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This valuable paper introduces the Dyadic Interaction Platform, an experimental
setup that enables researchers to study real-time social interactions between two
participants in a controlled environment while maintaining direct face-to-face
visibility. The evidence supporting the platform's effectiveness is convincing, with
demonstrations of distinct experimental paradigms showing how transparency and
continuous access to partners' actions can influence strategic coordination, decision-
making, and learning. The work will be of broad interest to researchers studying
social cognition across humans and non-human primates, providing a versatile tool
that bridges the gap between naturalistic social interactions and controlled
laboratory experiments.

https://doi.org/10.7554/eLife.106757.1.sa2

Abstract

Studies of social cognition examine how organisms process and act on the presence,
intentions, actions, and behavioural outcomes of others in social contexts. Many real-life
social interactions unfold during direct face-to-face contact and rely on immediate, time-
continuous feedback about mutual behaviour and changes in the shared environment. Yet,
essential aspects of these naturalistic conditions are often lacking in experimental laboratory
settings for direct dyadic interactions, i.e., interactions between two people. Here, we
describe a novel experimental setting, the Dyadic Interaction Platform (DIP), designed to
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investigate the behavioural and neural mechanisms of real-time social interactions. Based on
a transparent, touch-sensitive, bi-directional visual display, this design allows two
participants to observe visual stimuli and each other simultaneously, allowing face-to-face
interaction in a shared vertical workspace. Different implementations of the DIP facilitate
interactions between two human adults, adults and children, two children, nonhuman
primates and in mixed nonhuman-human dyads. The platforms allow for diverse
manipulations of interactive contexts and synchronized recordings of both participants’
behavioural, physiological, and neural measures. This approach enables us to integrate
economic game theory with time-continuous sensorimotor and perceptual decision-making,
social signalling and learning, in an intuitive and socially salient setting that affords precise
control over stimuli, task timing, and behavioural responses. We demonstrate the
applications and advantages of DIPs in several classes of transparent interactions, ranging
from value-based strategic coordination games and dyadic foraging to social cue integration,
information seeking, and social learning.

Introduction

Humans and other primates are social beasts. Our identity, beliefs, thoughts, actions, and speech
are grounded in the context of our social interactions with others. Decades of research on social
cognition in carefully controlled laboratory studies have provided ample evidence that
unidirectional, non-interactive social cues, e.g., still faces, gestures, emotional facial expressions,
and spoken words, can shape our perception and subsequent behaviour. Natural social
interactions are, however, rarely controlled and quintessentially non-static and reciprocal. Even
the most basic social exchange between two individuals provides a kaleidoscope of rapidly
changing cues regarding the social partners’ facial expressions, gazes, actions, and words.
Understanding the extent to which we are capable of attending to and incorporating such
dynamic, multidimensional cues in our everyday interactions requires examining behaviour in
similarly rich situations. Therefore, experimental settings are needed that strike the desired
balance between natural interactions and controlled stimulus presentation while monitoring
continuous behavioural and neural data of interacting agents. Here, we present a novel
experimental platform that allows two individuals - either two adult humans, a human adult and
child, two nonhuman primates, or a nonhuman primate and a human confederate - to interact
face-to-face with one another while observing the same stimuli and manipulating a common,
shared workspace. During these interactions, a wide range of behavioural and neural indices of
their interactions and shared environment can be collected, allowing analysis of how social cues
and actions are perceived, processed, and how they influence dynamic social interactions.

In what follows, we first describe the state-of-the-art on how the presentation of social information
in static and dynamic contexts influences cognitive processing and decision-making. Next, we
describe prior setups that have sought to combine naturalistic social settings with experimental
control to examine the integration of social information in social interactions before describing
the platform and exemplary use cases in further detail.

Social cognition

As in other domains of cognition, social information processing relies on attending to, perceiving,
and learning from relevant cues in the individual’s environment. Many earlier studies examining
social information processing have employed static unidirectional paradigms where a participant
is presented with social stimuli, such as words or still images of faces, as the participant’s
behavioural, physiological, or neural responses to these stimuli are recorded. These paradigms
have yielded considerable insight into the factors that shape the processing and learning of social
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information in such static designs. We will not describe this literature in detail here, but direct the
reader to excellent reviews on these topics (e.g., Birmingham and Kingstone, 2009 ; Deen et al.,
2023 @).

Moving on from such static designs, a critical step in the social cognition literature was to use
more realistic dynamic stimuli, such as movies, animated avatars, or real individuals, albeit in a
unidirectional fashion, i.e., focusing on assessing perception and behaviour in a single subject.
Such studies suggest that embedding cognition in our lived social experience can impact how
participants respond across various situations. For instance, the face recognition literature
abounds with studies suggesting that individuals prefer looking at people’s faces, especially their
eyes, relative to objects in situations where participants are presented with static images of objects
and faces (see Birmingham and Kingstone (2009) & for a review). More recent studies have,
however, allowed participants to view or interact with real people as stimuli, e.g., sit across from a
stranger (Laidlaw et al., 2011 (%), walk down a University campus (Foulsham et al., 2011®), follow
an individual’s gaze (Gallup et al., 2012 @), or make transparent judgments about people, i.e., these
judgments would be visible to the person being judged (Gobel et al., 2015%). In stark contrast to
the face perception literature, these studies found that participants moderate when they look into
people’s faces and eyes in real social interactions and pay more attention to nonsocial information.
Similarly, the developmental literature suggests that infants prefer dynamic faces as opposed to
static patterns (Courage et al., 20067 ) and robustly follow an adult’s gaze when presented with
videos of adults directing their gaze toward an object (Senju and Csibra, 2008 2 ; Bohn et al.,

2024 (). In contrast, recent findings examining infants’ behaviour in naturalistic social
interactions with their caregivers with head-mounted eyetrackers suggest that children’s looking
toward faces may be impacted by the motor costs associated with fixating on someone’s face
(Franchak et al., 2018 @) and that infants do not always reliably follow their caregiver’s gaze in
such interactions (Madhavan et al., 2025 ; Yu and Smith, 2013 @). Thus, embedding cognitive
science research in transparent social interactions reveals that individual responses in realistic
social situations may differ dramatically from findings from static and unidirectional laboratory
studies.

Dynamic social interactions may occur spontaneously without a concrete goal or a joint task.
However, understanding the full spectrum of social mechanisms also requires examining goal-
directed contexts in which interactions are purposeful for solving joint tasks or attaining rewards.
In particular, game-theoretical approaches have been extensively used to study social value-based
decisions during bidirectional goal-directed interactions. Such “games” typically provide
information about the discrete choices of both players at the end of each game round or trial, or
impose a predetermined order of actions, e.g., turn-taking (sequential games, or actor-observer
paradigms). Thus, players can base their decisions on the history of their and their partner’s
choices and outcomes and their predictions about the future (Figure 1 ). While such paradigms
capture an important aspect of social interactions, especially at longer timescales, many real-
world interactions typically unfold continuously in real-time within a direct face-to-face
sensorimotor context (van Doorn et al., 2014 ; Yoo et al., 2021a @). To study the effects of such
within-trial short-term dynamics, we have recently introduced probabilistic action visibility
(“transparency”) and found that giving participants dynamic and continuous access to a partner’s
choices changes evolutionary successful strategies in iterative non-zero-sum games (Unakafov et
al., 20193, 2020 @). Along the same lines, recent work in humans and nonhuman primates has
focused on continuous dynamic strategies in purely competitive dyadic settings (Hosokawa and
Watanabe, 2012 ; McDonald et al., 2019 ) and non-zero-sum games (Brosnan et al., 2012,
2017 Z; Ferrari-Toniolo et al., 20192 ; Hawkins and Goldstone, 2016 & ; Ong et al., 20212 ; Pisauro
et al.,, 2022 @). These studies revealed how individuals maximize their rewards by dynamically

and continuously integrating the actions of their social partners into strategic choices.
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Figure 1

Timescales of dyadic interactions.

Classical economic game theory mostly focuses on trial-by-trial decisions: each agent learns about the mutual outcomes of
dyadic choices at the end of each round, or trial, e.g., both select option “square” in the trial T3 (row 2). Across trials, decision
strategies, reflecting recent history of interactions and predictions of future choices of the other agent, can emerge and
transition gradually or abruptly, e.g. from S1 to S2 (row 3). Our approach aims at expanding the classical games, enabling
“transparency” in dyadic decision-making paradigms so that each agent can monitor the other agent’s ongoing social cues
and actions continuously in real-time (row 7). Instantaneously coordinated actions may give rise to new strategies, e.g.
leader-follower dynamics that emerge spontaneously, based on time- and space-continuous actions. Of course, decision-
making in a social context requires agents to integrate longer-term experiences and predict consequences beyond
situational strategies, for example, adapting to partners with different levels of competence or cooperative dispositions (row
4). Immediate partner visibility in naturalistic face-to-face interactions allows for efficient partner-specific learning and
behavioural adjustments.
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Beyond economic strategic games, the social context also strongly influences basic perceptual
processes. Studies examining perceptual judgements (i.e., judgment about ambiguous sensory
stimuli) in cooperative contexts typically have individuals complete serial decision tasks, first
individually and then jointly with their interaction partners (Bahrami et al., 2010@; Bang et al.,
2017 Z; Bang and Frith, 2017 2 ; Baumgart et al., 2019%). This work suggests that, under certain
conditions, joint performance is better than the best individual performance and that partners
exhibit mutual alignment of their perceptual judgments or associated confidence. Importantly, the
manner and the timing of social exchange has a strong impact on individual responses: for
instance, information about others’ choices that is presented serially (e.g., at the end ofa trial or
within a structured turn-taking) influences decisions differently compared to when the
information exchange is more dynamic or continuous (Pescetelli and Yeung, 2020%, 2022 ®).

This brief overview makes clear that static and dynamic designs - both unidirectional and
bidirectional - tap into different levels of cognitive processing that are key to understanding social
behaviour. Equally clear, however, is our takeaway that our understanding of how individuals
perceive, react, attend to, and learn from social interactions is likely to change based on the extent
to which experimental designs consider the continuous dynamics between social partners in an
interaction (Hadley et al., 2022 ). There is, therefore, a need for experimental platforms that
allow us to incorporate and study such dynamics readily. Below, we briefly describe the
experimental approaches that have, thus far, enabled studying primate social cognition at
different levels of interactivity and transparency (see also Hari et al. (2015)2 and Fan et al.

(2021) @ for reviews on levels of naturalism and interactivity in social neuroscience research).

Prior dyadic setups

Experimental dyadic settings range from naturalistic free-flowing interactions “in a room”, which
are inherently difficult to control and analyse, to highly specialized configurations with shared or
separate visual displays and workspaces for each agent, providing varying access to multifaceted
socio-affective signals (e.g., eye gaze, facial expressions, or gestures). Dyadic experiments with
human participants are often conducted in separate booths or rooms, using two individual

al., 2020 ; Steixner-Kumar et al., 2022 @2 ; Schneider et al., 2024 ). In such tasks, researchers
typically manipulate the information presented to individuals or substitute a real human partner
with a computer agent or confederate. Furthermore, this arrangement allows recording the brain
activity of one or both participants using EEG or in an MEG or MRI scanner (Park et al., 2019C3;
van Baar et al., 2019(Z; Levy et al., 2021 ; Philippe et al., 20242 ). However, under such
conditions, the immediacy of the real social context and availability of socio-affective cues from
the social partner are limited. Human studies also utilised the side-by-side positioning of the
players in front of two separate screens in the same room (Buidze et al., 20242, 2025 @).
Participants cannot observe each other directly, but see the outcome of the other player’s
responses on their respective screen. While the immediacy of the task-related interaction on the
screen is preserved, the information about the other player is strictly controlled by the
experimenter and does not include facial or gestural responses.

