Math = matics

Test Your Understanding 1

Question 1

Differentiate each of the following with respect to x:

a)
$$y = e^x$$

b)
$$y = 5e^{x}$$

b)
$$y = 5e^x$$
 c) $y = e^{5x}$

d)
$$y = 5e^{5x}$$

$$\frac{dy}{dx} = e^x$$

$$\frac{dy}{dx} = 5e^{x}$$

$$\frac{dy}{dx} = 5e^{5x}$$

$$\frac{dy}{dx} = 5e^x \qquad \qquad \frac{dy}{dx} = 5e^{5x} \qquad \qquad \frac{dy}{dx} = 25e^{5x}$$

Question 2

Differentiate each of the following with respect to x:

a)
$$y = \ln x$$

b)
$$y = 3 \ln x$$

c)
$$y = \ln 3x$$

c)
$$y = \ln 3x$$
 d) $y = 3e^{2x} + 4 \ln x$

$$\frac{dy}{dx} = \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{3}{x}$$

$$\frac{dy}{dx} = \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{1}{x} \qquad \qquad \frac{dy}{dx} = \frac{3}{x} \qquad \qquad \frac{dy}{dx} = \frac{1}{x} \qquad \qquad \frac{dy}{dx} = 6e^{2x} + \frac{4}{x}$$

Question 3

Differentiate the following with respect to x:

a)
$$y = \sqrt{x} + e^{3x}$$

b)
$$y = \frac{3}{x} + 3 \ln x$$

b)
$$y = \frac{3}{x} + 3 \ln x$$
 c) $y = 2\sqrt[3]{x} - 5e^{0.5x} - 4$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x}} + 3e^{3x}$$

$$\frac{dy}{dx} = -\frac{3}{x^2} + \frac{3}{x}$$

$$\frac{dy}{dx} = -\frac{3}{x^2} + \frac{3}{x}$$

$$\frac{dy}{dx} = \frac{2}{3\sqrt[3]{x^2}} - 2.5e^{0.5x}$$

Question 4

Find
$$\frac{d^2y}{dx^2}$$
 if:

a)
$$y = x^3 + 2e^x$$

b)
$$y = \ln x - \sqrt{x}$$

c)
$$y = 5x^4 - 3e^{2x} - 4lnx$$

$$\frac{dy}{dx} = 3x^2 + 2e^x$$

$$\frac{dy}{dx} = \frac{1}{x} - \frac{1}{2\sqrt{x}}$$

a)
$$y = x^3 + 2e^x$$
 b) $y = \ln x - \sqrt{x}$ c) $y = 5x^4 - 3e^{2x} - 4\ln x$ $\frac{dy}{dx} = 3x^2 + 2e^x$ $\frac{dy}{dx} = \frac{1}{x} - \frac{1}{2\sqrt{x}}$ $\frac{dy}{dx} = 20x^3 - 6e^{2x} - \frac{4}{x}$

$$\frac{d^2y}{dx^2} = 6x + 2e^x$$

$$\frac{d^2y}{dx^2} = -\frac{1}{x^2} + \frac{1}{4\sqrt{x^3}}$$

$$\frac{d^2y}{dx^2} = 6x + 2e^x \qquad \qquad \frac{d^2y}{dx^2} = -\frac{1}{x^2} + \frac{1}{4\sqrt{x^3}} \qquad \qquad \frac{d^2y}{dx^2} = 60x^2 - 12e^{2x} + \frac{4}{x^2}$$

Find f'(x) when

a)
$$f(x) = 3^x$$

b)
$$f(x) = 3^{2x}$$

c)
$$y = 2^{3x}$$

$$\frac{dy}{dx} = 3^x ln3$$

$$\frac{dy}{dx} = 3^{2x}(2\ln 3)$$
 $\frac{dy}{dx} = 2^{3x}(3\ln 2)$

$$\frac{dy}{dx} = 2^{3x}(3\ln 2)$$

Question 6

Find the value of $\frac{dy}{dx}$ at the indicated value of x:

a)
$$y = 3x + e^{2x}$$
 when $x = 0$

b)
$$y = \ln x - x^2$$
 when $x = 2$

$$\frac{dy}{dx} = 3 + 2e^{2x}$$

$$\frac{dy}{dx} = \frac{1}{x} - 2x$$

At 0,
$$\frac{dy}{dx} = 5$$

At 2,
$$\frac{dy}{dx} = -\frac{7}{2}$$

Question 7

Show that the curve $y = (e^x - e^{-x})^2$ has gradient 7.5 at the point where $x = \ln 2$.

