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Abstract

Among non-human primates, macaques are recognized for thriving in a wide range of novel
environments. Previous studies show macaque’s affinity for new information. However, little is
known about how information-seeking manifests in their spatial navigation pattern in ambiguous
foraging terrains, where the location and distribution of the food are unknown. We investigated
the spatial pattern of foraging in free-moving macaques in an ambiguous terrain, lacking sensory
cues about the reward distribution. Rewards were hidden in a uniform grid of woodchip piles
spread over a 15 sqm open terrain and spatially distributed according to different patchy
distributions. We observed Lévy-like random walks in macaques’ spatial search pattern, balancing
relocation effort with exploration. Encountering rewards altered the foraging path to favor the
vicinity of discovered rewards temporarily, without preventing longer-distance travels. These
results point toward continuous exploration, suggesting that explicit information-seeking is a part
of macaques’ foraging strategy. We further quantified the role of information seeking using a
kernel-based model, combining a map of ambiguity, promoting information seeking, with a map
of discovered rewards and a map of proximity. Fitting this model to the foraging paths of our
macaques revealed individual differences in their relative preference for information, reward, or
proximity. The model predicted that a balanced contribution of all three factors performs and
adapts to an ambiguous terrain with semi-scattered rewards, a prediction we confirmed using
further experimental evidence. We postulate an explicit role for seeking information as a valuable
entity to reduce ambiguity in macaques’ foraging strategies, suggesting an ecologically valid way
of foraging ambiguous terrains.

Author Summary

In a novel and ambiguous terrain lacking sensory information about the location or distribution of
food, foragers obtain information by sampling. This process is crucial for animals thriving in a
new habitat. We allowed free-roaming macaques to forage at their own pace in a controlled terrain
to which they had limited prior exposure. Based on their foraging paths, we developed a
computational model representing an individual’s drive for reward-seeking, information-seeking,
or energy preservation. These drives were represented as superimposing maps from the forager’s
perspective. We found that information-seeking, continuous exploration of unknown areas, is
crucial for foraging under ambiguity. This finding is consistent with a theory suggesting that
animals, specifically humans and other primates, seek information to reduce their uncertainty
about the environment. Our study suggests that the statistical properties of primates’ random
foraging patterns reveal their complex decision-making process, including adaptation to novel
environments.

Introduction

Foraging monkeys adopt a variety of strategies in environments with sparse food sources [1]. Some
species adapt to familiar habitats by memorizing and revisiting high-yield food sources [2] or
following seasonal diets [3]. Others, however, use more flexible strategies that allow them to
forage across a wide range of habitats and adapt to unfamiliar terrains. Among non-human
primates, macaques are particularly notable for their ability to thrive in diverse geographical
environments [4]. Individual macaques can travel several kilometers daily [5], covering relatively
long distances for primates. Some individuals, typically adolescent males, disperse from their birth
group to join others or form a new group [6]. Their diverse habitats, large home ranges, and the
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potential for dispersal suggest that macaques frequently encounter an unfamilair distribution of
food sources, a situation best tackled by exploration and seeking information. This raises the
question of whether and how information-seeking influences macaques' choices of where to forage
in an unfamiliar environment.

Decision-making under ambiguity or uncertainty

In situations of ambiguity, where there is a lack of information about the existing situation, or
uncertainty, defined by the unpredictability of outcomes, macaques tend to explore unknown
options or actively seek information. Comparative studies on gambling for food in the presence of
ambiguous options have shown that macaques, along with gorillas, chimpanzees, and orangutans,
recognize the potential rewards associated with these ambiguous choices [7]. Notably, macaques
demonstrate a preference for mildly uncertain reward options over certain or entirely random ones
[8], particularly when rewards are sufficiently available [9]. This information-seeking behavior is
suggested to be driven by an intrinsic motivation to reduce uncertainty [10]. The evidence for this
comes from studies showing that macaques choose informative options, whether or not the
information directly enhances rewards in future choices [10], [11]. These findings raise the
question of whether macaques’ foraging strategy under conditions of ambiguity or uncertainty
encompasses targeted information seeking.

Sampling uncertain or ambiguous options

Sampling uncertain food sources while foraging provides potentially useful information about the
hidden structure of the environment. Exploration, formulated in reinforcement learning theory as
randomness in the decision-making policy [12], is observed in many species when foraging
stochastically refilling sources. The matching law [13]-[19] predicts that animals allocate their
effort to each source proportional to its value, determined by its refill rate. However, many species
tend to over-sample the low-rate source when the refill time is unpredictable, compared to the
prediction of the matching law [13]. In macaques, this behavior was explained by a model of
information gathering under uncertainty, enabling foragers to detect unnoticed fluctuations in the
refill rate of the low-rate source [20].

Searching space for ambiguous food sources has been conceptualized in patch-wise foraging,
where the forager decides between staying in the current habitat or relocating to a new one.
Theoretical works predict that even an optimal forager, who maximizes the future rewards, under-
samples a high-yielding patch and vice versa [21]. Patch leaving decisions were also explained as
an evidence accumulation process in which each sample is a noisy source of information about the
structure of the foraging terrain [22]. This view on foraging is a physiologically plausible way to
explain the inherent randomness in animal behavior when navigating an ambigious terrain, as we
investigated further in our study.

While these studies explain how animals choose among a finite set of food sources, the
manifestation of exploration and information seeking on a continuum of choices, for example,
when foraging ambiguous terrains with scattered sources of hidden food, is largely unknown.

