ESCP 2021 (3):

Exercice 3 (analyse)

On considère la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \begin{cases} xe^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- 1/ a/ Calculer $\lim_{x\to 0^+} f(x)$ et en déduire que f est continue à droite en 0.
 - b/ Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$ et en déduire que f est dérivable à droite en 0 et donner le nombre dérivé à droite de f en 0, noté $f'_d(0)$.
- 2/ a/ Déterminer, pour tout réel x de R^{*}₊, l'expression de f'(x) en fonction de x, où f' désigne la fonction dérivée de f.
 - b/ Étudier le signe de f'(x) sur \mathbb{R}_+^* puis donner les variations de f sur \mathbb{R}_+ .
 - c/ Calculer les limites de f aux bornes de son domaine de définition puis dresser le tableau de variations de f.
 - d/ Vérifier que, pour tout réel x de \mathbb{R}_+^* , on a $f''(x) = \frac{1}{x^3} e^{-1/x}$. La fonction f est-elle convexe ou concave sur \mathbb{R}_+ ?
- 3/ a/ Calculer $\lim_{u\to 0^+} \frac{e^{-u}-1}{u}$.
 - **b/** En déduire que $\lim_{x\to+\infty} (f(x)-(x-1))=0$.
 - c/ On note (C) la courbe représentative de f dans un repère orthonormé. Donner l'équation cartésienne réduite de la droite asymptote à (C) au voisinage de $+\infty$ et tracer l'allure de (C).

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par la donnée de son premier terme $u_0=1$ et par la relation de récurrence $u_{n+1}=f(u_n)$, valable pour tout entier naturel n.

- 4/ a/ Montrer par récurrence que, pour tout entier naturel n, on a $u_n > 0$.
 - b/ Montrer que la suite (u_n)_{n∈N} est décroissante.
 - c/ En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
 - d/ On importe la bibliothèque numpy par l'instruction import numpy as np. Compléter les commandes suivantes pour qu'elles affichent le rang n à partir duquel $u_n \leq 10^{-3}$:

5/ a/ Montrer que, pour tout entier naturel n, on a la relation :

$$\sum_{k=0}^{n} \frac{1}{u_k} = -\ln u_{n+1}$$

b/ En déduire que la série de terme général $\frac{1}{u_0}$ est divergente.