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Part I 
 
Introduction: 
 
Dataset captures listings a range of items, including apparel, electronics, and tech products, each with 
varying conditions. Every listing is distinctively identified using train_id, ID helps us identify the item's 
name, state, category, brand, pricing, shipping details and a clean description. The category_name column 
stands out with its complexity, segmenting each item into precise categories and subcategories making 
way for detailed analysis. This dataset offers a comprehensive exploration into the evolving trends, distinct 
patterns, and unique characteristics of the listings, illuminating insights on consumer inclinations, brand 
significance, and predominant market tendencies. 
 
Data Acquisition and Pre-processing 
 
Code: 
 

 
# Importing all necessary libraries 
import os 
import zipfile 
import urllib.request 
import pandas as pd 
import matplotlib.pyplot as plt 
from wordcloud import WordCloud 
import numpy as np 
import seaborn as sns 
import random 
 
sns.set(color_codes=True) 
pd.set_option('display.max_rows', None) 
pd.set_option('display.max_columns', None) 
 
 
# Function to download, UnZip & Read File  
def dl_uz_rd(url, destination): 
    """ 
    Use: Downloads, unzips, and reads a file from a given URL. 
 
    Args: 
        - url (str): The URL of the file to be downloaded. 
        - destination (str): The local path where the downloaded file should 
be saved. 
 
    Returns: 
        - pd.DataFrame: Data read from the unzipped file. 
    """ 
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    # Download the file 
    urllib.request.urlretrieve(url, destination) 
     
    # Unzip the file  
    with zipfile.ZipFile(destination, 'r') as zip_ref: 
        zip_ref.extractall(os.getcwd()) 
         
        # Unzip file is stored in list variable 
        extracted_files = zip_ref.namelist() 
         
        # Read the Unzip file to dataframe 
        data = pd.read_csv(extracted_files[0]) 
     
    return data 
 
 
# # Defined the URL from the Problem Statement 
# url = 'https://github.com/tulip-
lab/sit742/raw/fbd1bb363bc63511ff8895148b4d50f787efbe3f/Jupyter/data/item_li
sting_category.zip' 
 
# #Destination File name 
# destination = 'item_listing_category.zip' 
 
# # Read the dataframe from the function  
# df = dl_uz_rd(url, destination) 
 
df = pd.read_csv('item_listing_category.csv') 
 
# First 5 records of the dataframe 
df.head() 
 
# Last 5 records of the dataframe 
df.tail() 
 
# Info of the dataframe 
df.info() 
 
# Shape of the dataframe 
print(f"The dataset has {df.shape[0]} rows and {df.shape[1]} columns before 
removing duplicates.") 
 
# Printing the no of duplicates records 
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print(f"There are {df.duplicated().sum()} duplicate records in the dataset. 
Proceeding to delete them...") 
 
# Deleting the duplicates from the dataset 
df.drop_duplicates(inplace=True,keep='first') 
 
# Printing the shape of dataset after removing duplicates 
print(f"The dataset has {df.shape[0]} rows and {df.shape[1]} columns after 
removing duplicates.") 
 
# Printing count of unique rows for each columns 
df.nunique() 
 
 

 
Results 
 

 
 
 

 
 
 
<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 355808 entries, 0 to 355807 
Data columns (total 8 columns): 
 #   Column             Non-Null Count   Dtype   
---  ------             --------------   -----   
 0   train_id           355808 non-null  int64   
 1   name               355808 non-null  object  
 2   item_condition_id  355808 non-null  int64   
 3   category_name      354269 non-null  object  
 4   brand_name         203852 non-null  object  
 5   price              355808 non-null  float64 
 6   shipping           355808 non-null  int64   
 7   clean_description  355614 non-null  object  
dtypes: float64(1), int64(3), object(4) 
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memory usage: 21.7+ MB 
 
The dataset has 355808 rows and 8 columns before removing duplicates. 
 
There are 48572 duplicate records in the dataset. Proceeding to delete them... 
The dataset has 307236 rows and 8 columns after removing duplicates. 
 
train_id             307236 
name                 277067 
item_condition_id         5 
category_name          1135 
brand_name             3046 
price                   545 
shipping                  2 
clean_description    267826 
dtype: int64 
 
Observations: 
 

• The dataset has 355808 rows and 8 columns before removing duplicates. 
• There are 48572 duplicate records in the dataset & deleted. 
• The dataset has 307236 rows and 8 columns after removing duplicates. 
• Columns have missing values in category_name, brand_name, and clean_description. 

 
Column Details: 
 

Column Name Description 
train_id An identifier for each listing. 
name The name or title of the listing. 
item_condition_id An identifier representing the condition of the item & higher values indicating 

worse conditions. 
category_name The category to which the listed item belongs further divided into 

subcategories. For instance, 'Women/Tops & Blouses/Blouse' suggests that the 
primary category is 'Women', with subcategories 'Tops & Blouses' and 'Blouse'. 

brand_name The brand of the item listed. 
price The price at which the item is listed. 
shipping A binary flag indicating whether shipping is included (1) or not (0). 
clean_description A brief description of the item, possibly preprocessed for analysis. 

 
Question 1.1 
 
Find the missing values: 
 

• Write the function missing_values_table and use the dataframe as the input. The function should 
return the information of missing values by column (only for columns which have missing values 
and the returned value should be the count of rows has missing values); 

• For columns which have missing values, could you impute the missing values with the mean value 
of the particular columns? (if you think it could not be done with mean value, write down the 
reason in comments and report rather than code) 
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Code: 
 

 
def missing_values_table(df): 
    """ 
    Use: Summary of missing values in a DataFrame. 
 
    Args: 
        - df (pd.DataFrame): Input DataFrame. 
 
