation is meticulously calculated based 

on the aggregate staking contributions from task creators, 
training nodes, validators, and delegators for each task. 

1) Rewards among AI Arena Tasks: Within the span of a 
single day, consider the situation where there are M AI Arena 
tasks with the total staking amounts of (S1, . . . , SM ). The total 
staking amount, Si, includes the stakes from all participants 
involved in this task. This means that the stakes from any type 
of user will influence the reward distribution among tasks. p 
is a system parameter that can be adjusted via DAO decision. 

Assume the amount of daily emitted $ODIN AI     
token is CAI . 

For an AI Arena task with the total staking amount of Si, its 
daily total rewards is: 

Sp 

creators, training nodes, validators, and delegators. In the 
initial version of ODIN AI, if a validator has delegators, 
d1% of their rewards are designated for these delegators. It is 
important to note that this distribution parameter is flexible and 
subject to adjustments through the ODIN AI DAO 
governance. 

2) Rewards among FL Alliance Tasks: A FL Alliance task 
should be is derived from a finished AI Arena task to be further 
fine-tuned. The initiation of an FL task automatically triggers 
the creation of a new FL contract. For each active FL Alliance 
task within the ecosystem, daily rewards are transferred to 
the respective FL smart contract, provided the task is still in 
progress and has not surpassed its maximum allotted lifecycle. 
This preliminary step ensures that the rewards are earmarked 
and protected for participants actively engaged in the task. 
Subsequently, upon meeting the predefined conditions, the FL 
smart contract autonomously distributes the rewards to the 
participants, according to their contributions. 

B. Security 

As shown in Table I, the ODIN AI s y s t e m ’ s  security is 
de- 

RAI = CAI   i   
M  p 
k=1 k 

signed to be resilient against attacks. 
Sybil attacks are mitigated by a requirement to stake 

For each AI Arena task, rewards are allocated among task a minimum amount of assets, making it costly to control 
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Fig. 3: Overview of the workflow of an ODIN AI Arena task. Validators earn rewards based on their consensus scores. Two 
types of rewards are used to incentivize training nodes in order to mitigate their lookup/overfitting attacks. 

 

multiple identities. Validators are kept unaware of the model 
origins, reducing the risk of collusion. Only the top-performing 
training nodes and validators receive rewards, discouraging 
poor performance and manipulation. To mitigate DoS attacks, 
the system implements rate limiting, preventing any single 
participant from monopolizing resources. Free-rider attacks are 
addressed by rewarding only the top contributors, ensuring that 
participants who do not genuinely contribute cannot benefit. 
The use of dual datasets (Dataset A and B) in evaluations 
prevents lookup attacks, as optimizing for one dataset does 
not guarantee success in the other. For FL model poisoning 
attacks, a majority voting system and slashing mechanism 
protect the model’s integrity, punishing malicious actors and 
discouraging future attempts. These measures collectively 
fortify ODIN AI against a range of threats, promoting a secure 
and reliable decentralized training environment for 
participants. 

V. ODIN AI C O N S E N S U S  IN AI ARENA 

Figure 3 shows the overview of the workflow of an ODIN 
AI Arena task. 

A. Task Creators 

Task creation is the primary stage of the training cycle. 
Creators define the desired models and submit tasks to the 
platform. Anyone who satisfies the criteria is eligible to be 
a task creator, making the system inherently democratic and 
accessible to a wide range of stakeholders. This inclusivity 
fosters a sense of ownership and active involvement within 
the ODIN AI community. 

To qualify as a task creator, users must meet one or more 
of the following criteria: 

• Stake a sufficient amount of $ODIN AI. 
• Have successfully trained or validated a task previously, 

as evidenced by on-chain records. 
• Possess a reputation in the ML space or be recognized 

as a domain expert in relevant fields, as verified by the 
ODIN AI community. 

If the task creator and the created task are verified by 
the ODIN AI DAO, the task will be eligible for daily $ODIN 
AI emissions. However, if the task creator chooses not to 
undergo verification by the community-led DAO, they must 
self-fund the task using $ODIN AI to cover the costs 
associated with reward allocations for the participants. 

In addition to gaining access to the desired training model, 
task creators may also earn rewards for their contributions. 
However, these rewards are expected to be gradually phased 
out over time. 

B. Training Node and Validator Selection 

In this setup, each participant first stakes in the system to 
be eligible to perform task training or validation. 

In practice, rate limiting is adopted to determine the number 
of times participants can access validation for a given task. 
As illustrated in Figure 4, the likelihood of a participant 
being selected to validate a task submission increases with 
their stake. However, the rate at which validation frequency 
increases relative to the staking amount tends to diminish as 
the staking amount grows. 

