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What is a Generating Function?

• Suppose there is a sequence a0, a1, a2, . . . of numbers. (They can be integers, real
numbers, complex numbers, whatever.)

• The ordinary generating function associated with this sequence is the infinite series

f (x) =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + · · ·

• This series often doesn’t converge for all x . Sometimes we have to worry about this,
but often we don’t have to worry too much about it.
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Why should we care about generating functions?

• “A generating function is a clothesline on which we hang up a sequence of numbers
for display.” –Herbert Wilf.

• Generating functions are a way of encoding the terms in a sequence as the
coefficients of a power series.

• This allows us to perform different types of operations on the data of the sequence,
and to manipulate it in interesting ways.

• This talk will be heavily driven by problems. We’ll learn techniques for working with
generating functions by doing problems where those techniques are applicable. Many
of these problems will be from familiar past math contests.
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Some warm-up generating functions

Find the ordinary generating function of each of the following sequences:

1, 1, 1, 1, 1, 1, 1, . . .

1 + x + x2 + x3 + · · · =
∞∑
n=0

xn =
1

1− x
.
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Some warm-up generating functions

Find the ordinary generating function of each of the following sequences:

1, 2, 4, 8, 16, 32, 64, . . .

1 + 2x + 4x2 + 8x3 + · · · =
∞∑
n=0

2nxn =
1

1− 2x
.
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Some warm-up generating functions

Find the ordinary generating function of each of the following sequences:

2, 5, 2, 5, 2, 5, 2, 5, 2, 5, . . .

2 + 5x + 2x2 + 5x3 + · · · = 2 + 5x

1− x2
.
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Some warm-up generating functions

Find the ordinary generating function of each of the following sequences:

1, 2, 3, 4, 5, 6, 7, . . .

1 + 2x + 3x2 + 4x3 + · · · =
∞∑
n=0

(n + 1)xn =
1

(1− x)2
.
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Some warm-up generating functions

Find the ordinary generating function of each of the following sequences:

1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 0, . . .

1 + 4x + 6x2 + 4x3 + x4 = (1 + x)4.
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The Fibonacci sequence

• The Fibonacci sequence is defined by F0 = 0, F1 = 1, and for each n ≥ 2, we have
Fn = Fn−1 + Fn−2. That is, each term is the sum of the previous two.

• The first few terms are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

• How might we find the generating function of the Fibonacci sequence?
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The Fibonacci sequence

Let

f (x) = x + x2 + 2x3 + 3x4 + 5x5 + · · · =
∞∑
n=0

Fnx
n.

We know that for each n ≥ 2, Fn = Fn−1 + Fn−2. Thus

f (x) = x +
∞∑
n=2

Fnx
n = x +

∞∑
n=2

(Fn−1 + Fn−2)x
n.

We split this up as

f (x) = x +
∞∑
n=1

Fnx
n+1 +

∞∑
n=0

Fnx
n+2 = x + xf (x) + x2f (x).

Solving for f (x) gives

f (x) =
x

1− x − x2
.
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The Fibonacci sequence

How can we use the generating function

∞∑
n=0

Fnx
n =

x

1− x − x2

to find an explicit (non-recursive) formula for the terms of the Fibonacci sequence?

Let’s factor the denominator. We write

1− x − x2 = (1− ϕx)(1 + ϕ−1x)

where ϕ = 1+
√
5

2 is the Golden Ratio.
Applying a partial fraction decomposition, we have

∞∑
n=0

Fnx
n =

x

(1− ϕx)(1 + ϕ−1x)
=

1

ϕ+ ϕ−1

(
1

1− ϕx
− 1

1 + ϕ−1x

)
.
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The Fibonacci sequence

∞∑
n=0

Fnx
n =

x

(1− ϕx)(1 + ϕ−1x)
=

1

ϕ+ ϕ−1

(
1

1− ϕx
− 1

1 + ϕ−1x

)
These are both geometric series! We have ϕ+ ϕ−1 =

√
5, and

1

1− ϕx
=

∞∑
n=0

ϕnxn

1

1 + ϕ−1x
=

∞∑
n=0

(−1)nϕ−nxn

So
∞∑
n=0

Fnx
n =

1√
5

∞∑
n=0

[
ϕn − (−1)nϕ−n

]
xn,

and we can match coefficients to get an explicit formula!
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The Fibonacci sequence

Binet’s Formula

The n-th Fibonacci number is given by the explicit formula

Fn =
ϕn − (−ϕ)−n

√
5

,

where ϕ = 1+
√
5

2 is the Golden Ratio.
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The big ideas

• We applied algebraic techniques (factoring and partial fraction decomposition) to the
generating function to write it in a way that allowed us to identify its coefficients
easily.