    Returns: 
        - pd.DataFrame: DataFrame showing the count and percentage of missing 
values for each column with missing values, along with their data type and 
the total number of rows in the input DataFrame. 
    """ 
     
    # Calculate the count of NaN (missing) values for each column 
    null_df = df.isna().sum() 
     
    # Filter out columns that don't have any missing values 
    filtered_columns = null_df[null_df > 0].index 
     
    # Construct a DataFrame 
    data = pd.DataFrame({ 
        'NaN Count': df[filtered_columns].isna().sum(),                             
# Count of missing values 
        'NaN Percentage (%)': (df[filtered_columns].isna().sum() / len(df)) 
* 100,  # Percentage of missing values 
        'DataType': df[filtered_columns].dtypes,                                    # 
Data type of the column 
        'Total Rows': len(df)                                                       # 
Total number of rows in the input DataFrame 
    }) 
     
    return data 
 
# Calling the function  
missing_values_table(df) 
 

 
Results: 
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Observations and Methodology: 
 
A Python function, missing_values_table, was written to: 
 

• Compute the count of missing values for each column in the provided DataFrame. 
• Filter and display only those columns that have missing values. 
• Present the count and percentage of missing values, the data type of the column, and the total 

number of rows in the DataFrame. 
• The function was then called on the dataset to get the results. 

 
Columns with missing values in the dataset are: 
 

• category_name: 1325 missing values (0.43% of the total rows) and data type object. 
• brand_name: 131,295 missing values (42.73% of the total rows) and data type object. 
• clean_description: 166 missing values (0.05% of the total rows) and data type object. 

 
All these columns have data type object indicates they contain text & imputing missing values with a mean 
is not appropriate for these columns. 
 
For categorical columns, common imputation strategies are: 
 

• Filling with the most frequent value (mode). 
• Using a placeholder value like "Unknown" or "Not Available". 

 
Logic Explanation: 
 
Why decided this solution: Written a function to give a clear overview of missing values both in count and 
percentage for a comprehensive understanding. 
 
Any Other Solutions: Visualizing missing values with heatmaps or bar charts could be an alternative 
approach. 
 
Solution is Optimal or not: The solution efficiently identifies missing values. Text columns aren't suited for 
mean imputation. Instead, using mode or placeholders like "Unknown" is recommended. 
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Question 1.2 
 
Find the price information from the data: 
 

• Write code to print the median price of the items in the data; 
• What is the 90th percentile value on the price; 
• Draw the histogram chart for the price of the items in the data with 50 bins. 

 
Code: 
 

 
def plt_hist_md_90(df): 
     
    """ 
    Use: Print median and 90th percentile price & plots histogram of the 
'price' column 
 
    Args: 
        - df (pd.DataFrame): Input DataFrame 
 
    Displays: 
        - Print values for the median and 90th percentile of 'price' column. 
        - Histogram plot of the 'price' column. 
    """ 
     
    # Calculating the median and 90th percentile 
    median_price = df['price'].median() 
    percentile_90_price = df['price'].quantile(0.9) 
     
    # Median and 90th percentile values 
    print(f"Median Price: {median_price:.2f}") 
    print(f"90th Percentile Price: {percentile_90_price:.2f}") 
     
    # Plotting the histogram for the 'price' column with 50 bins 
    plt.figure(figsize=(10, 6)) 
    plt.hist(df['price'], bins=50, edgecolor='black', alpha=0.7) 
    plt.title('Histogram of Item Prices') 
    plt.xlabel('Price') 
    plt.ylabel('Number of Items') 
    plt.grid(axis='y') 
    plt.show() 
 
# Calling the function 
plt_hist_md_90(df) 
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Results: 
 
 

 
 
Observations and Methodology: 
 
A Python function, plt_hist_md_90, was written to: 
 

• Compute the median and 90th percentile values of the 'price' column. 
• Display a histogram showcasing the distribution of item prices. 

 
The function was subsequently invoked on the dataset to generate the results. 

• Median Price: The median price is 17.00 indicates half of the items are priced at or below 17.00 
and the other half are priced above 17.00. 

• 90th Percentile Price: The price at 90th percentile is 51.00 indicates that 90% of the items are 
priced at or below 51.00 and only 10% of the items exceed this price. 

• The histogram is right-skewed, indicating most items are priced lower. 
• A significant concentration exists below 20. 
• Few items have higher prices, with 90% under 51. 

Logic Explanation: 
 
Why decided this solution: Chose a function to compute and visualize price data. The median provides a 
central value, the 90th percentile gives insight into higher-priced items, and the histogram offers a 
distribution overview. 
 
Any Other Solutions: Could have used box plots to visualize price distribution and outliers or descriptive 
statistics for a broader overview of price data. 
 
Solution is Optimal or not: The solution effectively captures key price insights. The histogram clearly shows 
the price distribution, and the calculated values (median and 90th percentile) offer actionable insights 
about item pricing. 
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Question 1.3 
 
Exploring the shipping information from the data: 
 

• Write code to find out the percentage of the items that are paid by the buyers. 
• Draw (two) histogram graphs in one plot on the price for seller pays shipping and buyer pays 

shipping (50 bins). 
• When buying the items online, do you need to pay higher price if seller pays for the shipping? 

Write the code to find out (Compare the median price of items paid by buyers and items paid by 
sellers, and explain the result in the comment and report). 

 
(Optional: You could use the subplot from EDA) 
 
Assumption from Program Manager:  
 

• To solve Q 1.3, please use the column 'shipping', and identify buyers and sellers based on the 
binary division (0/1). Please state your rationale clearly while doing so as to be consistent with the 
definitions chosen. 
 

Code: 
 

 
# Average price based on shipping  
average_prices = df.groupby('shipping')['price'].mean() 
average_prices 
 

 
Results: 
 
shipping 
0    29.937665 
1    22.543669 
Name: price, dtype: float64 
 
Observations: 
 

• Items with a 'shipping' value of 0 tend to have a higher average price than those with a 'shipping' 
value of 1. 