Spatial search algorithms and heuristics

Foraging an ambiguous terrain may be conceptualized as a spatial search challenge, where the
searcher sequentially samples potential locations for hidden food. Each sample may yield food or
not, but in either case, it provides information on the food’s spatial distribution. An optimal search
strategy may minimize the number of samples tested by excluding less probable locations,
shortening the navigation path between sequential samples, or both. For instance, when sampling
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is effortful because it includes digging for buried resources, the number of samples may be
minimized by choosing the location of the next sample adaptively after gaining information from
the current sample [23], [24]. Conversely, when relocation is effortful, for example, in avalanche
rescue using beacons with a known range, minimizing the traveled distance by systematically
scanning the environment according to a predefined pattern becomes crucial [25].

While optimal search algorithms that carefully minimize the searching time and effort are
conceivable for known properties of the environment (the range of the beacon in the example
above), biological systems often rely on heuristics. For example, when searching for lost keys in
an apartment, typically, people go through possible places in a semi-random pattern instead of
scanning the apartment from one corner to the opposite corner. A seemingly random heuristic may
not be optimal for a static and familiar foraging terrain. However, considering a terrain’s
ambiguity, i.e., lacking cues about food distribution, as a prominent property of natural habitats,
such heuristics are beneficial [26].

Random walks for spatial foraging under ambiguity

When the distribution of potential food sources is uniform rather than patch-wise, for example,
when a forager searches for hidden insects or seeds in a meadow, a forager is free to take steps of
any size in any direction. Therefore, the decision process differs from a patch-wise search in which
the forager makes binary choices between staying and leaving. A ubiquitously reported foraging
path in land and sea animals is a scale-free pattern known as Lévy walk or flight [27], [28] in
which the forager takes steps of any size in any direction, but the step size is chosen from a heavy-
tailed probability density function. Simply put, a Lévy often travels short, sometimes medium-
sized, and rarely large distances between consecutive searches.

Lévy walks might as well emerge from the distribution of potential food sources rather than forager
decision-making. For example, the Lévy distribution of traveled distances between consecutive
searches for spider monkeys in a forest was explained by the scale-invariant distribution of
distances between trees [29], which in turn is affected by spider monkeys’ navigation pattern
because they are one of the main seed distributors for their food sources [30]. Therefore, whether
a Lévy-like pattern originates in the forager’s decision-making process or is dictated by the natural
food distribution remains unclear. The use of uniform terrains, where the distribution of potential
food sources does not bias foragers' strategy, is crucial for understanding foragers’ decision-
making process.

Area-restricted search

Although a Lévy-like foraging pattern effectively balances energy preservation with information-
seeking, it does not explain alterations in forager’s paths when encountering food-rich locations
[31]. For example, gophers excavate more tunnels in areas with high densities of their favorite
plants than in areas with low densities [32]. Species of dolphins linger in sites of the ocean in
which they have encountered prey minutes earlier [33]. This foraging strategy, known as area-
restricted search, is particularly effective when the food distribution is localized or patchy (Motro
& Shmida, 1995). Therefore, while a Lévy-like random walk balances energy preservation and
exploration, an area-restricted search adjusts the foraging path to exploit a discovered food patch
[31].

In some animals, finding food transforms the search pattern from roaming to dwelling [31]. For
example, when C. elegans searches for food in a Petri dish, it swims in a relatively straight path
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(roaming). Once it encounters food, it substantially restricts its search to the nearby area by
reducing its speed and moving in a convoluted path (dwelling) [34]-[36].

A substantial switch from roaming to dwelling indicates the end of exploration part of foraging
and the start of exploitation [34]-[36]. However, humans and many other foragers balance
exploration and exploitation throughout their search, meaning they never stop exploring [37].
While exploration entails random searches in this context, we aimed to understand a forager’s
balance between targeted information-seeking and reward-seeking in an ambiguous terrain.

Our approach

Here, we investigated macaques’ spatial foraging pattern on a two-dimensional ambiguous terrain,
without sensory cues revealing the structure of food distribution. In our Exploration Room
platform [38], we developed a controlled environment where male macaques freely foraged for
hidden food within a spatially distributed, quasi-continuous pile grid. We video-recorded each
session, identified the sequence of searched piles and their outcome, and identified the spatial
structural characteristics of individuals’ foraging patterns. Our goal was to investigate how seeking
information from an ambiguous terrain manifests in macaque’s foraging paths.

Results

On the floor of our Exploration Room platform [38], four male macaques individually foraged for
rewards in a grid of woodchip piles (Fig. 1A, B). This platform provided an experimentally
controllable, distraction- and obstacle-free environment for foraging macaques. The grid consisted
of 81 to 108 woodchip piles, each with an approximate diameter of 10 cm, arranged with a pitch
of 25 cm (Fig. 1B). In each session, the reward pieces were invisibly hidden under 21 of the piles
(filled piles), according to a pre-determined abundance map with a localized set of filled piles (Fig.
1B). The center of this set was selected randomly in each session in a way that intended locations
of filled piles do not pass the edges of the pile grid.

