

LEARNING OBJECTIVES: INTRODUCTION TO PARAMETRIC EQUATIONS

- To understand how curves can be defined parametrically;
- To be able to convert simple parametric equations into a Cartesian equation;
- To solve coordinate geometry problems involving curves defined parametrically.

INTRODUCTION

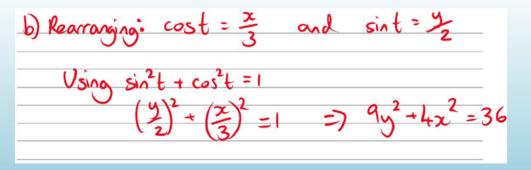
- Sometimes, it is useful to describe movement of x and y directions in terms of a third parameter (often t for time, or θ for angles). This is often the case in mechanics when considering the movement of an object or the distribution of a force.
- It can also be useful in pure mathematics, where to write the curve in Cartesian form (linking x and y directly) may be too complex or messy.

A curve is defined parametrically by the equations $x = 3 \cos t$, $y = 2 \sin t$,

where $0 \le t \le 2\pi$. Make sure you are in radians!!!

- a) By completing the table of values below and plotting the graph, show that these equations represent an ellipse.
- b) Using the identity $sin^2t + cos^2t \equiv 1$, find the Cartesian equation of the ellipse. e.g. the form y = f(x)

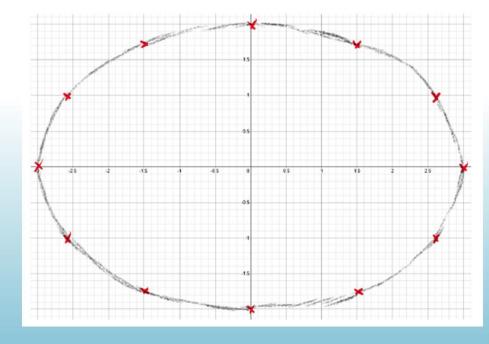
t	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$x = 3\cos t$	3	2.6	1.5	0	-1.5	-2.6	-3	-2.6	-1.5	0	1.5	2.6	3
$y = 2 \sin t$	0	1	1.73	2	1.73	1	0	-1	-1.73	-2	-1.73	-1	0



https://www.desmos.com/calculator/c2wl8thyhu

Investigate this curve at:

Math = matics



• Where the parametric equations are non-trigonometric, we can usually find the Cartesian equation relatively simply by a combination of rearrangement and substitution.

A curve is defined by parametric equations x = 3 - t, $y = 2t^2$, for $-3 \le t \le 3$.

- a) Find the coordinates of the point where t = 1.
- b) Find a Cartesian equation of the curve, stating the domain and range.

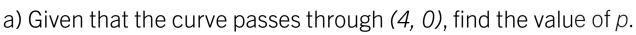
a) When t=1,
$$5c=3-1$$
 $y=2(1)^{2}$
= 2 $(2,2)$

b)
$$x=3-t \Rightarrow t=3-x$$

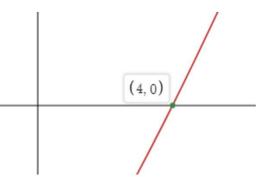
 $y=2t^2 \Rightarrow y=2(3-x)^2$
 $y=2(x^2-6x+9)$
 $y=2(x^2-12x+18)$

Key Point: To find the domain and range of a parametric curve, we can just consider the possible values of the x (domain) and y (range) parameters - it arguably makes life easier!

The curve shown in the image is defined parametrically by equations $x = pt^2 - t$, $y = t^3 - 8$, where p is a constant.



b) Find the coordinates of the points where the curve intersects the *y*-axis.



Key Point: A coordinate is of the form (x, y) – if we know a coordinate we can substitute the x and/or y values into the respective parametric equation.

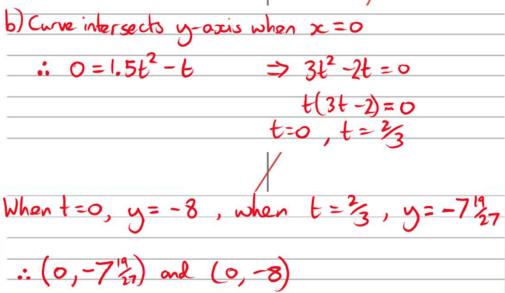
a)
$$\binom{x}{4,0}$$
 $x=p^2-t$ $y=t^3-8$

$$0=t^3-8 \implies t=2$$

$$4=p(2)^2-2$$

$$6=4p \implies p=1.5$$

Key Point: A curve intersects the y-axis when x = 0 – again, we can substitute this into our parametric equation for x to find the value(s) of t which this is true for!