• This same technique works for lots of other recursive sequences as well – if you see
one in a contest problem, it may be a good idea to consider its generating function!

• For a fun exercise, try using this generating function to prove that

F1 + F2 + · · ·+ Fn−2 = Fn − 1.

Hint: The generating function of the left-hand side is x2f (x)
1−x (why?) and the

generating function of the right-hand side is f (x)− x
1−x .

Okay, let’s jump right in to some hard problems...
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2018 AIME I, #12

For every subset T of U = {1, 2, 3, . . . , 18}, let s(T ) be the sum of the elements of T ,
with s(∅) defined to be 0. If T is chosen at random among all subsets of U, the
probability that s(T ) is divisible by 3 is m

n , where m and n are relatively prime positive
integers. Find m.

First ingredient: we need a generating function that “generates” every one of the 218

possible subsets of U. We can do this by multiplying a bunch of generating functions
together. The magical function we want is

f (x) =
18∏
n=1

(1 + xn) = (1 + x)(1 + x2)(1 + x3) · · · (1 + x18).

Do you see why every one of the 218 choices when this is multiplied out corresponds to a
different subset of U?
What does the exponent of x in a particular term signify? What does the coefficient of,
say, x12 count?

15 / 43
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For every subset T of U = {1, 2, 3, . . . , 18}, let s(T ) be the sum of the elements of T ,
with s(∅) defined to be 0. If T is chosen at random among all subsets of U, the
probability that s(T ) is divisible by 3 is m

n , where m and n are relatively prime positive
integers. Find m.

Second ingredient: every one of these 218 subsets is equally likely to be chosen. By
dividing this whole function through by 218, the coefficient of xn goes from counting the
number of ways to get a sum of n, to counting the probability that we get a sum of n. So
consider

g(x) =
1

218

18∏
n=1

(1 + xn).

We want the probability that s(T ) is a multiple of 3. This is just the sum of all the
coefficients of terms of the form x3k in g(x). How do we get our hands on those
coefficients, and only those coefficients?
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2018 AIME I, #12

For every subset T of U = {1, 2, 3, . . . , 18}, let s(T ) be the sum of the elements of T ,
with s(∅) defined to be 0. If T is chosen at random among all subsets of U, the
probability that s(T ) is divisible by 3 is m

n , where m and n are relatively prime positive
integers. Find m.

Third ingredient: a roots of unity filter. Let ω = e2πi/3 = −1+i
√
3

2 be a cube root of
unity. So ω ̸= 1, but ω3 = 1. Roots of unity have nice properties because we have
expansions like

(x − ω)(x − ω2)(x − ω3) · · · (x − ωn) = xn − 1

if ω = e2πi/n. In this problem, we want cube roots of unity, because we want to make
precisely the values n that are not multiples of 3 disappear.
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2018 AIME I, #12

For every subset T of U = {1, 2, 3, . . . , 18}, let s(T ) be the sum of the elements of T ,
with s(∅) defined to be 0. If T is chosen at random among all subsets of U, the
probability that s(T ) is divisible by 3 is m

n , where m and n are relatively prime positive
integers. Find m.

We know

g(x) =
∞∑
n=0

pnx
n,

where pn is the probability that s(T ) equals n. The magic trick is to consider

g(x) + g(ωx) + g(ω2x)

3
=

1

3

∞∑
n=0

pn(1 + ωn + ω2n)xn.

If n is a multiple of 3, then 1 + ωn + ω2n = 1 + 1 + 1 = 3. Otherwise,
1 + ωn + ω2n = 1 + ω + ω2 = 0. (This idea is called orthogonality.)
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2018 AIME I, #12

Then
g(x) + g(ωx) + g(ω2x)

3
=

∞∑
k=0

p3kx
k ,

and so the probability that s(T ) is divisible by 3 equals
∞∑
k=0

p3k =
g(1) + g(ω) + g(ω2)

3
.

Now

g(1) =
1

218

18∏
n=1

(1 + 1) =
218

218
= 1.

g(ω) =
1

218

18∏
n=1

(1 + ωn) =

[
(1 + 1)(1 + ω)(1 + ω2)

]6
218

=
26

218
=

1

4096
.