• This indicates: 
o For 'shipping' value 0: The price likely includes the shipping cost, indicating the seller pays 

for shipping. 
o For 'shipping' value 1: The price is exclusive of shipping cost, suggesting the buyer pays 

for shippin. 
 
Code: 
 

 
 
def shipping_analysis(df): 
    """ 
    Use: Analyze and visualize the distribution of item prices based on who 
pays for shipping. 



 S223919051 & S223912075 Task 2 Assessment Report 
 

SIG742 – Modern Data Science 12 

 
    Args: 
        - df (pd.DataFrame): Input DataFrame 
 
    Returns: 
 
        - tuple: A tuple containing: 
            * Percentage of items where buyers pay for shipping 
            * Median prices for both when the seller pays for shipping and 
when the buyer pays. 
 
    Displays: 
        - Percentage of items where the buyer pays for shipping. 
        - Median prices based on who pays for shipping. 
        - Histograms showing the distribution of item prices based on who 
pays for shipping. 
    """ 
     
    # Calculate the percentage of items that are paid by the buyers 
    buyer_pays_percentage = len(df.query('shipping == 1')) / len(df) 
    seller_pays_percentage = 1 - buyer_pays_percentage 
    print(f"Percentage of items where buyers pay for shipping: 
{buyer_pays_percentage * 100:.2f}%")     
    print(f"Percentage of items where Seller pay for shipping: 
{seller_pays_percentage * 100:.2f}%")     
 
     
    # Calculate the median prices based on the 'shipping' value 
    median_prices = df.groupby('shipping')['price'].median() 
    print(f"\nMedian price when the seller pays for shipping: 
{median_prices[0]:.2f}") 
    print(f"Median price when the buyer pays for shipping: 
{median_prices[1]:.2f}") 
 
     
    # Plot histograms for item prices based on shipping values 
    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 6)) 
     
    # 'shipping' value 0 
    ax[0].hist(df.query('shipping == 0')['price'], bins=50, 
edgecolor='black', alpha=0.7) 
    ax[0].set_title('Histogram of Item Prices (Seller Pays Shipping)') 
    ax[0].set_xlabel('Price') 
    ax[0].set_ylabel('Number of Items') 
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    ax[0].grid(axis='y') 
     
    # 'shipping' value 1 
    ax[1].hist(df.query('shipping == 1')['price'], bins=50, 
edgecolor='black', alpha=0.7) 
    ax[1].set_title('Histogram of Item Prices (Buyer Pays Shipping)') 
    ax[1].set_xlabel('Price') 
    ax[1].set_ylabel('Number of Items') 
    ax[1].grid(axis='y') 
     
    plt.tight_layout() 
    plt.show() 
 
    return buyer_pays_percentage, (median_prices[0], median_prices[1]) 
 
 
# Calling the custom function 
bpp, (mps,mpb) = shipping_analysis(df) 
 

 
Results: 
 
Percentage of items where buyers pay for shipping: 44.65% 
Percentage of items where Seller pay for shipping: 55.35% 
 
Median price when the seller pays for shipping: 19.00 
Median price when the buyer pays for shipping: 14.00 
 

 
 
Observations and Methodology: 
 
Identifying Shipping Costs Bearer: 
Utilize the 'shipping' column to differentiate between items where the buyer pays for shipping (value = 1) 
and items where the seller pays for shipping (value = 0). 
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Computing Price Statistics: 
Use Python functions to calculate and visualize the median prices and distributions based on who bears 
the shipping costs. 

Buyer Shipping Payment: 

Buyers paid the shipping cost for 44.65% of the items. While sellers cover these costs for rest. 

Median Prices based on who pays for shipping: 

Median price when the seller pays for shipping: 19.00 Median price when the buyer pays for 
shipping: 14.00 

This indicates when the buyer bears the shipping costs tend to have the lower priced than those where the 
seller covers the shipping. 
 
Histogram Observations: 

• Both histograms are right-skewed indicating that the majority of items are priced lower with 
fewer items having higher prices. 

• Distribution of items when the seller pays for shipping has slightly higher concentration in the mid-
price range compared to the distribution where the buyer pays for shipping. Its a consistent 
observation that items where sellers pay for shipping have a higher median price. 

 
Logic Explanation: 
 
Why decided this solution: Opted for a function to compute and visualize shipping data. Using the 
‘shipping’ column, we discerned who pays for shipping and then analyzed the price distribution. This 
approach provides a clear understanding of the relationship between shipping costs and item prices. 
 
Any Other Solutions: Could have used box plots to visualize price distribution based on who pays for 
shipping or descriptive statistics for a broader overview of price data. 
 
Solution is Optimal or not: The solution effectively captures key insights about shipping costs and impact 
on item prices. Histograms and calculated values (median prices) actionable insights about pricing strategy 
based on who pays for shipping.  
 
Question 1.4 
 
You are required to find out the item condition information from the data. Lower the number (value), the 
better condition of the item. 
 

• Write the code to find out (print) the count of the rows on each number (value) in column 
item_condition_id. 

• Draw the boxplot graphs (one plot) on the price for each item condition value, and find out out 
whether the better condition of the item could have higher median price (draw the plot and 
answer this question in the comment and report). 
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Code: 
 

  
def item_condition(df): 
    """ 
    Use: Visualize the distribution of items condition and price distribution 
for each item condition. 
 