The curve C is defined by parametric equations x = 3t, $y = t^2$. The line with equation x + y + 2 = 0 meets C at the points A and B. Find the coordinates of A and B.

Key Point: At points of intersection, both equations must be satisfied. This means we can substitute our parametric equations for x and y into the Cartesian equation to solve!

If solving points of intersection, the equation must be satisfied for
$$x$$
 and y . Thus

$$x + y + 2 = 0$$

$$\Rightarrow (3t) + (t^2) + 2 = 0 \quad \text{(Substitute both parametric equations in)}$$

$$t^2 + 3t + 2 = 0$$

$$(t + 2)(t + 1) = 0$$

$$t = -1, t = -2$$
Solve to find the values of the two coordinates.

At
$$t=-1$$
, $x=3t$ $y=t^2$: $(-3,1)$
At $t=-2$, $x=3(-2)$, $y=(-1)^2$: $(-6,4)$

Math = matics

TEST YOUR UNDERSTANDING 1

Complete TYU 1 from your pack.

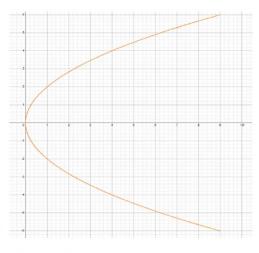
TEST YOUR UNDERSTANDING 1 - GEMINI AI ANSWERS

Question 1

a) Table of values:

The plot is a parabola on its side, opening right.

b) Cartesian equation: $y^2=4x$. Domain: $0\leq x\leq 9$. Range: $-6\leq y\leq 9$



Question 2

- a) (12, 33)
- b) (3, -3) and (3, 5)

Question 3

a)
$$x^2 + \frac{y^2}{4} = 1$$

b)
$$\frac{x^2}{9} + y = 1$$

c)
$$y = -\frac{3}{2}x + \frac{1}{2}$$

d)
$$y = 1 + \frac{1}{x^2}$$

Question 4

$$A = (8, 0), B = (0, 8)$$

Question 5

(0, 0) and (0, -2)

Question 6 (Corrected)

(0, 2) and (-1, 0)

Question 7

(1/2, 3/2)

Question 8

(4, -6) and (1, 3)

Question 9 (Corrected)

a) Set $y=0 \implies \cos\theta=1 \implies \theta=0$. Then $x=2+3\sin(0)=2$. Point is (2, 0). b) (0, -1.35), (0, -1.92), (0, -0.65), (0, -0.08) (approx)

Question 10

$$k > \frac{4}{3}$$

Question 11

(0, 0) and (12, 36)

Question 1

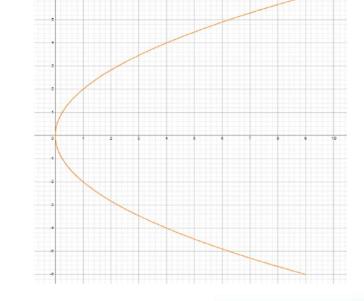
A curve is defined parametrically by the equations $x=t^2, y=2t$, for $-3 \le t \le 3$.

a) By creating a table of values for t, x, and y, plot the curve on graph paper.

t -3 -2 -1 0 1 2 3

x 9 4 1 0 1 4

y -6 -4 -2 0 2 4 6



The plot of these points reveals a parabola opening to the right, with its vertex at the origin (0, 0).

b) Find a Cartesian equation for the curve in the form y = f(x), stating the domain and range.

- From y=2t, we can write $t=\frac{y}{2}$.
- Substitute this into the equation for x: $x=(\frac{y}{2})^2=\frac{y^2}{4}$.
- This gives the Cartesian equation $y^2 = 4x$.
- Domain: The minimum value of x occurs at t=0 (x=0) and the maximum occurs at $t=\pm 3$ (x=9). So, the domain is $0 \le x \le 9$.
- Range: The minimum value of y occurs at t=-3 (y=-6) and the maximum occurs at t=3 (y=6). So, the range is $-6 \le y \le 6$.

Question 2

A curve is defined by $x = 3t^2, y = 1 - 4t^3$.

a) Find the coordinates of the point on the curve where t=-2.

• Substitute t=-2 into the equations:

$$x = 3(-2)^2 = 3(4) = 12$$

$$y = 1 - 4(-2)^3 = 1 - 4(-8) = 1 + 32 = 33$$

. The coordinates are (12, 33).

b) Find the coordinates of the points on the curve where x=3.

