



# **GCE AS MARKING SCHEME**

**SUMMER 2024**

**AS  
FURTHER MATHEMATICS  
UNIT 2 FURTHER STATISTICS A  
2305U20-1**

---

## **About this marking scheme**

The purpose of this marking scheme is to provide teachers, learners, and other interested parties, with an understanding of the assessment criteria used to assess this specific assessment.

This marking scheme reflects the criteria by which this assessment was marked in a live series and was finalised following detailed discussion at an examiners' conference. A team of qualified examiners were trained specifically in the application of this marking scheme. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners. It may not be possible, or appropriate, to capture every variation that a candidate may present in their responses within this marking scheme. However, during the training conference, examiners were guided in using their professional judgement to credit alternative valid responses as instructed by the document, and through reviewing exemplar responses.

Without the benefit of participation in the examiners' conference, teachers, learners and other users, may have different views on certain matters of detail or interpretation. Therefore, it is strongly recommended that this marking scheme is used alongside other guidance, such as published exemplar materials or Guidance for Teaching. This marking scheme is final and will not be changed, unless in the event that a clear error is identified, as it reflects the criteria used to assess candidate responses during the live series.

---

# WJEC GCE AS FURTHER MATHEMATICS

## UNIT 2 FURTHER STATISTICS A

### SUMMER 2024 MARK SCHEME

| Qu.         | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark           | Notes                                                                                                                                                                                                                                                                                                        |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(a)<br>(i) | <p>Total number of fish caught, <math>F</math>, is<br/> <math>\text{Po}((3.8 + 4.3) \times 0.5)</math><br/> <math>\text{Po}(4.05)</math></p> $P(F < 2) = \frac{4.05^1 \times e^{-4.05}}{1!} + \frac{4.05^0 \times e^{-4.05}}{0!}$ $= 0.08798$ <p><b><u>ALTERNATIVE SOLUTION</u></b></p> <p>Total number of fish caught by Dave, <math>D</math>, is<br/> <math>\text{Po}(4.3 \times 0.5)</math><br/> <math>\text{Po}(2.15)</math></p> <p>Total number of fish caught by Llinos, <math>L</math>, is<br/> <math>\text{Po}(3.8 \times 0.5)</math><br/> <math>\text{Po}(1.9)</math></p> <p>Possible combinations are <math>D = 0</math> and <math>L = 0</math><br/> <math>D = 0</math> and <math>L = 1</math> OR <math>D = 1</math> and <math>L = 0</math></p> $P(D = 0 \text{ and } L = 0) = \frac{2.15^0 \times e^{-2.15}}{0!} \times \frac{1.9^0 \times e^{-1.9}}{0!}$ $P(D = 0 \text{ and } L = 1) = \frac{2.15^0 \times e^{-2.15}}{0!} \times \frac{1.9^1 \times e^{-1.9}}{1!}$ $P(D = 1 \text{ and } L = 0) = \frac{2.15^1 \times e^{-2.15}}{1!} \times \frac{1.9^0 \times e^{-1.9}}{0!}$ $P(F < 2) = 0.017422 + 0.033102 + 0.037458$ $P(F < 2) = 0.08798$ | M1<br>M1<br>M1 | M1 for Poisson (si) and adding.<br>M1 for multiplying by 0.5, oe.<br>MOM1 for 4.05 with Poisson not mentioned nor used.<br>MOM1 for $\text{Po}(2.15)$ or $\text{Po}(1.9)$<br>Use of formula or calculator with their $\lambda \neq 3.8$ or $4.3$<br>A1 cao Condone 0.088<br>(M1) M1 for both Dave and Llinos |
| (ii)        | <p>Valid justification in context.<br/> e.g. Fish are caught singly.<br/> Fish are caught independently.<br/> Catches occur at random.<br/> Dave and Llinos catch fish independently.<br/> Constant average rate of fish being caught.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E1<br>[5]      | Must be in context<br>E0 for constant rate                                                                                                                                                                                                                                                                   |