$$y = e^{2x} - 2 + e^{-2x}$$

$$\frac{dy}{dx} = 2e^{2x} - 2e^{-2x}$$

At
$$x = ln2$$
, $\frac{dy}{dx} = 2e^{ln4} - 2e^{-ln4}$

$$=2\times 4-2\times \frac{1}{4}$$

$$= 7.5$$

Question 8

Find the equation of the tangent to the curve $y = e^{2x} - \ln x$ at the point where x = 1, giving your equation in the form y = ax + b, where a and b are given as exact values in terms of e.

$$\frac{dy}{dx} = 2e^{2x} - \frac{1}{x} = m = 2e^2 - 1$$

When
$$x = 1$$
, $y = e^2$

$$\therefore y - e^2 = (2e^2 - 1)(x - 1)$$

$$y = (2e^2 - 1)x + (1 - e^2)$$

Question 9

Given that $y = 2x + ke^{2x}$, where k is a constant, show that

$$(1 - 2x)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} - 4y = 0$$

$$\frac{dy}{dx} = 2 + 2ke^{2x}$$

$$\frac{d^2y}{dx^2} = 4ke^{2x}$$

$$\therefore (1-2x)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} - 4y$$

$$= (1 - 2x)(4ke^{2x}) + 4x(2 + 2ke^{2x}) - 4(2x + ke^{2x})$$

= 0 (after convincing intermediate steps!

Question 10

Find and classify the stationary point(s) on the curves with equation:

a)
$$y = \ln x - 10x$$

b)
$$y = 7 + 2x - 4 \ln x$$

$$\frac{dy}{dx} = \frac{1}{x} - 10$$

$$\frac{dy}{dx} = 2 - \frac{4}{x}$$

At st.pt.
$$\frac{dy}{dx} = 0 = x = \frac{1}{10}$$

At st.pt.
$$\frac{dy}{dx} = 0 = x = 2$$

$$\frac{d^2y}{dx^2} = -\frac{1}{x^2}$$

$$\frac{d^2y}{dx^2} = \frac{4}{x^2}$$

$$At \ x = \frac{1}{10}, \frac{d^2y}{dx^2} = -100$$

At
$$x = 2$$
, $\frac{d^2y}{dx^2} = 1 > 0$

Therefore point is a maximum.

Therefore point is a minimum.

Question 11

Find an equation for the tangent to the curve $y = 3 \ln x + \frac{2}{x}$ when x = 1.

$$\frac{dy}{dx} = \frac{3}{x} - \frac{2}{x^2}$$
When $x = 1$, $y = 2$, $\frac{dy}{dx} = 1$

$$\therefore y = x + 1$$

Find an equation for the normal to the curve $y = 5 - 2e^{2x}$ at the point where $x = \ln 2$.

$$\frac{dy}{dx} = -4e^{2x}$$

When
$$x = ln2$$
, $y = -3$, $\frac{dy}{dx} = -16$

$$y + 3 = \frac{1}{16}(x - \ln 2)$$

Challenge Question

A curve has equation $y = e^{2x} - 3x$.

- a) Find the exact value of x for which the tangent to the curve is parallel to the line y = 7x.
- b) Hence, find the exact equation of the tangent to the curve at this point.

Test Your Understanding 2

Find
$$\frac{dy}{dx}$$
 if:

a)
$$y = (1 + 3x)^5$$

b)
$$y = \sqrt{4x - 2}$$

b)
$$y = \sqrt{4x - 2}$$
 c) $y = (2x - 1)^{-3}$

$$\frac{dy}{dx} = 15(1+3x)^4$$

$$\frac{dy}{dx} = \frac{2}{\sqrt{4x - 2}}$$

$$\frac{dy}{dx} = 15(1+3x)^4 \qquad \frac{dy}{dx} = \frac{2}{\sqrt{4x-2}} \qquad \frac{dy}{dx} = -\frac{6}{(2x-1)^4}$$

$$d) y = \frac{1}{x^2 + 4}$$

e)
$$y = (x - 3x^2)^3$$
 f) $y = e^{3x-5}$

f)
$$v = e^{3x-5}$$

$$\frac{dy}{dx} = -\frac{2x}{(x^2+4)^2}$$

$$\frac{dy}{dx} = -\frac{2x}{(x^2+4)^2} \qquad \frac{dy}{dx} = 3(1-6x)(x-3x^2)^2 \quad \frac{dy}{dx} = 3e^{3x-5}$$

$$\frac{dy}{dx} = 3e^{3x-5}$$

Ouestion 2

Find
$$\frac{d^2y}{dx^2}$$
 with respect to x when $y = (4x - 3)^3$.