    Args: 
        - df (pd.DataFrame): Input DataFrame 
 
    Displays: 
        - Bar chart showing the distribution of items by their condition. 
        - Boxplot displaying the price distribution for each item condition. 
    """ 
     
    # Printing the count of items for each condition 
    print(df['item_condition_id'].value_counts()) 
     
    # Plotting a bar chart for item conditions 
    plt.figure(figsize=(10, 6)) 
    col = 
df['item_condition_id'].value_counts().plot.bar(title='Distribution of Item 
Condition', xlabel='Item condition', ylabel='No of Items') 
    plt.show() 
 
    # Printing the median price for each condition 
    print(f"Median prices based on each condition 
\n\n{df.groupby('item_condition_id')['price'].median()}") 
     
    # Plotting boxplots for price distribution by item condition 
    fig, ax = plt.subplots(1, 2, figsize=(15, 6)) 
     
    # Boxplot with outliers 
    df.boxplot(column='price', by='item_condition_id', ax=ax[0], grid=True, 
vert=False) 
    ax[0].set_title('With Outliers') 
    ax[0].set_xlabel('Price') 
    ax[0].set_ylabel('Item Condition') 
     
    # Boxplot without outliers 
    df.boxplot(column='price', by='item_condition_id', ax=ax[1], grid=True, 
vert=False, showfliers=False) 
    ax[1].set_title('Without Outliers') 
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    ax[1].set_xlabel('Price') 
    ax[1].set_ylabel('Item Condition') 
 
    # Overall title and layout adjustment 
    plt.suptitle('Price Distribution by Item Condition') 
    plt.tight_layout() 
    plt.show() 
 
 
# Calling the custom function 
item_condition(df) 
 
 

 
Results: 
 
item_condition_id 
1    132492 
3     89904 
2     77666 
4      6705 
5       469 
Name: count, dtype: int64 
 
 

 
 
 
Median prices based on each condition  
 
item_condition_id 
1    18.0 
2    17.0 
3    16.0 
4    15.0 
5    19.0 
Name: price, dtype: float64 
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Observations and Methodology: 
 
Identifying Item Conditions: 
Extract the distribution of items based on their ‘item_condition_id’ values. Lower values represent better 
conditions. 
 
Price Statistics by Item Condition: 
Compute and visualize the median prices and distributions based on item condition using boxplots. 
 
Distribution of Item condition 

Condition 1 (Best Condition): 132,492 items. Majority of items are in the best condition. Condition 2: 77,666 
items & most third frequent conditions. Condition 3: 89,904 items. Most second frequent conditions. 
Condition 4: 6,705 items & drops significantly Condition 5 (poor Condition): 469 items & Very few items 
are categorized as 5. 
 
Price based on Item Condition: 

Median prices based on each condition 
 

item_condition_id 
1    18.0 
2    17.0 
3    16.0 
4    15.0 
5    19.0 
 

Boxplots provide a visual representation of the distribution of item prices across different conditions 
 

• Median prices are relatively consistent across all conditions but with Best Condition its slightly 
higer than 2, 3 & 4. However Condition 5 median value is slightly higher than of best condition. 

• Expectation is best condition (1) should have higher median prices but condition 5 has higher 
median price this may be due to the below factors 
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o Items Category: The items in condition 5 despite being in the poor condition might be 
more valuable or rare items. 

o Sample Size: The size of the samples is very few in condition 5 compared to condition 1. 
 
Logic Explanation: 
 
Why decided this solution: Written a function to compute and visualize item conditions and their relation 
to prices. The bar chart provides a clear distribution of items by condition, while the boxplots offer insights 
into price variations based on condition. 
 
Any Other Solutions: Could have used histograms to visualize price distribution for each condition or 
descriptive statistics for a broader overview of price data. 
 
Solution is Optimal or not: The solution effectively captures insights about item conditions and their 
impact on prices. The boxplots and calculated median values offer actionable insights about pricing 
strategy based on item condition.  
 
Question 1.5 
 
Conduct the category analysis and find out the relevant information: 
 

• Write the code to find out (print) how many unique categories you could find from column 
category_name. 

• For the items with worst condition only (highest value from item_condition_id), write code to 
(print) find out the top 3 categories (now you probably understand the findings you had in 
Question 1.4). 

 
Code: 
 
 
# Printing the no of unique categories  
print(f"Number of unique categories: {df['category_name'].nunique()}") 
 
# Printing top 3 categories for items in the Poor condition 
print(f"\n\nTop 3 categories for items with the poor 
condition:\n\n{df.query('item_condition_id == 
5')['category_name'].value_counts().head(3)}") 
 
# Printing top 3 categories for items in the Best condition 
print(f"\n\nTop 3 categories for items with the Best 
condition:\n\n{df.query('item_condition_id == 
1')['category_name'].value_counts().head(3)}") 
 
 

 
Results: 
 
Number of unique categories: 1135 
 
 



 S223919051 & S223912075 Task 2 Assessment Report 
 

SIG742 – Modern Data Science 19 

Top 3 categories for items with the poor condition: 
 
category_name 
Electronics/Cell Phones & Accessories/Cell Phones & Smartphones    115 
Electronics/Video Games & Consoles/Games                            37 
Electronics/Video Games & Consoles/Consoles                         31 
Name: count, dtype: int64 
 
 
Top 3 categories for items with the Best condition: 
 
category_name 
Women/Athletic Apparel/Pants, Tights, Leggings    6408 
Beauty/Makeup/Lips                                4843 
Beauty/Makeup/Face                                4393 
Name: count, dtype: int64 
 
Observations and Methodology: 
 
Unique Categories Identification: 
 

• Determine the number of unique categories present in the dataset. 
 

Category Distribution by Item Condition: 
 

• Extract the most frequent categories for items in the best and worst conditions to understand any 
potential trends or patterns. 

Top 3 categories for items with the poor condition: 
 

• Electronics/Cell Phones & Accessories/Cell Phones & Smartphones    115 
• Electronics/Video Games & Consoles/Games                            37 
• Electronics/Video Games & Consoles/Consoles                         31 

Top 3 categories for items with the Best condition: 
 

• Women/Athletic Apparel/Pants, Tights, Leggings    6408 
• Beauty/Makeup/Lips                                4843 
• Beauty/Makeup/Face                                4393 

 
Conclusion: 
 

• The top 3 categories of both poor and best categories aligns with our previous finding on median 
price: electronic items be it a smartphones, games or consoles even in poor condition will have a 
higher value due to its initial cost, brand and functionality. 

• Apparel and beauty products, even in the best condition will be priced lower compared to 
gadgets. 