And g(ω2) = 1
4096 as well.
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And g(ω2) = 1
4096 as well.
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2018 AIME I, #12

So the desired probability is

1 + 1
4096 + 1

4096

3
=

1 + 1
2048

3
=

2049

3 · 2048
=

683

2048

in lowest terms, so m = 683 .
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The big ideas

• Multiplying generating functions together will cause their terms to combinatorially
distribute out. Often this will give you what’s called a Cauchy convolution of the
individual generating functions.

• (We’ve already seen this once – multiplying a generating function by 1
1−x gives you

the partial sums of its terms!)

• A roots of unity filter is an excellent way to detect only the terms of a generating
function that belong to a particular arithmetic progression. (In this example, we used
it to detect multiples of 3.)
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2024 HMMT February Guts Round #21

Kelvin the frog currently sits at (0, 0) in the coordinate plane. If Kelvin is at (x , y), either
he can walk to any of (x , y + 1), (x + 1, y), or (x + 1, y + 1), or he can jump to any of
(x , y + 2), (x + 2, y) or (x + 1, y + 1). Walking and jumping from (x , y) to (x + 1, y + 1)
are considered distinct actions. Compute the number of ways Kelvin can reach (6, 8).

Let’s say f (x , y) is the generating function of the number of ways for Kelvin to reach a
particular point. That is,

f (x , y) =
∑

m,n≥0

am,nx
myn

where am,n is the number of ways to hop to the point (m, n).
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2024 HMMT February Guts Round #21

Kelvin the frog currently sits at (0, 0) in the coordinate plane. If Kelvin is at (x , y), either
he can walk to any of (x , y + 1), (x + 1, y), or (x + 1, y + 1), or he can jump to any of
(x , y + 2), (x + 2, y) or (x + 1, y + 1). Walking and jumping from (x , y) to (x + 1, y + 1)
are considered distinct actions. Compute the number of ways Kelvin can reach (6, 8).

To build f (x , y), first we’re going to see what happens when Kelvin takes exactly one
hop. The generating function for the number of ways he could reach a point after exactly
one hop is

p(x , y) = x + y + xy + x2 + y2 + xy = (x + y)(1 + x + y).

(Do you see why?)
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Kelvin the frog currently sits at (0, 0) in the coordinate plane. If Kelvin is at (x , y), either
he can walk to any of (x , y + 1), (x + 1, y), or (x + 1, y + 1), or he can jump to any of
(x , y + 2), (x + 2, y) or (x + 1, y + 1). Walking and jumping from (x , y) to (x + 1, y + 1)
are considered distinct actions. Compute the number of ways Kelvin can reach (6, 8).

Now, every time Kelvin hops somewhere, it’s like we’re multiplying by p(x , y) again. For
example, the number of ways for him to reach a point in two hops is given by
p(x , y) · p(x , y).

So in fact,

f (x , y) =
∞∑
k=0

[p(x , y)]k =
1

1− p(x , y)
=

1

1− x − y − x2 − 2xy − y2
.
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2024 HMMT February Guts Round #21

Do you see the Fibonacci generating function hiding here?

f (x , y) =
1

1− (x + y)− (x + y)2
=

∞∑
k=0

Fk+1(x + y)k

and so in particular, if we want the coefficient of xmyn, we have to go to the k = m + n
term in this sum. Then by the binomial theorem, the number of ways to hop to (m, n) is

Fm+n+1

(
m + n

m

)
.

So the answer for (6, 8) is

F15

(
14

6

)
= 610 · 3003 = 1831830 .
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The big ideas

• Generating functions can have more than one variable!

• Walking problems (in any number of dimensions) where we repeatedly move from
one lattice point to another, often lend themselves well to generating function
approaches.

• If something is changing in the same way repeatedly, it might correspond to
multiplying a generating function by itself repeatedly.
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2003 Putnam, A6

For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2)
such that s1 ∈ S , s2 ∈ S , s1 ̸= s2, and s1 + s2 = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that rA(n) = rB(n) for all n?

First ingredient: let’s define the indicator function of the set S by

f (x) =
∑
n∈S

xn.

Then we want to get our hands on some kind of generating function of rS(n).
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2003 Putnam, A6

For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2)
such that s1 ∈ S , s2 ∈ S , s1 ̸= s2, and s1 + s2 = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that rA(n) = rB(n) for all n?

