
GCE A LEVEL MARKING SCHEME

SUMMER 2024

**A LEVEL
FURTHER MATHEMATICS
UNIT 4 FURTHER PURE MATHEMATICS B
1305U40-1**

About this marking scheme

The purpose of this marking scheme is to provide teachers, learners, and other interested parties, with an understanding of the assessment criteria used to assess this specific assessment.

This marking scheme reflects the criteria by which this assessment was marked in a live series and was finalised following detailed discussion at an examiners' conference. A team of qualified examiners were trained specifically in the application of this marking scheme. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners. It may not be possible, or appropriate, to capture every variation that a candidate may present in their responses within this marking scheme. However, during the training conference, examiners were guided in using their professional judgement to credit alternative valid responses as instructed by the document, and through reviewing exemplar responses.

Without the benefit of participation in the examiners' conference, teachers, learners and other users, may have different views on certain matters of detail or interpretation. Therefore, it is strongly recommended that this marking scheme is used alongside other guidance, such as published exemplar materials or Guidance for Teaching. This marking scheme is final and will not be changed, unless in the event that a clear error is identified, as it reflects the criteria used to assess candidate responses during the live series.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 4 FURTHER PURE MATHEMATICS B

SUMMER 2024 MARK SCHEME

Qu	Solution	Mark	Notes
1. a)	$r = \sqrt{5^2 + 10^2} = \sqrt{125} = 5\sqrt{5}$ $\arg(5 + 10i) = 1.11$ $\sqrt[3]{5 + 10i} = \sqrt[3]{\sqrt{125}} e^{\frac{1.11i}{3} + \frac{2n\pi i}{3}}$ $z_1 = \sqrt{5}e^{0.37i}$ $z_2 = \sqrt{5}e^{2.46i}$ $z_3 = \sqrt{5}e^{4.56i}$	B1 B1 M1 A1 m1 A1 [6]	One root $\frac{2n\pi i}{3}$ All roots Use of degrees gains B1, B1, M1, A0, M1, A0 at most Penalise -1 for use of $r(\cos \theta + i \sin \theta)$ or $x + iy$, unless written as $re^{i\theta}$
b)	<p>METHOD 1:</p> <p>Converting to coordinates:</p> $z_1 = (2.086, 0.807)$ $z_2 = (-1.741, 1.404)$ $z_3 = (-0.344, -2.209)$ <p>Distance between $z_1 z_2$:</p> $\sqrt{(-1.741 - 2.086)^2 + (1.404 - 0.807)^2} = 3.87(3285 \dots)$ <p>Area = $\frac{1}{2} \times 3.87 \dots \times 3.87 \dots \times \sin \frac{\pi}{3}$</p> $= 6.5$ <p>METHOD 2:</p> <p>Splitting triangle into 3 smaller isosceles triangles</p> <p>Angle at centre where 3 isosceles triangles meet = $\frac{2\pi}{3}$</p> <p>Area of 1 isosceles triangle = $\frac{1}{2} \times 125^{\frac{1}{6}} \times 125^{\frac{1}{6}} \times \sin \frac{2\pi}{3}$</p> <p>Area of full triangle = $3 \times \frac{1}{2} \times 125^{\frac{1}{6}} \times 125^{\frac{1}{6}} \times \sin \frac{2\pi}{3}$</p> $= 6.5$	B1 M1 A1 M1 A1 A1 (B1) (M1) (A1) (B1) (A1) [5]	FT (a) Any two, si Or $z_1 z_3$, $z_2 z_3$ Exact distance is $\sqrt{15}$ Use of $\frac{1}{2} ab \sin C$, including degrees cao Must be to 2 sf si Fully correct Area $\times 3$ cao Must be to 2 sf