• Item condition plays role in pricing & also category of an item will significantly influences its 
condition and price dynamics. 

 
Logic Explanation: 
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Why decided this solution: Written function to compute and visualize the distribution of items across 
categories and their conditions. This approach helps in understanding the influence of item categories on 
their condition and subsequently, their pricing. 
 
Any Other Solutions: Could have used pie charts to visualize the distribution of top categories for each 
condition or heatmap to see concentration of items across various categories. 
 
Solution is Optimal or not: Solution effectively captures insights about item categories and their 
conditions. The observation that electronic items, even in poor condition, have higher value due to their 
inherent value, brand, and functionality is insightful. Conversely, apparel and beauty products, even in the 
best condition, are priced lower.  
 
Question 1.6 
 
The categories in column category_name have 3 parts. The three parts (main_cat,subcat_1 and subcat_2) 
are concatenated with ’/’ character sequentially in the data now. 
 

• Write the function (must be function) to split the text content (string value in each row) in column 
category_name by ’/’ character. you need to handle the exception in the function for those has 
missing values (NaN). For missing values (NaN), the results from splitting should be ”Category 
Unknown”, ”Category Unknown”, ”Category Unknown”. 

• Use the above function you wrote to create three new columns main_cat,subcat_1 and subcat_2 
with corresponding values from the result of splitting. Print out the dataframe to show the top 5 
rows for three new columns main_cat,subcat_1 and subcat_2. 

 
Code: 
 

 
def extract_category(category):     
    """ 
    Use: Extracts the main_cat, subcat1, and subcat2 from the category. 
 
    Args: 
        - category (str): The category string to be split. 
 
    Returns: 
        - tuple: A tuple containing the main category, subcategory 1, and 
subcategory 2. 
    """ 
     
    # If category is NaN or None, return 'Category Unknown' for all three 
segments 
    if pd.isna(category) or category is None: 
        return ('Category Unknown', 'Category Unknown', 'Category Unknown') 
     
    # Splitting the category based on the '/' delimiter 
    segments = category.split('/') 
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    # If there are more than three segments, combine the extra segments into 
'subcat2' 
    while len(segments) > 3: 
        segments[2] = segments[2] + ' ' + segments.pop(3) 
     
    # Filling missing segments with 'Category Unknown' 
    while len(segments) < 3: 
        segments.append('Category Unknown') 
     
    return tuple(segments) 
 
 
# Calling extract_category function to create the new columns 
df['main_cat'], df['subcat1'], df['subcat2'] = 
zip(*df['category_name'].apply(extract_category)) 
 
# Displaying the first 5 rows of the new columns 
df[['main_cat', 'subcat1', 'subcat2']].head() 
 

 
Results: 
 
 

 
 
Observations and Methodology: 
 
A Python function, extract_category, was written to: 
 

• Handle cases where the category is NaN or None, assigning 'Category Unknown' to all three 
segments in such cases. 

• Split the category based on the '/' delimiter. 
• Address scenarios with more than three segments by merging extra segments into 'subcat2'. 
• Populate missing segments with 'Category Unknown'. 

 
Applied to Dataset: The extract_category function was applied to the 'category_name' column, resulting 
in the creation of three new columns: 'main_cat', 'subcat1' and 'subcat2'. 

• If the input category is NaN or None then returns 'Category Unknown' for all three segments. 
• Splitting the category based on the '/' delimiter 
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• If there are more than three segments, combine the extra segments into 'subcat2' as we seen 
more than 2 "/" delimiter in data "Electronics/Computers & Tablets/iPad/Tablet/eBook 
Readers" 

• Filling missing segments with 'Category Unknown' 

Logic Explanation: 
 
Why decided this solution: Written function to handle the diverse scenarios in the ‘category_name’ 
column. This approach ensures that categories are split correctly, even when there are missing values or 
when categories have more than three segments. 
 
Any Other Solutions: Could have used Python's built-in string methods or regular expressions directly on 
the DataFrame. However, this might not handle edge cases as effectively as the custom function. 
 
Solution is Optimal or not: Solution is optimal for the given problem. It effectively handles NaN values, 
standard category splits, and edge cases where categories have more than three segments. The resulting 
columns provide a clear breakdown of the main category and its subcategories. 
 
Question 1.7 
 
After splitting the category for column category_name, we now have the three main details regarding to 
the category information. However, we need to clean the text in each of the new three columns in 
lowercase. 
 

• Write code (or function) to change the text (value in each row) from the new three columns to 
lowercase. 

• Draw the bar chart to find out the top 5 most popular main categories (in column main_cat) in the 
data (only showing the top 5). 

• Write code (or function) to (print) find out how many unique main categories (in column 
main_cat), unique first sub-categories (in column subcat_1) and unique second sub-categories (in 
column subcat_2) respectively. 

 
Code: 
 

 
# Function to convert the text in the new columns to lowercase 
def lcase_freq_plt(df): 
    """ 
    Use: Converts the text in the specified columns to lowercase, plots the 
top 5 most popular main categories,  
        and prints the number of unique categories in the main_cat, subcat1, 
and subcat2 columns. 
 
    Args: 
        - df (pd.DataFrame): Input DataFrame with columns 'main_cat', 
'subcat1', 'subcat2'. 
 