C. Training in AI Arena 

We consider the dataset held by the training node, Dlocal, 
which contains locally sourced data samples, comprising fea- 
ture set X and label set Y , with each sample xi ∈ X 
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Fig. 4: Example: rate limiting for validation frequency. 

corresponding to a label yi ∈ Y . We define a predictive model 
f, aiming to learn patterns within D such that f(xi) ≈ yi. 

To quantify the prediction metric, accuracy as an example, 
the task trainer will introduce a loss function L(f(xi), yi), as- 
sessing the discrepancy between predictions f(xi) and actual 
labels yi. A generic expression for this function is: 

N 

Here, 1 represents the indicator function that returns 1 if the 
predicted label yˆi matches the true label yi, and 0 otherwise. 
The function |Deval| denotes the total number of samples within 
the evaluation dataset. 

Each predicted label yˆi from the model θtask is compared 
against its corresponding true label yi within the dataset 
Deval. The calculated metric result (accuracy here) serves as a 
quantifiable measure of θtask’s effectiveness at label prediction 
across the evaluation dataset. 

E. Reward for Training Nodes in AI Arena 

Within a single AI Arena task, the reward distribution 
between training nodes and validators is determined based on 
their relative stake amounts. 

We assume there are n submissions (O1, . . . , On) from 
n training nodes, and m validators (V1, . . . , Vm), each with 
stakes (s1, . . . , sm).The stakes represent the validators’ com- 
mitment and trust in the process, influencing the weight of 
their evaluations in the aggregated score. 

Let the total daily reward allocated to a task be denoted as 
R0 and the parameter γ controls the split rewards, defining 
the balance between fixed and stake-dependent reward com- 
ponents. Then, the total rewards for training nodes are: 

L = 
1 Σ 

l(f(x ), y ) ! 
where N denotes the total sample count, and l signifies a 
problem-specific loss function, e.g., mean squared error or 

R0 · γ + (1 − 2γ) · n 
i=1 ti j=1 sj 

cross-entropy loss. 
The optimisation goal is to adjust the model parameters θ 

to minimise L, typically through algorithms such as gradient 
descent: 

θnew = θold − η∇θ L 

where η represents the learning rate, and ∇θL the gradient 
of L with respect to θ. Utilising the aggregated dataset D, 
parameter θ is iteratively updated to reduce L, consequently 
improving the model’s predictive accuracy. This optimisation 
process is conducted over a predefined number of epochs E, 

• Each validator Vj(1 ≤ j ≤ m) evaluates the n models 
submitted by the training nodes, producing a score vector 
r⃗j = (rj1, . . . , rjn). These scores reflect the perceived ac- 
curacy, reliability, or performance of each model accord- 
ing to predefined criteria. The outlier scores proposed by 
malicious validators will be ignored by honest validators 
before taking into amount in the following steps. 

• The final score for each model from the training nodes 
is determined through a weighted aggregation:   Σ

j rj1 · sj 
Σ

j rjn · sj 
! 

each epoch consisting of a complete pass through the entire 
r⃗ = 

j sj , . . . , Σ
j sj 

dataset D. 

D. Validation in AI Arena 

Consider a selected group of validators, denoted as Vj ∈ V , 

This means that the evaluations of validators with higher 
stakes have a larger impact on the final outcome. 

• We then compute the following geometry series: 

each equipped with the evaluation dataset Deval from the 
task creator. This dataset consists of pairs (xi, yi), where 

1 − q 
gk = 

1 − qm 
· qk−1 

xi represents the features of the i-th sample, and yi is the 
corresponding true label. 

The model, trained by designated training nodes, is denoted 
as θtask. The primary objective of θtask is to predict the label 
yˆi for each feature vector xi contained within Deval. 

To assess the performance of θtask on Deval, we use an 
general evaluation metric denoted by eval. Here, we exemplify 
with accuracy, which is calculated as follows: 

eval(θtask, Deval) = 
  1   Σ 

1(y  ̂= y ) 
 

 

in which k denotes a given training node’s rank amongst 
its peers in the same task, whereas q represents the 
common ratio of the geometric series and m is the 
number of training nodes in a given task. 
Participants in the ODIN AI  system, such as training 
nodes and validators, are required to contribute 
computing or storage resources to complete model 
training and valida- tion in order to receive rewards. This 
means that the value of the $ODIN AI  token will, at 
a minimum, correspond to the value of the resources 
consumed during these 
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• We finally compute the total rewards allocated for the 
training nodes as well as their delegators, which is based 
on the quality of their submission and their total amount 
of stake: 

gi · tαt 

– Selection Criteria: The choice of λv balances the need 
to penalise inaccuracies against the goal of rewarding 
nearly accurate evaluations. 

