ESCP 2024 (3):

Exercice 3

On admet que si X et Y sont deux variables aléatoires réelles, alors X+Y est une variable aléatoire réelle. Dans cet exercice, on étudie deux versions d'un jeu, dont le but est d'obtenir un maximum de points.

Soit n un entier naturel pair noté n=2N avec N un entier supérieur ou égal à 2.

On dispose d'une urne contenant n billes, indiscernables au toucher, numérotées de 1 à n.

Partie I) Première version

Dans ce premier jeu, le joueur tire au hasard une bille dans l'urne. On note X la variable aléatoire égale au résultat du numéro obtenu. On remet la bille dans l'urne et on effectue un deuxième tirage. On définit alors une variable aléatoire Y qui vaut 1 si ce numéro est impair et 0 si ce numéro est pair. À la fin du jeu, le nombre de points du joueur vaut X+Y.

Par exemple si le joueur tire la bille numéro 4, remet cette bille dans l'urne, puis tire la bille numéro 3, alors X = 4, Y = 1 et le nombre de points obtenus par le joueur vaut X + Y = 5.

- 1. (a) Combien y a-t-il de numéros pairs dans l'urne lorsque n = 2N?
 - (b) Reconnaître, en justifiant, les lois de X et Y. Donner leurs espérance et variance.

2. Python

Compléter le programme suivant afin qu'il simule le nombre de points obtenus par le joueur à l'issue d'une partie du jeu.

- 3. Justifier que les variables aléatoires X et Y sont indépendantes.
- 4. Quelles sont les valeurs prises par la variable aléatoire X + Y? Justifier votre réponse.
- 5. (a) Justifier les égalités suivantes : $P(X+Y=1)=\frac{1}{2n}$ et $P(X+Y=n+1)=\frac{1}{2n}$.
 - (b) Soit $k \in [2, n]$. Déterminer P(X + Y = k) en utilisant la formule des probabilités totales.
 - (c) Vérifier par le calcul que $\sum_{k=1}^{n+1} P(X+Y=k) = 1$.
- 6. (a) Que vaut $\mathbb{E}(X+Y)$? Interpréter le résultat obtenu.
 - (b) Python

On définit le programme suivant :

On exécute simulation (4) et Python renvoie 4,939. Expliquer ce résultat.

Partie II) Seconde version

Dans ce second jeu, on ne remet pas la bille tirée au premier tirage dans l'urne. Le jeu devient donc : Le joueur tire au hasard une bille dans l'urne. On note X la variable aléatoire égale au résultat du numéro obtenu. On ne remet pas la bille dans l'urne et on effectue un deuxième tirage. La variable aléatoire Y vaut 1 si ce numéro est impair et 0 si ce numéro est pair. À la fin du jeu, le nombre de points du joueur vaut toujours X+Y.

1. (a) Montrer que :
$$P_{(X \text{ est paire})}(Y=1) = \frac{N}{2N-1}$$
 et que $P_{(X \text{ est impaire})}(Y=1) = \frac{N-1}{2N-1}$.

- (b) À l'aide de la formule des probabilités totales appliquée au système complet d'événements ((X est paire), (X est impaire)), calculer P(Y = 1).
- (c) En déduire la loi de Y.
- 2. (a) Donner la valeur de $P((X=1) \cap (Y=1))$ en justifiant votre réponse.
 - (b) Les variables X et Y sont-elles indépendantes?
- 3. On rappelle que le but du jeu est d'obtenir le plus de points possibles. Est-ce qu'une version du jeu est favorable en moyenne au joueur?