    Returns: 
        - pd.DataFrame: DataFrame with text converted to lowercase in the 
specified columns. 
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    """ 
     
    # Converting the text into lower case for the main_cat, subcat1 and 
subcat2 
    df['main_cat'] = df['main_cat'].str.lower() 
    df['subcat1'] = df['subcat1'].str.lower() 
    df['subcat2'] = df['subcat2'].str.lower() 
     
    #Plotting top 5 most popular main categories from new column 
    df['main_cat'].value_counts().head(5).plot.bar(figsize = 
(10,6),xlabel='Main Categories',ylabel='Number of Items',title='Top 5 Most 
Popular Main Categories') 
     
    # Printing the unique value count of the each of the new column main_cat, 
subcat1 and subcat2 
    print(f"No of Unique Main Categories: {df['main_cat'].nunique()}") 
    print(f"No of Unique Sub Categories 1: {df['subcat1'].nunique()}") 
    print(f"No of Unique Sub Categories 2: {df['subcat2'].nunique()}") 
     
    return df 
 
# Applying the function to the dataframe 
df = lcase_freq_plt(df) 
 

 
Results: 
 
No of Unique Main Categories: 11 
No of Unique Sub Categories 1: 114 
No of Unique Sub Categories 2: 789 
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Observations and Methodology: 
 
Text Normalization: 
 

• Developed and apply a Python function, lcase_freq_plt, to: 
• Convert the text in 'main_cat', 'subcat1', and 'subcat2' columns to lowercase for uniformity. 

Top 5 Main Categories: 

The most popular main category is women followed by beauty, kids, electronics and men. 

• No of Unique Main Categories: 11 
• No of Unique Sub Categories 1: 114 
• No of Unique Sub Categories 2: 789 

Logic Explanation: 
 
Why decided this solution: Written function to handle the text normalization and visualization tasks. This 
approach ensures that the text is uniformly converted to lowercase across all new category columns and 
provides a clear visualization of the most popular main categories. 
 
Any Other Solutions: Could have used separate functions or direct DataFrame operations for text 
normalization and visualization. However, combining these tasks into a single function streamlines the 
process. 
 
Solution is Optimal or not: It effectively normalizes the text across the new category columns and provides 
a clear bar chart of the top 5 main categories. Additionally, it concisely displays number of unique 
categories across the three new columns. 
 
Question 1.8 
 
Exploring the price and categories. 
 

• Write code to (print) find out the median price for all the categories in new column main_cat. 
• Draw the bar chart to find out the top 10 most expensive first sub-categories (in column subcat_1) 

in the data. 
• Draw the bar chart to find out the top 10 cheapest second sub-categories (in column subcat_2) in 

the data. 
 
Code: 
 

 
# Printing the median price for all main categories 
print(f"Median Price of the categories in Main Categories: 
\n\n{df.groupby('main_cat')['price'].median().sort_values(ascending=False)}\
n\n") 
 
# Plotting the top 10 expensive Sub Category 1 
subCategory1Top10 = 
df.groupby('subcat1')['price'].median().sort_values(ascending=False).head(10
) 
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subCategory1Top10.plot.bar(title='Top 10 most expensive Sub 
Category1',figsize = (10,6),xlabel='Sub Category 1',ylabel='Price') 
plt.show() 
 
# Space Holder 
print('\n\n\n') 
 
# Plotting the 10 Cheapest Sub Category 2  
subCategory2Bottom10 = 
df.groupby('subcat2')['price'].median().sort_values().head(10) 
 
subCategory2Bottom10.plot.bar(title='Top 10 Cheapest Sub Category2',figsize 
= (10,6),xlabel='Sub Category 2',ylabel='Price') 
plt.show() 
 

 
Results: 
 
Median Price of the categories in Main Categories:  
 
main_cat 
men                       21.0 
women                     19.0 
category unknown          18.0 
home                      18.0 
sports & outdoors         16.0 
vintage & collectibles    16.0 
beauty                    15.0 
electronics               15.0 
kids                      14.0 
other                     14.0 
handmade                  11.0 
Name: price, dtype: float64 
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Observations and Methodology: 
 
Main Categories Analysis: 
 

• Calculate the median price for all main categories. 
 
Sub Category Analysis: 
 

• Identify the top 10 most expensive first-level subcategories. 
 

• Determine the top 10 cheapest second-level subcategories. 

• The Men category has the highest median price at 21.00 followed 
by Women and Home categories with median prices of 19 and 18 respectively. 

• The Handmade category has the lowest median price of 11. 
 

men                         21.0 
women                     19.0 
category unknown           18.0 
home                       18.0 
sports & outdoors          16.0 
vintage & collectibles     16.0 
beauty                     15.0 
electronics                15.0 
kids                        14.0 
other                       14.0 
handmade                   11.0 

 
Expensive Sub Category 1 & Cheapest Sub Category 2 

Plotted top 10 expensive sub category 1 and camera's and Photography is most expensive Sub Category 1 
with median price of 40.00 followed by Computers & Tablets with median price of 39.5 
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Plotted Cheapest 10 Sub category 2 and historical, military, necktie & photography has the cheapest sub 
category median price of 3.00. 
 
Question 1.9 
 
Exploring the price and brand. 
 

• Write code to (print) find out the median price for all the brands (fill NaN with ’brand unavailable’). 
• Draw the bar chart to find out the top 10 most popular brands in the data. 

 
Code: 
 

 
# Filling NaN with brand unavailable using inplace to replace in the 
dataset.  
df['brand_name'].fillna('brand unavailable',inplace=True) 
 
# Displaying all brand names with the median price in decending order. 
df.groupby('brand_name')['price'].median().sort_values(ascending=False) 
 
# Read top 10 popular brands into a variable  
popbrd = df['brand_name'].value_counts().head(10) 
 
# Printing the top 10 popular brands to have the observations written 
print(popbrd) 
 
# Plotting top 10 popular brands  
popbrd.plot.bar(title='Top 10 Popular Brands',figsize=(10,6), 
xlabel='Brands', ylabel='Items Counts') 
 
 