• αv 
– Purpose: Determines the influence of the stake amount 

fi(gi, ti) = n 
k=1 gk · tαt sj on the reward distribution, thereby adjusting the 

weight given to validators’ financial contributions. 
where αt is a system parameter which determines the 
influence of the stake on the reward distribution, and ti 
the total stake amount of from the training node i as well 
as its respective delegators. 

• Consider σ as the reward ratio set by training node i itself 
which determines the ratio of rewards shared between 
training node i and its respective delegators. Consider 
also that a training node i’ stake in the task is tn and 
stakes delegated to training node i is td, i.e. ti = tn + td, 
then the actual reward for training node i is: 

– Effect: Allows for balancing between the importance 
of validators’ financial commitment and their perfor- 
mance accuracy. A higher αv gives more weight to the 
stake amount in the reward calculation. 

– Selection Criteria: Reflects the system’s philosophy 
regarding the stake’s importance relative to score ac- 
curacy. An αv of 0 means stake amounts are ignored, 
while a higher value increases their impact. 

If the validator finishes multiple (i.e., N) validation tasks, 
then it reward ratio is: 

f · σ + (1 − σ) · tn 

i tn + td 

 

Σ

i=1 

 

 

fi(∆ji 
 
, sj) 

F. Reward for Validators in AI Arena 

Similar to reward calculation for training nodes, the rewards 
for all validators in the same given AI Arena task is: 

If a validator’s stake in the task is sv, and sj is its 
accumulative stake by considering the total delegation amount 
Sd on this validator, i.e., sj = sv +Sd, the actual reward ratio 
for this valdiator is: 

j=1 sj 
!  Σ ! 

sv 
R0 · γ + (1 − 2γ) · n 

i=1 ti j=1 sj 
fi(∆ji, sj) 

i 

·  σ + (1 − σ) · 
sv + Sd 

For each validator Vj, we compute the distances between 
their score and the final aggregated score: 

where σ is a system parameter which controls the rewards 
split between a given validator and its delegators. 

 

∆⃗ j  = (∆j1, ..., ∆jn) 

= j rj1 · sj 

j sj 

 
 

 

— rj1 

 

 
, ..., 

 

 

rjn · sj 
Σ

j sj 

 
 

 

— rjn 

G. Delegate Staking 

Delegators may entrust their tokens to participants of their 
choosing to receive a passive investment income stream. The 

We define a distribution function fi, which satisfies: 

fi(∆1i, s1) + . . . + fi(∆mi, sm) = 1, 
fi decreases over the distance ∆ji, 
fi increases over the stake amount sj. 

To fulfill the three criteria, we can employ a modified 
version of the Softmax Function: 

e−λv ∆ji · sαv 

receivers can thus amplify their stake, influence, voting power, 
and rewards. These rewards are shared with the delegators, 
furthering cooperation. This extends participation to users who 
have tokens but lack the technical expertise to perform AI 
model training or validation. 

Specifically, reward for the delegator depends on: 

• The quality of the training nodes or validators selected 
for delegation. 

• The amount of stake delegator has delegated. 
fi(∆ji, sj) = m 

k=1 e−λv ∆ki · sαv  
Formally, reward for delegator who delegates to a training 

The parameters λ and α play crucial roles: 

• λv 
– Purpose: Controls the sensitivity of the function to the 

distance ∆ji. This distance measures the discrepancy 
between a validator’s score and the aggregated score. 

– Effect: A higher λv increases the function’s sensitiv- 
ity to score accuracy, emphasising the importance of 
precise evaluations. 

node can be calculated as: 
  td  

fi · (1 − σ) · 
t + t 

whereas fi refers to the total reward distributed to the training 
node i and delegator based on the quality of the training node’s 
submission, td is the stake amount from this given delegator, 
tn is the stake amount from training node i and σ is the reward 
share ratio pre-determined by training node i . 
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Training Nodes Delegators Validators 
 

Total 
Training Node A Training Node B Delegator A Val. A Val. B Val. C 

 Reward A (10%) Reward B (90%) Reward A (10%) Reward B (90%) (σ = 0.4)   

Day 1 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703 

Day 2 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703 

Day 3 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703 

Day 4 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703 

Day 5 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703 

TABLE II: Example: Updated reward distribution for one task (Days 1–5) with 2 training nodes (A,B), Delegator A (σ = 0.4), 
and 3 validators (A,B,C). δ = 0.1 for Reward A (10%) vs. Reward B (90%). 

 

Similarly, reward for delegator who delegates to a validator 
can be calculated as: 

– Reward A of the AI Arena task is: 

RAI,A = δ · RAI 

 
Σ 

! 
s 

i i 
 

 
 

 

in which  f (∆ , s ) is the Softmax function for validator 
mentioned above, whereas sd refers to the stake amount from 
a given delegator and sv is the stake amount from the validator 
itself. 

In the future, ODIN AI  delegate staking has the option to 
be integrated with existing restaking platforms to attract users 
from a border blockchain community. 