In more naturalistic settings that facilitated the seminal discovery of mirror neurons, Rizzollatti
and colleagues recorded single neurons from the frontal cortex of macaque monkeys as they
either observed the experimenters reaching for different objects or reached for the same objects
(di Pellegrino et al., 1992 ). These findings spurred the development of primate social
neurophysiology and advanced our understanding of social interactions at the neuronal level
(Chang, 2017 @; Isoda et al., 2018 &3 ; Nougaret et al., 2019 3; Bdez-Mendoza et al., 2021 %). For
instance, in pioneering studies by Fujii and colleagues (Fujii et al., 2007 (%, 2008 (), macaque
monkeys sat at a table at a 90° angle or opposite to each other and reached for food morsels.
Although the timing of the reaching behaviour could not be carefully controlled, such studies
allowed researchers, for the first time, to test the neuronal representations of self and other’s
reaching space in the parietal cortex.
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Since then, many variations of dyadic setups have been implemented. A common variant used
both in nonhuman primate conspecific dyads and in mixed human confederate-monkey dyads is
based on a side-by-side or at 90° sitting configuration with visual access to separate (touch)screens
and workspaces, or a shared screen with individual response devices (Chang et al., 2013,

2015 ; Haroush and Williams, 2015(%; Falcone et al., 20172 ; Brosnan et al., 2017 &, 2012(2;
Cirillo et al., 2018 ; Ferrari-Toniolo et al., 2019 ; Dal Monte et al., 2020 ; Formaux et al., 20233 ;
Meisner et al., 2024 (7). Such arrangements facilitate social proximity, but do not allow direct face-
to-face interactions and social gaze monitoring. Furthermore, they often require perspective
switching from one’s own actions and their consequences to the partner’s actions. Thus, many
studies employing this approach use sequential turn-taking between one actor who determines
the outcome in the current trial and one passive observer/reward recipient at the time. Not only
do such tasks enforce a less natural serial interaction, they also require participants to realize
when they are the actor and when they are not, which can be a challenging process for nonhuman
primates or younger children.

As an alternative, many studies have presented macaque subjects with a horizontal computer
display or a horizontal touchscreen placed between the two partners, allowing them to observe
each other’s actions and ensuring controlled presentation of visual stimuli (Yoshida et al., 2011 3;
Azzi et al., 2012 & ; Bdez-Mendoza et al., 2013 2 ; Bdez-Mendoza and Schultz, 2016 2 ; Noritake et al.,
20183 ; Grabenhorst et al., 2019; Ong et al., 2021 ). In such setups, the gaze and the focus of
attention have to be shifted from the screen below to the partner and back, while the action space
is separated into own and other’s parts. Along the same lines, several studies had human
participants face each other while interacting with objects on a table between partners (Hamilton
and Holler, 2023 @ ; Madhavan et al., 2025 (3; Yu and Smith, 2013(2). Such tasks, however, similarly
necessitate considerable vertical gaze and attention shifts between the object stimuli and the
partner. Furthermore, such interactions allow limited experimental control over the timing and
presentation of the stimuli.

As a compromise between side-based and vis-a-vis approaches, in some studies two players faced
a shared computer display arranged at an angle, so that both players could observe the stimuli and
to a certain extent each other’s actions and faces (Hosokawa and Watanabe, 2012 ). Human
studies, in turn, have used back-to-back computer screens between opposing partners (Jahng et al.,
20173; Yu et al., 2020®). To enable naturalistic gaze interactions, some recent human and
macaque studies also utilized accessible conditions in which the dividing computer screen or a
shutter can be lowered (Dal Monte et al., 2022 (@), arranged laterally (Tang et al., 2016 (%), or
rendered transparent (Pryluk et al., 2020 (3; Hirsch et al., 2023 @), exposing the face of the partner.
Likewise, some across-the-table experiments with face-to-face or opaque divider conditions relied
on manipulating separate response devices and auditory feedback (Behrens et al., 2020 (%). But in
all these approaches, task-related stimuli are shifted away from the face and the body signals, and
workspaces are divided.

Finally, three studies have implemented a transparent face-to-face arrangement. The innovative
setup of Ballesta and Duhamel (Ballesta and Duhamel, 2015 @) relied upon semitransparent
mirrors to project visual stimuli onto a touchscreen plane, and required painstaking alignment
and head-fixed subjects (personal communication, J-R Duhamel). Vaziri-Pashkam and colleagues
used an ingenious but limited solution consisting of a Plexiglass divider with pieces of foam
attached to it as targets, and electromagnetic hand tracking device - with no possibility to display
and act on visual stimuli. Recently, Ninomiya and colleagues (Ninomiya et al., 2021 %)
implemented face-to-face interaction using large illuminated buttons on each side, visible to both
agents but only operable by one agent, and no other visual stimuli. These approaches enable
monitoring the partner’s face and actions without the need for large gaze shifts, but limit stimulus
and response options.

Sebastian Isbaner et al., 2025 eLife. https://doi.org/10.7554/eLife.106757.1 6 of 52


https://doi.org/10.7554/eLife.106757.1

7 eLife

Taken together, the approaches summarized above suggest that most research on cognition in
dynamic social interactions faces a trade-off. Participants often have limited access to the
continuously changing behaviour of their social partners, requiring them to split their attention
between the workspace and their social partners. Paradigms that provide more access, such as
studying free-flowing face-to-face interactions between two partners, have limitations in terms of
experimental control, stimulus presentation and behavioural recordings. Therefore, there is a
need for an approach that allows controlled stimulus presentation and experimental
manipulation while still affording direct access to the social partner’s face and actions.

Dyadic Interaction Platform

In this paper, we present a dyadic interaction platform (DIP) that unifies many advantages of prior
setups and allows studying real-time social interactions between two partners. The key feature of
the DIP - contrasting with the commonly used configurations reviewed above - is a transparent
bidirectional screen that presents stimuli and allows participants to see each other, while also
serving as a shared workspace where both partners can interact. Thus, the experimental setup
enables the presentation of tightly controlled visual (in combination with auditory) stimuli, which
participants can simultaneously manipulate, trigger, or selectively attend to. The availability of
both, the social interaction partner and the stimuli in the same line of sight ensures that
participants can readily attend to both sources of information. A range of different recording
devices can be flexibly integrated into the platform to capture rich multi-dimensional behavioural,
physiological, and neural data, allowing one to evaluate task-driven and spontaneously occurring
contingencies in social interaction. Taken together, the platform uniquely embeds tight
experimental control in naturalistic face-to-face social interactions, thereby allowing researchers
to examine social information processing in bidirectional, dynamic social interactions.

Two technical conference reports have introduced a concept similar to the projection-based
dyadic interaction platform variant we are presenting here (Ishii and Kobayashi, 1992 ; Heo et
al., 2014 4). We advance this approach by demonstrating flexible implementations adaptable to

diverse experimental designs and target groups, and presenting empirical validation data from
four distinct classes of interaction paradigm:s.

Materials and methods

We begin by summarizing the main platform components and evaluating the advantages and
disadvantages of different options. We then describe several DIP variants, and in the Results
section showcase compelling use cases where DIPs have been applied to address specific research
questions across four example paradigm classes.

Platform components

Here, we describe the variety of visual displays, interactive components, and recording devices
that can be flexibly integrated and synchronized within the DIP.

Visual displays

The mutual visibility of the interaction partners is a hallmark of the DIP. Thus, the display, whilst
acting as the shared visual workspace, should maintain high transparency, allow stimuli to be
displayed precisely in time and space, and offer similar flexibility and ease of use as a computer
monitor. The desired optical properties of the display are a low haze, high transmittance, and low
reflectivity. A hazy display would blur everything behind the display and low transmittance
lowers contrast and brightness. Both, therefore, reduce the salience of the interaction partner’s
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face and body. Reflections create ghost images of the stimuli and the participants which can be
distracting. Furthermore, the optical properties of transparent panels should stay constant over
the visible spectrum so that the display does not appear tinted.

We found that using low-iron, anti-reflective glass (sometimes referred to as museum glass) or
attaching anti-reflective film to the glass panel can help reduce reflections (see Figure 2(2).
Importantly, anti-reflective coating or film should be placed on all pane-to-air interfaces, if there
are gaps between the layers (e.g., between the visual display and the protective glass). However,
participants may still see a faint reflected self-image of themselves on the screen, especially if the
two sides of the DIP are not equally illuminated. Thus, maintaining equal illumination on both
sides of the DIP is crucial. In our experience, multiple independently controllable diffuse light
sources on the two sides - instead of directed spot-lights - allow for suitable ‘titration’ of partner
visibility and self-reflection. Thus, by manipulating the degree of illumination on the two sides of
the DIP, studies can either ensure that the visual experience is similar across the two participants
or create “asymmetric dyads”, where one participant, typically the real subject, can see the other
partner and their facial and posture cues well, but not vice versa.

Crucially, a transparent screen cannot display black colour. Thus, black areas of an image are
perceived as transparent, i.e., the participant and backdrop on the other side act as the
background for the stimuli. If the scene behind such a display is dark, the display will appear
similar to a conventional non-transparent monitor. If the scene is illuminated, the presented
stimuli will be superimposed on the scene. Thus, both sides of the DIP need to be illuminated
appropriately to ensure transparency and access to the partner’s face and actions. While this, in
turn, can result in some degree of self-reflection, the distracting effect of self-reflection can be
alleviated by offsetting the two partners in depth (distance from the display) and
vertical/horizontal directions. We note that, in our experience, the self-reflection typically becomes
less distracting once partners engage in interaction. Since the scene behind the display is typically
illuminated, the backdrop should be as homogeneous as possible. We found that a dark backdrop
(curtains or a painted wall) allows high contrast for the stimuli and displays darker colours with
higher fidelity and avoids reflections on the display that bright walls and objects create.

The contrast of presented stimuli is also influenced by the brightness of the display. Bright stimuli
will occlude the scene behind. Therefore, the placement of stimuli on the screen should ensure
that they minimize occlusions of the partner’s face. For example, stimuli can be placed on the sides
or in a ring-like arrangement that leaves enough space in the centre to see the partner’s face.
Furthermore, stimuli that work well on standard monitors might not work well on a transparent
screen given that, as noted above, black areas are displayed as transparent. Dark parts of an image
might still be discernible when they are enclosed by bright outlines while taking care of contrast
costs incurred by the background. Given these limitations, we found that bright, simple stimuli
such as geometric shapes or cartoons in bold colours were preferable to photo-realistic images.

Finally, studies may need to include transparent and non-transparent settings within a single
experiment. A non-transparent setting is one where the two partners independently interact with
the stimuli without seeing each other or each other’s responses. A simple solution we employed
was to install blinds that block half of the screen on each side, thereby completely occluding the
partner, while allowing participants to use the remaining half of the display on their side. An
alternative solution would be to use electric switchable glass, which allows opacity to be adjusted
continuously and less arduously. Next, we describe the different displays we have used for various
instantiations of the DIP and their advantages and disadvantages.

OLED displays

Organic LED (OLED) screens are available in 4 sub-pixel configurations that allow light to pass
between the two sides of the screen. This results in a display that is transparent when the stimulus
is dark and increasingly opaque as the brightness of the stimulus is increased. Thus, bright objects
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presented on a dark background are clearly visible from both sides of the screen, while the dark
background allows good visibility of the scene on the other side of the screen. One consequence of
the 4 sub-pixel structure is that transparency is around 40-45%.

Due to OLED design asymmetry, there are noticeable differences in luminosity between the front
and the back side of the screen, which can reach magnitudes of 80:1. While this results in
considerable difference in brightness across the two sides of the screen, we note that the
brightness on the dimmer side is still well above perceptual thresholds (see Table 12). To avoid
giving participants on the brighter side a perceptual advantage, stimuli should be chosen to be
clearly above the visibility threshold as judged from the dimmer side. All OLED displays we have
tested so far (Table 1) have provided a sufficiently bright image on the dimmer side. Generally,
this asymmetry is undesirable but is negligible in most cases, and it can be alleviated by tuning the
background lighting to balance the contrast on both sides.

