ESCP 2023 (2):

Exercice 2

1) Soit f la fonction qui à tout réel x associe $f(x) = \begin{cases} 0 & \text{si } x > 0 \\ 4x(1-x^2) & \text{si } 0 \le x \le 1 \\ 0 & \text{si } x > 1 \end{cases}$

Vérifier que f est une densité de probabilité.

On considère désormais une variable aléatoire X de densité f et on note F_{χ} sa fonction de répartition.

- 2) a) Montrer que X possède une espérance et donner sa valeur.
 - b) Montrer que X possède une variance et vérifier qu'elle est égale à $\frac{11}{225}$.
- 3) Montrer que l'on a : $F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 (1 x^2)^2 & \text{si } 0 \le x \le 1. \\ 1 & \text{si } x > 1 \end{cases}$
- 4) Soit U et V deux variables aléatoires à densité, indépendantes, et suivant toutes les deux la loi uniforme sur [0,1]. On pose $M = \min(U,V)$, c'est-à-dire que, pour tout réel x, on a P(M > x) = P(U > x)P(V > x). On admet que M est une variable aléatoire à densité et on note F_M sa fonction de répartition.
- a) En notant G la fonction de répartition commune à U et V, rappeler l'expression de G(x) selon que x < 0, $0 \le x \le 1$ ou x > 1.
 - b) En déduire, pour tout réel x, les expressions de P(M > x) et de $F_M(x)$ en fonction de G(x).
 - c) Donner enfin explicitement $F_M(x)$ selon que x < 0, $0 \le x \le 1$ ou x > 1.
- 5) On considère la variable aléatoire Z définie par $Z = \sqrt{M}$ et on note F_Z sa fonction de répartition.
 - a) Déterminer $F_Z(x)$ selon que x < 0, $0 \le x \le 1$ ou x > 1.
 - b) En déduire que X et Z sur vent la même loi.
- c) Compléter le script Python suivant qui simule la variable M à la ligne L3, afin qu'il simule la variable X à la ligne L4.