 
H. Various Validation Sets 

To mitigate the lookup attacks from malicious training 
nodes, ODIN AI  validators adopt diverse validation datasets. 
Specifically, for a AI Arena task spanning x days, the vali- 
dation dataset used during the initial x − 1 days differs from 
that of the final day. These distinct validation datasets are 
associated with two types of rewards: Reward A for the initial 
period and Reward B for the final day. This strategic approach 
enhances security by varying the data against which training 
nodes are validated, thereby complicating any potential mali- 
cious attempts to exploit predictable validation scenarios. 

• For each AI Arena within the ecosystem, the rewards 
mechanism for training nodes is thoughtfully designed to 
comprise two distinct parts: Reward A and Reward B. 

– Reward A provides a daily contingent reinforcement 

Ri = (1 − δ) · Ri 

δ is a configurable system parameter. 

 
I. Example 

We consider the rewards for the participants in task 1. 
We assume that: 

• Daily total rewards for all AI Arena tasks for a given day 
is 309,157.68. 

• There are 2 nodes and 3 validators in this given task. 
• Nodes A and B stake 3,000 and 3,500 $ODIN AI  respec- 

tively, while Validators A, B and C stake 3,000, 6,000 and 
3,000 respectively. Node A also receives an additional 
1,000 ODIN AI  from its delegators, which brings the ti 
(total stake including delegated stake) to be 4,000 for 
Node A. 

• For simplicity, we assume γ to be 0 in this example. 
• We further assume σ to be 0.4, and δ to be 0.1. 
• We consider the scores for Nodes A, B, Validators A, B 

and C are 0.501435, 0.498565, 0.472768, 0.280226 and 
0.247006 respectively. 

First, for this given task on Day 1, total rewards for all 
training nodes are: 

schedule, incentivizing participant engagement with AI 
Arena tasks through immediate gratification. This con- 

6500 
309157.68 × 

6500 + 12000 
= 108623.7 

tinuous reward mechanism fosters sustained participa- 
tion by providing consistent feedback and reinforcing 
contributions. 

– Reward B, implements vesting, releasing tokens upon 
successful task completion within a predetermined 
lifespan. This incentivizes participants to both engage 
in tasks and ensure their timely and efficient com- 
pletion. Vesting also functions as a quality control 
mechanism, promoting focused contributions aligned 
with project deadlines. 

We can then compute the rewards for Node A and its 
delegators. Consider αt=1, rewards for Node A (together with 
delegators) are: 

0.501435 × 4000 
×108623.7 = 58084 

(0.501435 × 4000) + (0.498565 × 3500) 
Similarly, for Node B, its rewards together with its delega- 

tors are: 
0.498565 · 3500 

× 108623.7 = 50539 
(0.501435 · 4000) + (0.498565 · 3500) 
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0.4 + 0.6 × 
 

= 49371 
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Fig. 5: Overview of the workflow of a ODIN AI  FL task, adopted from our previous work [14]. During each round, FL clients 
are randomly selected to act as proposers or voters. Their staked amount can be either rewarded or slashed based on the 
outcome of the majority voting results. Malicious clients will ultimately be removed from the FL system. 

 

Given σ=0.4, the actual reward for Node A alone is: 

3000 
4000 

As Node B does not have any delegator, so it will retain 100% 
of its rewards (i.e. 50,539). 

As we assume δ is 0.1, Reward A is 10% of the daily 
rewards for training nodes, while 90% of the rewards (i.e. 
Reward B) will be locked until the end of task. Thus, Reward 
A and Reward B for Node A on Day 1 are 4,937.1 and 
44,433.9 respectively, whereas those for Node B are 5,053.9 
and 45,485.1 respectively. 

As for validators, for the same task on Day 1, total rewards 
for all validators are: 

VI. ODIN AI  CONSENSUS IN FL ALLIANCE 

Figure 5 depicts the workflow of a FL Alliance task in 
ODIN AI . As shown in our work in leveraging blockchain to 
defend against poisoning attacks in FL Alliance [14], ODIN 
AI  adopts a distributed voting and a reward-and-slash 
mechanism to construct secure FL Alliance systems. 

A. Task Creators 

Similar to task creation in AI Arena, an FL Alliance task 
creator must satisfy predefined criteria. Only FL Alliance tasks 
verified by the ODIN AI  DAO will be eligible for rewards 
from the daily emissions. Otherwise, the FL Alliance task 
creator must self-fund the reward pool using their own $ODIN 
AI . 