In fact, we have

∞∑
n=0

rS(n)x
n =

∞∑
n=0

∑
s1,s2∈S
s1 ̸=s2

s1+s2=n

xn =
∑

s1,s2∈S
s1 ̸=s2

x s1+s2 =
∑

s1,s2∈S
x s1+s2 −

∑
n∈S

x2n,

and this is just [f (x)]2 − f (x2).
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For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2)
such that s1 ∈ S , s2 ∈ S , s1 ̸= s2, and s1 + s2 = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that rA(n) = rB(n) for all n?

Now since A,B are a partitioning of the nonnegative integers, let’s say f and g are the
indicator functions associated to them. Then

f (x) + g(x) =
∞∑
n=0

xn =
1

1− x
,

and we would like A,B to be such that rA(n) = rB(n) for all n. This means

[f (x)]2 − f (x2) = [g(x)]2 − g(x2).
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2003 Putnam, A6

So we’re trying to solve the system

f (x) + g(x) =
1

1− x

[f (x)]2 − f (x2) = [g(x)]2 − g(x2)

One sensible thing to do might be to let h(x) = f (x)− g(x). Then

[f (x)]2 − [g(x)]2 = f (x2)− g(x2)

h(x)

1− x
= h(x2)

and so

h(x) = (1− x)h(x2) = (1− x)(1− x2)h(x4) = (1− x)(1− x2)(1− x4)h(x8) = · · ·
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2003 Putnam, A6

Then we see that

h(x) =
∞∏
n=0

(
1− x2

n)
satisfies this equation.

Since we are multiplying a (−1)n together for every 1 in the binary representation of n,
we actually just have

h(x) =
∞∑
n=0

(−1)c(n)xn,

where c(n) counts the number of 1’s in the binary representation of n.
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2003 Putnam, A6

Then

f (x) =
1

1−x + h(x)

2
=

∑
n≥0

c(n) even

xn

g(x) =
1

1−x − h(x)

2
=

∑
n≥0

c(n) odd

xn

and so partitioning the integers based on whether they have an even or odd number of 1’s
in their binary representation will accomplish rA(n) = rB(n) for all n.

32 / 43



The big ideas

• Sometimes we can use generating functions to describe the elements of a set, by
using a coefficient of 1 or 0 to indicate whether a nonnegative integer is in or out.

• Anytime we see something like s1 + s2 = n, we might want to think about letting
s1, s2 be exponents in a generating function, since multiplying them together would
give a sum over s1, s2 such that s1 + s2 = n.

• Generating functions often give rise to functional equations which we have to solve.
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Evil Team Selection Problem

Alexei is playing a game in which he throws darts at a target. When throwing a regular,
unweighted dart, Alexei has a 50% chance of hitting the target on each throw. However,
the game is rigged, and so each time after he hits the target, for his next throw the host
gives him a weighted dart that will hit the target with probability only 25%. (If he misses
the target, the host will give him a regular dart for his next throw, and his first throw is
with a regular dart.) If Alexei throws a total of ten darts, compute the expected number
of times he hits the target as a decimal to the nearest hundredth.

Let’s define two sequences to start with.

• Let An be the expected number of times Alexei hits the target in the next n throws,
given that his next throw is with a fair dart.

• Let Bn be the expected number of times Alexei hits the target in the next n throws,
given that his next throw is with an unfair dart.

So we are interested in the value of A10.
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Evil Team Selection Problem

If Alexei throws a fair dart, there’s a 1
2 chance he hits the target (so his next throw is with

an unfair dart) and a 1
2 chance he misses. So

An =
1

2
(1 + Bn−1) +

1

2
An−1.

If Alexei throws an unfair dart, there’s a 1
4 chance he hits the target (so his next throw is

with an unfair dart) and a 3
4 chance he misses. So

Bn =
1

4
(1 + Bn−1) +

3

4
An−1.

We also have A0 = B0 = 0 – if he throws zero darts he’s not going to hit the target at all.

35 / 43



Evil Team Selection Problem

If Alexei throws a fair dart, there’s a 1
2 chance he hits the target (so his next throw is with

an unfair dart) and a 1
2 chance he misses. So

An =
1

2
(1 + Bn−1) +

1

2
An−1.

If Alexei throws an unfair dart, there’s a 1
4 chance he hits the target (so his next throw is

with an unfair dart) and a 3
4 chance he misses. So

Bn =
1

4
(1 + Bn−1) +

3

4
An−1.

We also have A0 = B0 = 0 – if he throws zero darts he’s not going to hit the target at all.

