BSB 2021 (2):

Exercice 2 (analyse)

1/ Justifier que pour tout réel x on $a: x^2 + x + 1 > 0$.

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \ln(x^2 + x + 1)$. On note \mathcal{C} sa courbe dans un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$.

- 2/ Rappeler la valeur de $\lim_{x\to +\infty} \ln(x)$. Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.
- 3/ Vérifier que $f(-\frac{1}{2}) = \ln(3) 2\ln(2)$.
- 4/ a/ Justifier que pour tout réel x on a :

$$f'(x) = \frac{2x+1}{x^2+x+1}$$

- b/ Dresser le tableau des variations de f sur \mathbb{R} en y faisant figurer les éléments obtenus aux questions 2/ et 3/.
- 5/ a/ Montrer, en la résolvant, que l'équation f(x) = 0 d'inconnue x admet exactement deux solutions : -1 et 0.
 - b/ Justifier que la tangente à \mathcal{C} au point d'abscisse 0 a pour équation y = x. Déterminer une équation de la tangente à \mathcal{C} au point d'abscisse -1.
- 6/ a/ Calculer la dérivée seconde de f et vérifier que pour tout réel x on a :

$$f''(x) = \frac{-2x^2 - 2x + 1}{(x^2 + x + 1)^2}$$

- b/ Étudier la convexité de f sur \mathbb{R} . Vérifier que \mathcal{C} admet exactement deux points d'inflexion aux points d'abscisses $\frac{-1+\sqrt{3}}{2}$ et $\frac{-1-\sqrt{3}}{2}$.
- 7/ a/ Justifier, sans la résoudre, que l'équation f(x) = 1 admet exactement une solution α dans $[0, +\infty[$.
 - b/ On donne $\ln(3) \approx 1,1$. Vérifier que $\alpha \in [0,1]$.
 - c/ Vérifier que $f(-1-\alpha)=1$.
 - d/ On importe la bibliothèque numpy par l'instruction import numpy as np. Recopier et compléter l'algorithme suivant afin qu'il permette de calculer une valeur approchée de α à 10^{-3} près par dichotomie.

```
def f(x):
    return ....
a = 0
b = ....
while b-a > 10**(-3):
    c = ....
if f(c) < 1:
    a = ....
else:
    b = ....
print(....)</pre>
```

8/ On donne les valeurs suivantes :

$$\alpha \approx 0.9$$
 $f(-\frac{1}{2}) \approx -0.3$ $\frac{-1+\sqrt{3}}{2} \approx 0.4$ $\frac{-1-\sqrt{3}}{2} \approx -1.4$

Tracer l'allure de la courbe C ainsi que les tangentes obtenues en 5/b/.