Light projector and projection film

An alternative to the OLED display described above is a projection film that displays an image
projected from a light projector. The film can be mounted on any smooth, transparent surface,
such as window glass, turning the surface into a projection screen (see Figure 2(%). The light
transmittance and clarity of the film can be high (both > 90%) and, in combination with anti-
reflective glass, allows for excellent transparency (see Table 12). The projector can be placed
relatively freely in space depending on its optics, which decouples the image generation from the
screen. This allows flexibility concerning the display size and resolution. A projector with a steep
projection angle is favourable because it reduces the possibility of the participant’s body occluding
the image from the screen. We, therefore, used ultra-short throw projectors that offer the steepest
projection angles and can be placed directly above the screen, thereby reducing the distance from
the screen where the occlusion can happen. However, when participants interact with the screen
by touch, the hand tapping on the screen will block the light from the projector, thereby
obstructing the stimulus on both sides. Usually, the participant performing the tapping is unaware
of the occlusion because their hand obstructs the view. For the other participant, however, the
stimulus partially or wholly disappears when touched on the other side. To mitigate such
occlusions, we used a second projector on the other side, projecting a mirrored image so that
occlusion from one side only results in a slight drop in brightness. This has the additional
advantage that the brightness of stimuli is equal on both sides, independent of the projection film
(see Table 1@).

Including a second projector into the system requires careful alignment of the two projection
planes onto one another to ensure that stimuli on both sides precisely overlap. We achieved this as
follows: We presented a test image (e.g. a grid of bright lines on a dark background) and
performed coarse mechanical alignment of the second projector (height, position, angle, focus).
The remaining distortion was then removed with the image shape correction of the projector
firmware. The “point correction” allows one to shift individual grid points so that the test images
overlap. When the correction is applied, the projector interpolates between the grid points so that
the presented stimuli overlap.

Luminance and transmittance of DIP displays

We examined the brightness and overall light transmittance of the OLED and projector-based
displays used in current instantiations of the DIP. A luminance meter (LS-100 with close-up lens No
135, Minolta) was mounted on a tripod about 50 cm from the screen. The device pointed towards
the display at a right angle and received light from a field of view of 1 degree. During the
measurements, all room lighting was turned off to only capture the light of the displays. The
luminance of a homogeneous white light source placed directly before and behind the display was
measured to determine the transmittance. The transmittance was then calculated as the ratio of
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Figure 2

Overview and schematic of the composite panels for two variants of DIP visual displays.

The top row presents the configuration and the panels that are combined with the OLED display (implemented in DIP1 and
DIP2); note that in the macaque/human DIP1, the eyetracker and the hand/body cameras are illustrated on only one side,
and only one side of the panel composition is shown, for clarity. The bottom row presents the configuration and the panels
that are combined in the projector-based design (implemented in DIP3 and DIPc).
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these luminances. To assess the brightness difference of the two sides of the display, we measured
the luminance from each side of the display while the display showed a homogeneous white
screen. The average luminances per side and the respective ratio are shown in Table 1.

We found that the light projector-based DIPs (DIP3, DIPc) have a luminance ratio close to one, as
expected from the symmetric projector setup. The OLED displays have one side that is much
brighter than the other, while the transmittance is also reduced as compared to the
projectionbased systems. On the other hand, OLED-based displays present crisper, non-blurred
stimuli, and do not require complex setup and alignment.

Auditory stimulation

Auditory speakers directed to both sides of the DIP allow researchers to provide instructions and
auditory feedback to both participants simultaneously. For example, for non-human primate
experiments, information about the amount of reward received by the partner can be encoded in
the audio stream (Moeller et al., 20232), while task instructions for e.g., human child participants,
can be pre-recorded and played back as part of the task progression, ensuring reproducibility
across dyads (Bothe et al., 2024 ). The combination of engaging visual and auditory feedback, for

al., 20243 ; Lewen et al., 2025 @), helping evoke and sustain interest and attention.

Interactive components

Human interface devices (HID) - such as computer mice, joysticks, or touch panels - are integral to
the DIP concept and functionality. They can be used to steer the progress of the task, e.g., trigger
subsequent stimulus presentation by participants’ touching, by moving to or clicking on a specific
point on the screen. At the same time, such devices allow continuous read-out of information as
participants actively respond to the task, which can be analysed later as a form of behaviour.

Touchscreens

The touchscreen capitalizes on the primary form of visually-guided dexterous manipulations of
the environment characteristic of primates. It has been extensively used in sensorimotor
neuroscience to study visually-guided reach movements (Battaglia-Mayer et al., 20032 ; Gail and
Andersen, 20063 ; Chang and Snyder, 2012 % ; Lehmann and Scherberger, 20132 ; Suriya-Arunroj
and Gail, 2019 (). A standard touchscreen-based paradigm, however, typically registers only
endpoints of a movement, e.g., when participants tap on their selected target on the screen. Here,
the transparency of the DIP yields a significant advantage, since participants can continuously
observe the hand and arm movements of their partner and infer where they are going to tap on
the screen. This has, for example, allowed us to uncover behavioural dependencies based on
visibility of the social partner’s ongoing actions (Moeller et al., 2023 ). Researchers interested in
continuous dynamics of such behavioural dependencies may consider supplementing the
touchscreen recordings with marker- or video-based motion capture (see below) to digitise
continuous behaviour in 3D (Gallivan and Chapman, 2014 @). Analysing behaviour in 3D could be
particularly important given studies showing that reach dynamics can differ depending on the
depth of the reaching plane (Ferrea et al., 2022 @2). Transparent touchscreens also ensure that the
visual stimuli, the social partner and the shared workspace are all in the same view, thus allowing
participants to devote full attention to the task space and to observing the partner. Touchscreens
may also provide participants with a greater sense of agency in interacting with the stimuli and
the partner’s hand on the other side, compared to more abstract cursor tasks controlled by mouse
or joystick. However, touchscreens incur costs in terms of the participants’ reaching arm
obstructing the view on the stimuli or the partner’s actions. Vertical touchscreen tasks may also
not be suitable for longer studies or certain types of interactions due to the physical effort
required to raise the arm to provide a response.
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Macaque/human DIP1  DIP2 DIP3 DIPc
Transmittance (%) 34 36 88 85
Luminance side A (cd/m?) 121 128 7.3 58
Luminance side B (cd/m?) 4.2 8.6 7.1 56
Luminance ratio A/B 28.6 148 1.03 1.04

Table 1

Characterization of transparent displays
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Mouse and joystick

In contrast to touchscreens, computer mice and joysticks (or other types of manipulanda) allow
the participant’s continuous behaviour to be represented by a moving cursor on the screen.
Mousetracking tasks combined with analyses of the movement trajectories have been successfully
employed to study economic decision-making in solo settings (Spivey et al., 2005 ; Freeman and
Ambady, 2010 % ; Scherbaum and Dshemuchadse, 2020 3 ; Boschet-Lange et al., 2024 @). Recent
methodological advances in trajectory quantification, furthermore, allow analysis of space-time
continuous data at the level of individual movements in single trials (Gallivan et al., 2018(%;
Ulbrich and Gail, 2021, 2023 @) without having to rely on stereotyped movements averaged
across trials.

In dyadic settings, information about each participant’s task-related behaviour (and hence
cognitive state) can be made mutually available via mouse- or joystick-controlled cursors on the
trans parent screen without significant occlusions by the arm. Overall body motion during mouse
or joystick response is reduced, allowing participants to complete longer experiments and respond
across the entire screen with minimal effort. Furthermore, minimizing body motions is
advantageous for stable recordings of physiological and neural data, e.g., reducing muscle and
movement artifacts in EEG and MEG.

Another advantage is that mice and joysticks allow experimenters to create disassociations
between a participant’s physical manipulation of the joystick and the observable consequences of
this manipulation on screen, for example to introduce increased action costs by limiting the
movement speed of the cursor (Lewen et al., 2025 ). For certain experimental designs, joysticks
or haptic ma- nipulanda may also offer advantages over computer mice. First, joysticks provide
two response dimensions such as the direction and the tilt, which can be used to measure distinct
aspects of task response (see Perceptual decision-making in dyadic context). Second, the origin of
the behavioural response can be normalized to the centre position of the joystick, allowing
reproducible positioning of the hand. Third, force-feedback joysticks or robotic manipulanda
allow resistive forces important for effort-based decision paradigms (Morel et al., 2017 &).
Computer mice and joysticks, however, may require additional consideration related to
differences in users’ proficiency with such devices, e.g., when working with infants and younger
children.

Data acquisition components

The DIP can be equipped with recording devices to continuously monitor spontaneous and goal-
directed behaviour such as facial and vocal expressions, body movements, gaze, as well as
peripheral physiological and neural signals. In what follows, we briefly describe the devices that
can be integrated, the behaviour they can capture and how such data can be efficiently analysed,
to allow for a comprehensive view of dyadic interactions in social settings.

Facial expressions

One of the hallmarks of the DIP is the availability of the other social partner and their dynamic
facial signalling in the same line of the sight of the visual stimuli. Thus, the partner’s face and
changes to the partner’s facial expressions can be incorporated in the experimental paradigm,
allowing an unprecedented level of precision in examining how changes to one participants’ facial
expressions impact behaviour and performance of the other participant. Videos of the faces of
both participants can then be analysed with specialized tools such as Affectiva, a face recognition
software from iMotions, or other machine learning tools (Ballesteros et al., 2024 (%), to automate
recognition of specific facial expressions. Importantly, we note that for accurate identification of
the facial expressions, the cameras must be positioned approximately in front of the face (see
Figure 32, DIP3).
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Non-linguistic vocalizations

Non-linguistic vocalizations like laughter, sighs, grunts, or grumbling are important socio-
emotional cues in social interactions. These non-linguistic vocalisations can occur between spoken
content or even in the absence of verbal communication. They are recorded with microphones
attached to both sides of the DIP setup. Software, such as Hume AI (Hume Al Inc., 2024), can
automatically identify and classify non-verbal utterances that appear in recordings of longer
duration into 24 distinct emotional dimensions. Emotional vocalisations can then be analysed with
regard to the extent to which participants respond to each other’s performance and whether such
vocalisations influence the behaviour of the partners in the task. For instance, non-linguistic
vocalisations may be one way for a member of the dyad to express either satisfaction with or a
desire to change the interaction strategy currently displayed by the dyad.

Linguistic vocalizations

With human participants, language is one of the primary mediums for exchanging social cues. The
microphones attached to the DIP setup can be used to capture the linguistic vocalisations
exchanged between two participants working together and examine how such exchanges
influence the processing of the presented visual and auditory stimuli. This could be expanded to
include conversation analysis with varied foci, e.g., understanding the benefit of face-to-face
interaction relative to asynchronous interaction in processing linguistic input, examining the
linguistic structures that enable participants to coordinate efforts towards the completion of a
shared objective, how turn-taking is organised and impacts subsequent decision making, how
repairs are perceived or initiated when participants detect a mismatch in the strategies being
employed by the social partners. Recent advances in Al, e.g., OpenAl Whisper (Radford et al.,

speech to the temporal properties of stimulus presentation and response timing.

3D hand tracking

As with facial expressions, ongoing visibility ofa partner’s actions is a critical source of
information to guide one’s own behaviour in a dyadic interaction. Thus, the timing and direction
of the participants’ hand movements needs to be integrated into the analysis of such interactions.
One way of tracking the 3D movement of the hand in real-time, isto let subjects use a haptic
manipulandum, as introduced above (Morel et al., 2017 %), and register the position and even
force applied to its handle. Alternative to the manipulandum, one can also track free movements
using video-based motion capture, at least for offline analyses. Multiple cameras with different
views of the same action can be used to calculate the 3D position of objects during a task. Thanks
to advances in machine learning, it is possible to automatically detect the presence and position of

camera perspectives cannot capture all features. Modern systems reconstruct occluded parts very
well and can be trained on limb or hand models of different species (Huser, 2024 2). One
successfully tested setup included three cameras on each side of the screen, i.e., six cameras in
total (macaque/human DIP1, see Figure 22 and Table 2 ). One camera was mounted centrally
on top of the setup looking down: this view covered the 2D movements of the hands and also
allowed us to monitor the overall experiment. One camera was mounted on the top left (looking to
the bottom right), and one was mounted on the top right (looking to the bottom left). Both cameras
were mounted on a plane parallel to the screen with the central axis orthogonal to each other.
These cameras allowed estimation of the 3D locations of the arm, providing valuable information
on when participants begin to interact with the screen and how their hand movements influence
their social partner’s behaviour.
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Gaze behaviour

Eyetracking devices allow continuous monitoring of participants’ gaze behaviour and quantify
participants’ attention to the content on the screen and to their social partner during their mutual
interaction. The DIP can be combined with eyetrackers mounted either below or above the screen,
with head-mounted eyetrackers, or, indeed, with cameras whose output is later coded with regard
to participants’ gaze behaviour.