Qu	Solution	Mark	Notes
3.	<p>Dividing both sides by $\cos x$:</p> $\frac{dy}{dx} + \frac{y \sin x}{\cos x} = 4 \cos^2 x \sin x + \frac{5}{\cos x}$ <p>Integrating factor: $e^{\int \frac{\sin x}{\cos x} dx} = e^{\int \tan x dx} = e^{\ln \sec x} = \sec x$</p> <p>THEN, METHOD 1:</p> <p>Multiplying both sides:</p> $\sec x \frac{dy}{dx} + y \frac{\sin x}{\cos x} \sec x = 4 \sin x \cos x + \frac{5}{\cos x} \sec x$ $\sec x \frac{dy}{dx} + y \tan x \sec x = 2 \sin 2x + 5 \sec^2 x$ <p>Integrating</p> $y \sec x = -\cos 2x + 5 \tan x (+c)$ <p>Substituting $y = 3\sqrt{2}$ when $x = \frac{\pi}{4}$:</p> $3\sqrt{2} \times \sqrt{2} = 0 + 5 \times 1 + c \rightarrow c = 1$ <p>Solution: $y \sec x = -\cos 2x + 5 \tan x + 1$</p> $y = -\cos 2x \cos x + 5 \sin x + \cos x$	M1 M1 A1	oe
		m1 A1	Both sides of equation
		m1	
		A1	cao Must be $y = \dots$
	<p>OR, METHOD 2:</p> <p>Multiplying both sides:</p> $\sec x \frac{dy}{dx} + y \frac{\sin x}{\cos x} \sec x = 4 \sin x \cos x + \frac{5}{\cos x} \sec x$ $\sec x \frac{dy}{dx} + y \tan x \sec x = 4 \sin x \cos x + 5 \sec^2 x$ <p>Integrating:</p> $y \sec x = 2 \sin^2 x + 5 \tan x (+c)$ <p>Substituting $y = 3\sqrt{2}$ when $x = \frac{\pi}{4}$:</p> $3\sqrt{2} \times \sqrt{2} = 2 \times \frac{1}{2} + 5 \times 1 + c \rightarrow c = 0$ <p>Solution: $y \sec x = 2 \sin^2 x + 5 \tan x$</p> $y = 2 \sin^2 x \cos x + 5 \sin x$	(M1) (A1) (m1) (A1) (m1) (A1)	Form to integrate Both sides of equation cao Must be $y = \dots$

Qu	Solution	Mark	Notes
3.	<p>OR, METHOD 3: Multiplying both sides:</p> $\sec x \frac{dy}{dx} + y \frac{\sin x}{\cos x} \sec x = 4 \sin x \cos x + \frac{5}{\cos x} \sec x$ $\sec x \frac{dy}{dx} + y \tan x \sec x = 4 \sin x \cos x + 5 \sec^2 x$ <p>Integrating:</p> $y \sec x = -2 \cos^2 x + 5 \tan x (+c)$ <p>Substituting $y = 3\sqrt{2}$ when $x = \frac{\pi}{4}$:</p> $3\sqrt{2} \times \sqrt{2} = -2 \times \frac{1}{2} + 5 \times 1 + c \rightarrow c = 2$ <p>Solution: $y \sec x = -2 \cos^2 x + 5 \tan x + 2$ $y = -2 \cos^3 x + 5 \sin x + 2 \cos x$</p>	(M1) (A1) (m1) (A1) (m1) (A1) [9] Total [9]	Form to integrate Both sides of equations cao Must be $y = \dots$