All monkeys searched the terrain stochastically, starting from a seemingly random pile and
navigating most of the terrain. Across all sessions (7 sessions of monkey Vin, 5 sessions of Luk,
5 sessions of Hum, and 5 sessions of Nat), monkeys found at least 42% and at most 100% of the
filled piles. We kept the number of sessions small to probe the animals’ foraging strategy
independent of long-lasting experience, emulating foraging in a novel ambiguous habitat. The first
filled pile was found at the earliest in the first search and the latest after 22 searches. Accidentally
finding a filled pile at the first attempt was unsurprising, given that the filled piles accounted for
19% (21/108) to 26% (21/81) of the grid.
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Figure 1| The experimental setup and statistical properties of the search patterns. A) Monkey Vin in a floor foraging session in
the open arena of the Exploration Room. B) The grid of piles in the arena and an example of the hidden localized abundance map.
The color intensity indicates the number of reward items hidden in a single pile, which was always 3 in the center and 1 at the
outer margin of the circular disk, and zero elsewhere. C) Example foraging paths from each monkey (session #7 of Vin, #5 of Luk,
#3 of Hum, and #5 of Nat). We let the animals stay in the room until they lost interest in foraging and spent more than one minute
waiting in front of the exit gate or roaming without foraging. D) Raster of foraging outcomes in each session. The first successful
pile search is marked with a triangle. The probability distributions of the first successful pile search for each monkey overlap the
rasters.

Patch-wise or Lévy-like exploration?

We investigated seemingly random foraging paths to understand whether they resemble any of the
observed spatial foraging patterns in natural habitats. Food sources, such as vegetation in natural
terrains, may be distributed patch-wise or fractal-like (Fig. 2A left and middle), potentially biasing
a forager’s path toward patch-wise or Lévy-like patterns. Instead, a uniform distribution (Fig. 2A
right) allows a range of random search patterns. Hypothetically, the distribution of step sizes,
defined as the Euclidean distance between locations of consecutive searches, reveals differences
between patch-wise, characterized by a bimodal distribution representing within patch steps in one
peak and between patch steps in another, and Lévy-like, characterized by a long-tailed distribution
(Fig. 2B). A Brownian random search, not reported as animals’ foraging path but a viable
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alternative random walk, is characterized by a narrow range of step sizes, represented as a cropped
Gaussian distribution [39] (Fig. 2B).

We quantified step sizes by calculating the Euclidean distance between consecutively searched
piles. Although we occasionally observed patterns resembling a patch-wise search (Fig. S1), the
distributions of the step sizes, pooled across all sessions of each animal, did not indicate bimodality
(Hartigan’s dip test, p > 0.05) and were heavy-tailed (Fig. 2C), suggesting a lack of evidence for
a patch-wise search. We calculated the probability of occurrence, i.e., the normalized frequency of
occurrences, for 0.2 m step-size bins. We tested whether it decreases as a power law function [27]
of the step sizes, which generates a linear decrease on a double-logarithmic scale (see Methods).
In contrast, a Brownian walk is expected to create an inverse bell shape on a double logarithmic
scale. For all monkeys, the probability of occurrence fits a linear function (Fig. 2D) with a slope
that falls within the range [-1, -3], which is considered a signature of Lévy-like foraging [27].
Therefore, although monkeys frequently chose nearby piles, they explored the grid by flexibly
choosing new locations at large distances within the grid’s boundaries. Observing Lévy-like, rather
than bi-modal step size distributions in our dense and uniform terrain, designed to minimally bias
foraging choices, suggests that binary choices between staying nearby piles or exploring far piles
were not behind macaques’ foraging strategy.
A hypothetical terrain structures Figure 2 | Step size distribution was closer to a
patch-wise scale-free uniform Lévy-like random walk than a Brownian or
: / patch-wise distribution. A) Three hypothetical
types of terrains with a patch-wise (left), a
fractal-like (middle), and a uniform (right)
distribution of potential food sources. Three
yellow dots show locations of hidden food pieces,
which, in theory, could be identical across many
distributions of potential food sources, among

which three are shown here. This illustration
suggests that when food is hidden, the spatial

patch-wise pattern of foraging may be biased toward patch-
éfgg\lmi an wise or Levy-like exploration merely by the

distributions  of  potential food  sources,
independent of the actual location of the hidden
food. In contrast, the uniform distribution
minimizes this bias because it equally allows
patch-wise (blue) and Lévy-like foraging (red).
B) Hypothetical distributions of step sizes for a
D Vin Luk Hum Nat patch-wise, a Lévy-like, or a Brownian walk. C)
The frequency of occurrences of step size, pooled
across sessions of each monkey, binned into 20
cm bins. All distributions were unimodal (p =
0.09 (Vin), 0.067 (Luk), 0.13 (Hum), and 0.07
(Nat); Hartigan’s dip test). D) same as B but
shown on double log scales and normalized as a
probability density function.

Less exploration after finding food?

We investigated whether food encounters alter the animals’ between-pile step sizes or foraging
paths. We compared each monkey's step size after a success, i.e., after encountering a full pile, to
a failure, encountering an empty pile. All monkeys, on average, chose a nearer pile (smaller step)
after a success compared to a failure (Fig. 3A), suggesting that they expected to find more rewards
in the vicinity of discovered rewards. Although such expectation sounds reasonable for a macaque
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whose experience with food collection is from natural sources such as trees, bushes, and ant insect
nests, it is not immediately obvious for a lab macaque. Because monkeys could learn over time
that the filled piles were clustered together, the difference between the averages of post-success
and post-failure step sizes could have come from the late sessions of each monkey. However, the
separability of the post-success and post-failure step size distributions did not reveal a trend across
sessions of each monkey (Fig. S2), suggesting that staying in the vicinity of discovered food was
not learned from the structure of the hidden food abundance map.

Next, we asked whether encountering food switched monkeys’ foraging path from roaming to
dwelling. We define roaming in our context as moving on a more or less straight line, while
dwelling is characterized by many turns in short distances [31]. We defined a convolutedness index
as the sum of the projection of each step on the previous step, normalized by the length of the sub-
path (see Methods). This index is -1 for a straight path, O for a path with only right angles, and 1
for a path in which each step is the reverse of the previous step (lapses). By this definition,
convolutedness is in [-1,0] for roaming and in [0, 1] for dwelling. For a sub-path passing via 4
piles, -1 indicates a straight alignment of visited piles, 0 indicates a square alignment, and 1
indicates repeated lapses between two piles (Fig. 3B).