309157.68 × 12000 
 

 

6500 + 12000 
= 200534.0 

B. Random Role Selection 

Consider a FL Alliance task involving P participants, de- 
noted as P = 1, . . . , P. To participate in the training process, 

Then, if we assume Validator A has a score of 0.472768, 
the the reward for validator A only is: 

200534.0 × 0.369 ×
 

0.4 + 0.6 ×  3000 
 

= 73997 

each participant needs to stake a specified quantity of coins. 
Upon formally joining the training task, each participant’s 
local dataset Dp is randomly partitioned into a training set 

 

Similarly, on Day 1, rewards for Valdiator B (score = 
0.280226, stake = 6,000) and Validator C (score = 0.247006, 
stake = 3,000) are 87,834 and 38,703 respectively. 

As for Delegator A who delegates 1,000 to Node A, its 
rewards on Day 1 are calculated as such: 

58084 ×
 

0.6 ×   1000 
 

= 8712.6 
 

The reward distribution among the participants in task 1 
during the 5 days is shown in Table II. 

other participants at any time. At the beginning of each 
round t in the FL Alliance task, participants are randomly 
assigned roles as either a proposer (PT ) or a voter (PV ) 
through an on-chain random function. Subsequently, a model 
initialised or pre-trained model downloaded from AI Arena 
by one of the proposers is chosen at random temporarily to 
serve as the pioneering global model. The selected model’s 
weights or gradients are then distributed to all participants, 
ensuring a unified starting point for local models. Proposers 
are responsible for training their local models using their 
own data and subsequently sharing the updated model weights 
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Algorithm 1 ODIN AI  Federated Training.  

T : Total number of global communication rounds 
E: Total number of local model update epochs 
θg: Global model 
Dtrain: local training dataset 
Dtest: local test dataset 

1: procedure INIT 
2: Download pre-trained model from AI Arena or initialise global model θt 
3: Broadcast θt to all participants 
4: end procedure 
5: procedure UPDATE(θt ) 
6: Initialise local model θt 
7: Update model parameters θt ← θt 

p g 
8: θt+1 ← θt − η∇L(θt ; b) ▷ Local model update 

p p p 

9: return θt+1 
10: end procedure 
11: procedure EVALUATE(θt + 1P ) 

12: θt+1 ← 
ΣP np θt+1 ▷ Model updates aggregation 

13: Res ←−g−− Dtest ▷ Evaluate aggregated model 
14: return Res 
15: end procedure 
16: procedure MAIN 

17: Random select initialisation leader → plead 
18: → plead Do procedure Init 
19: for t = 1 to T do 
20: Random assign roles for all participants 
21: Proposer does procedure Update 
22: Voter does procedure Evaluate 
23: votet calculate t 

p ←−−−− Resp 

24: aggVotet = 
ΣPv  votet ▷ Votes aggregation 

25: θt+1 ← GlobalModelSelection(aggVotet) 
26: Broadcast θt+1 
27: end for 
 28: end procedure  

 

 

or gradients with all participants. Voters, on the other hand, 
aggregate these updates from proposers. They then proceed 
to validate the aggregated model updates, resulting in the 

models are then aggregated into the latest global model using 
a weighted averaging approach, as described below: 

PT 

  
 

Here, the weight βp is defined as np , with np = |Dtrain| 
At the start of round t, proposers initially download the N p 

global model, denoted as θt−1, which was finalised in the 
previous round (t−1). Using the local training dataset Dtrain, 
proposers then proceed to update the model θt−1 through E 
epochs of local training. Then the updated model θt of the 
current round t will be uploaded to the voters for evaluation. 

D. FL Alliance Aggregation 

Upon the completion of task training during round t, the 

indicates the number of local training data samples for each 
proposer p, and N = PT np is the total number of training 
data samples across all proposers PT . 

E. FL Alliance Validation and Voting 

• After the model aggregation process is finalised, the voter 
proceeds to evaluate the aggregated model θˆt, utilising 
their own local testing datasets Dtest. This evaluation 

voter gathers the local models {θt }PT from proposers. These phase involves the computation of a local validation 
p p=1 
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θ̂ t = βp · θt generation of a validation score. 

C. FL Alliance Training 
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Algorithm 2 Reward-and-slash design for FL clients.  

P: Set of participants at round t 
rewardP ool: Total reward pool 
Balk: Stake amount of participant k 
sp: Slashed rate 
participantsDistributionRate: Ratio of participants in one round 
TotalRounds: Total numbers of communication round 
BalThresholdp: minimum stake of participants 

1: poolp ← initialRewardP oolSize 
2: for t = 0; t < TotalRounds do 
3: Candidates ← {} 
4: for k ∈ P do 
5: if Balk ≥ BalThresholdp then 
6: Candidates ← Candidates ∪ {k} 
7: end if 
8: end for 
9: Pt, Pt ← Randomly select proposers and voters from Candidates based on participantsDistributionRate 

p v 
10: aggVotet ← Aggregated voting results from the voters Pt at round t 
11: roundRewardAmount ←  poolp  