Qu	Solution	Mark	Notes
4. a)	$\left(z + \frac{1}{z}\right)^4 = z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4}$ $= (z^4 + z^{-4}) + (4z^2 + 4z^{-2}) + 6$ $= 2 \cos 4\theta + 8 \cos 2\theta + 6$ $(2 \cos \theta)^4 = 2 \cos 4\theta + 8 \cos 2\theta + 6$ $\therefore 16 \cos^4 \theta = 2 \cos 4\theta + 8 \cos 2\theta + 6$	M1 A1 m1 A1 A1 [5]	3 correct terms unsimplified si cao
b)	$\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (3 - 4\cos^2 \theta)^2 d\theta$ $= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (9 - 24\cos^2 \theta + 16\cos^4 \theta) d\theta$ $24\cos^2 \theta = 24 \times \frac{1}{2}(1 + \cos 2\theta)$ $= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (9 - 12(1 + \cos 2\theta) + 2 \cos 4\theta + 8 \cos 2\theta + 6) d\theta$ $= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (3 - 4 \cos 2\theta + 2 \cos 4\theta) d\theta$ $= \frac{1}{2} \left[3\theta - 2 \sin 2\theta + \frac{2}{4} \sin 4\theta \right]_{\pi/6}^{5\pi/6}$ $= \frac{1}{2} \left(\frac{15\pi}{6} + \frac{2\sqrt{3}}{2} - \frac{\sqrt{3}}{4} \right) - \frac{1}{2} \left(\frac{3\pi}{6} - \frac{2\sqrt{3}}{2} + \frac{\sqrt{3}}{4} \right)$ $= \pi + \frac{3\sqrt{3}}{4} \quad \text{or} \quad 4.44.....$	M1 A1 B1 A1 A2 m1 A1 [8]	Condone omission of $\frac{1}{2}$ until final A1 FT for A1A1A1 (a) if in form $a \cos 4\theta + b \cos 2\theta + c$ A1 for 2 terms correct Use of limits cao

Qu	Solution	Mark	Notes
4. c)	$x = r \cos \theta = 3 \cos \theta - 4 \cos^3 \theta$ $\frac{dx}{d\theta} = -3 \sin \theta + 12 \cos^2 \theta \sin \theta$ <p>When perpendicular to initial line:</p> $\frac{dx}{d\theta} = -3 \sin \theta + 12 \cos^2 \theta \sin \theta = 0$ $-3 \sin \theta (1 - 4 \cos^2 \theta) = 0$ <p>Therefore,</p> $-3 \sin \theta = 0 \quad \text{or} \quad 1 - 4 \cos^2 \theta = 0$ $\cos^2 \theta = \frac{1}{4}$ $\sin \theta = 0 \quad \cos \theta = \pm \frac{1}{2}$ <p>When $\sin \theta = 0$ the curve does not exist.</p> <p>When $\cos \theta = \pm \frac{1}{2}$,</p> $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$ $r = 2$ $\left(2, \frac{\pi}{3}\right), \left(2, \frac{2\pi}{3}\right)$	M1 A2 m1 m1 A1 A1 A1 [8]	-1 each error $\frac{dx}{d\theta} = 0$

Qu	Solution	Mark	Notes
5. a)	$\frac{3-x}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$ $3-x = A(x^2+1) + x(Bx+C)$ <p>When $x = 0, 3 = A$</p> <p>Substituting values e.g. When $x = 1, 2 = 2A + B + C \quad \therefore B + C = -4$ When $x = -1, 4 = 2A + B - C \quad \therefore B - C = -2$ Solving, $B = -3$ and $C = -1$</p> $\int \frac{3-x}{x(x^2+1)} dx = \int \left(\frac{3}{x} + \frac{-3x-1}{x^2+1} \right) dx$ $= \int \left(\frac{3}{x} - \frac{3x}{x^2+1} - \frac{1}{x^2+1} \right) dx$ $= 3 \ln x - \frac{3}{2} \ln x^2+1 - \tan^{-1}x + c$	M1 A1 A1 m1 A1	Use of Or comparing coefficients FT A, B, C if $\neq 0$ A1 for two parts [8]
b)	<p>METHOD 1:</p> $\frac{\sinh 2x}{\sqrt{\cosh^4 x - 9 \cosh^2 x}} = \frac{2 \sinh x \cosh x}{\cosh x \sqrt{\cosh^2 x - 9}}$ $= \frac{2 \sinh x}{\sqrt{\cosh^2 x - 9}}$ <p>Let $u = \cosh x$</p> $\frac{du}{dx} = \sinh x$ $\int \frac{\sinh 2x}{\sqrt{\cosh^4 x - 9 \cosh^2 x}} dx = \int \frac{2 \sinh x}{\sqrt{\cosh^2 x - 9}} dx$ $= \int \frac{2}{\sqrt{u^2 - 9}} du$ $= 2 \cosh^{-1}\left(\frac{u}{3}\right) + c \quad \text{OR} \quad 2(\ln u + \sqrt{u^2 - 9}) + c$ $= 2 \cosh^{-1}\left(\frac{\cosh x}{3}\right) + c$ <p>OR $2(\ln \cosh x + \sqrt{\cosh^2 x - 9}) + c$</p>	M1 A1 M1 A1 A1 A1 A1 [6]	Rewrite $\sinh 2x$ and take out $\sqrt{\cosh^2 x}$ Or equivalent appropriate sub. Form to integrate Mark final answer