$$\frac{dy}{dx} = 12(4x - 3)^2$$

$$\frac{d^2y}{dx^2} = 96(4x - 3)$$

Question 3

Find the equation of the tangent to the curve $y = (2x - 3)^3$ at the point where x = 2.

$$\frac{dy}{dx} = 6(2x - 3)^2$$

$$At (2,1), \frac{dy}{dx} = 6$$

$$y = 6x - 11$$

Question 4

Find the equation of the normal to the curve $y = \frac{1}{2 + lnx}$ at the point where x = 1.

$$\frac{dy}{dx} = -\frac{1}{x(2 + \ln x)^2}$$

At
$$(1,\frac{1}{2}), \frac{dy}{dx} = -\frac{1}{4}$$
 so $m_N = 4$

$$\therefore y = 4x - \frac{7}{2}(OE)$$

Find (you do <u>not</u> need to classify) any stationary points on the following curves:

a)
$$y = (4x - 1)^3$$

b)
$$y = e^{x^2 - x}$$

c)
$$y = 2x + \frac{1}{2x}$$

$$x = \frac{1}{4}$$

$$x=\frac{1}{2}$$

$$x = \pm \frac{1}{2}$$

$$(0.5, e^{-0.25})$$

$$(-0.5, -2)$$
 and $(0.5, 2)$

Question 6

Find the rate of change of x on the curve $y = 2x - e^{3x-1}$ at the point where x = 2.

$$\frac{dy}{dx} = 2 - 3e^{3x-1}$$

At,
$$x = 2$$
, $\frac{dy}{dx} = 2 - 3e^5$

Question 7

Find the value of x for which f'(x) = 2 in the function $f(x) = 2\sqrt{4x - 1}$ $(x \ge \frac{1}{4})$.

$$f'(x) = \frac{4}{\sqrt{4x - 1}}$$

$$x = \frac{5}{4}$$

Question 8

A curve has equation $y = \frac{3}{(2x-1)^2}$, $x \neq \frac{1}{2}$.

Find the equation of the normal to the curve at the point with x-coordinate 3, giving your answer in the form ax + by + c = 0 where $a, b, c \in \mathbb{Z}$.

$$3125x - 300y - 9339 = 0$$

Challenge Question

A population P of a species is modelled by the formula

$$P = ae^{kt}$$

where P is in thousands, t is in years, and a and k are constants.

At the start of measuring, the population was 20,000.

After 8 years, the population was 60,000.

- a) Find the values of the constants a and k.
- b) Find the population, to the nearest hundred, predicted by the model after 12 years.
- c) The rate of increase of the population at 12 years.
- d) Explain why the model may be unsuitable for large values of t.

Test Your Understanding 3

Question 1

Find the derivative of each of the following functions using the product rule.

a)
$$y = x(1 + 2x)^3$$

b)
$$y = 2x^{3}e^{x}$$

$$c) y = \ln x (1 + x^2)$$

$$\frac{dy}{dx} = (1+2x)^3 + 6x(1+2x)^2 \qquad \frac{dy}{dx} = 2x^3 e^x + 6x^2 e^x \qquad \frac{dy}{dx} = 2x \ln x + \frac{1+x^2}{x}$$

$$\frac{dy}{dx} = 2x^3e^x + 6x^2e^x$$

$$\frac{dy}{dx} = 2xlnx + \frac{1+x^2}{x}$$

d)
$$y = e^{2x} \sqrt{x}$$

e)
$$y = x^2 2^{\frac{1}{2}}$$

e)
$$y = x^2 2^x$$
 f) $y = x^3 \ln 2x$

$$\frac{dy}{dx} = 2e^{2x}\sqrt{x} + \frac{e^{2x}}{2\sqrt{x}}$$

$$\frac{dy}{dx} = 2e^{2x}\sqrt{x} + \frac{e^{2x}}{2\sqrt{x}}$$

$$\frac{dy}{dx} = 2x(2^x) + (2^x)x^2 \ln 2 \qquad \frac{dy}{dx} = 3x^2 \ln 2x + x^2$$

$$\frac{dy}{dx} = 3x^2 \ln 2x + x^2$$

Question 2

Differentiate $y = (\ln x)^2$ using

- i) the Chain Rule,
- ii) the Product Rule.

Show that your answers are equal.

Both should give $\frac{dy}{dx} = \frac{2lnx}{x}$ after simplifying.