- Set x=3: $3t^2=3 \implies t^2=1 \implies t=1$ or t=-1.
- For t = 1:

$$y = 1 - 4(1)^3 = 1 - 4 = -3$$
. Point: (3, -3).

• For t = -1:

$$y = 1 - 4(-1)^3 = 1 - 4(-1) = 1 + 4 = 5$$
. Point: (3, 5).

Math watics

Question 3

Determine Cartesian equations for the following curves defined parametrically.

a)
$$x = \cos t, y = 2\sin t$$

- From the equations, $\cos t = x$ and $\sin t = \frac{y}{2}$.
- Using the identity $\cos^2 t + \sin^2 t = 1$:

•
$$x^2 + (\frac{y}{2})^2 = 1 \implies x^2 + \frac{y^2}{4} = 1.$$

b)
$$x = 3\cos t$$
, $y = \sin^2 t$

- From the equations, $\cos t = \frac{x}{3}$ and $\sin^2 t = y$.
- Using the identity $\cos^2 t + \sin^2 t = 1$:

•
$$(\frac{x}{3})^2 + y = 1 \implies \frac{x^2}{9} + y = 1$$
.

c)
$$x = 2t - 3, y = 5 - 3t$$

- From the first equation, $x+3=2t \implies t=\frac{x+3}{2}$.
- · Substitute this into the second equation:
- $y = 5 3(\frac{x+3}{2}) = 5 \frac{3x+9}{2} = \frac{10 (3x+9)}{2} = \frac{1 3x}{2}$.
- $y = -\frac{3}{2}x + \frac{1}{2}$.

d)
$$x = t, y = 1 + \frac{1}{t^2}$$

- Since x = t, substitute x for t in the y-equation:
- $y = 1 + \frac{1}{x^2}$.

Question 4

The curve x=5+t, y=3-t meets the x-axis at A and the y-axis at B. Find the coordinates of A and B.

• Intersection with x-axis (A): This occurs when y=0.

- $\circ \ 3-t=0 \implies t=3.$
- x = 5 + 3 = 8.
- o Coordinates of A are (8, 0).

• Intersection with y-axis (B): This occurs when x=0.

- \circ 5 + $t = 0 \implies t = -5$.
- y = 3 (-5) = 8.
- o Coordinates of B are (0, 8).

Question 5

Find the coordinates of the points where the curve $x=t^2-1,y=\frac{1}{t}-1$ meets the y-axis.

- The curve meets the y-axis when x=0.
- $\bullet \ \ t^2-1=0 \implies t^2=1 \implies t=1 \ \text{or} \ t=-1.$
- For t = 1:
 - $y = \frac{1}{1} 1 = 0$. Point: **(0, 0)**.
- For t = -1:
 - $y = \frac{1}{-1} 1 = -1 1 = -2$. Point: (0, -2).

Corrected Solution for Question 6

A curve is defined parametrically as $x=\frac{t-1}{t+1}, y=2t^2, t\neq -1$. Find the coordinates of any points of intersection with the x- or y-axes.

• Intersection with y-axis (where x = 0):

- Set the equation for x to 0:
- $\circ \ \tfrac{t-1}{t+1} = 0 \implies t-1 = 0 \implies t = 1.$
- \circ Now substitute t=1 into the equation for y:
- $y = 2(1)^2 = 2$.
- o The point of intersection with the y-axis is (0, 2).

• Intersection with x-axis (where y = 0):

- Set the equation for y to 0:
- \circ $2t^2 = 0 \implies t = 0$.
- Now substitute t=0 into the equation for x:
- $x = \frac{0-1}{0+1} = -1.$
- o The point of intersection with the x-axis is (-1, 0).

Question 7

A line L_1 is defined by x=3t+2, y=1-t. The line L_2 has Cartesian equation y=2-x. Find the point of intersection of L_1 and L_2 .

- Substitute the parametric equations of L_1 into the equation for L_2 :
- (1-t)=2-(3t+2)
- 1-t=2-3t-2
- 1-t=-3t
- $1 = -2t \implies t = -\frac{1}{2}$.
- Now substitute this value of t back into the equations for L_1 :

$$x = 3(-\frac{1}{2}) + 2 = -\frac{3}{2} + 2 = \frac{1}{2}$$

$$y = 1 - \left(-\frac{1}{2}\right) = 1 + \frac{1}{2} = \frac{3}{2}$$

• The point of intersection is (1/2, 3/2).