Qu	Solution	Mark	Notes
5. b)	<p>METHOD 2:</p> <p>Let $u = \cosh^2 x$ (M1)</p> $\frac{du}{dx} = 2\cosh x \sinh x = \sinh 2x$ $\int \frac{\sinh 2x}{\sqrt{\cosh^4 x - 9 \cosh^2 x}} dx = \int \frac{1}{\sqrt{u^2 - 9u}} du$ $= \int \frac{1}{\sqrt{\left(u - \frac{9}{2}\right)^2 - \frac{81}{4}}} du$ $= \cosh^{-1}\left(\frac{u - \frac{9}{2}}{\frac{9}{2}}\right) + c \text{ OR}$ $\ln \left \left(u - \frac{9}{2}\right) + \sqrt{\left(u - \frac{9}{2}\right)^2 - \frac{81}{4}} \right + c$ $= \cosh^{-1}\left(\frac{\cosh^2 x - \frac{9}{2}}{\frac{9}{2}}\right) + c \text{ OR}$ $\ln \left \left(\cosh^2 x - \frac{9}{2}\right) + \sqrt{\left(\cosh^2 x - \frac{9}{2}\right)^2 - \frac{81}{4}} \right + c$	(M1) (A1) (M1) (A1) (A1) (A1)	Attempt to complete the square Mark final answer
		[6] Total [14]	
	Across parts (a) and (b) – penalise -1 once only for no constant term		

Qu	Solution	Mark	Notes
6. a)	The 3 planes will intersect at a single point .	B2 [2]	B1 Because $\det \mathbf{M} \neq 0$, there is a unique solution.
b)	METHOD 1 (Use of inverse matrix): If $\mathbf{MX} = \mathbf{N}$, then $\mathbf{X} = \mathbf{M}^{-1}\mathbf{N}$. Cofactor matrix: $\begin{pmatrix} -600 & 92 & 425 \\ -80 & 40 & -30 \\ 400 & -96 & -240 \end{pmatrix}$ Inverse matrix $\mathbf{M}^{-1} = \frac{1}{-1040} \begin{pmatrix} -600 & -80 & 400 \\ 92 & 40 & -96 \\ 425 & -30 & -240 \end{pmatrix}$ Therefore, $\mathbf{X} = \mathbf{M}^{-1}\mathbf{N}$ $= \frac{1}{-1040} \begin{pmatrix} -600 & -80 & 400 \\ 92 & 40 & -96 \\ 425 & -30 & -240 \end{pmatrix} \begin{pmatrix} 2668 \\ 3402 \\ 4581 \end{pmatrix}$ $\mathbf{X} = \begin{pmatrix} 39 \\ 56 \\ 65 \end{pmatrix}$ Single £39, Double £56, Family £65	B1 M1 A1 m1 A2	May be implied by later work At least 5 correct entries
	METHOD 2 (Simultaneous equations/row operations): Let £ x , £ y , £ z be the price of single, double and family rooms, respectively $12x + 30y + 8z = 2668$ $18x + 25y + 20z = 3402$ $19x + 50y + 16z = 4581$ Multiplying each equation to get same coefficient of 1 variable $120x + 300y + 80z = 26680$ e.g. $72x + 100y + 80z = 13608$ $95x + 250y + 80z = 22905$ Eliminating 1 variable to arrive at 2 simultaneous equations e.g. $48x + 200y = 13072$ $25x + 50y = 3775$ Solving pair of simultaneous equations $x = 39, y = 56, z = 65$ Single £39, Double £56, Family £65	(B1) (M1) (A1) (m1) (A2)	A1 for two solutions Unsupported answer 0 marks Forming 3 correct equations May be for y or z variables