For each session, we divided the foraging paths into pre-reward sub-path, ending at the first food
encounter, and post-reward, starting from the first food encounter. For all sessions for which the
length of the pre/post reward sub-paths > 4, the average convolutedness was positive (Fig. 3B).
However, comparing the convolutedness of pre-reward sub-paths to post-reward sub-paths, we did
not find a systematic shift from roaming to dwelling.

A lack of clear shift from roaming to dwelling due to finding a reward (Fig. 3B) might seem
contradictory with the finding in Fig. 3A, where we showed that monkeys favored searching a
nearby pile after encountering a filled pile. However, findings in Fig. 3A and B reveal a crucial
difference between a roamer-dweller and a forager who continues to explore even after finding
rewards. Essentially, these results point toward a foraging strategy in which the monkeys
temporarily adjusted their step size to stay near the reward area but did not stop to explore. In
theory, while roaming/dwelling patterns are optimal for a localized abundance map, continuous
exploration allows the forager to adapt to a range of abundance map structures without needing to
learn the map's structure by prior experience.
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Figure 3 | Monkeys favored, but not restricted to, searching piles in the vicinity of discovered rewards. A) Step size in meters
after encountering an empty or a filled pile. Pile searches were pooled across sessions of each monkey (success/failure = 135/189
(Vin), 114/33 (Luk), 90/58 (Hum), 94/108 (Nat)). The geometric mean of step sizes after encountering empty versus filled piles is
shown with a horizontal line. For each monkey, the geometric mean of step size after encountering filled (purple) piles was smaller
than empty (black) piles (p = 0.02 (Vin), 0.006 (Luk), <<0.0001 (Hum), and 0.001 (Nat); Wilcoxon rank-sum test with FDR multiple
comparison correction). B) For each session with at least 4 pile searches before and after finding the first reward, a convolutedness
index (see methods) was calculated for the pre-reward sub-path, defined as the sequence of pile searches before encountering the
first reward, as well as the during/post reward sub-path, defined as the sequence of pile searches including and after encountering
the first reward. The convolutedness averaged across all sub-paths was slightly positive (0.2; p = 0.03, Wilcoxon signed-rank test).
However, the pair-wise difference between the pre-and during/post-reward sub-paths was not significant (p = 1, Wilcoxon signed-
rank test). Shaded bars represent the standard deviation of the convolutedness for sub-paths of length 4 (gray) or 8 (magenta).

Seeking information in space: a kernel-based model

Searching the vicinity of discovered food, reported in the previous section, suggests that the
forager assumes spatial continuity of the hidden food’s distribution. By revealing the content of a
pile, full or empty, the forager gains information about the content of neighboring piles if the
abundance maps have such spatial continuity and are not purely random. This makes an ambiguous
pile a source of information extending to its neighborhood. Therefore, an area of the room with
many ambiguous piles contains overlapping information sources, which is attractive to an
information-seeker aiming to reduce the environment’s ambiguity. In principle, the spatial
distribution of ambiguity adds a new dimension to a forager’s explorative decisions, besides
reward-seeking and energy preservation, by encouraging the forager to gain information from
ambiguous areas.

We sought to determine the effect of information seeking as an additional factor to reward-seeking
and energy preserving, to explain animals’ foraging patterns. We simulated foragers considering
these three factors to various degrees. Briefly, an agent chooses its next pile by sampling from a
2-dimensional probability distribution over the grid. We defined a map as a superposition of 2-
dimensional Gaussian kernels centered at piles [40], [41]. In a virgin terrain, consisting of only
unsearched piles, the ambiguity map (Fig. 4A, 1% row, step 1) consists of the superposition of
information kernels of all piles. Because the reward locations are unknown in this terrain, the
reward map (Fig. 4A, 2" row, step 1) started empty. The proximity map (Fig. 4A, 3 row, step 1)
consists of one proximity kernel around the forager’s current location on the grid. The probability
map (Fig. 4A, 4" row, step 1) is computed as a weighted sum of the information, reward, and
proximity maps, normalized to have a sum of one. After each pile search, the ambiguity kernel of
the searched pile is removed because the content of the pile is known (Fig. 4A, 1% row, steps 2-
20). If the pile contains rewards (for example, Fig. 4A, 2" row, step 10), the reward map is updated
by adding reward kernels, one kernel per reward piece, centered at the searched pile. The proximity
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map is updated so that the proximity kernel is centered at the last searched pile, i.e., the current
location of the forager (Fig. 4A, 3™ row, steps 2-20).

Using this concept as a generative model, we generated an example forager weighing information,
reward, and proximity in a balanced way (Fig. 4A), which roughly resembled the experimentally
observed foraging paths. Using various sets of weights, foraging paths with diverse statistical
properties emerge (Fig. 4B and C). For example, Lévy-like foraging emerged from a balanced
weight set, while Brownian-like foraging (Gaussian distribution of step sizes) emerged from an
information-dominant weight set (Fig. 4B, left; Fig 4Ci). Alternatively, a reward-dominant weight
set strongly favored piles in the vicinity of discovered rewards, shortening the steps taken after
reward encounters (Fig. 4B, middle; Fig. 4Cii). The convolutedness index for a reward- and
proximity-dominant weight set switched from negative to positive after the first food encounter,
indicating a switch from roaming to dwelling (Fig 4B, middle; Fig 4Ciii). Finally, a proximity-
dominated weight set generated a crawling forager, strongly favoring piles adjacent to the current
pile (Fig. 4B, right).