If no physical interaction between the participants and the screen is required and participants
remain seated and relatively still throughout the experiment, eyetrackers can be mounted below
the screen. In such cases, simple cameras capturing head and eye movements may also provide a
cost-efficient alternative to commercial eyetrackers. Cameras, however, come with lower spatial
resolution and are only recommended for use when limited content with well-defined areas of
interest is presented on screen.

If a touch response or arm movements toward the screen are intrinsic to the task, eyetrackers can
be mounted either above the screen, or participants can wear head-mounted eyetrackers (e.g.,
Tobii glasses, Pupil Labs Core or Neon). Modern binocular head-mounted eyetrackers allow
researchers to collect participants’ gaze behaviour in the real world, i.e., beyond the limitations of
content displayed on the screen. For example, they enable the tracking of gaze to the social
partner’s hand movements towards the screen before the actual touch on-screen happens, or it
assesses the extent to which participants track their social partners’ eye or head movements
before following their gaze (see Section Attention and social learning). Such eyetrackers can also
be used in studies where participants move freely during the task. Head-mounted eyetrackers do,
however, change the appearance of the social partner, which might be undesirable in paradigms
with young children or where unobstructed facial expressions or gaze cues are critical to task
performance.

In the DIP, it can often be necessary to differentiate between gazing at an object on the screen and
gazing at the partner located behind the screen. There are straightforward and more complicated
solutions to this problem. One simple solution is to ensure that the centre of the screen is left free
so that the partner’s face is distinct from task-related objects, e.g., with stimuli arranged in a circle
around the partner’s face. For instance, in Figure 7, we present data captured using Pupil Labs
eyetrackers children wore while they were allowed to move freely during the task. The data were
fed through an object detection model (YOLOVS, Jocher et al., 2023(%). This allowed automated
detection of the partner’s face and the different objects presented on screen, which were then
mapped onto the gaze data to estimate children’s gaze towards the partner and those objects.
However, manipulating stimulus presentation in this manner could result in the object on the
screen occluding the partner’s face, depending on where the participant stands. Binocular models
that estimate eyetracking coordinates in 3D may provide a more suitable alternative, allowing to
calculate the vergence and discriminate between fixations to objects on-screen relative to fixations
to the partner’s face beyond.

Automated recognition of different areas on the screen and gaze tracking during free head
movements can also be achieved using surface detection, as implemented within the Pupil Labs
system. Surface detection works by the position and orientation of predefined markers, e.g.,
AprilTags, in the visual scene (Olson, 2011 () (see Figure 3%, DIP2). The eyetracking software can

be set up to detect where a participant’s gaze falls relative to these AprilTags throughout the study,
thereby enabling automatic detection of participants’ fixations to specific parts of the screen.
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Peripheral physiology

Social decision making and cooperative behaviour in real life interactions are accompanied by
strong changes in the physiological and psycho-emotional states of the participant, regulated by
autonomous physiological processes (Behrens et al., 2020 ). Such changes can influence self-
perception (e.g., noticing an increase in heart rate) and can also be perceived by the interaction
partner, e.g., blushing (Prochazkova and Kret, 2017 @); for a review of physiological synchrony in
dyads, see Palumbo et al. (2016) @2). There is, therefore, real value in measuring peripheral
physiological measures such as electrocardiography (ECG), electromyography (EMG), and
electrodermal activity (EDA) in the DIP. For instance, EMG recordings of facial muscle movement
serve as indicators of expressions of positive and negative valence. Physiological and emotional
state changes, mediated by sympathetic and parasympathetic systems, can be reflected in
electrodermal activity (EDA) and the heart rate, measured by ECG or pulse-oximetry. Yet, in the
context of behavioural experiments with freely moving subjects, the probe of a pulse oximeter can
be distracting or unwieldy. Imagebased photoplethysmography (iPPG) overcomes these challenges,
allowing the extraction of pulse information from videos of a subjects face. Indeed, this has been
successfully used in human subjects using low cost web cams as sensors (Poh et al., 2011 @).
Furthermore, we could show that iPPG with low cost video cameras can also be successfully used
in head-fixed rhesus macaques in spite of their smaller size and more pigmented skin (Unakafov et
al., 2018@®).

Electrophysiology and hyperscanning

The most direct way to examine the neural correlates of the interaction between individuals is
through hyperscanning, a method that describes the simultaneous recording of brain activity from
two or more individuals to determine how covariation in their neural activity relates to their
behaviour and social interactions (Hakim et al., 2023 3). One method that is particularly well
suited for investigating the rapidly changing neural processes that occur in dyadic social
interactions is EEG. EEG is a non-invasive and cost-effective method that can be used to map
neural processes with very high temporal resolution and is easily extendable to a hyperscanning
setup (Czeszumski et al., 2020 %). The integration of hyperscanning EEG into the DIP, further,
allows the monitoring of neural changes based on the shared task environment (visual and
auditory cues controlled by the experimenter) and the representation of the partner and their
actions (socio-emotional cues, decisions). Hyperscanning can be achieved by different approaches:
integration via linked stationary amplifiers, synchronization via trigger signals sent from the same
PC, or via Lab Streaming Layer (LSL; Kothe et al. (2024) 2, see https://labstreaminglayer.org/ @).

Recording in both subjects using a single data acquisition system simplifies the time
synchronisation, by only having to synchronize the clock of the electrophysiological recording to
the clock of the computer running the paradigm, facilitating inter-brain synchronization analyses.
Mobile EEG systems allow for more flexibility in the tasks to be performed and allow participants
to move around during the session with comparatively little loss of data quality. The concurrent
registration of peripheral physiological measures and neural signals is especially crucial for the
investigation of neural correlates of dynamic social behaviours, such as social mimicry (Achai

social interactions.

Much like traditional single-subject experimental platforms, the DIP is also well suited for
intracranial electrophysiology in one or both subjects, enabling targeted high temporal and spatial
resolution recordings of neuronal activity such as single neuron and local field potential
recordings. This approach can be used in nonhuman primate experiments (Chang, 2017 ; Isoda
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An important consideration in the DIP-based experimental designs, relevant to all neural data
recording modalities, is the vis-a-vis arrangement and transparency, which result in participants
representing the same lateralised stimulus/action space in opposite hemispheres. For example, a
stimulus appearing on the left for one participant (processed in the right hemisphere) would be on
their partner’s “subjective” right side (processed in the left hemisphere). This is particularly
crucial for early visual processing in humans and even more so for the highly contralateral
cortical representations, including the frontoparietal network, in macaques (Kagan et al., 2010(#%).
These considerations should be taken into account when considering DIP-based dual-brain
analysis, relative to common hyper-scanning approaches where participants are in separate
rooms or seated side-by-side and observe and act on identical visual displays.

MEG and hyperscanning

Magnetoencephalography (MEG) has found applications in neuroscience despite its serious cost
compared to EEG, because it offers certain advantages over EEG with respect to source localization
of neural activity. This is because (i) MEG measures the magnetic field, and is thus reference-free,
and (ii) the physics of the magnetic fields induced by neural currents allow for an easier
calculation of high-precision forward solutions to the electromagnetic inverse problem. Until very
recently, MEG could be considered a less-than-ideal method for neurophysiological studies into
transparent interaction due the high cost of superconducting-based MEG devices and their size,
which precluded operating two MEG devices in a standard sized single magnetically shielded
room. A critical restriction was the fact that subjects had to refrain from any head movement to
avoid relative motion between the stationary sensors of the device and the head.

This situation has changed with the advent of usable optically-pumped magnetometer (OPM) -
MEG systems of sufficient sensitivity (Brookes et al., 2022 ). OPM-MEG sensors need no cooling
with liquid helium and are lightweight enough to allow for a sensor montage in a form of helmet
that subjects can wear on their heads (Boto et al., 2018 % ). Moving MEG sensors on a subject’s
head through space, however, comes at a cost: As OPM-MEG sensors usually have a low dynamic
range any background magnetic field in the room has to be compensated locally at the sensor
before the measurement to ensure proper sensor function. Therefore, background fields need to
be much more tightly controlled by the magnetically shielded room (MSR) than for stationary,
superconducting-based MEGs. Moreover, dynamic compensation of residual fields is possible for
experiments with head movements (Holmes et al., 2023 (%), resulting in a setup better suited to
studies of naturalistic dyadic interactions. An important additional advantage brought about by
the switch to OPM-MEG is that larger sensor configurations, e.g. for hyper-scanning, can be built-
out gradually, whereas sensor number and configuration in a superconducting-based system are
fixed. Additional challenges for integrating MEG with the DIP concern magnetic fields produced by
DIP components. For instance, projectors for presenting stimuli on the transparent screen have to
be mounted outside the MSR (e.g. above its ceiling). Thus, an optic path of considerable length has
to be traversed through a relatively narrow opening in the MSR wall, and entirely non-magnetic
materials have to be used inside the MSR to realize the necessary short-throw optics.

Description of DIP instantiations

Table 2@ describes four instantiations of the DIP varying in terms of the target subject
population, the kind of data being collected, the visual displays and the combination of recording
devices that have been successfully incorporated into the platform. The first instantiation of the
DIP targeted interactions between two macaques or two humans or a human and a macaque dyad
(macaque/human DIP, DIP1). Key features of this setup are flexibility in terms of how responses
could be recorded, i.e., a touchscreen, a mouse or a joystick, head- or frame-mounted eyetracking,
intracranial electrophysiology, as well as computer-controlled fluid dispenser pump systems to
provide reward to the macaques (Figure 32, top row, left and middle panels). For human
participants, the second instantiation of the DIP (human DIP2, (Figure 3%, top row, right panel)
included mice or joysticks as the recording devices for task-related responses, and wearable
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eyetrackers. The next update to the DIP (DIP3), based on the shielded projectors instead of OLED
displays, allowed for collection of a wider range of behavioural and neurophysiological data, e.g.,
recording peripheral physiology and EEG, as well as eyetracking data from a mounted eyetracker
on each side of the frame (Figure 3@, bottom row, left panel). Finally, the DIPc extended the set up
to human child-adult and child-child interactions, requiring additional changes in terms of
dimensions, integrating head- or frame-mounted eyetrackers, object and face detection using
machine learning models, as well as vital cosmetic changes, e.g., differently coloured frames on
the two sides, to indicate to the child when and how they could respond (Figure 3 @, bottom row,
middle and right panel).

Ethics statement

Experiments with human participants were performed in accordance with institutional guidelines
and adhered to the principles of the Declaration of Helsinki. Human participants in all
experiments presented here provided written informed consent for their (or their child’s)
participation in the study. In particular, all adults depicted in Figure 3 gave explicit written
consent for themselves and/or their children for photographs to be depicted in the figure and
agreed to its publication. All studies were approved by the the ethics committee of the Georg-Elias-
Miiller-Institute for Psychology, University of Gottingen.

The experimental procedures with macaque monkeys were approved by the responsible regional
government office (Niedersédchsisches Landesamt fiir Verbraucherschutz und
Lebensmittelsicherheit (LAVES), permits 3392-42502-04-13/1100 and 3319-42502-04-18/2823), and
were conducted in accordance with the European Directive 2010/63/EU, the corresponding
German law governing animal welfare, and German Primate Center institutional guidelines.

Results

Designing one- and two-way interactive paradigms for a DIP differs from traditional paradigms
where a single participant is tested. On the one hand, the inclusion of two agents in trial-based
experiments is easily possible by allowing or instructing the participants to take turns. On the
other hand, dynamic decision-making, in contrast to discrete, regulated trial-based paradigms,
involves navigating through a continuous stream of choices, actions, and outcomes, mirroring the
fluid nature of decision-making in real-life scenarios. Such dynamic decision-making tasks allow
for a more ecologically valid exploration of behaviour and cognition. Next, we describe four
classes of example paradigms that we realized with the DIP - which vary in terms of the dynamic
and continuous nature of the interaction between two partners - and the exciting possibilities that
such approaches open up for cognitive science research.