Qu	Solution	Mark	Notes
6. b)	<p>METHOD 3 (Row reduction to echelon form):</p> <p>Let £x, £y, £z be the price of single, double and family rooms, respectively</p> $\begin{array}{ll} 12x + 30y + 8z = 2668 & \text{R1} \\ 18x + 25y + 20z = 3402 & \text{R2} \\ 19x + 50y + 16z = 4581 & \text{R3} \end{array}$ <p>Row operations on one row to eliminate variable e.g. $2 \times \text{R2} - 3 \times \text{R1}$ to give</p> $\begin{array}{l} 12x + 30y + 8z = 2668 \\ -40y + 16z = -1200 \\ 19x + 50y + 16z = 4581 \end{array}$ <p>Row operations on second row to eliminate two variables</p> <p>Correct echelon form e.g.</p> $\begin{array}{l} 12x + 30y + 8z = 2668 \\ -40y + 16z = -1200 \\ 208z = 13520 \end{array}$ <p>Value of 1 variable correct i.e. one of $x = 39, y = 56, z = 65$</p> <p>Substituting into remaining rows</p> <p>Remaining two values $x = 39, y = 56, z = 65$</p> <p>Single £39, Double £56, Family £65</p>	(B1) (M1) (m1) (A1) (A1) (A1) [6]	<p>Forming 3 correct equations</p> <p>May be on any row</p> <p>May be on any row</p> <p>Must have 0 in 1 row and 0 0 in another row</p>

Qu	Solution	Mark	Notes
7. a) i)	$16 - 6x - x^2 = 25 - (x + 3)^2$ $\text{Mean value} = \frac{1}{1-(-3)} \int_{-3}^1 \frac{1}{\sqrt{16 - 6x - x^2}} dx$ $= \frac{1}{1-(-3)} \int_{-3}^1 \frac{1}{\sqrt{25 - (x + 3)^2}} dx$ $= \frac{1}{4} \left[\sin^{-1} \left(\frac{x+3}{5} \right) \right]_{-3}^1$ $= \frac{1}{4} \left(\sin^{-1} \frac{4}{5} \right) - \frac{1}{4} (\sin^{-1} 0)$ $= 0.232$	B1 M1 B1 A1 [4]	For $\sin^{-1} \left(\frac{x+3}{5} \right)$ If M0, award SC1 for 0.232 unsupported
ii)	$\text{Volume} = \pi \int_{-3}^1 \left(\frac{1}{\sqrt{16 - 6x - x^2}} \right)^2 dx$ $= \pi \int_{-3}^1 \frac{1}{25 - (x + 3)^2} dx$ $= \pi \left[\frac{1}{2 \times 5} \ln \left \frac{5+(x+3)}{5-(x+3)} \right \right]_{-3}^1 \text{ OR } = \pi \left[\frac{1}{5} \tanh^{-1} \frac{x+3}{5} \right]_{-3}^1$ $= \pi \left[\frac{1}{10} \ln \left \frac{9}{1} \right - \frac{1}{10} \ln \left \frac{5}{5} \right \right] \text{ OR } = \pi \left[\frac{1}{5} \tanh^{-1} \frac{4}{5} - \frac{1}{5} \tanh^{-1} 0 \right]$ $= \frac{\pi}{10} \ln 9 \text{ or } 0.69(0278459 \dots)$	M1 A1 A1 m1 A1 [5]	FT completed square from (i) if possible Award B1 from (i) here if not awarded previously Use of limits If M0, award SC1 for 0.69 unsupported
b)	$\lim_{a \rightarrow \infty} \int_1^a \frac{-8e^{-2x}}{4e^{-2x} - 5} dx$ $= \lim_{a \rightarrow \infty} [\ln 4e^{-2x} - 5]_1^a$ $= \lim_{a \rightarrow \infty} [\ln 4e^{-2a} - 5 - \ln 4e^{-2} - 5]$ $= [\ln -5 - \ln 4e^{-2} - 5]$ $= 0.115$	M1 A1 A1 [3]	No workings, 0 marks
		Total [12]	