12: roundT otalStakedT okensF orGoodP articipants ← 0 
13: if aggVotet ≥ 0 then ▷ Compute the participants that should be rewarded in this round 
14: for k ∈ Pt do 
15: roundT otalStakedT okensF orGoodP articipants + = Balk 
16: end for 
17: end if 
18: for k ∈ Pt do 
19: if votet · aggVotet ≥ 0 then 
20: roundT otalStakedT okensF orGoodP articipants + = Balk 
21: end if 
22: end for 
23: if aggVotet ≥ 0 then ▷ Reward and Slash Proposers 
24: for k ∈ Pt do 

 Balk  
roundTotalStakedTokensForGoodParticipants 

 Balk  
roundTotalStakedTokensForGoodParticipants 

27: end for 
28: else 
29: for k ∈ Pt do 
30: Balk ← Balk − Balk · sp 
31: poolp ← poolp + Balk · sp 
32: end for 
33: end if 
34: for k ∈ Pt do ▷ Reward and Slash Voters 
35: if votet · aggVotet ≥ 0 then 

k 
 Bal 
roundTotalStakedTokensForGoodParticipants 

 Balk  
roundTotalStakedTokensForGoodParticipants 

38: else 
39: Balk ← Balk − Balk · sp 
40: poolp ← poolp + Balk · sp 
41: end if 
42: end for 
43: t ← t + 1 
 44: end for  
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(a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4. 

Fig. 6: Example: FL system with reward and slash mechanism under different values of the ratio of malicious clients (η), taken 
from [14]. The average balance of honest clients increases, while the average balance of malicious clients decreases over time. 

 

score, st , which functions as a criterion for assessing the 
model’s performance. These individual validation scores 
are then submitted to a smart contract for aggregation. 
Following the aggregation, the aggregated score is com- 
pared with the previous round’s score, st−1, to assess 
progress or decline in model performance. The smart 
contract then determines the next steps for the aggregated 
model based on these scores: advancement to the next 
phase for satisfactory performance improvement, or a 
return to the preceding validated model to begin a new 
cycle of training, aggregation and evaluation, if progress 
is deemed insufficient. 

( 
1,  st ≥ (1 − ϵ) · st−1 

  
 

• Rewards and Penalties for Voters/Validators: As 
shown in Algorithm 2, for round t, if aggVotet ≥ 0, then 
validators who issued a positive vote will be rewarded, 
while others will face penalties. Conversely, should the 
aggregate vote be negative, validators who aligned with 
this outcome are rewarded, whereas those who did not 
will be penalised. 

G. Example 

As illustrated in Figure 6(d), taken from our previous 
work [14], proper configuration of the slashing and reward 
mechanisms enables the expulsion of malicious FL partici- 
pants from the system, while incentivising honest behaviour. 

 

 

Here, ϵ is a hyperparameter within the range (0, 1), des- 
ignated to tolerate the permissible margin of performance 
decline across successive rounds. 

• After  receiving  all  reported  voting  results 

ODIN AI  also adopts advanced techniques such as Zero- 
knowledge proof (ZKP) [16], [17] to construct secure decen- 
tralised AI training systems. 

ZKPs for FL Alliance Aggregation: As demonstrated in 
{votet , ..., votet } from the validators, the aggregator our prior study, ODIN AI  incorporates ZKP to address 
the 

1 PV 

will calculate the aggregated voting result via the 
following formula: 

Pv 
t t 

p 
p=1 

For each round t, the finalised aggregated global model 
update is determined by the aggregated voting result: 

ˆt t 
θt = 

θt−1,  aggVotet < 0 

F. FL Alliance Rewards for Participants 

The aggregated voting result aggVotet will also determine 
the rewards distribution for participants in a FL Alliance task. 

• Rewards and Penalties for Proposers/Training Nodes: 
As shown in Algorithm 2, in any given round t, should 
aggVotet be non-negative, all training nodes selected for 
that round will receive rewards. Conversely, a negative 
aggregate vote will result in penalties for these nodes. 

issues arising from the centralisation of the FL Alliance 
aggregator/server, as detailed in our earlier research [18]. Our 
FL system, which can be underpinned by both blockchain 
technology and ZKPs and function in the following manner: 

• Setup Phase: Each participant, comprising N clients 
and an aggregator, generates their unique private/public 
key pairs. These pairs are directly associated with their 
respective blockchain addresses. 

• Client Selection Phase: At the beginning of each epoch, 
a subset of n clients is selected from the total N by using 
Verifiable Random Functions. 

• Local Computation Phase: The selected n clients start 
local model training to derive their individual model 
updates w1, w2, . . . , wn. Utilising the Pedersen commit- 
ment, each client encrypts their update as Enc(wi) = 
gwi · hsi , where g and h are predefined public parameters 
and si is a randomly generated number by the client. 
Following encryption, clients authenticate these updates 
using their private keys to produce a signature sigi 
and subsequently transmit the compilation of their local 
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model update, the generated random number, the en- 
crypted update, and the signature (wi, si, Enc(wi), sigi) 
to the aggregator. 