Question 3

For each of the following, find f'(x) and simplify your answer as far as possible:

a)
$$f(x) = x(2x - 1)^3$$

b)
$$f(x) = x\sqrt{x-1}$$

b)
$$f(x) = x\sqrt{x-1}$$
 c) $f(x) = (x+3)(x-2)^3$

$$f'(x) = (2x - 1)^3 + 6x(2x - 1)$$

$$f'(x) = \sqrt{x-1} + \frac{x}{2\sqrt{x-1}}$$

$$f'(x) = (2x - 1)^3 + 6x(2x - 1)^2$$
 $f'(x) = \sqrt{x - 1} + \frac{x}{2\sqrt{x - 1}}$ $f'(x) = (x - 2)^3 + 3(x + 3)(x - 2)^2$

$$f'(x) = (2x-1)^2(8x-1)$$
 $f'(x) = \frac{3x-2}{2\sqrt{x-1}}$ $f'(x) = (x-2)^2(4x+7)$

$$f'(x) = \frac{3x-2}{2\sqrt{x-1}}$$

$$f'(x) = (x-2)^2(4x+7)$$

Question 4

Find the coordinates of any stationary points on the curves with equations:

a)
$$y = xe^{2x}$$

b)
$$y = x^2 e^{3x}$$

c)
$$y = (1 + 2x)(3x - 1)^2$$

$$\frac{dy}{dx} = e^{2x}(2x+1)$$

$$\frac{dy}{dx} = xe^{3x}(3x+2)$$

$$\frac{dy}{dx} = e^{2x}(2x+1) \qquad \qquad \frac{dy}{dx} = xe^{3x}(3x+2) \qquad \qquad \frac{dy}{dx} = 2(3x-1)^2 + (6+12x)(3x-1)$$

$$\left(-\frac{1}{2}, -\frac{1}{2a}\right)$$

$$(0,0)$$
 and $(-\frac{2}{3},\frac{4}{9e^2})$

$$\left(-\frac{1}{2}, -\frac{1}{2e}\right)$$
 (0,0) and $\left(-\frac{2}{3}, \frac{4}{9e^2}\right)$ $\left(\frac{1}{3}, 0\right)$ and $\left(-\frac{2}{9}, \frac{175}{81}\right)$

Find the equation of the tangent to the curve $y = x^2 e^{2x}$ at the point where x = 1.

$$y = 4e^2x - 3e^2$$

Question 6

A curve has equation $y = x^2\sqrt{x+6}$, x > -6.

Find the equation of the normal to the curve at the point where x = 10, giving your answer in the form y = mx + c.

$$y = -\frac{2}{185}x + \frac{18404}{37}$$

Question 7

A curve has equation $y = 8x^2(4x - 1)^3$.

a) Show that

$$\frac{dy}{dx} = Ax(4x - 1)^2(Bx + C)$$

Where A, B and C are integers to be determined.

$$\frac{dy}{dx} = 16x(4x - 1)^3 + 96x^2(4x - 1)^2$$
$$\frac{dy}{dx} = 16x(4x - 1)^2(10x - 1)$$

b) Hence find the coordinates of each of the stationary points on the curve. (You do not need to classify these.)

$$(0,0), \left(\frac{1}{10}, -\frac{54}{3125}\right), \left(\frac{1}{4}, 0\right)$$

Challenge

Find the derivative of $y = x^2 e^x (2x + 1)^3$

$$e.g.\frac{dy}{dx} = 2xe^{x}(2x+1)^{3} + (e^{x}(2x+1)^{3} + 6(2x+1)^{2}e^{x})x^{2}$$

Math = matics

Test Your Understanding 4

Question 1

Find the derivative of each of the following with respect to x, simplifying your answers where possible.

a)
$$y = \frac{3x}{x-2}$$

b)
$$y = \frac{e^x}{x+2}$$

c)
$$y = \frac{x^2}{1 + e^x}$$

$$\frac{dy}{dx} = \frac{3(x-2)-3x}{(x-2)^2}$$

$$\frac{dy}{dx} = \frac{(x+2)e^x - e^x}{(x+2)^2}$$

$$\frac{dy}{dx} = \frac{2x(1+e^x)-x^2e^x}{(1+e^x)^2}$$

$$\frac{dy}{dx} = -\frac{6}{(x-2)^2}$$

$$\frac{dy}{dx} = \frac{(x+1)e^x}{(x+2)^2}$$

$$d) y = \frac{\ln x}{2x+1}$$

e)
$$y = \frac{\sqrt{x} + 2}{(x-1)^2}$$

f)
$$y = \frac{(e^x - 1)^2}{2x}$$

$$\frac{dy}{dx} = \frac{\frac{2x+1}{x} - 2lnx}{(2x+1)^2}$$

$$\frac{dy}{dx} = \frac{(x-1)^2 \left(\frac{1}{2\sqrt{x}}\right) - 2(\sqrt{x}+2)(x-1)}{(x-1)^4} \qquad \frac{dy}{dx} = \frac{4xe^x (e^x - 1) - 2(e^x - 1)^2}{4x^2}$$