Comparing the results in Fig. 2 and 3 with the generative model in Fig. 4A-C suggests that
monkeys balanced information, reward, and proximity weights in their foraging strategy.
However, observing the foraging monkeys in our experiment, we expected individual differences
not meaningfully explained by the results reported in Figures 1-3. For example, by qualitatively
observing the behavior of the animals in the recorded videos, we expected Vin to be more
explorative than other monkeys while Luk was more driven by reward or proximity.

We fitted the kernel-based model to each monkey by choosing the weights and the kernel sizes to
maximize the likelihood of observing their foraging paths (see Methods). We pooled pile searches
across sessions of each monkey and then fit the model to 100 randomly selected subsets of the pile
searches from the pool of pile searches over sessions of one monkey (see Methods). The fitting
results (Fig. 4D) revealed that while Vin weighed information higher than other monkeys, Luk
weighed rewards more than others (Fig. 4D left; Fig. S3). Additionally, the size of the ambiguity
kernel was typically larger than the reward and proximity kernel (Fig. 4D right). Therefore,
ambiguous regions emerged from highly overlapping ambiguity kernels where most piles were
unsearched. This result is consistent with the qualitative assumption that an information-seeking
forager prefers an area of the terrain consisting of unsearched piles to a area in which some of the
piles were searched and some not. The reward and proximity kernels were typically smaller,
suggesting that proximity to rewards or self was defined as arm-reachable piles. All three types of
kernels spanned a distance beyond the grid’s pitch, which was about 30 cm, suggesting that the
monkeys have assumed spatial continuity in the hidden abundance map.
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Figure 4 | A kernel-based model of information, reward, and proximity explains the spatial properties of foraging paths. A)
Simulation data from a generative model of spatial foraging in which at each step of foraging, the probability of choosing any of
the available piles as the next pile is determined using a 2-dimensional probability map (see Methods). This map overlays many 2-
dimensional kernels centered at ambiguous, rewarded, and proximal piles. The resulting path of a simulated agent on similar
terrains to the experimental sessions was determined by the weighted sum of ambiguity, reward, and proximity maps. At each step
of the simulation, the probability that each available is chosen as the next pile to search is determined as a weighted sum of
ambiguity, reward, and proximity maps. Each map consists of a superposition of discretized kernels. The sizes of ambiguity, reward,

and proximity kernels, defined as the standard deviation of the 2-dimensional Gaussian functions, were free parameters of the
model. In the shown generative model, we used ambiguity kernels with standard deviations of 0.9 meters, reward kernels of 0.3

meters, and a proximity kernel of 0.6 meters. The ambiguity kernel's standard deviation indicates that revealing a pile's content
provides information about up to 3 piles in each direction. The standard deviation of the reward kernel indicates that finding a
reward is very likely in the adjacent piles of a filled pile. The standard deviation of the proximity kernel indicates the distance a
monkey can reach by stretching its arm and body to reach a pile without relocating the full body. Regardless, similar simulation

results were achieved using other values within reasonable ranges of these values. The next pile was randomly sampled from the
2-dimensional probability density function (4" row). B) Simulation of three marginal agents: An information seeker (I* row)

chooses the pile at the peak of the information map. This agent moves to a new neighborhood of the map when the information in

the current neighborhood is depleted, which occurs when one or more piles are searched. A reward seeker (2" row) moves
randomly before encountering the first reward. After that, it stays within the vicinity of discovered rewards. An energy preserver
(3" row) only takes the shorter possible steps in random directions, even after sampling empty piles. C) Selecting the composition
of information, reward and proximity weights, the generative model prodices a variety of foraging strategies. i) a pure information
seeker (left) or a pure energy preserver (vight) produce Brownian-like random walks, as identified by an inverse bell share
distribution of the step sizes while a balanced set of weights generates Lévy-like walks (middle). ii) A pure information seeker does
not shortner step sizes immediately after encountering filled piles (left). The average of step size immediately after encountering a
filled lowers as the weight composition transition into a balanced set (middle) or a pure reward seeker (right). iii) a reward
invariant weight set (zero weight for the reward) produces the same distribution of convolutedness pre- and post- the I*' reward
encounter (left). Increasing the reward weight gradually shifts two distributions apart, indicating a roaming/dwelling strategy
(middle and right). D) Fitting the model to the foraging paths of each monkey using maximum likelihood estimation (see Methods).

100 subsets of the pile searches, pooled across sessions (324, 147, 148, and 202 pile searches of Vin, Luk, Hum, and Nat), were
used for training. Each subset contained 80% of the total number of pile searches. Lefi of each panel: The weight sets resulting
from each training were sorted according to the value of the proximity weight for better visibility. Right of each panel: The fitted
kernel sizes were shown as concentric transparent circles with the cicle’s radius showing 2 times the standard deviation of the

Gaussian kernels.

Does the structure of the hidden abundance map matter?

Fitting a model of spatial kernels to the foraging paths of monkeys provide evidence that they
assumed spatial continuity in the hidden abundance map. This assumption happens to be true for
our localized abundance maps with a large, single, localized set of piles containing hidden rewards.
That raises the question of whether macaques’ assumption spatial continuity holds for abundance
maps violating this assumption. To understand the effect of the continuity of the abundance map
on foraging paths, we first simulated the forager from Fig. 4Cii middle, with a balanced proximity,
reward and information weights, on terrains with scattered abundance maps (Fig. 5SA). We found
that for this type of abundance map, encountering a filled pile shortens the step size (Fig. 5B),
equivalent to the localized abundance maps (Fig. 4Cii middle). Given that two of the monkeys,
Vin and Nat, weighed rewards in a balanced way, as in the simulated forager in Fig 4Cii middle,
we expected that they would shorten their step size on the scattered map as well.