Transparent economic games

Dyadic economic games are a cornerstone of experimental economics and social science, offering
a powerful framework to explore the decision-making processes between two participants in
competitive and cooperative contexts (Sanfey, 2007 2 ; Rilling and Sanfey, 2011 (%; Tremblay et al.,
2017 %). These games are intended to simulate real-world scenarios where individuals must make
choices that affect not only their own outcomes but also those of their partners (von Neumann and
Morgenstern, 1944 (2). Such choices can be presented as one-shot games or as iterated games with
repeated interactions that encourage tracking the interaction history and the formulation of
predictions regarding the other agent’s decisions. Classical examples include the Prisoner’s
Dilemma, the Stag Hunt, the Hawk-Dove / Chicken Game, the Ultimatum Game, and the Trust
Game, each offering unique insights into altruism, reciprocity, fairness, and a conflict over a
shared resource (Smith, 1997 ; Brosnan et al., 2017 @).
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Macaque/human DIP1

Human DIP2

DIP3

DIPc

Visual display

Interactive
components

Data
acquisition
devices

Additional
features

Table 2

- OLED monitor
(EYE-TOLED-5500,
eyevis/LEYARD) sandwiched
between two anti-reflective
films (NuShield DayVue)
-55" (121 cm x 68 cm)
interactive area with a
display resolution of
1920x1080 (1.6 pixel/mm)

- one 55" IR touch panels
(G5S 55", PQLabs) with

6 mm glass per side, each
sandwiched between two
anti-reflective films
(NuShield DayVue)

- one colour camera
(CM3-U3-13Y3C-CS,
Chameleon3, Flir) to detect
facial expressions and
estimate iPPG heart rate

- one colour camera
(CM3-U3-13Y3C-CS,
Chameleon3, Flir) and two
gray-scale cameras
(CM3-U3-13Y3M-CS,
Chameleon3, Flir) per side
for arm/hand tracking

- head- or chair-mounted
eyetracker (Pupil Core, Pupil
Labs), or display-mounted
eyetracker (EyeLink 1000
Plus, SR Research), per side

- optimized for
multichannel non-human
primate electrophysiology
broadband recording
system with 160 analogue
and 160 digital headstage
channels for simultaneous
recording of 320 channels
(Tucker-Davis Technologies)
- liquid reward system: one
peristaltic pump per side
with custom-made control
box

Description of the four DIPs

- OLED monitor
(EYE-TOLED-5500-TIGF40,
eyevis/LEYARD)

-55"(121 cm % 68 cm)
interactive area with a
display resolution of
1920x1080 (1.6 pixel/mm)

- one mouse (Logitech) or
joystick (custom design
based on multi-functional
joystick 'MoJo’ from Sasse
Elektronik) per side

- one face camera and
microphone

- one head-mounted
eyetracker (Pupil Core, Pupil
Labs) per side

- optimized for free
head-mounted (wearable)
eyetracking in adult humans

- projection film (DualView
Ultra Clear, Screen Solutions
International) sandwiched
between two sheets of

3 mm anti-reflective
museum glass (claryl-ng
UV70, artglass)

- one projector (EB-735F,
Epson) per side

- 107 cm x75 ¢m interactive
area with a display
resolution of 860 x 580

(0.8 pixel/mm)

- one mouse (Logitech) per
side

-one camera (C920 HD pro
webcam, Logitech) per side
for recording of facial
expressions

- one mobile EEG system
(LiveAmp 64 system, Brain
Products GmbH) per
participant

- six facial EMG electrodes
and three ECG electrodes
per participant recorded
with
Sensor-Trigger-Extension of
the EEG amplifier
(Live64-STE, Brain Products
GmbH)

- one eyetracker (EyeLink
1000 Plus, SR Research) per
side

- optimized for human
electrophysiology
recordings: projectors on
top of the experimental
cabin (projection through
ceiling windows) to allow for
maximal noise reduced
environment

- face cameras, eyetrackers,
and display height
adjustable

- projection film
(ClearBright, Lux Labs)
sandwiched between two
sheets of 3 mm
anti-reflective acrylic glass
(Optium Museum acrylic,
True Vue)

- one projector (EB-735F,
Epson) per side

- 42" (93 cmx53 ¢cm)
interactive area with a
display resolution of

1120 x 630 (1.2 pixel/mm)

- one 42" IR touch panel (G5
integration kit, PQLabs) per
side

- three cameras
(FHDO6H-BL180, ELP) per
side

- one head-mounted
eyetracker (Pupil Core, Pupil
Labs) per side

- one room microphone
(AC-44, MXL)

- optimized for child-child
and adult-child interaction
- blinds can block the view
to the other participant and
still allow interaction with
half of the screen for
independent testing in the
same session
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1 - frame-mounted eyetracker 4 - hand rest sensors
2 - wearable eyetracker 5 - mouse
3 - face camera / microphone 6 - AprilTags

DIP3 and DIPc: dual projection-based

Figure 3

Dyadic Interaction Platforms in action.

Top row: OLED-based DIP1 and DIP2, bottom row: double projection-based DIP3 and DIPc. See Table 22 for descriptions.
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Figure 4

Dynamic coordination in transparent Bach-or-Stravinsky decision game.

(A) Top panel: “fraction choosing own” i.e., choice of the individually preferred target for agent A (human confederate, red)
and agent B (monkey, blue) in one session (running average of eight trials). The visual access to other’s actions was occluded
in the middle part of the session (opaque). The confederate (red) switched between own and monkey’s preferred targets in
blocks of 20 trials. Bottom panel: the average joint reward. Dashed green line - maximal attainable average joint reward,
given the used payoff matrix. (B) Human vs monkey reaction time difference histograms for the three prevalent outcomes:
coordinated selection of human'’s preferred target (red), monkey’s preferred target (blue), and selection of own preferred
target by each agent (magenta), in the two action visibility conditions. Modified from Moeller et al. (2023) 3.
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While, in classical dyadic games, individual choices are made either “simultaneously” (neither
player knows the choice of the other before making their own decision) or sequentially in a
predetermined order, real interactions often unfold continuously with the partner’s actions in
direct sight (Dugatkin et al., 19927 ; van Doorn et al., 2014 %). In this “transparent” context, the
timing of one’s own and other’s actions becomes part of the strategy (Noe, 2006 2 ; McDonald et al.,
20193; Unakafov et al., 2020 @ ). Moreover, coordinating based on mutual choice history might be
more demanding than coordinating based on the immediately observable behaviour of others,
especially for children and nonhuman species. For example, visual feedback about the partner’s
choices improves coordination in the iterated Stag Hunt in humans, capuchins and rhesus
macaques (Brosnan et al., 2012(#), and such coordination in chimpanzees is facilitated if one of
the agents consistently acts faster than the partner (Bullinger et al., 2011 ). Similarly, there are
substantial differences in capuchins’ and rhesus’ behaviour in the Chicken game when they had
access to the current choice ofa partner (Brosnan et al., 2017 &2; Ong et al., 2021). In humans, a
real-time anti-coordination game revealed that action visibility and the ability to change an
already initiated action increased efficiency and fairness (Hawkins and Goldstone, 2016 ).

To study dynamic value-based interactions in humans and rhesus macaques, we implemented a
transparent face-to-face version of the iterated Bach-or-Stravinsky (BoS) game (Moeller et al.,

on either one of these options increases the reward for both players (Kilgour and Fraser, 1988 (2).
While any coordinated choice results in better rewards than non-coordinated choices, one
coordinated choice results in greater rewards for the first player and the other - for the second
player. Thus, while the rational choice is to coordinate, BoS includes an inherent conflict about
who profits the most. In our DIP implementation, the players used visually-guided manual reaches
to a shared vertical workspace on a dual touchscreen to indicate their choice between the two
targets representing the two options. We found that both species learned to use mutual action
visibility for efficient coordination. Human dyads mainly adopted dynamic cooperative turn-
taking to equalize the payoffs. All macaque dyads initially converged to a simpler, more static
coordination driven by unilateral reward maximization or effort minimization motives. However,
macaques paired with a turn-taking human confederate developed dynamic coordination, if they
were able to observe the confederate’s actions (Figure 4A (%). The incorporation of action timing
into strategic behaviour was evident from the analysis of reaction times: the macaque subjects
waited for the partner to commit to their non-preferred choice (human colour, Figure 4B (%, left
panel), but this behaviour broke down when they could not observe the partner’s movements
(Figure 4B 2, right panel). Remarkably, when such confederate-trained macaques were paired
together, they exhibited dynamic turn-taking driven by temporal competition, unlike the prosocial
turn-taking in humans. Underscoring the importance of sensorimotor dynamics, reaction time
differences between the two players strongly predicted the joint choice on a trial-by-trial basis
(Moeller et al., 2023(%). The currently faster monkey led to its preferred option, and the slower
monkey followed. This study demonstrates that dynamic coordination is not limited to humans,
but it can be subserved by different social attitudes and cognitive capacities. More generally, these
experiments emphasize the importance of action visibility, within-trial dynamics and immediate
sensorimotor context for studying the emergence and maintenance of naturalistic coordination
and embodied decision-making, grounded in real- world constraints such as effort and movement
biomechanics.

Continuous strategic interactions

The recent emphasis on continuous interactions reflects the paradigm shift from discrete,
trialbased choices between limited fixed response options to more naturalistic, dynamic
behaviours that characterize most real-world scenarios (Gordon et al., 2021 @), such as collective
foraging and hunting (McDonald et al., 2019C5; Yoo et al., 2021a(%,b (Z; Pisauro et al., 2022 ().

Conversely, the action component in many classical decision paradigms is trivial (e.g. a button
press or a simple eye movement) and bears no consequence on the subsequent perceptual inputs,

Sebastian Isbaner et al., 2025 eLife. https://doi.org/10.7554/eLife.106757.1 22 of 52


https://doi.org/10.7554/eLife.106757.1

7 eLife

breaking the recurrent perception-action loop inherent in natural behaviours. Therefore, it is
necessary to employ experimental paradigms that realize continuous, embodied dynamic
interactions under controlled conditions (Cisek and Green, 2024(2).

The transparent DIP is ideally suited to study such interactions. The visually-guided reach
coordination BoS game described above already exemplifies sensorimotor interactions where
action timing and effort become integral parts of strategy space (Moeller et al., 20237 ; McDonald
et al., 2019 (). But in each trial, the choice was limited to two options equidistant from the central
starting position. To implement strategic interactions in a more variable, continuously evolving
action space, two interacting “agents” can be represented by virtual avatars (cursors) controlled by
a joystick or a computer mouse on a shared 2D playing field. Spatial targets can be placed flexibly,
and both players see their own and partner’s cursors in real time, mimicking real-world scenarios
where individuals must make rapid decisions based on the positions and actions of others.
Crucially, face- to-face visibility ensures a salient social context despite the interaction via virtual
agents. The level of embodied realism is achieved by continuous spatiotemporal trajectories of the
agents, and access to face, hand, and body movements of the two players. At the same time, the
participants do not move excessively, which facilitates physiological and neural recordings. In the
following, we present two kinds of real-time dyadic foraging tasks to illustrate the richness of the
co-evolving coordination and decision processes that can be studied in a time-resolved manner.

In a purely competitive foraging task, we tested adult human subjects to explore how the proximity
ofa competitor to a target influences their spatial choices. Participants engaged in a series of trials
where they had to quickly navigate to one of several targets to collect points. The placement of
targets and the starting location of the agents were varied to emulate various foraging scenarios.
Four potential target locations were shown (Figure 5A). To prevent the players from occupying
targets in advance, a no-go zone surrounded targets, and the trial was aborted if either of the
players entered this zone during the trial start state; after 1-3 s, two randomly selected targets lit
up as active targets and players were allowed to collect the targets by hovering over them. The
trial ended when both targets were collected, either by one or by two players.