Qu	Solution	Mark	Notes
8.	<p>METHOD 1:</p> $4x + 3 = \sinh y$ $4 \frac{dx}{dy} = \cosh y$ $4 \frac{dx}{dy} = \pm \sqrt{1 + \sinh^2 y}$ $4 \frac{dx}{dy} = \pm \sqrt{1 + (4x + 3)^2}$ $4 \frac{dx}{dy} = \pm \sqrt{16x^2 + 24x + 10}$ $\frac{dx}{dy} = \frac{\pm \sqrt{16x^2 + 24x + 10}}{4}$ $\frac{dy}{dx} = \frac{4}{\sqrt{16x^2 + 24x + 10}}$ <p>AND Justification</p> <p>e.g. graph of $\sinh^{-1} x$</p> <p>e.g. derivative of $\sinh x$ is $\cosh x$ which is always positive.</p>		
a)		M1	oe
		m1	Use of identity
		m1	Sub for $\sinh y$
		A1	oe
		A1	convincing, with explanation over the choice of +
	<p>METHOD 2:</p> $\sinh y = 4x + 3$ $\cosh y \frac{dy}{dx} = 4$ $\frac{dy}{dx} = \pm \frac{4}{\sqrt{1 + \sinh^2 y}}$ $\frac{dy}{dx} = \pm \frac{4}{\sqrt{1 + (4x + 3)^2}}$ $\frac{dy}{dx} = \pm \frac{4}{\sqrt{16x^2 + 24x + 10}}$ $\frac{dy}{dx} = \frac{4}{\sqrt{16x^2 + 24x + 10}}$ <p>AND Justification</p> <p>e.g. graph of $\sinh^{-1} x$</p> <p>e.g. derivative of $\sinh x$ is $\cosh x$ which is always positive.</p>	(M1)	oe
		(m1)	Use of identity
		(m1)	Sub for $\sinh y$
		(A1)	oe
		(A1)	convincing, with explanation over the choice of +
		[5]	