| Qu.         | Solution                                                                                                                           | Mark                              | Notes                                                                   |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|
| 1(b)<br>(i) | Expected time until next fish = $\frac{1}{4.3} \times 8$<br>1.86 hours or 1 hour 52 minutes<br>i.e. 12.52pm                        | M1<br><br>A1                      | oe<br>Accept 12.51pm A0 for 1.86 only                                   |
| (ii)        | $P(\text{Dave doesn't catch a fish for the rest of the day})$<br>$= e^{-4.3 \times 0.5}$<br>$= 0.1165$                             | M1<br><br>A1                      |                                                                         |
|             | <u>Alternative solution</u><br>Using $\lambda = 2.15$ AND $P(X = 0)$<br>$P(X = 0) = 0.1165$                                        | (M1)<br><br>(A1)<br><br>[4]       | si                                                                      |
| (c)         | Let $J$ be the number of trout she catches in a year.<br>$J \sim B(950, 0.02)$<br>$P(J \geq 30) = 1 - P(J \leq 29)$<br>$= 0.01109$ | B1<br><br>M1<br><br>A1<br><br>[3] | si                                                                      |
| (d)         | Po(19)<br>Poisson since $n$ is large and $p$ is small.                                                                             | B1<br><br>E1<br><br>[2]           | Condone similar with values e.g.<br>$n > 50, p < 0.1$<br>e.g. $np > 10$ |
|             | <b>Total for Question 1</b>                                                                                                        | <b>14</b>                         |                                                                         |

| Qu.    | Solution                                                                                                                                                                                                                          | Mark                                                      | Notes                                                                                                                                                                                                                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2(a)   | <p>Realising <math>Q_3</math> is in the third part of the CDF.</p> $\frac{x^2 - x + 3}{5} = 0.75$ $x^2 - x - 0.75 = 0$ $x = -0.5 \text{ or } x = 1.5$ <p>Reject <math>-0.5 \therefore x = 1.5</math></p>                          | <p>B1</p> <p>M1</p> <p>A1</p> <p>A1</p> <p>B1</p>         | <p>si</p> <p>Setting <math>F(x) = 0.75</math><br/>Allow <math>\frac{x+2}{5} = 0.75</math><br/>for M1 only</p> <p>oe</p> <p>Both values.</p> <p>FT provided quadratic, with one answer in the range <math>[1,2]</math> and one outside this range.</p> <p><b>[5]</b></p>                                               |
| (b)    | <p><math>f(x) = F'(x)</math></p> $f(x) = \begin{cases} \frac{1}{5} & -2 \leq x < 1 \\ \frac{2x-1}{5} & 1 \leq x \leq 2 \\ 0 & \text{otherwise} \end{cases}$                                                                       | <p>M1</p> <p>A1</p> <p>A1</p> <p>B1</p> <p><b>[4]</b></p> | <p>M1 Attempt at differentiating with at least one power of <math>x</math> decreasing.</p> <p>A1 Correct expression for <math>f(x)</math> for <math>-2 \leq x &lt; 1</math>.</p> <p>A1 Correct expression for <math>f(x)</math> for <math>1 \leq x \leq 2</math>.</p> <p>B1 for "0 otherwise" and correct ranges.</p> |
| (c)(i) | <p><math>E(X) = \int_{-2}^1 \frac{x}{5} dx + \int_1^2 \frac{2x^2 - x}{5} dx</math></p> $E(X) = \left[ \frac{x^2}{10} \right]_{-2}^1 + \left[ \frac{2x^3}{15} - \frac{x^2}{10} \right]_1^2$ $E(X) = \frac{1}{3} \text{ (minutes)}$ | <p>M1</p> <p>A1</p> <p>A1</p>                             | <p>M1 Attempt at integrating <math>xf(x)</math> with at least one power of <math>x</math> increasing (ignore limits here)</p> <p>A1 correct integration with correct limits. FT 'their <math>f(x)</math>' of equivalent difficulty</p> <p>cao</p>                                                                     |
| (ii)   | <p>Valid interpretation<br/>e.g. 20 seconds longer than the target time <b>on average</b>.</p>                                                                                                                                    | <p>E1</p> <p><b>[4]</b></p>                               | <p>FT their <math>E(X)</math></p>                                                                                                                                                                                                                                                                                     |
|        | <b>Total for Question 2</b>                                                                                                                                                                                                       | <b>13</b>                                                 |                                                                                                                                                                                                                                                                                                                       |