Question 8

Find the coordinates of the points of intersection of the line y=6-3x and the curve with parametric equations $x=t^2,y=3t$.

- · Substitute the parametric equations into the line's equation:
- $3t = 6 3(t^2)$
- $3t = 6 3t^2$
- $3t^2 + 3t 6 = 0$
- $t^2 + t 2 = 0$
- Factorise the quadratic: (t+2)(t-1)=0.
- This gives t = -2 or t = 1.
- For t = -2:
 - $x = (-2)^2 = 4$
 - y = 3(-2) = -6. Point: (4, -6).
- For t = 1:
 - $x = (1)^2 = 1$
 - y = 3(1) = 3. Point: (1, 3).

Question 9

The curve is defined by $x=2+3\sin(2\theta), y=\cos\theta-1$.

a) Show that the curve meets the x-axis at the point (2, 0).

- The curve meets the x-axis when y=0.
- $\cos \theta 1 = 0 \implies \cos \theta = 1$.
- For $0 \le \theta < 2\pi$, this occurs when $\theta = 0$.
- Substitute $\theta = 0$ into the equation for x:
- $x = 2 + 3\sin(2 \times 0) = 2 + 3\sin(0) = 2 + 0 = 2$.
- . Thus, the curve meets the x-axis at (2, 0).

b) Find the coordinates of the points where the curve meets the y-axis.

- Set $x = 0 \implies 2 + 3\sin(2\theta) = 0 \implies \sin(2\theta) = -2/3$.
- Since $0 \le \theta < 2\pi$, we must solve for 2θ in the interval $0 \le 2\theta < 4\pi$.
- Let $\alpha = \arcsin(2/3) \approx 0.7297$. The values for 2θ are $\pi + \alpha, 2\pi \alpha, 3\pi + \alpha, 4\pi \alpha$.
- $2\theta \approx 3.8713, 5.5535, 10.1545, 11.8367.$
- $\theta \approx 1.9357, 2.7767, 5.0772, 5.9183$.
- Substituting these into $y=\cos \theta -1$ gives:
- $y \approx -1.354, -1.922, -0.646, -0.078$.
- The approximate coordinates are (0, -1.35), (0, -1.92), (0, -0.65), and (0, -0.08).

Question 10

Given that the line y=2x-k does not intersect the curve defined by $x=1-t, y=3t^2+1$, find the range of possible values for k.

1. Substitute the parametric equations into the line's equation:

$$3t^2 + 1 = 2(1-t) - k$$

$$3t^2 + 1 = 2 - 2t - k$$

$$3t^2 + 2t + k - 1 = 0$$

2. For the line and curve not to intersect, this quadratic equation in t must have no real roots. This means the discriminant (b^2-4ac) must be less than 0.

$$\circ$$
 Here, $a = 3, b = 2, c = k - 1$.

$$b^2 - 4ac < 0$$

$$(2)^2 - 4(3)(k-1) < 0$$

$$4 - 12(k-1) < 0$$

$$\circ 4 - 12k + 12 < 0$$

$$\circ$$
 16 - 12k < 0

$$\circ$$
 16 < 12k

$$\circ \ \ \tfrac{16}{12} < k \implies \tfrac{4}{3} < k.$$

3. The range of possible values for k is $k>\frac{4}{3}$.

Question 11

Two curves are defined as $C_1: x=2t, y=t^2$ and $C_2: x=t, y=3t$. Find the coordinates of the points where C_1 and C_2 intersect.

 To find the intersection points, we set the x-coordinates and y-coordinates equal. It is best to use different parameters for each curve to avoid confusion, for instance t for C₁ and s for C₂.

$$x_{C1} = 2t, y_{C1} = t^2$$

$$x_{C2} = s, y_{C2} = 3s$$

• At intersection points, $x_{C1} = x_{C2}$ and $y_{C1} = y_{C2}$.

$$1.2t = s$$

$$2. t^2 = 3s$$

• Substitute equation (1) into equation (2):

$$\circ \ t^2 = 3(2t)$$

$$t^2 = 6t$$

$$t^2 - 6t = 0$$

$$t(t-6) = 0$$

- \circ This gives two possible values for t: t=0 or t=6.
- Find the coordinates for each value of t using the equations for C_1 :

$$\circ$$
 If $t=0$: $x=2(0)=0, y=(0)^2=0$. Point: (0, 0).

$$\circ$$
 If $t = 6$: $x = 2(6) = 12, y = (6)^2 = 36$. Point: (12, 36).