• Aggregation and ZKP Generation Phase: The aggre- 
gator aggregates the incoming local updates to form a 

unified global model update w = 
Σn  wi. It also calcu- 

holders. Proposals can range from addressing technical 
issues like bug fixes and algorithm optimisation to driving 
wider community impact, such as allocating treasury 
funds for research or launching educational programs. 

• Debating: Proposed ideas are then open for discussion 
and critique within the ODIN AI  community. Token 
holders 

lates the collective encrypted value of this global update can engage in forums, discussions, and possibly even 

as Enc(w) = 
Qn Enc(wi) and signs this encrypted direct communication with developers to analyze the 

value to produce a signature sig. Utilising zkSnarks, the 
aggregator issues a proof π to validate the accuracy and 
authenticity of the aggregation process, based on the 
provided statement and witness, ensuring the integrity 
of both the individual updates and the aggregate model. 
Specifically, the aggregator then leverages zkSnark to 
issue a proof π for the following statement and witness: 

statement = (Enc(w1), sig1, Enc(w2), sig2, 
..., Enc(wn), sign, Enc(w)) 

witness = (w1, s1, w2, s2, ..., wn, sn, w) 

where the corresponding circuit C(statement, witness) 
outputs 0 if and only if: 

merits and potential consequences of each proposal. This 
debate fosters transparency and ensures that decisions are 
well-informed and considered from multiple perspectives. 

• Voting: Once a proposal has been sufficiently debated, 
token holders cast their votes to decide its fate. The voting 
system likely incorporates mechanisms like weighted 
voting (where larger holdings carry more weight) or 
quadratic voting (which incentivises thoughtful contri- 
butions and discourages manipulation) to ensure fair 
representation. 

The statement emphasises that ODIN AI ’s governance model 
allows for continuous adaptation as the platform and the 
decentralised AI landscape evolve: 

• Policy Adaptation: As new challenges and opportunities 

,
, ∀1 ≤ i ≤ n, Enc(wi) = gwi · hsi arise, token holders can use the voting system to modify 

 

 
sigi is signed by the client i 

• Global Model and Proof Dissemination Phase: The 
aggregator distributes the global model update w and its 
encryption Enc(w) back to the n clients. Concurrently, it 
broadcasts the validity proof π along with the encrypted 
global model update to the block proposers. 

• Blockchain Verification Phase: Upon receiving the 
proof π and the encrypted global model update from the 
aggregator, block proposers verify π. If deemed valid, 
the hash of H(Enc(w)) is inscribed onto the blockchain, 
cementing the update’s correctness. 

• Blockchain Consultation Phase: As a new epoch ini- 
tiates, the next cohort of n selected clients peruses the 
blockchain to verify the inclusion of H(Enc(w)). Upon 
successful validation, they proceed with their local train- 
ing, guided by the insights gleaned from the aggregated 
global model update w. 

VII. ODIN AI  GOVERNANCE 

ODIN AI  token holders are entitled to engage in the 
system’s democratised governance through a DAO. To 
participate in governance, token holders typically need to lock 
their tokens in a smart contract. Each token can represent a 
vote, aligning the distribution of power proportional to users’ 
stake. 

Users can propose, debate, and vote on various aspects of 
development and management, from technical updates and 
protocol modifications to treasury management and commu- 
nity initiatives. 

• Proposing: The ODIN AI  community actively shapes 
the protocol’s future through a proposal system for all 
token 

that ODIN AI  remains relevant and responsive to the 
chang- ing needs of its community and the broader AI 
ecosystem. 

• Feature Implementation: Proposals for implementing 
new features can be put forward and voted on, allowing 
the ODIN AI  platform to grow and evolve based on user 
demand and feedback. This fosters innovation and keeps 
ODIN AI  at the forefront of decentralised AI 
development. 

• Responding to Challenges: The ability to quickly adapt 
policies and implement changes allows ODIN AI  to ef- 
fectively respond to unforeseen challenges like security 
vulnerabilities, regulatory shifts, or market fluctuations. 

As ODIN AI  and decentralised AI landscape mature, token 
holders can adapt policies, implement new features, and re- 
spond to emerging challenges. 

VIII. ODIN AI  APPLICATIONS 

The ODIN AI  system can be used to construct centralised 
AI, which have been proven to applied in the following cases. 