Subjects were paired with a confederate player in the first experiment and with another naive
player in the second experiment. In the first experiment (Figure 5B, left), we tested the effect of
the “competitor’s” proximity on the subjects’ choice by instructing a confederate to choose a
randomized position along the horizontal axis at the beginning of each trial. We computed the
distance between each cursor and each active target. Qualitatively, our results show that the
subject chose the left target when the distance of the confederate’s cursor to the right target was
smaller than the left target and vice versa (Figure 5B (2, right). In the second experiment, we
paired the subjects to play against each other. All players chose the initial location of their cursor
in the middle of the screen and as close as possible to the no-go zone, maximizing their chance to
win the race to active targets (cf. “space dilemma” in Pisauro et al. (2022) 3). Analysing the 2D
trajectories, we could also identify trials where one of the players did not take a straight path to
the chosen target (Figure 5C ). For example, the green player in Figure 5C left moved to their
right but then made a sharp turn to collect the left target, or the purple player in Figure 5C 2 right
first headed to the close left target but then collected the far left target. Such trajectories
demonstrate change-of-mind scenarios in which a player tracks the competitor and adjusts
accordingly, revealing the complexity of decision-making in a transparent, competitive task.

To expand the study of continuous transparent interactions beyond zero-sum scenarios that focus
on competition, we developed a dynamic dyadic foraging paradigm that enables emergence of
both, cooperative and competitive strategies, and facilitates continuity of social signals and actions
across multiple interaction cycles (Lewen et al., 2025 ). In this Cooperation-Competition Foraging
(CCF) game, across many continuous interaction cycles, dyads decide between collecting “joint
targets” together or “single targets” alone, allowing to elucidate behavioural mechanisms
arbitrating between cooperative and competitive strategies. We found that most human dyads
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converged to their specific ratio of collecting single versus joint targets, exhibiting dyad-specific
stable strategies that nevertheless spanned the entire range from pure cooperation to pure
competition. These results show the flexibility and the richness of interactions that can emerge in
well-balanced foraging games and demonstrates how incorporating sensorimotor variables such
as movement speed, curvature, effort minimization and skill differences shapes optimal strategies.

Perceptual decision-making in dyadic contexts

A perceptual decision, or judgment, is a process of converting sensory inputs to discrete
categorical variables. Perceptual decisions are influenced by behavioural relevance (Treue,

reward contingencies (Cicmil et al., 2015%), and perceptual confidence (Kiani and Shadlen,
20097 ; Moreira et al., 2018 (#)). The main emphasis of perceptual decision studies is the judgment
of ambiguous, noisy stimuli, under conditions of perceptual uncertainty. Crucially, perceptual
decisions are profoundly shaped by social influences (Bahrami et al., 2010 ; Bang and Frith,

2017 &; Baumgart et al., 2019 & ; Takagaki and Krug, 2020 2; Pescetelli and Yeung, 2022 (2). Most
work on the interaction between individual perceptual choices and social information has focused
on cooperative tasks, where participants first make individual judgments and then exchange their
opinions, and often associated confidence, before a joint decision is made. Joint performance can,
however, exceed the best individual performance under certain conditions, depending on the
perceptual similarity between the partners and the mode of social exchange (Bang and Frith,

2017 ; Wahn et al., 2018 @). However, social influences often adversely affect perceptual
accuracy or lead to a disconnect between accuracy and confidence in perceptual choices. For
instance, considering a partner’s choices can be motivated by a desire to be correct, especially
when one has low confidence in one’s own judgment. On the other hand, social modulation might
be driven by reasons unrelated to accuracy - such as social conformity. Therefore, one of the
central questions in understanding flexible decision-making in social contexts is to dissociate and
quantify the reliability-weighted, adaptive informative influences (such as Bayes-optimal cue
integration) from normative, conformity-driving biases (Toelch and Dolan, 2015 ; Mahmoodi et
al., 20182, 2022 @).

We have recently developed a powerful new approach to studying social information integration
using a continuous perceptual report (CPR) paradigm (Schneider et al., 2024 (). Its primary
advantage is the simultaneous tracking of both perceptual accuracy and confidence in real-time, in
individual and social contexts. This paradigm does not separate perceptual decision-making and
the social exchange of choices and associated confidence into distinct, imposed stages of the task.
Instead, participants continuously track and indicate the perceived direction ofa noisy random dot
pattern and their confidence in their perception. In the dyadic condition, both partners’ ongoing
report and occasional feedback are added to the visual task display so that each participant can
see where their partner thinks the stimulus is moving, how certain, and how successful they are.
With this approach, we derived a nuanced view of the relationship between individual expertise
and dyadic effects, demonstrating how the bidirectional modulation by social information lawfully
depends on solo performance differences between dyadic partners.

The CPR experiments described above have been conducted so far with each dyadic player in a
separate booth, using joystick-controlled cursors incorporated into a shared stimulus display to
continuously indicate the responses of both participants. A highly promising next step is to utilize
the transparent DIP, to exploit the immediacy of the direct face-to-face interaction, as well as the
additional social cues such as facial and postural signals. Our pilot data demonstrate that
continuous perceptual reports of human participants can be reliably measured on the transparent
DIP, on both sides (Figure 6 (2). The immediate visual access would also allow more embodied
response modalities such as hand gestures, capturing the bidirectional sensorimotor link between
perception and action. Thus, by tightly controlling the shared perceptual evidence and closely
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(A) Flow of the competitive foraging task. Left: two human players in DIP, using a joystick to collect targets, in a starting
position. Middle: in each trial, two out of four targets are activated. Right: the active targets may be collected by the same
subject or different subjects. (B) Effect of initial proximity. Left: a confederate chose pseudorandom locations along the
horizontal axis at the beginning of each trial. Right: the dependency of subject’s choice (left or right active target) as a
function of self and confederate’s initial distance from the two active targets. To combine the results across trials with various
combinations of the active targets, we assigned the two active targets as the left and right targets, then pooled a cursor’s
distance to the left and right targets across trials. (C) Dynamic decisions in two subjects during example trials, revealed by
their cursor’s trajectory. Left: green player’s change of mind. Right: purple player’s change of mind.
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Figure 6

Example of a perceptual decision-making paradigm on DIP, with corresponding behavioural data.

Left: Human subjects watched a 100% coherent random dot pattern (RDP) on both sides of the transparent OLED screen
(DIP2). Using a joystick, they had to indicate whether the stimulus direction was moving leftward or rightward of the vertical
midline. The stimulus direction changed instantly after pseudorandom time intervals. Right: Psychometric curves of two
example subjects measured on both sides of the DIP screen (dark/bright). Data points indicate the percentage of reporting
rightward direction as a function of stimulus difficulty (deviation from vertical direction) and direction (positive - rightward).
The data are fitted with a bounded logistic function.
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monitoring individual responses, and at the same time embedding the interaction into a
naturalistic social context, the behavioural and neural mechanisms of social influences on sensory
processing in an individual brain can be elucidated.

Attention and social learning

The developmental psychology literature has long emphasised the role of the input provided in
caregiver-child interactions in driving learning. Indeed, development is contingent on the quality
of such social interactions, where caregivers, on the one hand, guide their children in terms of
what aspects of the environment to attend to (Csibra and Gergely, 2009(%), and children, on the
other hand, actively engage in these learning situations by choosing what, when, and from whom
they want to learn (Mani and Ackermann (2018) &2 ; Ruggeri et al. (2019) (2; Smith et al. (2018) (3;
Pelz and Kidd (2020) (2. Consequently, the information children engage with, attend to, and learn
from depends on their ability to observe and navigate not just their own actions but also those of
others. There is, therefore, a critical need to investigate learning in the context of social
interactions from which children learn.

The DIP provides a unique opportunity to study how children explore the world around them and
how such exploration drives selective attention and learning in social interactions (Bothe et al.,

exploration and learning in isolated contexts, more recent work suggests that exploration and
attention to, e.g., faces or objects in more social contexts differs dramatically from isolated
contexts. For instance, adults spend only around a fifth of the time looking at people’s faces in
natural settings, e.g., walking around a University campus, relative to tasks where participants are
presented with faces on a screen (Foulsham et al. (2011) @ ; see Risko et al. (2016) (2, fora review).
Similarly, while the developmental literature has touted the importance of gaze following in early
infancy, recent tasks examining natural caregiver-child interactions found that children rarely
follow the gaze of their caregivers and tend to be more egocentric in their interactions with others
(Madhavan et al., 2025@; Yu and Smith, 2013 32).

While such studies offer valuable insights into the dynamics of social interactions, they offer little
possibility of controlling the environment presented to participants, especially regarding the
timing and presentation of visual and auditory stimuli related to participants’ attention to the
world around them. In contrast, the DIP allows researchers to continuously monitor (i) children’s
attention to and exploration of varying visual and auditory stimuli presented on the screen during
interaction with others, (ii) the extent to which one partner’s attention to an object on the screen
influences the others’ exploration and sustained attention towards the same object and (iii)
children’s learning of information provided in such social contexts. Moreover, the transparent and
dynamic nature of the DIP facilitates the study of individual gaze patterns within social contexts
and across development. For example, we integrated mobile eyetracking with the DIP (here, DIPc)
in children between 4- to 5-years of age, enabling the assessment of the timing and accuracy of
children’s visual attention to stimuli on screen or their interaction partner behind the screen, as
well as the modulation of their visual attention in response to visual or auditory stimuli presented
via the loudspeaker in real-time. Preliminary data from such tasks finds that children do fixate on
their social partners’ faces during the task but spend less than a fifth of the time attending to their
partner’s face relative to the objects on the screen (see Figure 7). This mirrors findings with
adults walking around a University campus (Foulsham et al., 2011 &@). The parallel between
findings with adults in natural settings and children in the DIP speaks to similar availability and
access to the social partner’s face across the two settings.

Furthermore, the DIPc also records when participants interact with particular objects on the
screen by tapping them. In other work, we allowed children and their social partners to tap on
their chosen objects on the screen. We followed children’s fixations and sustained attention to
these objects based on whether they had tapped on them or whether their partner had tapped on
them. We found that children fixated objects prior to their tapping on this object, highlighting the
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timeline of their decision to tap on this object. They also fixated objects that their partner tapped
on prior to their partner actually tapping on this object, likely due to their social partner’s manual
hand and arm movements and gaze towards the to-be-tapped object (see Figure 73, where
children fixate the tapped object more than other objects, even before an object is tapped upon - as
indicated by the vertical line - regardless of whether the child or their social partner tapped on
this object). This observation speaks to the accessibility of the manual actions, and consequently,
intentions of social partners in such paradigms.

In summary, the DIP allows precise experimental control in more naturalistic social settings,
where children have continuous access to a range of cues from the social partner’s face and
manual actions, while researchers similarly continuously monitor whom and what children are
attending to and learning from. Embedding future studies in platforms like the DIP, we believe,
has real promise of transforming our understanding of early sociocognitive development.

Discussion

We are social beings, and our interactions with the world present a constantly changing, dynamic
exchange of social cues, facial expressions, actions and language. Understanding how behaviour
and cognition play out in such rich settings requires capturing the complexity of real interactions
in our experimental paradigms. At the same time, to examine complex social interactions with the
degree of detail currently available in the research to-date, there is a need to integrate
experimental control into social settings and enable researchers to collect a range of behavioural
and neurophysiological indices of cognitive processing in natural social interactions.

Advantages of Dyadic Interaction Platform

To meet this need, we developed the Dyadic Interaction Platform (DIP) - an innovative
experimental environment that allows researchers to study interactions between two human or
non-human primate participants. The platform features a shared transparent workspace that both
participants can manipulate, enabling real-time, interactive engagement. Participants face each
other, separated by a transparent touchscreen where visual stimuli can be presented with high
temporal precision within the view of a social partner so that participants can easily attend to both
sources of information. The DIP offers several key advantages over previous dyadic setups: (i)
precise experimental control over stimuli and interactions, (ii) salient face-to-face engagement and
social gaze monitoring, (iii) continuous access to the partner’s actions, decisions and behaviour,
and (iv) joint manipulation of a shared workspace for cooperative or competitive tasks. The
platform, therefore, presents a significant step forward in studying social behaviour in more
naturalistic yet controlled settings (Fan et al., 2021 @), and enables engaging game-like paradigms

that are increasingly utilized to study cognition (Allen et al., 2024 %).