| Qu.           | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mark          | Notes                |      |      |      |   |    |          |      |       |       |      |      |      |               |   |   |   |   |    |          |      |       |       |      |      |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|------|------|------|---|----|----------|------|-------|-------|------|------|------|---------------|---|---|---|---|----|----------|------|-------|-------|------|------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3(a)          | <p><math>H_0</math>: The number of bags sold can be modelled by a Poisson distribution with mean 2.2.<br/> <math>H_1</math>: The number of bags sold cannot be modelled by a Poisson distribution with mean 2.2.</p> <table border="1"> <tr> <td>No. bags sold</td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5+</td> </tr> <tr> <td>Exp Freq</td> <td>5.54</td> <td>12.19</td> <td>13.41</td> <td>9.83</td> <td>5.41</td> <td>3.62</td> </tr> </table> <p>Combining classes</p> <table border="1"> <tr> <td>No. bags sold</td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> <td>4+</td> </tr> <tr> <td>Exp Freq</td> <td>5.54</td> <td>12.19</td> <td>13.41</td> <td>9.83</td> <td>9.03</td> </tr> </table> <p>Use of <math>\chi^2</math> test stat <math>= \sum \frac{(O-E)^2}{E}</math>.</p> $  \begin{aligned}  &= \frac{(7 - 5.54)^2}{5.54} + \frac{(10 - 12.19)^2}{12.19} + \frac{(11 - 13.41)^2}{13.41} \\  &\quad + \frac{(9 - 9.83)^2}{9.83} + \frac{(13 - 9.03)^2}{9.03} \\  &= 3.02 \dots  \end{aligned}  $ <p>DF = 4</p> <p>10% CV = 7.779</p> <p>Since 3.02 ... &lt; 7.779 there is insufficient evidence to Reject <math>H_0</math>.</p> <p>There is no evidence to suggest that the number of bags sold cannot be modelled by a Poisson (2.2) distribution.</p> | No. bags sold | 0                    | 1    | 2    | 3    | 4 | 5+ | Exp Freq | 5.54 | 12.19 | 13.41 | 9.83 | 5.41 | 3.62 | No. bags sold | 0 | 1 | 2 | 3 | 4+ | Exp Freq | 5.54 | 12.19 | 13.41 | 9.83 | 9.03 | B1<br>B1<br>B1<br>M1<br>M1<br>m1<br>A1<br>B1<br>B1<br>m1<br>A1<br>[11] | B1 for 2 values correct.<br>B1 All correct.<br>M1 combining classes.<br>SC for solution that does not combine classes.<br>(M0M1m1A0B1B1m1A0)<br>Alternative M1m1<br>$\frac{7^2}{5.54} + \frac{10^2}{12.19} + \frac{11^2}{13.41} + \frac{9^2}{9.83} + \frac{13^2}{9.03} - 50$<br>cao Accept 3.03 Accept 3.016...<br>Dependent on 2 <sup>nd</sup> M1<br>FT their TS and CV<br>cso |
| No. bags sold | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | 2                    | 3    | 4    | 5+   |   |    |          |      |       |       |      |      |      |               |   |   |   |   |    |          |      |       |       |      |      |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |
| Exp Freq      | 5.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.19         | 13.41                | 9.83 | 5.41 | 3.62 |   |    |          |      |       |       |      |      |      |               |   |   |   |   |    |          |      |       |       |      |      |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |
| No. bags sold | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | 2                    | 3    | 4+   |      |   |    |          |      |       |       |      |      |      |               |   |   |   |   |    |          |      |       |       |      |      |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |
| Exp Freq      | 5.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.19         | 13.41                | 9.83 | 9.03 |      |   |    |          |      |       |       |      |      |      |               |   |   |   |   |    |          |      |       |       |      |      |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |
| 3(b)          | Po(2.5) is better since the $\chi^2$ test statistic is smaller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E1<br>[1]     | FT their TS from (a) |      |      |      |   |    |          |      |       |       |      |      |      |               |   |   |   |   |    |          |      |       |       |      |      |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |
|               | <b>Total for Question 3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>12</b>     |                      |      |      |      |   |    |          |      |       |       |      |      |      |               |   |   |   |   |    |          |      |       |       |      |      |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |

| Qu.   | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mark                              | Notes                                                         |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------|
| 4 (a) | $r = \frac{-18895.13043}{\sqrt{11503.91304 \times 78669.30435}}$ $r = -0.628$ <p>Valid interpretation.<br/> e.g. The negative value of 0.628 implies that on average the more people rely on cash, the less debt they have as a proportion of their household income.<br/> e.g. The correlation is fairly strong between household debt and the use of cash for transactions.<br/> e.g. As the percentage of cash transactions increases, net household debt as a percentage of disposable income tends to decrease.<br/> e.g. Household debt and percentage of cash transactions are negatively correlated.</p> | M1<br>A1<br>E1<br><br>[3]         | Condone +ve numerator<br>3sf                                  |
| (b)   | $b = \frac{s_{xy}}{s_{xx}}$ $b = -1.64$ $a = \frac{2695}{23} + 1.6424959... \times \frac{1467}{23}$ $a = 221.9...$ $y = 222 - 1.64x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1<br>A1<br>M1<br>A1<br>B1<br>[5] | FT their $b$ for M1A0<br>Correct to 3sf, ft their $a$ and $b$ |
| (c)   | <p>Selecting correct equation to use in each case.</p> <p>Malta <math>p = 222 - 1.64 \times 92</math><br/> <math>p = 71.12</math></p> <p>Denmark<br/> <math>q = -0.24 \times 261 + 91.92</math><br/> <math>q = 29.28</math></p>                                                                                                                                                                                                                                                                                                                                                                                  | B1<br>B1<br>[2]                   | FT (b) for Malta<br>Accept anything rounding to 71            |
| (d)   | <p>Valid explanation</p> <p>e.g. Not reliable because it's extrapolation, rather than interpolation.</p> <p>e.g. May not be reliable because the values are very close to the extremes of the graph.</p> <p>e.g. May be reliable because there is fairly strong correlation and the values are only just outside the range of the graph.</p>                                                                                                                                                                                                                                                                     | E1                                |                                                               |
| (e)   | <p>Valid explanation.</p> <p>e.g. Net disposable income may be negative.</p> <p>e.g. Household incomes are less than outgoings leading to a negative value for net disposable income.</p> <p>e.g. Maybe an erroneous value.</p>                                                                                                                                                                                                                                                                                                                                                                                  | E1<br>[2]                         |                                                               |
|       | <b>Total for Question 4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>12</b>                         |                                                               |

| Qu.  | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mark                                | Notes                                                                                              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|
| 5(a) | $F = \frac{74 \times 64}{253}$ $= 18.72$ $G = \frac{(8 - 14.33)^2}{14.33}$ $= 2.80$ $H = 8.33 + 0.73 + G + 3.88 + 0.02$ $= 15.76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1<br>M1<br>A1<br>A1<br>[4]         | or by adding row and subtracting from 74 or adding column and subtracting from 64.<br>FT their $G$ |
| (b)  | $H_0$ : Attitude towards Welsh is independent of how Welsh was learned.<br>$H_1$ : Attitude towards Welsh is not independent of how Welsh was learned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1                                  | both<br>OR there is (not) association ...                                                          |
|      | $\chi^2 = 20.70 + 3.52 + H$<br>$\chi^2 = 39.98$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1                                  | FT their $H$ , or using an appropriate contribution in the comparison with CV                      |
| (c)  | DF = 8<br>5% CV = 15.507<br><br>Since $39.98 > 15.507$ there is sufficient evidence to reject $H_0$ .<br>There is evidence to suggest that how a student learns Welsh affects their attitude towards the language.<br><br>Two different valid comments<br>e.g. Students who learned Welsh from two parents are more likely to have a positive attitude towards the language.<br>e.g. There is a real mix of attitudes towards the Welsh language amongst students who learned Welsh at school.<br>e.g. There are far fewer than expected number of students that have a very negative attitude towards Welsh who learnt from two parents/carers. | B1<br>B1<br>M1<br>A1<br>E1×2<br>[8] | cso<br><br>Must comment on more than just size of contributions.                                   |
|      | Total for Question 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                  |                                                                                                    |