Qu	Solution	Mark	Notes
8. b)	<p>METHOD 1:</p> $y = \frac{\sinh 2x}{e^{-3x}} = \frac{e^{2x} - e^{-2x}}{2e^{-3x}}$ $y = \frac{e^{5x}}{2} - \frac{e^x}{2}$ $\frac{dy}{dx} = \frac{5e^{5x}}{2} - \frac{e^x}{2}$ <p>When stationary, $\frac{dy}{dx} = 0$</p> $\frac{5e^{5x}}{2} - \frac{e^x}{2} = 0$ $\frac{e^x}{2}(5e^{4x} - 1) = 0$ $\frac{e^x}{2} = 0 \quad \text{or} \quad 5e^{4x} - 1 = 0$ <p>$\frac{e^x}{2} = 0$ does not lead to a solution for x</p> $5e^{4x} - 1 = 0$ $x = \frac{1}{4} \ln \frac{1}{5}$ <p>Therefore, there is only one stationary point.</p>	M1 A1 A1 m1 A1 A1	Rewrite and substitute $\sinh 2x$
	<p>METHOD 2:</p> $e^{-3x}y = \sinh 2x$ $e^{-3x} \frac{dy}{dx} - 3e^{-3x}y = 2 \cosh 2x$ $e^{-3x} \frac{dy}{dx} - 3 \sinh 2x = 2 \cosh 2x$ $\frac{dy}{dx} = \frac{2 \cosh 2x + 3 \sinh 2x}{e^{-3x}}$ $\frac{dy}{dx} = \frac{e^{2x} + e^{-2x} + \frac{3}{2}e^{2x} - \frac{3}{2}e^{-2x}}{e^{-3x}}$ $\frac{dy}{dx} = \frac{5}{2}e^{5x} - \frac{1}{2}e^x$ <p>When stationary, $\frac{dy}{dx} = 0$</p> $\frac{5e^{5x}}{2} - \frac{e^x}{2} = 0$ $\frac{e^x}{2}(5e^{4x} - 1) = 0$ $\frac{e^x}{2} = 0 \quad \text{or} \quad 5e^{4x} - 1 = 0$ <p>$\frac{e^x}{2} = 0$ does not lead to a solution for x</p> $5e^{4x} - 1 = 0$ $x = \frac{1}{4} \ln \frac{1}{5}$ <p>Therefore, there is only one stationary point.</p>	(M1) (A1) (A1) (m1) (A1) (A1)	

Qu	Solution	Mark	Notes
8. b)	<p>METHOD 3:</p> $e^{-3x}y = \sinh 2x$ $y = e^{3x} \sinh 2x$ $\frac{dy}{dx} = 3e^{3x} \sinh 2x + 2e^{3x} \cosh 2x$ <p>When stationary, $\frac{dy}{dx} = 0$</p> $e^{3x}(3 \sinh 2x + 2 \cosh 2x) = 0$ $e^{3x} = 0 \text{ or } 3 \sinh 2x + 2 \cosh 2x = 0$ <p>$e^{3x} = 0$ does not lead to a solution for x</p> $3 \sinh 2x + 2 \cosh 2x = 0$ $\frac{\sinh 2x}{\cosh 2x} = -\frac{2}{3} \rightarrow \tanh 2x = -\frac{2}{3}$ $2x = -0.8047 \dots \dots$ $x = -0.402 \dots \dots \text{ or } \frac{1}{4} \ln \frac{1}{5}$ <p>Therefore, there is only one stationary point.</p>	(M1) (A2) (m1) (A1) (A1) [6]	A1 each part

Qu	Solution	Mark	Notes
9.	<p>Rewriting, $\sin 6\theta + \sin 2\theta = 3 \cos 2\theta - 2 \cos^2 \theta + 1$</p> <p>Use of summing formula, $2 \sin \frac{6\theta + 2\theta}{2} \cos \frac{6\theta - 2\theta}{2} = 2 \sin 4\theta \cos 2\theta$</p> <p>Use of identity, $3 \cos 2\theta - (2 \cos^2 \theta - 1) = 3 \cos 2\theta - \cos 2\theta$ $= 2 \cos 2\theta$</p> <p>Therefore, $2 \sin 4\theta \cos 2\theta = 2 \cos 2\theta$ $2 \sin 4\theta \cos 2\theta - 2 \cos 2\theta = 0$</p> <p>$2 \cos 2\theta (\sin 4\theta - 1) = 0$</p> <p>$2 \cos 2\theta = 0 \quad \text{or} \quad \sin 4\theta - 1 = 0$ $\cos 2\theta = 0$ $2\theta = \frac{\pi}{2} + n\pi$ $\theta = \frac{\pi}{4} + \frac{n\pi}{2}$</p> <p>$\sin 4\theta = 1$ $4\theta = \frac{\pi}{2} + 2n\pi$ $\theta = \frac{\pi}{8} + \frac{n\pi}{2}$</p>	<p>M1 A1</p> <p>M1 A1</p> <p>m1 m1</p> <p>A1</p>	<p>FT provided M1M1, for method marks only</p> <p>Solvable form</p> <p>Either</p> <p>cao</p> <p>cao</p>