We tested Vin on foraging terrains with scattered maps, performing 7 consecutive sessions several
months after performing the task with localized maps. Nat performed 7 sessions, which were
randomly interleaved with 5 localized sessions (the results of Vin’s and Nat’s localized sessions
were already discussed in Fig. 1-4). Despite this difference in the session arrangement, we found
consistent pattern of encountering empty and folled piles for two monkeys (Fig. 5D).

Similar to Fig. 3A, encountering a filled pile shortened the step size (Fig. SE), suggesting that
monkeys assume spatial continuity of reward distribution. The average step size across scattered
sessions was comparable to the localized sessions (Vin: 0.64 m for localized maps and 0.72 m for
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scattered maps, Nat: 0.61 m for localized maps and 0.69 for scattered maps; unpaired ¢-test, p =
0.21 for Vin and 0.20 for Nat).

Restricting search to the vicinity of discovered rewards is particularly useful when the abundance
map is localized or patchy [42]. This strategy is expected to yield success on our localized maps
more frequently than on our scattered maps. Unexpected failures, for example, when not finding
rewards in the vicinity of discovered rewards, are proposed to generate internal error signals,
leading to an adjustment in the decision process [43]. To understand whether monkeys adjusted
their strategy for localized and scattered maps, we estimated the weights of information, reward,
and proximity for the scattered maps. We found that the weights of the information map were
higher for both monkeys foraging the scattered maps, compared to localized maps (Fig. 5F;
compare to Fig. 4D; Fig 5 G), indicating a higher contribution of information-seeking, when
foraging an scattered maps.
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Figure 5 | Simulated agents and monkeys favored the piles in the vicinity of discovered food on scattered maps. However, monkeys
were more explorative compared to localized maps. A) A sample scattered map consisted of 4 groups of filled piles, each with three
piles in a letter ‘L’ shape B) The simulated agent in Fig. 4Cii middle, here applied to scattered abundance maps. i) an example
simulated foraging pattern. ii) the distribution of step size, after encountering an empty or filled pile, respectively. Results pooled
across 100 simulated sessions. C) Example sessions of two monkeys on scattered maps. D) Reward raster of two monkeys, 7
sessions of randomly selected scattered maps for each monkey. E) Equivalent to Fig. 34, but for the scattered maps shown in C.
F) Fitting of the monkeys foraging patterns, equivalent to 4D, but for the scattered maps. G) Comparing information weights across
localized and scattered abundance map structures for monkey Vin and Nat. For both monkeys, the information weights were higher
for scattered maps (decodability, as the area under R.O.C., was 1 for Vin and 0.8 for Nat).
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Discussion

We investigated the spatial foraging pattern of free-roaming macaques on ambiguous terrain. The
foraging terrain consisted of a uniform grid of woodchip piles on the floor, hiding pieces of rewards
that were distributed in the grid according to a reward abundance map. Several aspects of our
experiment aimed at generating an ambiguous terrain: 1. the environment did not provide any
sensory cue to reveal the reward locations 2. Macaques performed the task for a low number of
foraging sessions, without prior intense training. This allowed us to understand their foraging
strategy in an unfamiliar terrain 3. The type of the abundance map, localized or scattered, was not
revealed to the animals using sensory cues. We found that the free-moving monkeys navigate in
Lévy-like patterns, search preferably nearby after reward encounters, but do not restrict their
search to the vicinity of discovered food. A spatial kernel-based model weighing reward seeking,
information seeking, and energy preservation is able to generate diverse ecologically valid
foraging pathes. Fitting this model to the experimental data reveals individual differences among
four tested animals, as well as adaptation to the different distributions of the hidden food. We will
discuss how the observed behaviors mark an ecologically valid solution to seek information when
foraging an ambiguous terrain.

Foraging individuals need to continuously evaluate and decide between exploiting the immediately
available nearby food options or exploring more remote, often unknown alternatives [21]. We
studied the case where a uniform terrain of potential food sources needed to be searched through
to find potentially hidden rewards. The macaque’s foraging patterns revealed that they
incorporated information-seeking in their strategy when foraging such ambiguous terrain: The
distribution of distance traveled between consecutive searches followed a Lévy-like pattern. This
means that monkeys occasionally traveled a long distance between consecutive searches, as
revealed by a heavy-tailed power probability distribution over the step sizes. In other words, the
animals favored the piles in the vicinity of discovered rewards but did not restrict their search by
dwelling around them; instead, they continued to explore the entire terrain. We explained
information-seeking on our ambiguous terrain using a kernel-based spatial model incorporating a
map of information where the unsearched piles, i.e., the information sources, were located.