| Qu.        | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mark     | Notes |            |     |     |            |     |      |     |            |     |     |     |     |     |            |     |      |     |     |     |     |     |     |     |            |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------|-----|-----|------------|-----|------|-----|------------|-----|-----|-----|-----|-----|------------|-----|------|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6          | <p>Identifying 140, 200, 260, 320 as the values of <math>Y</math>.</p> <table border="1"> <tr> <td><math>y</math></td><td>140</td><td>200</td><td>260</td><td>320</td></tr> <tr> <td><math>P(Y = y)</math></td><td>0.3</td><td><math>2p</math></td><td><math>p</math></td><td><math>0.7 - 3p</math></td></tr> </table> <p><math>E(Y) = 0.3 \times 140 + 2p \times 200 + p \times 260 + (0.7 - 3p) \times 320</math></p> <p><math>206 = 42 + 400p + 260p + 224 - 960p</math></p> <p><math>p = 0.2</math></p> <p><b>ALTERNATIVE SOLUTION</b><br/>SIMULTANEOUS EQUATIONS</p> <table border="1"> <tr> <td><math>y</math></td><td>140</td><td>200</td><td>260</td><td>320</td></tr> <tr> <td><math>P(Y = y)</math></td><td>0.3</td><td><math>2p</math></td><td><math>p</math></td><td><math>q</math></td></tr> </table> <p><math>0.3 + 3p + q = 1</math><br/><math>3p + q = 0.7</math></p> <p><math>E(Y) = 0.3 \times 140 + 2p \times 200 + p \times 260 + q \times 320</math></p> <p><math>206 = 42 + 400p + 260p + 320q</math></p> <p>Solve simultaneous equations<br/><math>165p + 80q = 41</math> and <math>3p + q = 0.7</math></p> <p><math>p = 0.2</math> or <math>q = 0.1</math></p> <table border="1"> <tr> <td><math>y</math></td><td>140</td><td>200</td><td>260</td><td>320</td></tr> <tr> <td><math>P(Y = y)</math></td><td>0.3</td><td>0.4</td><td>0.2</td><td>0.1</td></tr> </table> | $y$      | 140   | 200        | 260 | 320 | $P(Y = y)$ | 0.3 | $2p$ | $p$ | $0.7 - 3p$ | $y$ | 140 | 200 | 260 | 320 | $P(Y = y)$ | 0.3 | $2p$ | $p$ | $q$ | $y$ | 140 | 200 | 260 | 320 | $P(Y = y)$ | 0.3 | 0.4 | 0.2 | 0.1 | <p>B1</p> <p>B1 allow one error.</p> <p>Table may use <math>rvX</math>.</p> <p>B1 for attaching <math>2p</math> and <math>p</math> to 200 and 260 (or 6 and 7)</p> <p>B1 for <math>0.7 - 3p</math>.</p> <p>M1</p> <p>Using <math>\sum xP(X = x)</math> to form an expression in <math>p</math> (or another variable)</p> <p>M1</p> <p>Set =206 (or 6.1)</p> <p>A1</p> <p>(B1)</p> <p>B1 for attaching <math>2p</math> and <math>p</math> to 200 and 260 (or 6 and 7) and labelling <math>q</math>.</p> <p>(B1)</p> <p>Either</p> <p>(M1)</p> <p>Using <math>\sum xP(X = x)</math> to form an expression in <math>p</math> and <math>q</math></p> <p>(M1)</p> <p>Set =206 (or 6.1)</p> <p>(A1)</p> <p>A1 for either</p> <p>A1</p> <p>Fully correct probability distribution, cao</p> <p>[7]</p> |  |
| $y$        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200      | 260   | 320        |     |     |            |     |      |     |            |     |     |     |     |     |            |     |      |     |     |     |     |     |     |     |            |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $P(Y = y)$ | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2p$     | $p$   | $0.7 - 3p$ |     |     |            |     |      |     |            |     |     |     |     |     |            |     |      |     |     |     |     |     |     |     |            |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $y$        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200      | 260   | 320        |     |     |            |     |      |     |            |     |     |     |     |     |            |     |      |     |     |     |     |     |     |     |            |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $P(Y = y)$ | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2p$     | $p$   | $q$        |     |     |            |     |      |     |            |     |     |     |     |     |            |     |      |     |     |     |     |     |     |     |            |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $y$        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200      | 260   | 320        |     |     |            |     |      |     |            |     |     |     |     |     |            |     |      |     |     |     |     |     |     |     |            |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $P(Y = y)$ | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4      | 0.2   | 0.1        |     |     |            |     |      |     |            |     |     |     |     |     |            |     |      |     |     |     |     |     |     |     |            |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | <b>Total for Question 6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>7</b> |       |            |     |     |            |     |      |     |            |     |     |     |     |     |            |     |      |     |     |     |     |     |     |     |            |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |