BSB 2022 (3):

Exercice 3 (probabilités discrètes, couples de v.a.)

Une urne contient initialement deux boules rouges et une boule bleue. Un jeu consiste à répéter la séquence suivante :

- · tirer une boule au hasard dans l'urne;
- si la boule tirée est bleue, la remettre dans l'urne;
- si la boule tirée est rouge, la retirer et la remplacer par une boule bleue.

On définit, pour tout entier naturel k non nul, les événements B_k : « obtenir une boule bleue lors de la k-ème séquence » et R_k : « obtenir une boule rouge lors de la k-ème séquence ».

- 1/ a/ Calculer $P(B_1)$ et $P(R_1)$.
 - b/ En utilisant la formule des probabilités totales, calculer $P(B_2)$ et $P(R_2)$.
 - c/ On constate à l'issue de la deuxième séquence que la boule tirée est bleue. Quelle est la probabilité que le premier tirage ait amené une boule rouge?
- 2/ On note Y₁ la variable aléatoire égale au nombre de boules rouges présentes dans l'urne à l'issue de la première séquence de jeu.
 - a/ Déterminer l'ensemble $Y_1(\Omega)$ des valeurs prises par Y_1 .
 - b/ En utilisant la question 1/a/, calculer $P(Y_1 = 1)$ et $P(Y_1 = 2)$.
 - c/ Calculer l'espérance de Y₁.
 - 3/ On note Y₂ la variable aléatoire égale au nombre de boules rouges présentes dans l'urne à l'issue de la deuxième séquence de jeu.
 - a/ Justifier que :

$$Y_2(\Omega) = \{0, 1, 2\}$$

b/ Justifier que :

$$P([Y_1=2] \cap [Y_2=2]) = P(B_1 \cap B_2) = \frac{1}{9}$$

c/ En procédant de la même manière que dans la question précédente, justifier avec précision que la loi conjointe du couple (Y₁, Y₂) est donnée par :

$j \in Y_2(\Omega)$ $i \in Y_1(\Omega)$	0	1	2
1	20	49	0
2	0	<u>2</u>	19

- 4/ a/ Déduire de la loi conjointe du couple (Y₁, Y₂) la loi de Y₂. En déduire son espérance.
 - b/ En utilisant le tableau de la question 3/c/, calculer $E(Y_1Y_2)$.
 - c/ Montrer que la covariance de (Y_1, Y_2) est égale à $\frac{4}{27}$. Les variables aléatoires Y_1 et Y_2 sont-elles indépendantes?

5/ Dans le programme suivant, on introduit la variable r qui représente le nombre de boules rouges présentes dans l'urne à un instant donné.

```
import numpy as np
   import numpy.random as rd
2
3
   n = int(input("entrez une valeur pour n : "))
5
   for k in range(n):
6
       if r == 2:
7
           if rd.random() < 2/3:
8
                r = 1
9
10
       else:
           if r == 1:
11
                if .....
12
13
  print(r)
```

- a/ Recopier et compléter les lignes 12 et 13 de ce programme afin qu'il simule n séquences du jeu, l'entier $n \ge 1$ étant donné par l'utilisateur.
- b/ À quelle variable aléatoire de l'exercice correspond le nombre affiché lorsque l'utilisateur donne 2 comme valeur à n?
- c/ Dans l'instruction if des lignes 7 à 13, le cas r == 0 n'apparaît pas. Expliquer pourquoi ce n'est pas nécessaire.