**Total
[9]**

Qu	Solution	Mark	Notes
10. a)	<p>METHOD 1:</p> <p>Rearrange first equation:</p> $\frac{dx}{dt} - 4x - 6e^{3t} = 2y$ $\frac{1}{2} \frac{dx}{dt} - 2x - 3e^{3t} = y$ <p>Substituting into second equation:</p> $\frac{d}{dt} \left(\frac{1}{2} \frac{dx}{dt} - 2x - 3e^{3t} \right) = 6x + 8 \left(\frac{1}{2} \frac{dx}{dt} - 2x - 3e^{3t} \right) + 15e^{3t}$ $\frac{1}{2} \frac{d^2x}{dt^2} - 2 \frac{dx}{dt} - 9e^{3t} = 6x + 4 \frac{dx}{dt} - 16x - 24e^{3t} + 15e^{3t}$ $\frac{1}{2} \frac{d^2x}{dt^2} - 6 \frac{dx}{dt} + 10x = 0$ $\frac{d^2x}{dt^2} - 12 \frac{dx}{dt} + 20x = 0$	M1 M1 A2 A1 [5]	-1 each error C Convincing
	<p>METHOD 2:</p> <p>Differentiating:</p> $\frac{d^2x}{dt^2} = 4 \frac{dx}{dt} + 2 \frac{dy}{dt} + 18e^{3t}$ <p>Substituting for $\frac{dy}{dt}$</p> $\frac{d^2x}{dt^2} = 4 \frac{dx}{dt} + 2(6x + 8y + 15e^{3t}) + 18e^{3t}$ $\frac{d^2x}{dt^2} = 4 \frac{dx}{dt} + 12x + 16y + 30e^{3t} + 18e^{3t}$ <p>Substituting for y</p> $\frac{d^2x}{dt^2} = 4 \frac{dx}{dt} + 12x + 8 \left(\frac{dx}{dt} - 4x - 6e^{3t} \right) + 48e^{3t}$ $\frac{d^2x}{dt^2} = 4 \frac{dx}{dt} + 12x + 8 \frac{dx}{dt} - 32x - 48e^{3t} + 48e^{3t}$ $\frac{d^2x}{dt^2} = 12 \frac{dx}{dt} - 20x$ $\frac{d^2x}{dt^2} - 12 \frac{dx}{dt} + 20x = 0$	(M1) (A1) (M1) (A1) (A1) (5)	

Qu	Solution	Mark	Notes
10. b)	<p>The auxiliary equation is: $m^2 - 12m + 20 = 0$ $(m - 2)(m - 10) = 0$ $m = 2$ or $m = 10$</p> <p>Therefore, the general solution is: $x = Ae^{2t} + Be^{10t}$</p> <p>Differentiating</p> $\frac{dx}{dt} = 2Ae^{2t} + 10Be^{10t}$ $\frac{d^2x}{dt^2} = 4Ae^{2t} + 100Be^{10t}$ <p>Substituting and solving</p> $2A + 10B = 9$ $4A + 100B = 10$ <p>Solving,</p> $A = 5 \text{ and } B = -\frac{1}{10}$ <p>Therefore,</p> $x = 5e^{2t} - \frac{1}{10}e^{10t}$	<p>M1</p> <p>A1</p> <p>M1</p> <p>A1</p> <p>m1</p> <p>A1</p> <p>B1</p> <p>[7]</p> <p>Total [12]</p>	<p>Condone use of x and y</p> <p>Both $\frac{dx}{dt}$ and $\frac{d^2x}{dt^2}$</p> <p>cao Must be $x = f(t)$</p>