The observed Lévy-like random walk pattern indicates that the log-likelihood of choosing a pile
was inversely proportional to the log distance from this pile. Occasionally choosing to travel a
long distance indicates that macaques continuously balanced energy preservation, i.e., crawling
the field by choosing nearby piles, with random exploration, i.e., zig-zagging the grid, choosing
piles regardless of their distance. This observation is consistent with the search patterns of many
species, ranging from microorganisms to human hunter-gatherers, in their natural habitats [27]-
[30], [44]-[46]. However, for numerous reasons we do not call the foraging pattern of our
macaques a Lévy walk or a Lévy flight: First, the scale-freeness of a Lévy walk was limited by the
relatively small size of the terrain, spanning only about two orders of magnitude (30cm to 3m).
Second, a property of Lévy walk is the uniform distribution of the heading angle at each step [47].
In our experiment, this assumption was unmet because the heading angle of the animals was
discretized due to the finite resolution of the pile grid. Third, even if the terrain was more fine-
grided, we speculate that monkeys will likely choose their heading angle non-uniformly, favoring
the directions in their field of view. Therefore, even with a Lévy distribution of the step sizes, the
search pattern is not necessarily a Lévy walk [47].
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Consistent with previous reports on land and marine animals [31], we found that macaques favor
searching the vicinity of previous food encounters. This strategy is particularly efficient when the
food distribution is localized. In an extreme case, when the food is distributed within one local
patch, a forager may switch from roaming the field to dwelling around the location of the
discovered food, a greedy strategy [48] to exhaustively exploit the only food source. Switching
from roaming to dwelling after the first food encounter has been reported in other species such as
C.elegans [34]-[36] with distinct neural circuits underpinning behavior in each phase. On our
localized maps, a forager, who knows a priori or learns quickly that the filled piles were clustered
together, optimally roams around until finding a filled pile, then dwells around to visit all filled
piles. However, we found no evidence that macaques learned the local structure of the hidden
abundance map during their limited exposure to the task (Fig. S2). Instead, we found evidence that
they mildly favored the vicinity of the reward location but continued to explore the terrain.

We developed a model to generate and predict spatial foraging patterns using three principles
energy preservation, reward-seeking, and information-seeking. Essentially, we attributed a
probability of being chosen to each untouched pile based on preset weights for contributions of
energy preservation, reward-seeking, and information-seeking. This probability was updated after
each pile search, as in a generic reinforcement learning framework in which the agent learns the
value of available options by integrating outcomes over time, updates an internal distribution of
values, assigned to available options, and the policy which generates choices using the value
distribution over the options [12].

The spatial kernel-based model was used for simulating hypothetical agents as well as
investigating foraging paths in the experimental data. In the generative model, this probability
distribution was used to generate a sequence of choices while updating the probability distribution
after each pile search. In the fitted model, the probability distribution parameters were trained to
maximize the likelihood of observing the experimental data. Using the generative model, we
generated ecologically valid foraging patterns by choosing the weight composition. Using the
fitted model, we found differences across individuals and map types. Comparing information
weights across four individuals suggests a higher weight for two younger monkeys, Vin and Nat,
than for two older monkeys, Luk and Hum (Fig. S4). Age-related decline in exploration is expected
in adults [49]. However, for our monkeys, other factors such as social dominance, experience in
lab environments, or food preference may as well explain this distinction. Further investigation
using a diverse population of monkeys is needed to explain individual differences in balancing
information-seeking with reward-seeking. Comparing information weights across two map types,
we found a higher information weight for scattered maps, suggesting an adjustment in the foraging
strategy, allowing the animals to succeed in finding scattered rewards.

Taken together, we demonstrate how our Exploration Room platform can be used to study
ecologically relevant yet experimentally controlled forms of spatial foraging without extensive
training of the animals and thereby learn about the weighing of different search-relevant factors in
foraging decisions. Our results suggest an explicit role for information seeking, alongside
previously considered energy preservation and reward-seeking in macaques’ foraging strategies,
an ecologically valid way of foraging ambiguous terrains. We speculate that macaques have
evolved this trait to survive in and thrive under the ambiguity of novel terrains.
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Materials and Methods

Animal use statement

All procedures comply with the European Directive 2010/63/EU and the German Law and have
been approved by the regional authorities (Niedersdchsisches Landesamt flir Verbraucherschutz
und Lebensmittelsicherheit (LAVES)) under the permit number 33.19-42502-04-18/2823. Four
rhesus monkeys (Macaca mulatta) were used in the study: Vin (10 years old, 7.0 kg), Luk (20
years, 9.0 kg), Hum (16 years, 15.5 kg), and Nat (7 years, 7.5 kg). The animals were group-housed
in the animal facility of the German Primate Center in Gottingen in groups of two or three. The
animals have an enriched environment consisting of several wooden structures and toys. The home
cages of the animal exceed the size regulations by European guidelines and provide access to
natural light in an outdoor space. All animals were trained to climb into a primate chair to transfer
from the housing facility into the Exploration Room setup.

Experimental setup

The experimental setup, Exploration Room [38] was a custom-made room with dimensions of 4.6
m (W), 2.5 m (D), and 2.6 m (H). The skeleton was constructed of an aluminum track system
(MiniTec, GmbH, Schonenberg-Kiibelberg, Germany). The walls and the floor were tiled with
white high-pressure laminate (HPL, Kunststoffplattenonline.de). Two doors along the length gave
access to humans, and a gated custom-made tunnel on the opposite side gave access to macaques.
The ceiling was covered with a metal mesh grid. The room was lit using 8 LED panels just above
this mesh grid. The animal's position and searching of piles were assessed via video recorded from
2-6 Chameleon3 USB3 cameras (FLIR Systems Inc, Wilsonville, Oregon, U.S.) placed
strategically to record monkeys’ full body actions from divese angles. Fig. S5 shows the view from
two of these cameras, placed at the ceiling in a central position, at an equal distance (~1.5m) from
each other and the short walls of experimental rooms.