$$\frac{dy}{dx} = \frac{4xe^x(e^x - 1) - 2(e^x - 1)^2}{4x^2}$$

$$\frac{dy}{dx} = \frac{2x + 1 - 2x \ln x}{x(2x + 1)^2}$$

$$\frac{dy}{dx} = \frac{(x-1) - 4\sqrt{x}(\sqrt{x} + 2)}{(x-1)^3}$$

$$\frac{dy}{dx} = \frac{(e^x - 1)(2xe^x - e^x + 1)}{2x^2}$$

Question 2

Differentiate $y = \frac{x^2}{e^x}$ using

The Quotient rule, i)

$$\frac{dy}{dx} = \frac{e^x(2x) - x^2 e^x}{e^{2x}}$$

$$\frac{dy}{dx} = \frac{2x - x^2}{e^x}$$

ii) The Product rule.

$$\frac{dy}{dx} = x^2(-e^{-x}) + 2x(e^{-x})$$

Show that your answers are equivalent.

Find the coordinates of any stationary points on the curve:

$$a) y = \frac{x^2}{x+1}$$

b)
$$y = \frac{e^x}{2x + 1}$$

c)
$$y = \frac{\ln x}{2x}$$

(Hint: Remember to consider any restrictions on x)

$$\frac{dy}{dx} = \frac{2x(x+1) - x^2}{(x+1)^2}$$

$$\frac{dy}{dx} = \frac{(2x+1)e^x - 2e^x}{(2x+1)^2}$$

$$\frac{dy}{dx} = \frac{2x\left(\frac{1}{x}\right) - 2lnx}{4x^2}$$

$$\frac{dy}{dx} = \frac{x^2 + 2x}{(x+1)^2}$$

$$\frac{dy}{dx} = \frac{(2x-1)e^x}{(2x+1)^2}$$

$$\frac{dy}{dx} = \frac{2 - 2lnx}{4x^2}$$

$$\frac{dy}{dx} = 0 \Rightarrow x = 0, -2$$

$$\frac{dy}{dx} = 0 \Rightarrow x = \frac{1}{2}$$

$$\frac{dy}{dx} = 0 \Rightarrow x = e$$

$$(0,0)$$
 and $(-2,-4)$

$$\left(\frac{1}{2}, \frac{1}{2}\sqrt{e}\right)$$

$$(e,\frac{1}{2e})$$

Question 4

Find the equation of the tangent to each of the following curves at the given x-coordinate.

a)
$$y = \frac{2x}{x-1}$$
 when $x = 2$

a)
$$y = \frac{2x}{x-1}$$
 when $x = 2$ b) $y = \frac{e^x + 5}{e^x + 2}$ when $x = 0$.

$$y = 8 - 2x$$

$$y = 2 - \frac{1}{3}x$$

Question 5

Find the equation of the normal to the curve $y = \frac{x}{\ln x}$ at the point where $x = e^2$, giving your answer in the form ax + by + c = 0 where a, b are integers and c is given as an exact real value.

$$4x + y - \left(\frac{e^2}{2} + 4e^2\right) = 0$$

Question 6

You are given that $f(x) = \frac{3x}{x-3} - \frac{15x}{x^2-x-6}$

- a) Show that $f(x) = \frac{3x}{x+3}$
- b) Hence find the equation of the tangent to the curve y = f(x) at the point where x = 1.

$$y = \frac{2}{3}x + \frac{1}{3}$$

A curve has equation $y = \frac{e^{4x}}{(x+3)^2}$, $x \neq -3$.

a) Show that
$$\frac{dy}{dx} = \frac{Ae^{4x}(Bx+C)}{(x+3)^3}$$
 where $A,B,C \in \mathbb{Z}$.

$$\frac{dy}{dx} = \frac{2e^{4x}(2x+5)}{(x+3)^3}$$

b) Find the equation of the normal to the curve at the point where x = 0.

$$y = \frac{1}{9} - \frac{27}{10}x$$

Challenge Question

Given the curve with equation $y = \frac{2\sqrt{x} - 3}{x - 2}$, show that any stationary points on the curve satisfy the equation $x - 3\sqrt{x} + 2 = 0$, and hence find any stationary point(s) on the curve.