35 / 43



Evil Team Selection Problem

If Alexei throws a fair dart, there’s a 1
2 chance he hits the target (so his next throw is with

an unfair dart) and a 1
2 chance he misses. So

An =
1

2
(1 + Bn−1) +

1

2
An−1.

If Alexei throws an unfair dart, there’s a 1
4 chance he hits the target (so his next throw is

with an unfair dart) and a 3
4 chance he misses. So

Bn =
1

4
(1 + Bn−1) +

3

4
An−1.

We also have A0 = B0 = 0 – if he throws zero darts he’s not going to hit the target at all.

35 / 43



Evil Team Selection Problem

Let’s define the generating functions of An and Bn: let

f (x) =
∞∑
n=0

Anx
n

g(x) =
∞∑
n=0

Bnx
n

Then our recursions from the previous slide transform into

f (x) =
1

2

(
x

1− x
+ xg(x)

)
+

1

2
xf (x)

g(x) =
1

4

(
x

1− x
+ xg(x)

)
+

3

4
xf (x)

36 / 43



Evil Team Selection Problem

Let’s define the generating functions of An and Bn: let

f (x) =
∞∑
n=0

Anx
n

g(x) =
∞∑
n=0

Bnx
n

Then our recursions from the previous slide transform into

f (x) =
1

2

(
x

1− x
+ xg(x)

)
+

1

2
xf (x)

g(x) =
1

4

(
x

1− x
+ xg(x)

)
+

3

4
xf (x)

36 / 43



Evil Team Selection Problem

This is a system of two linear equations in two unknowns f (x) and g(x)! We clear
denominators to write it as

(1− x)(2− x)f (x)− x(1− x)g(x) = x

(1− x)(4− x)g(x)− 3x(1− x)f (x) = x

We’re really only interested in f (x), so we eliminate g(x) and write

g(x) =
(1− x)(2− x)f (x)− x

x(1− x)
=

3x(1− x)f (x) + x

(1− x)(4− x)

(1− x)(2− x)(4− x)f (x)− x(4− x) = 3x2(1− x)f (x) + x2
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x(1− x)
=

3x(1− x)f (x) + x

(1− x)(4− x)

(1− x)(2− x)(4− x)f (x)− x(4− x) = 3x2(1− x)f (x) + x2
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Evil Team Selection Problem

Solving for f (x) gives

f (x) =
x2 + x(4− x)

(1− x)(2− x)(4− x)− 3x2(1− x)
=

4x

(1− x)(8− 6x − 2x2)
=

2x

(1− x)2(4 + x)
.

Then we write this as partial fractions:

f (x) =
2

5(1− x)2
− 8

25(1− x)
− 8

25(4 + x)
.

Expanding out into geometric series gives

f (x) =
∞∑
n=0

[
2

5
(n + 1)− 8

25
− 2

25

(
−1

4

)n]
xn.
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Evil Team Selection Problem

So

An =
2

5
(n + 1)− 8

25
− 2

25

(
−1

4

)n

,

and

A10 =
102

25
− 2

25 · 410
.

We want A10 as a decimal to the nearest hundredth, so the answer is 4.08 .
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The big ideas

• Recursions can be transformed into functional equations of the generating functions.

• Multiplying a generating function by a power of x shifts all its coefficients over. This
goes hand in hand with recursive sequences.

• Sometimes if you’re playing with more than one sequence, it makes sense to work
with more than one generating function.

• All the usual algebra tricks (solving for a function and partial fraction decomposition)
that worked so well in the Fibonacci problem, can be used in a lot of other problems
too!
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Some other big ideas we probably don’t have much time for...

There are other types of generating functions besides ordinary ones.

The other two most
common types are exponential generating functions which look like

∞∑
n=0

anx
n

n!
,

and Dirichlet generating functions which look like

∞∑
n=1

an
ns

.

Exponential generating functions tend to be useful if an is counting permutations of some
sort, and Dirichlet generating functions are useful if an is something number-theoretic
(perhaps a divisor function).
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Some other big ideas we probably don’t have much time for...

Sometimes, calculus comes into the equation too! If

f (x) =
∞∑
n=0

anx
n

is an ordinary generating function, its derivative is

f ′(x) =
∞∑
n=1

nanx
n−1.

Multiplying the terms in a sequence by their index thus corresponds to differentiating...
and similarly, dividing by the index corresponds to integrating.
When this comes up, often the generating function will give rise to a differential equation
that needs to be solved.
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Thank you!
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