Behavioral training and testing

Each monkey was habituated to the exploration room before recordings. During the habituation
sessions, low-density foraging terrains, i.e., terrains with fewer piles spread further from each other
and containing a random number of food items, were used to ensure that the animals searched the
piles when encountering them. The woodchips were the same kind used in their housing,
facilitating the habituation phases. The high-density pile grid with 81 or 108 piles was used for
testing only. The localized abundance maps were determined in each session by randomly
choosing one of the piles in the grid to be the center of the filled piles, but excluding the centers
for which filled piles were truncated by the borders of the grid. The food items were pieces of
banana chips, cucumber, radish, or grapes, depending on the preference of the animal. Only one
type of food piece was used in each session. When cucumbers were used, we dampened the
woodchips with water to release the natural wood smell strong enough to mask the smell of fresh
cucumber pieces. The end of the foraging session was determined when the animal waited near
the exit to leave the room or roamed around for longer than 5 minutes without searching.

monkey | Map Session | Randomization | Food type | Woodchip condition
1
B Matlab® bapana
. . chips
Vin localized | 3 dry
4 grapes
5
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6 Manual, pseudo-
7 random
1
2
scattered i Manual, pseudo- cucumber wet
random
5
6
7
1
2
Luk localized |3 Matlab® grapes dry
4
5
1
2
Hum localized [ Matlab® grapes dry
4
5
localized |1
scattered | 2
localized | 3
localized | 4
scattered | 5
Nat iﬁzgiig g Python cucumber | wet
scattered | 8
localized | 9
localized | 10
scattered | 11
scattered | 12

Action labeling

Pile searches of each monkey were detected using a custom-written, freely available action
labeling software [50] or a custom code in Matlab®. A unique label was assigned to each pile, as
in Fig. S5. Each pile search was identified using the searched pile's label and the search's time. The
sequence of the searched piles in each session was subsequently converted into 2D coordinates of
the searched location.

Power function
To determine whether the distribution of the step sizes was Lévy-like, we used the following power
function

y = axP
On a double-log scale, this formula transforms to
17
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log(y) = log(a xP) =log(a) + p log(x) = b + plog (x)

which is a line with a bias b and a slope p. Accordingly, we fitted linear models to step-sizes in
log-log space using a least-square regression using the built-in function ‘regress’ in Matlabe.

Calculating convolutedness index
The convolutedness of a sub-path was calculated using the angles between the direction of
consecutive steps and the length of steps according to

convolutedness
cos(61) d, + cos(0;) d; + cos(63) d3 + -

di+d,+dz;+ ..
In which di, do, ... are the length of steps in meters and 01, 02, ... are the angle between the current

step and the previous step, except for 01, which we use the last step of the path as the step before
the first step. The further illustration clarifies the definition of angles between consecutive steps.

Generative kernel-based spatial model

The model consisted of a 2-dimensional probability mapy,,,,(x,y), determining the probability
that the simulated agent chooses the pile at the location x and y for the next search. x and y took
integer values with each pile representing one unit. The probability map consisted of three maps:
the ambiguity map, the reward map, and the proximity map as follow:

mapprob (x' y) = Winfo mapambiguity (x' y) + Wrew MAPrey (X, y) + Wprox mapprox (x' y)
The ambiguity map consisted of a superposition of 2-D Gaussian kernels, each centered at one
unsearched pile. Once a pile was searched, the info map was updated by removing the Gaussian
kernel associated with that pile. In the generative model of Fig. 4A-C, 04mpiguity, the standard
deviation of the ambiguity kernels was 3 piles = 0.9 m.

The reward map started with zeros. After each pile search, if the pile contained rewards, one 2-D
Gaussian kernel centered at the searched pile and scaled with the number of rewards was added to

the reward map. In the generative model of Fig. 4A-C, g,.,,, the standard deviation of the reward
kernels was 1 pile = 0.3 m.

The proximity map consisted of one 2-D Gaussian kernel centered at the location of the currently
searched pile. In the generative model of Fig. 4A-C, 0y, the standard deviation of the proximity

kernel was 2 piles = 0.6 m.
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In the generative model, the next pile was sampled from mapy,op(x,y)?. When p > 10, the
generative model was almost deterministic, choosing arg max[mappmb(x, y)] as the next pile.
For simulations in Fig. 4A-C, we used p = 5.

Fitting the kernel-based spatial model to the experimental data

We used a maximum likelihood approach to fit the model to the experimental data. We calculated
the LL, the log-likelihood of mapyrop (Winfor Wrews Ginfor Orews Oprox)- WproxWas set so that
Winfo + Wrew + Wprox = 1. mapy,,, was computed for each foraging step by updating
ambiguity, reward, and proximity maps from the previous step and re-normalizing map,,,p to
have a sum of 1. We chose each of 04mpiguity> Orews and Oproy from a list of 11 values: 0.1, 0.4,
0.7,1,1.3,1.6,1.9,3,4,5, and 6 (going through all 1331 possible permutations), then used fmincon
function in Matlab® to find Wiy fo, Wy to minimize —LL, constraining the free parameters to
[0,1]. We used only one initial set of values because map,,,,, has only one global maximum in
the 2-dimensional space of wi,r, and wy,,,. After going through all 1331 permutations of
Oambiguitys Orews and Oy, We chose these 3 parameters to maximize LL. For cross-validating
the model, we repeated this procedure for 100 random subsets of pile searches for each monkey,
each containing 80% of the total number of pile searches.

Statistical analysis

A two-sided Wilcoxon signed-rank test was used, except where another test was indicated. When
multiple data groups were compared, false discovery rate (FDR) correction for multiple
comparisons [51] was used to correct the p-values.
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