We presented four different instantiations of the platform which integrate a variety of recording
devices to capture rich multi-dimensional behavioural, physiological, and neural data,
simultaneously from two participants. The different instantiations vary in terms of the visual
displays and the kinds of behavioural responses that can be recorded (touchscreens, computer
mice, joysticks, head-mounted or wall-mounted eyetrackers, video and audio recordings), and
allow for a diverse range of participant groups to be examined (human adults and children,
nonhuman primates, and mixed-species dyads). Some instantiations also record intracranial
neural signals, EEG and EMG data synced to the behavioural devices listed above. The four
instantiations showcase the remarkable flexibility in design choices for future studies, which can
be tailored to the particular requirements of the study population, research question, and
available resources. For instance, while studies with younger, less dexterous participants may rely
more on touchscreens than mice or joysticks, such studies may be constrained in duration given
the motor costs involved in touchscreen responses. For older study participants, joysticks or mice
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Figure 7

Eyetracking data collected using the DIPc.

(A) The proportion of time children spent looking at their social partner’s face relative to the images on screen across the
trial. The lines depict the mean and shaded area the SE across the trial. The vertical line indicates the point at which children
or their partner tapped on one of the images onscreen. (B) Children’s proportion of looking at the image that was chosen,
i.e., tapped on, across trials based on whether they or their social partner in the task chose the image. The vertical line
indicates the point at which children or their partner tapped on one of the images onscreen. Across trials where they or their
social partner tapped on an image, children fixated this image prior to it being chosen showcasing the extent to which
children were able to pre-empt their partner’s choice given the transparency of the DIPc setup.
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may provide a more suitable and easy-to- use interface while allowing participants to
continuously follow each other’s behaviour. Along the same lines, the research question that
depends on realistic movement costs might require real arm reaching to a touchscreen (or a
spring-loaded joystick), while studying effects of agency or sensorimotor adaptation necessitates a
dissociation between the real movement and its sensory consequences, achievable via a mouse or
a joystick interface. Similarly, researchers can choose between wearable or mounted eyetrackers,
depending on the degree of precision, flexibility, analysis effort and participant comfort desired
while monitoring participants’ eye movements during the task. Finally, we highlight recent
advancements in machine learning that we have integrated into the preprocessing pipeline to
make analysis of such complex datasets more efficient, especially regarding face and object
detection and posture estimation during different tasks.

To illustrate the capabilities of DIP, we also presented example data collected from different DIP
instantiations. The breadth of paradigms and research questions outlined above highlights the
range of possibilities open to researchers interested in social cognition - from social learning in
young human children to dynamic cooperation and competitive turn-taking in macaque dyads. In
what follows, we briefly list the key insights of dynamic dyadic behaviour from each paradigm
that would not have been possible without the features of the DIP highlighted above.

First, we examined how dyads coordinate their decisions in the transparent version of the
classical Bach-or-Stravinsky economic game. In this game, both players receive larger rewards for
converging to one choice, with the partner whose option they converged to benefiting more. Since
players could observe each other in this task, they quickly learned to coordinate their choices
based on their partner’s action cues. Thus, players could dynamically integrate their partners’
actions in their own choices, with macaques converging on a choice based on which of the two
monkeys was the first to reach to its preferred option. In a second paradigm, we examined how
participants collected points in a competitive foraging task based on the proximity of their
competitor to one of several possible targets. We showed that participants could use their
knowledge of their competitor’s position in the task to navigate to points further away from their
competitor, once again demonstrating how participants can integrate a variety of cues online in
their social decision-making. Indeed, this study showed how participants changed their decision
online in the task based on information about their competitor’s path across the screen. Taken
together, the results showcase the advantages of including transparency and dynamicity in the
platform, where continuous access to the actions and decisions of their partners helped players to
optimize their strategies (cf. Moeller et al., 2023 @; Lewen et al., 2025 ). Fine-grained analysis of
reaction times and movement trajectories recorded continuously through the task helps
elucidating the underlying dynamics of cognitive processes and mutual dependencies rather than
only discrete decision endpoints (Ferrari-Toniolo et al., 2019 & ; Hawkins and Goldstone, 2016 (%;
McDonald et al., 2019 ; Yoo et al., 2021a@ ,b @, 20202).

We also proposed extending the platform to incorporate a truly transparent, face-to-face version of
the novel continuous perceptual report paradigm (Schneider et al., 2024 (%), where participants
track and indicate how confident they are of the perceived direction of a noisy sensory pattern.
We demonstrated that the DIP makes it possible to present and measure continuous perceptual
reports of each participant on both sides of the transparent display. This will be an important step
forward in terms of experimental design, especially given previous findings that continuous
access to information about other’s choices in decision tasks influences individual decisions
differently from when such information is presented serially (Pescetelli and Yeung, 2020,

2022 (4). We, therefore, see enormous potential in such an extension to examine how social
information can influence even the very early stages of sensory processing. Indeed, our study of
young children’s allocation of attention to their social partners and objects in the shared visual
environment targets precisely this question. We found - first - that children fixate on their social
partner’s face during the task, albeit less than previously assumed in studies presenting children
with static, unidirectional face stimuli (Madhavan et al., 2025 ©). At the same time, we found that
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continuous access to the actions and behaviour of their social partner meant that children could
preempt their partner’s focus of attention - by following their gaze and hand movements - and
fixate on the object that their partner would subsequently tap on even before the partner tapped
on this object. Taken together, findings such as these highlight (a) the advantages to be gained
from examining behaviour in transparent settings and (b) the potential pitfalls when drawing
conclusions about, e.g., children’s prioritised attention to faces from studies using unidirectional
stimuli (see also Foulsham et al. (2011) @ for similar findings with adults).

One key advantage of the DIP mutual face-to-face and action visibility is its suitability for
comparative research between humans and non-human primates. Like many natural interactions
(Dugatkin etal., 1992 & ; Noe, 2006 2 ; van Doorn etal., 20142 ), most DIP-based paradigms rely, at
least in part, on real-time observation of a partner’s actions and outcomes, allowing for direct
social interaction without requiring abstract representations of the partner’s presence, intentions,
or complex inferences based on past experiences. This is particularly important for studying
nonhuman primates, who may be underperforming in tasks that require predicting actions and
outcomes based solely on interaction history or abstract cues (Brosnan et al., 20102, 20123,
20173; Ong et al., 2021 3; Formaux et al., 2022 @). By enabling immediate, visually grounded
social exchanges, the DIP provides a more ecologically valid and accessible framework for
investigating shared and divergent mechanisms of social cognition and coordination across
species.

Limitations and outlook

While the different versions of the DIP demonstrate the flexibility of the platform in terms of
experimental designs and the complexity of data that can be acquired, the results document how
behaviour is impacted by the social context in which tasks are presented. Our findings stress the
need to examine behaviour and cognition in controlled social settings. At the same time, we
acknowledge the limitations of the platform as it is currently conceptualised and implemented,
which we discuss in detail next.

Perhaps the first criticism that can be levelled at the platform concerns the ecological validity of
the experimental designs and social settings outlined above and possible within the platform.
Indeed, unless we are on a command deck of a futuristic spaceship, real social settings do not
necessarily include floating transparent screens where information is presented to both
participants simultaneously. To what extent can we assume that the DIP captures processing in
natural social settings? Real-world situations often present individuals with objects in their
environment that their social partner can choose to attend to or not. Consider two individuals
going to grasp a door handle at the same time. They need to consider the intentions and actions of
their social partner. The DIP emulates such situations, presenting participants a very similar
context to that described above, but with the bonus that the researchers can manipulate the
timing and contingencies of the setting. Indeed, some of our past studies have observed young

paradigms described above, they are limited in terms of the timing and presentation of stimuli,
e.g., the number of objects that can be presented or when during the task such objects are
presented. We see such experimental control in social settings as the primary advantage of the DIP,
while acknowledging the compromise between the limited ecological validity of the platform
relative to completely natural, free-flowing social interactions.

The DIP and modern augmented reality approaches are similar in that they both allow overlaid
digital interaction while maintaining visual contact with the environment and the interaction
partner(s). In comparison to augmented reality environments, the biggest limitation of the DIP is
its non-expandability of the digital space. Unlike augmented reality devices, which can display
digital content in three dimensions overlaid on the physical environment, the DIP is limited to two
dimensions on a vertical plane of the screen. At the same time, using augmented reality requires
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attaching additional devices to the participant’s head, while the DIP eliminates the need for bulky
goggles that affect head movement or face visibility. This advantage, combined with the fact that
the digital space provided by the DIP is inherently synchronised between participants, makes the
DIP much more accessible.

Close face-to-face real-time interactions, such as reaching to and manipulating the same targets on
the shared touchscreen (and almost touching a partner’s hand), create a highly salient social
context. If the experimental paradigm is configured such that the facial signals and other subtle
postural cues are relevant, the advantage of seeing both task stimuli and an interaction partner in
the same line of sight is undeniable. However, in tasks that use more abstract, mouse or joystick-
driven cursors or avatars, where the actual interaction takes place in a “virtual plane” on the
screen, the relevance of face visibility becomes less clear. Indeed, our experience suggests that in
such tasks, virtual avatars are very quickly imbued with agency, and when the task load is high,
socio- emotional signals of the actual partner receive less attention. Nevertheless, we argue that
the undeniable physical presence of the actual interactive partner on the other side provides a
highly salient social context, even when most of actual task-related interaction takes place on a
virtual plane. Future studies leveraging advanced video or EMG analysis will further clarify the
role of facial socio-emotional cues in such settings.

We also note that the transparent display offers the advantage of immediate face-to-face and
action visibility but comes with some inherent limitations. Independent of the specific
implementation or technology used, the visibility (contrast) of the stimuli depends on the
background. Although this is true for non-transparent modes of presentation, the control over the
background of the transparent display is more limited because typically at least a part of the
background will be the other participant’s face, arms, and clothes. Thus, the backdrop, as well as
the illumination of the room, may become an important experimental parameter that might
influence replicability. Furthermore, given the high transmissivity of the projection film, a second
image can be formed behind the screen either on the opposing participant oron the floor. These
images are usually dim, distorted, and blurry, but can be distracting to participants. We note above
several workarounds to these issues, e.g., a patterned carpet can help to reduce contrast on the
floor and make the reflected images less distracting to the participants. We also see high potential
in terms of the future in the use of glass that can switch between transparent and opaque displays,
allowing researchers to flexibly manipulate transmissivity as required in their paradigms. Such
switchable glass could then also be used to flexibly move between independent and joint stimulus
presentation or create asymmetry in the available information across participants, which allows
for exciting possibilities for future research.

The DIP has the potential to elucidate the impact of individual differences in social interaction
behaviours. Psychometric personality measures and additional cognitive tests can be used to
predict indices of accumulated interaction behaviours, which in our initial experience show
substantial reliability. Due to the continuous stream of behaviour and the perceptibility of the
interaction partner, the DIP might have an advantage over other lab paradigms to study social
behaviour, like turn-based economic games, which show only weak relationships with personality
traits (Zhao and Smillie, 2015%). To decompose dyadic behaviours in the DIP into actor, partner,
and relationship effects, groups of participants can be tested in a round robin design, which can
then be analysed via Social Relations Modelling (Back et al., 2023 (). Hormonal measures taken in
the context of a DIP task can also be used to explain individual differences in interaction
behaviours. For example, depending on the strategy of the interaction partner, the competitive
foraging task can be expected to trigger reactive increases in hormones like testosterone, which
responds to social contests, or cortisol, which responds to stressful challenges. These endocrine
responses are accessible in a non-invasive manner from saliva sampling (Botzet et al., 2024 %).
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The continuous, dynamic interactions afforded by DIP result in rich and heterogeneous data. This
is a huge advantage, but also a challenge compared to classical paradigms, where only one or few
bits of information (e.g. a simple button press, corresponding to a discrete choice) are acquired per
trial. Instead of the simple and precise timing of stimuli or events, to which, e.g., neural data such
as ERPs or neuronal firing can be time-locked, the researcher now needs to extract the time points
or periods of interest from continuous, often non-stationary, data, and to classify spontaneous
emerging interactions into meaningful classes. Typically, there is no unique solution and one
needs to find a suitable compromise between generality, specificity, and other non-optimal
assessment factors of the time points or periods. Here, Bayesian inference can be especially
informative because it can define a precise model of the feature one is searching for (e.g., change
of movement direction or slowing down to indicate uncertainty of the decision). Bayesian
inference can then, with relatively sparse data, provide not only a single maximum-likelihood
estimate but the full posterior probability with its uncertainty. Depending on the analysis, one can
then concentrate on the “clear” time points or periods or accept larger uncertainty in the
classification. Complementary, machine learning approaches could also be adapted to parse the
rich behaviour into classes. Overall, these novel approaches allow full use of the rich data
provided from the continuous recording of dyadic, mutually coupled behaviour in a shared
environment.

One promising approach to analysing hyperscanning data from a DIP setup is to measure
informational alignment rather than direct brain-to-brain synchrony. The informational alignment
estimates the similarity of perceptual and cognitive representations, and can be detected using
“inter-brain representational similarity analysis” (IRSA; Varlet and Grootswagers (2024) ). In this
analysis approach time-frequency profiles of same and different objects are submitted to a RSA
analysis using data from different participants. Compared with inter-brain synchrony (IBS), such
an inter-brain RSA detected significantly more same objects vs. different objects effects in both
amplitude and phase. This provides first evidence for higher sensitivity to informational
alignment in hyperscanning participants using IRSA.

Finally, while the DIP has been designed and used primarily for studying dyadic interactions, it is
not inherently limited to two-way interactions. The setup allows for the inclusion of multiple
participants on each side of the screen or the integration of observers, making it a viable platform
for investigating group interactions in future research.

Conclusion

We present a novel dyadic interaction platform that allows researchers to study naturalistic,
dynamic social interactions in different subject populations in diverse tasks while collecting a rich
multi-dimensional array of behavioural, physiological and neural data. The DIP’s exceptional
versatility comes from integrating different stimulus presentation and recording devices, thereby
allowing researchers to flexibly tailor the platform to their research question and measures of
cognitive processing they are particularly interested in. We include several example tasks that
document both the transparency and flexibility of the DIP as well as the more fine-grained
understanding of the dynamics of social behaviour gained by providing individuals continuous
access to the decisions, social signals, and actions of their partners. Indeed, the examples outlined
here document the real need to study rich, dynamic and complex settings, showcasing how
performance is impacted at the millisecond level by embedding behaviour into such settings. We
look eagerly forward to the advances in our understanding of primate social behaviour that such
platforms can provide.
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Availability of data, materials, and code

The BoS dataset described in the section on Transparent economic games and links to the GitHub
code repositories are available at public OSF repository https://osf.io/f5u8z/ .

The data and code related to the Competitive Foraging task described in the section on Continuous
strategic interactions will be available at public OSF repository https://osf.io/8r6e2/ 2.

The data and code related to the Cooperation-Competition Foraging study described in the section
on Continuous strategic interactions will be available at public OSF repository https://osf.io
/56hw7 .

The data and code related to the CPR DIP dataset described in the section on Perceptual
decisionmaking in dyadic context will be available at public OSF repository https://osf.io/8r6e2/ .

The dataset and code described in the section on Attention and social learning are available at
public OSF repository https://osf.io/6dven/ .
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Reviewer #1 (Public review):
Summary:

In this manuscript, the authors aim to address significant limitations of existing experimental
paradigms used to study dyadic social interactions by introducing a novel experimental setup
- the Dyadic Interaction Platform (DIP). The DIP uniquely allows participants to interact
dynamically, face-to-face, with simultaneous access to both social cues and task-related
stimuli. The authors demonstrate the versatility and utility of this platform across several
exemplary scenarios, notably highlighting cases of significant behavioral differences in
conditions involving direct visibility of a partner.

Major strengths include comprehensive descriptions of previous paradigms, detailed
explanations of the DIP's technical features, and clear illustrations of multimodal data
integration. These elements greatly enhance the reproducibility of the methods and clarify
the potential applications across various research domains and species. Particularly
compelling is the authors' demonstration of behavioral impacts related to transparency in
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interactions, as evidenced by the macaque-human experiments using the Bach-or-Stravinsky
game scenario.

Strengths:

The DIP represents a methodological advance in the study of social cognition. Its transparent,
touch-sensitive display elegantly solves the problem of enabling participants to attend to both
their social partner and task stimuli simultaneously without requiring attention switching.
This paper marks a notable step forward toward more options for naturalistic yet still lab-
based studies of social decision-making, an area where the field is actively moving, especially
given recent research highlighting significant differences in neural activity depending upon
the context in which an action is performed. The DIP offers researchers a valuable tool to
bridge the gap between tightly controlled laboratory paradigms and the dynamic,
bidirectional nature of real-world social interactions.

The authors do well to provide comprehensive documentation of the technical specifications
for the four different implementations of the platform, allowing other researchers to adapt
and build upon their work. The detailed information about hardware configurations
demonstrates careful attention to practical implementation details. They also highlight
numerous options for integration with other tools and software, further demonstrating the
versatility of this apparatus and the variety of research questions to which it could be
applied.

The historical review of dyadic experimental paradigms is thorough and effectively positions
the DIP as addressing a critical gap in existing methodologies. The authors convincingly
argue that studying continuous, dynamic social interactions is essential for understanding
real-world social cognition, and that existing paradigms often force unnatural attention-
splitting or turn-taking behaviors that don't reflect naturalistic interaction patterns.

The four example applications showcase the DIP's versatility across diverse research
questions. The Bach-or-Stravinsky economic game example is particularly compelling,
demonstrating how continuous access to partners' actions substantially changes coordination
strategies in non-human primates. This highlights a key strength of the DIP, which is that it
removes a level of abstraction that can make tasks more difficult for non-human primates to
learn. By being able to see their partner and actions directly, rather than having to
understand that a cursor on a screen represents a partner, the platform makes the task more
accessible to non-human primates and possibly children as well. This opens up important
avenues for enhanced cross-species investigations of cognition, allowing researchers to study
social dynamics in a setting that remains naturalistic yet controlled across different
populations.

Weaknesses:

Some of the experimental applications would benefit from stronger evidence demonstrating
the unique advantages of the transparent setup. For instance, in the dyadic foraging example,
it's not entirely clear how participants' behavior differs from what might be observed when
simply tracking each other's cursor movements in a non-transparent setup. More evidence
showing how direct visibility of the partner, beyond simply being able to track the position of
the partner's cursor, influences behavior would strengthen this example. Similarly, in the
continuous perceptual report (CPR) task, the subjects could perform this task and see
feedback from their partners' actions without having to see their partner through the
transparent screen. Evidence showing that 1) subjects do indeed look at their partner during
the task and 2) viewing their partner influences their performance on the task would
significantly strengthen the claim that the ability to view the partner brings in a new
dimension to this task. These additions would better demonstrate the specific value added by
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the transparent nature of the DIP beyond what could be achieved with standard cursor-
tracking paradigms.

A significant limitation that is inadequately addressed relates to neural investigations. While
the authors position the platform's ability to merge attention to social stimuli and task stimuli
as a key advantage, they don't sufficiently acknowledge the challenges this creates for
dissociating neural signals attributed to social cues versus task-based stimuli. More
traditional lab-based experiments intentionally separate components like task-stimulus
perception, social perception, and decision-making periods so that researchers can isolate the
neural signals associated with each process. This deliberate separation, which the authors
frame as a weakness, actually serves an important functional purpose in neural
investigations. The paper would be strengthened by explicitly discussing this limitation and
offering potential approaches to address it in experimental design or data analysis. For
instance, the authors could suggest methodological innovations or analytical techniques that
might help disentangle the overlapping neural signals that would inevitably arise from the
integrated presentation of social and task stimuli in the DIP setup.

Furthermore, the authors' suggestion to arrange task stimuli around the periphery of the
screen to maintain a clear middle area for viewing the partner appears to contradict their
own critique of traditional paradigms. This recommended arrangement would seemingly
reintroduce the very problem of attentional switching between task stimuli and social
partners that the authors identified as a limitation of previous approaches. The paper would
be strengthened by discussing the potential trade-offs associated with their suggested
stimulus arrangement. Additionally, offering potential approaches to address these
limitations in experimental design or data analysis would enhance the paper's contribution
to the field.

https://doi.org/10.7554/eLife.106757.1.sa1

Reviewer #2 (Public review):
Summary:

This work proposes a new platform to study social cognition in a more naturalistic setting.
The authors give an overview of previous work that extends from static unidirectional
paradigms (i.e., subject is presented with social stimuli such as still images or faces), to more
dynamic unidirectional paradigms (i.e., the subject is presented with movies, or another
individual's behavior) to dyadic interactions in a laboratory setting or in real life (i.e.,
interacting with a real person). Overall, this literature demonstrates that findings from
realistic social situations can differ dramatically from unidirectional laboratory settings.
Moreover, current and previous work are put in the perspective of an experimental
framework that has tightly controlled experimental set-ups and low ecological validity on one
end, and high ecological validity, naturalistic, without any experimental constraints on the
other end, and all that is in between. The authors frame previous work along a spectrum,
ranging from highly controlled, low-ecological-validity experiments to naturalistic,
unconstrained approaches with high ecological validity, situating their current work within
this continuum. They focus on a specific sub-domain of social interactions, i.e., goal-directed
contexts in which interactions are purposeful for solving joint tasks or obtaining rewards.
This new dyadic interaction platform claims to embed tight experimental control in a
naturalistic face-to-face social interaction with the goal of investigating social information
processing in bidirectional, dynamic social interactions.

Strengths:
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The proposed dyadic interaction platform (DIP) is highly flexible, accommodating diverse
visual displays, interactive components, and recording devices, making it suitable for various
experiments.

The manuscript does a good job of highlighting the strengths and weaknesses of the various
display options. This clarity allows readers to easily assess which display best suits their
specific experimental setup and objectives.

One of the platform's key strengths is its versatility, allowing the same experimental setup to
be used across multiple species and developmental stages, and enabling NHPs and humans to
be studied as subjects within the same paradigm. Highlighting this capability could further
underscore the platform's broad applicability.

Weaknesses:

The manuscript emphasizes the importance of ecological validity alongside tight
experimental control, a significant challenge in naturalistic neuroscience. While the platform
achieves tight control, the ecological validity of such a set-up remains questionable and
warrants further testing and validation. For example, while the platform is designed to be
more naturalistic in principle, its application to NHPs is still complex and may be comparably
constrained as traditional NHP research. To realize its full potential for animal studies, the
platform should be combined with complementary methodologies - such as wireless
electrophysiology and freely moving paradigms - to truly achieve a balance between
ecological validity and experimental control. Further validation in this direction could
significantly enhance its utility.

The manuscript is somewhat lengthy and occasionally reads more like a review paper, which
slightly shifts the focus away from the primary emphasis on the innovative technological
advancement and the considerable effort invested in optimizing this new platform.
Streamlining the presentation to more directly highlight these key contributions could
enhance clarity and impact.

Overall, there is compelling evidence supporting the feasibility and value of DIP for
investigating specific types of social interactions, particularly in contexts where individuals
share a workspace and have full transparency regarding their opponent's actions. While I
believe that DIP has the potential to significantly impact the field, which is supported by
preliminary data, its broader applicability remains an open question. This platform aligns
well with recent initiatives aimed at enhancing ecological validity in neuroscience research
across both human and animal models. To maximize its impact, it would be beneficial to
more explicitly situate this work within that broader movement, emphasizing its relevance
and potential to advance ecologically valid approaches in the field.

https://doi.org/10.7554/eLife.106757.1.sa0
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