

Foundations of Machine Learning

Target Audience: Students and Professionals Preparing for ML

Why This Course?

Machine Learning requires more than just coding skills—it demands a strong foundation in **mathematics**, **algorithms**, **and programming**. Many learners struggle with ML not because the concepts are too advanced, but because they lack the **mathematical intuition or coding fluency** needed to implement and understand the models.

This course bridges that gap. By combining **Python programming** with **essential mathematics for ML**, you will build the skills necessary to transition confidently into advanced machine learning.

By the end of this course, you will:

- Strengthen your Python skills for mathematical and algorithmic problem-solving.
- · Gain mastery of the core math topics essential for ML.
- Implement mathematical concepts in Python through coding exercises and projects.
- Use Git and GitHub to manage and showcase your work.
- Be fully prepared to take on advanced ML algorithms and techniques.

What Will You Learn?

1. Python Foundations for Math and ML

- Python programming for scientific computing.
- Explore essential libraries: NumPy, Pandas, and matplotlib.
- Work with Jupyter notebooks for experimenting with math and algorithms.

2. Mathematical Foundations

- Linear Algebra: Vectors, matrices, operations, eigenvalues, and eigenvectors.
- Probability & Statistics: Random variables, distributions, expectation, variance, hypothesis testing.
- Calculus & Optimization: Derivatives, gradients, and the foundations of optimization methods.

3. Algorithms for ML Preparation

- Implementation of classical algorithms in Python.
- Time and space complexity (Big-O analysis).
- Numerical methods relevant for ML.

4. Optimization Methods

- Gradient descent: intuition, mathematics, and implementation.
- Variants of gradient descent (stochastic, mini-batch).
- Convergence, pitfalls, and practical considerations.

5. Programming Practice & Projects

Extensive hands-on coding throughout the course.

- Mini-projects to reinforce each major concept.
- Application-focused exercises linking math to ML.

6. Git & Version Control

- Introduction to Git and GitHub.
- Tracking changes, branching, and collaborative coding.
- Building a GitHub portfolio of your projects.

7. Additional Concepts as Needed

- Entropy and Information Gain (for decision trees).
- Distance and Similarity Metrics (for kNN and clustering).
- Log-Likelihood and Expectation (for probabilistic models).
- Matrix Factorization and Eigen Decomposition (for dimensionality reduction).

Course Differentiators

- 24-week intensive program combining depth and hands-on practice.
- Integrated approach combining Python coding with mathematical rigor.
- Heavy emphasis on programming, projects, and practical problem-solving.
- Git and GitHub usage throughout to instill industry-ready practices.
- Designed as a bridge course to prepare you for ML.

Course Benefits

- Build the core math intuition required for Al and ML.
- Develop problem-solving skills that connect theory to practice.
- Gain confidence by completing mini-projects and maintaining a GitHub portfolio.
- Be ML-ready by the end of the course, with a solid foundation to tackle advanced topics.

Who Should Enroll?

- Students aiming to pursue ML or Al.
- Professionals looking to strengthen their math and coding foundations.
- Learners who want to confidently bridge the gap between Python programming and ML.

Course Duration: 24 weeks

Mode: Online

Instructor Support: Live sessions and Q&A opportunities

Get ML-Ready with Python and Math

This course gives you the tools to **connect coding, math, and algorithms**, setting you up for success in advanced machine learning.

99239 65888. sajal@aimllearn.com