A. Decentralised AI for LLMs 

• Pre-training of LLMs: ODIN AI  facilitates the pre-
training of LLMs by leveraging a decentralised network 
whereby members can contribute computational 
resources and diverse data sets. This unlocks proprietary 
data that would otherwise remain inaccessible or unused 
in traditional, centralised open-source development. 
Diverse datasets ensure LLM versatility and ensures a 
broader repre- sentation of linguistic and cultural 
nuances, as well as community-defined values for LLMs. 

• Fine-tuning of LLMs: Fine-tuning involves adapting a 
pre-trained model to perform specific tasks or improve 

 

 

wi n 
i=1 existing policies or create entirely new ones. This ensures 
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its accuracy on particular types of data. ODIN AI  
supports fine-tuning in several ways: 

– Fine-tuning for Financial Transactions: LLMs can 
be fine-tuned to act as intelligent agents for cryp- 
tocurrency transactions. Capabilities include transfers, 
swaps, and bridging between different cryptocurren- 
cies. ODIN AI ’s  planned collaborations with 
platforms such as Morpheus Network and 0xscope can 
facilitate hosting these AI models, ensuring that they 
are accessible and operational for the community. This 
enables secure and efficient AI-driven financial 
transactions. 

– Fine-tuning for AI Companions: AI models can be 
fine-tuned to interact with users in more personalised 
and engaging ways, similar to those on platforms like 
Character.ai. ODIN AI  can host these sophisticated AI 
companions, enhancing user experience through more 
natural and context-aware interactions. 

B. Decentralised AI for Stable Diffusion Models 

The ODIN AI  system can be used to fine-tune Stable 
Diffusion text-to-image models. One critical component of 
this process involves Low-Rank Adaptation (LoRA) [19], 
which modifies certain parameters within the model’s 
architecture to make it more adaptable to specific tasks 
without extensive retraining. 

• Fine-tuning LoRA: LoRA is designed to adapt pre- 
trained models by introducing trainable low-rank matrices 
into the architecture. This technique allows for efficient 
adaptation with minimal additional computational cost 
and a smaller number of trainable parameters. In the 
context of ODIN AI  and Stable Diffusion Models, 
applying LoRA is particularly advantageous for several 
reasons: 

– Community-Driven Enhancements: By decentralising 
the fine-tuning process, ODIN AI broadens 
participation in contributing specific knowledge and 
preferences. Artists, designers, and other creatives can 
input unique styles or features they wish to see 
enhanced, improving output quality and ensuring that 
it serves a wider array of cultural contexts and artistic 
expressions. 

– Scalability and Accessibility: Fine-tuning with LoRA 
can be scaled across multiple nodes, facilitating more 
widespread and continuously iterative improvements. 

– Use Case Expansion: By fine-tuning Stable Diffusion 
Models with LoRA, ODIN AI  can cater to specific 
indus- tries or niches. For example, the model could be 
fine- tuned to generate medical illustrations for 
educational purposes, architectural visualisations for 
real estate, or unique art styles for digital media. 

C. Decentralised AI for Linear Regression Models 

Linear regression models [20] are fundamental tools in 
statistical analysis and predictive modeling, widely used for 
their simplicity and effectiveness in understanding relation- 
ships between variables. ODIN AI  applies these principles in 
a decentralised setting to address specific healthcare 
challenges, such as diabetes management. 

Diabetes management presents a critical area where linear 
regression can be effectively utilised to predict patient out- 
comes based on various inputs such as blood sugar levels, diet, 
exercise, and medication adherence. FL Alliance facilitates the 
development of these predictive models with decentralised data 
sources in a way that respects patient data protection. 

• Data Protection and Security: ODIN AI  allows multiple 
healthcare providers to collaborate in the model training 
process without actually sharing the data. This method 
is crucial for complying with stringent health data pro- 
tection regulations such as HIPAA in the U.S. Each 
participant (e.g., hospitals, and clinics) retains control 
over their data, which is used to compute model updates 
locally. These updates are then aggregated to improve a 
shared model without exposing individual patient data. 

• Enhanced Model Accuracy and Reliability: By integrating 
data from a diverse range of demographics and geograph- 
ical locations, ODIN AI  can help develop more accurate 
and generalised linear regression models for diabetes 
manage- ment. This diversity is especially important in 
healthcare, where patient populations can vary 
significantly, affecting the reliability of predictive 
models. 

• Collaborative Innovation: Different healthcare entities 
contribute to a common goal, accelerating innovation and 
leading to the discovery of novel insights into diabetes 
management and treatment strategies. 

IX. CONCLUSION 

ODIN AI  provides solutions to build decentralised AI 
through AI Arena, FL Alliance, and AI Marketplace. ODIN AI  
dismantles obstacles that hinder participation in AI systems, 
enabling de- velopers to contribute models, data, or 
computational resources in a flexible, modular fashion. ODIN 
AI  fosters the creation of a diverse array of models, 
meticulously crafted by and expressly for the communities 
they serve in AI models. 
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