ECRICOME 2023 (2):

Exercice 2

Partie 1

Soit f la fonction définie par $f(x) = \ln(1 + e^x)$.

On note \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

- 1. Justifier que l'ensemble de définition de f est \mathbb{R} . On admet que f est continue et dérivable sur \mathbb{R} .
- 2. Vérifier que $\forall x \in \mathbb{R}, \ f'(x) = \frac{e^x}{1 + e^x}$. En déduire la monotonie de f sur \mathbb{R} .
- 3. Calculer la limite de f en $-\infty$. \mathscr{C}_f admet-elle une asymptote? Si oui, donner l'équation de cette asymptote.
- (a) Déterminer la limite de f en +∞.
 - (b) Démontrer que $\forall x \in \mathbb{R}, f(x) = x + \ln(1 + e^{-x}).$
 - (c) En déduire que la droite (D) d'équation y=x est asymptote à la courbe \mathscr{C}_f en $+\infty$.
 - (d) Étudier le signe de f(x) x pour tout réel x, et en déduire la position relative de (D) par rapport à \mathscr{C}_f .
- Déterminer l'équation de la tangente (T₀) à C_f au point d'abscisse 0.
- 6. (a) Dresser le tableau de variations de f en précisant les limites aux bornes et la valeur en 0.
 - (b) Tracer sur un même repère l'allure de la courbe \mathscr{C}_f , les droites (D) et (T_0) . On admet qu'une valeur approchée de $\ln(2)$ est 0,69.

Partie 2

Pour tout entier naturel n, on pose pour tout réel x de [0,1], $g_n(x) = \ln(1+e^{-nx})$ et $I_n = \int_0^1 g_n(x) dx$.

- 7. (a) Montrer que $\forall x \in [0,1], \forall n \in \mathbb{N}, g_{n+1}(x) \leq g_n(x)$.
 - (b) En déduire que la suite (I_n)_{n≥0} est décroissante.
 - (c) Montrer que la suite $(I_n)_{n\geqslant 0}$ est convergente.
- 8. (a) À l'aide d'une intégration par parties, montrer que pour tout entier naturel n,

$$I_n = \ln (1 + e^{-n}) + n \int_0^1 \frac{x e^{-nx}}{1 + e^{-nx}} dx.$$

- (b) Montrer que $\forall n \in \mathbb{N}$, $0 \leq I_n \leq \ln (1 + e^{-n}) + n \int_0^1 x e^{-nx} dx$.
- (c) Montrer que pour tout entier naturel n non nul, $\int_0^1 x e^{-nx} dx = \frac{-e^{-n}}{n} + \frac{1 e^{-n}}{n^2}.$
- (d) En déduire que $\lim_{n\to+\infty}I_n=0$
- 9. (a) Écrire une fonction en langage Python, nommée gn, prenant en entrée un entier naturel non nul n et un réel x et renvoyant $g_n(x)$.

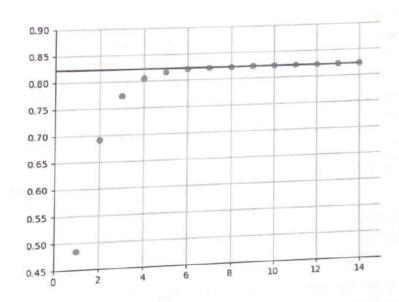
(b) On dispose d'une fonction en langage Python nommée I prenant en entrée un entier naturel non nul ${\bf n}$ et renvoyant une valeur approchée de I_n à 10^{-7} près. On exécute le code suivant :

```
import numpy as np
import matplotlib.pyplot as plt

L_x = np.zeros(14)
L_y = np.zeros(14)
for n in range(14):
    L_x[n] = n+1
    L_y[n] = (n+1)*I(n+1)

plt.plot(L_x,L_y,'.r')
plt.plot([1,14],[np.pi**2/12,np.pi**2/12])
plt.show()
```

On obtient la figure ci-dessous :



Que peut-on conjecturer sur la suite $(nI_n)_{n\geqslant 1}$?