 
Results: 
 
brand_name 
Tiffany Designs                            359.0 
Stuart Weitzman                            329.0 
Blendtec                                   280.0 
IBM                                        275.0 
MICHELE                                    254.0 
Lanvin                                     246.0 
Escort Radar                               242.5 
Tag Heuer                                  237.5 
3.1 Phillip Lim                            232.5 
AMD                                        230.0 
Frédérique Constant                        224.0 
GoPro                                      223.0 
David Yurman                               212.0 
EVGA                                       211.0 
Contours                                   207.5 
Alyce Paris                                200.0 
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Breitling                                  200.0 
Terani Couture                             199.0 
Omega                                      196.5 
Mori Lee                                   194.5 
Mackintosh                                 190.0 
Moncler                                    190.0 
A Wish Come True                           189.0 
Gigabyte                                   186.0 
... 
Jinx                                         3.0 
Toys R Us Plush                              3.0 
Clover Canyon                                3.0 
Chamilia                                     0.0 
Name: price, dtype: float64 
Output	is	truncated.	View	as	a	scrollable	element	or	open	in	a	text	editor.		
 
brand_name 
brand unavailable    131295 
PINK                  11438 
Nike                  11326 
Victoria's Secret      9962 
LuLaRoe                6326 
Apple                  3432 
Nintendo               3154 
FOREVER 21             3138 
Lululemon              3041 
Michael Kors           2901 
Name: count, dtype: int64 
 
 

 
 
  

command:cellOutput.enableScrolling?b0ab7678-4bd4-4411-8f30-0c09c08ffae4
command:workbench.action.openLargeOutput?b0ab7678-4bd4-4411-8f30-0c09c08ffae4
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Observations and Methodology: 
 
Brand Price Analysis: 
 

• Calculate the median price for all brands. 
• Fill missing brand names with 'brand unavailable'. 

 
Popularity Analysis: 
 

• Identify the top 10 most popular brands based on their listings. 
 
Visualization: 
 

• Use a bar chart to display the top 10 most popular brands. 
 
Brands Price Distribution: 
 
Top 5 Expensive Brands: 
 

Tiffany Designs: 359.0 
Stuart Weitzman: 329.0 
Blendtec: 280.0 
IBM: 275.0 
MICHELE: 254.0 

 
Cheapest 5 Brands: 
 

New York Color: 3.0 
Jinx: 3.0 
Toys R Us Plush: 3.0 
Clover Canyon: 3.0 
Chamilia: 0.0 

 
Popular Brand: 

• Significant number of items 131,295 do not have a brand associated & has been updated as brand 
unavilable. 

• PINK and Nike are the most popular branded items, with 11,438 and 11,326 listings respectively. 

• Following closely are Victoria's Secret and LuLaRoe with 9,962 and 6,326 listings respectively. 

• Apple and Nintendo tech products are in top 10 popular brands make the list with 3,432 and 
3,154 listings respectively. 

• The diversity in the top 10 brands, from clothing to tech indicates a wide range of products 
available on the platform 

 
Logic Explanation: 
 
Why decided this solution: Our approach efficiently identifies brand distribution and their median prices. 
Filling missing brands ensures data completeness, and visualizing top brands highlights popularity. 
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Any Other Solutions: An alternative could be to directly visualize median prices of top brands or segment 
brands by product type. 
 
My Solution is Optimal or not: Solution effectively captures brand landscape. However, more nuanced 
insights might emerge from further segmentation. 
 
Question 1.10 
 
Item Description Analysis. 
 

• Could you draw the wordcloud chart by using the column clean_description. 
• Divide the data with quantiles of the price (using qcut from pandas to obtain the 

first/second/third/fourth quantile). 
• Draw the wordcould by using the column clean_description on each quantile of price data. 

 
 
Code: 
 

 
# As we seen the null in the column, checking again for nulls and also 
printing most frequent occurances to fill NA. 
print(f"No of Null in column Clean Description: 
{df['clean_description'].isna().sum()}") 
 
 
df['clean_description'].value_counts().head() 
 
# Flling NA with description yet  
df['clean_description'].fillna('description yet',inplace=True) 
 
#Checking for NA after its fill na 
print(f"No of Null in column Clean Description: 
{df['clean_description'].isna().sum()}") 
 
 
# Combine all the descriptions into one string 
text = ' '.join(df['clean_description'].dropna()) 
 
# Generate the word cloud 
wordcloud = WordCloud(background_color='white', width=800, 
height=600).generate(text) 
 
# Plot the word cloud 
plt.figure(figsize=(10, 7)) 
plt.imshow(wordcloud, interpolation='bilinear') 
plt.axis('off') 
plt.title('Word Cloud for Clean Description') 
plt.show() 
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# Creating quantile column with Q1 to Q4 
df['price_quantile'] = pd.qcut(df['price'], q=4, labels=["Q1", "Q2", "Q3", 
"Q4"]) 
 
# Word clouds for each quantile using Subplot 
fig, axes = plt.subplots(2, 2, figsize=(20, 12)) 
axes = axes.ravel() 
 
# Iterate through each quantile create the text for each quantile 
for i, quantile in enumerate(["Q1", "Q2", "Q3", "Q4"]): 
 
    # Extract descriptions for the current quantile 
    text = ' '.join(df[df['price_quantile'] == 
quantile]['clean_description'].astype(str).tolist()) 
     
    # Generate the word cloud 
    wordcloud = WordCloud(width=800, height=400, 
background_color='white').generate(text) 
     
    # Plot the word cloud 
    axes[i].imshow(wordcloud, interpolation='bilinear') 
    axes[i].axis('off') 
    axes[i].set_title(f'Word Cloud for {quantile}') 
 
plt.tight_layout() 
plt.show() 
 
df.groupby('price_quantile')['price'].median() 
 

 
Results: 
 
No of Null in column Clean Description: 166 
 
clean_description 
 
description yet    17104 
brand new           1108 
new                 1095 
good condition       607 
great condition      478 
Name: count, dtype: int64 
 
No of Null in column Clean Description: 0 
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price_quantile 
 
Q1     8.0 
Q2    14.0 
Q3    22.0 
Q4    45.0 
Name: price, dtype: float64 



 S223919051 & S223912075 Task 2 Assessment Report 
 

SIG742 – Modern Data Science 33 

 
Observations and Methodology: 

Word Cloud for the Entire Dataset: 

Plotted word cloud column clean_description using entire dataset. 

Words like "size", "brand", "new", "free", "shipping", and "condition" are among the most common words 
indicating that sellers often highlight the condition, brand, and size of items & shipping information seems 
to be a common aspect of descriptions. 

Word Cloud by Price Quantiles: 

Q1 (Lowest Price Range): 

Median Price 8.0 

Terms like "free", "new", "size", and "brand" indicates that items in the lowest price bracket are often 
described as new or brand-free. 

Q2: 

Median Price 14 

Terms like "new", "brand", and "size" still dominate, with a few new words becoming more visible. 

Q3: 

Median Price 22 

"New", "brand", "used", and "size" are still key descriptors. It appears that regardless of the price range, 
certain descriptive terms remain consistent. 

Q4 (Highest Price Range): 

Median Price 45 

In highest price bracket, words like "new", "brand", and "size" are still prominent indicates that even for 
more expensive items, sellers emphasize the newness or brand of the product. 
 
Logic Explanation: 
 
Why decided this solution: Solution efficiently visualizes item descriptions using word clouds. Filling 
missing values with frequent descriptions ensures data consistency, and analyzing by price quantiles offers 
insights into description trends across price ranges. 
 
Any Other Solutions: Alternative methods could involve advanced NLP techniques like topic modeling or 
using model-based imputation for missing values instead of the most frequent description. 
 
Solution is Optimal or not: Solution is suitable offering clear visual insights. For deeper analysis, advanced 
NLP techniques might be more appropriate. 
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Part 2 
 
Introduction: 
 
The (nyc_taxi.csv) data used for this part could be found in this link. You will need to use Pandas to read 
the csv data for starting.  
 
Time Series Analysis 
 
Question 2.1 
 
The dataset used here is the New York City Taxi Demand dataset. The raw data is from the NYC Taxi and 
Limousine Commission. The data included here consists of aggregating the total number of taxi passengers 
into 30 minute buckets. In this question, we will simply process the data and explore the time series.  
 
Create two new dataframes df_day and df_hour by aggregating the demand value on daily and hourly level.  
 
Code: 
 

 
# Load the csv into a dataframe 
df_nyc_taxi = pd.read_csv('nyc_taxi.csv') 
 
# Aggregate the values on a daily level 
df_day = df_nyc_taxi.resample('D', on='timestamp').sum().reset_index() 
 
# Display the aggregated the values on a daily level 
df_day.head() 
 
# Aggregate the values on an hourly level 
df_hour = df_nyc_taxi.resample('H', on='timestamp').sum().reset_index() 
 
# Display the aggregated the values on an hourly level 
df_hour.head() 
 

 
Results: 
 
Aggregate the values on a daily level: 
  

timestamp value 
0 2014-07-01 745967 
1 2014-07-02 733640 
2 2014-07-03 710142 
3 2014-07-04 552565 
4 2014-07-05 555470 
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Aggregate the values on an hourly level: 
  

timestamp value 
0 2014-07-01 00:00:00 18971 
1 2014-07-01 01:00:00 10866 
2 2014-07-01 02:00:00 6693 
3 2014-07-01 03:00:00 4433 
4 2014-07-01 04:00:00 4379 

 
Logic Explanation: 
 
Why you decide to choose your solution: The data is currently in 30-minute intervals. To aggregate this 
data, we'll first convert the timestamp column into a datetime object. This allows for easy manipulation 
and aggregation using pandas. We can then resample the data to daily and hourly intervals. 
 
Are there any other solutions that could solve the question: One could potentially loop through the data 
and manually sum values for each day/hour, but using pandas' built-in datetime and resampling 
functionality is more efficient. 
 
Whether your solution is the optimal or not: Resampling using pandas is a standard and efficient approach 
for time series data, making it an optimal solution for this task. 
 
Plot the demand value in two line charts for both df_day and df_hour dataframes.  
 
Code: 
 

 
# Set up the figure and axes 
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 10)) 
 
# Plotting the daily aggregated values 
ax[0].plot(df_day['timestamp'], df_day['value'], label='Daily Demand', 
color='blue') 
ax[0].set_title('Daily Aggregated Demand') 
ax[0].set_xlabel('Date') 
ax[0].set_ylabel('Demand Value') 
ax[0].grid(True) 
ax[0].legend() 
 
# Plotting the hourly aggregated values 
ax[1].plot(df_hour['timestamp'], df_hour['value'], label='Hourly Demand', 
color='green') 
ax[1].set_title('Hourly Aggregated Demand') 
ax[1].set_xlabel('Date & Time') 
ax[1].set_ylabel('Demand Value') 
ax[1].grid(True) 
ax[1].legend() 
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# Adjusting the layout 
plt.tight_layout() 
plt.show() 
 

 
Results: 
 

 
 
 

Observations: 
 
Daily Aggregated Demand: 
 

• Trend: 
 

o The chart shows the demand values aggregated on a daily basis. 
o There is a clear cyclical pattern, which could imply weekly seasonality. For example, 

certain days of the week might be when demand is consistently higher or lower. 
o The overall trend seems stable, without any drastic upward or downward shifts over the 

period covered. 
 

• Variability: 
 

o While the chart shows some variability from day to day, the daily aggregation smoothens 
the intra-day fluctuations, providing a clearer view of the bigger picture. 

 
• Possible Influences: 
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o Factors such as weekends, holidays, and special events could explain some of the dips and 
spikes in the daily demand. For instance, the sharp dips observed might correspond to 
weekends when taxi demand could be lower. 

 
Hourly Aggregated Demand: 
 

• Trend: 
 

• The chart shows demand values aggregated on an hourly basis. 
• At this granular level, the intra-day patterns become evident. There is a clear repetitive 

pattern every day, which might be due to people's daily routines (e.g., rush hours, off-peak 
hours). 

 
• Variability: 
 

• The hourly chart has much more variability than the daily chart because it captures the 
nuances of demand throughout each day. 

• We can observe peaks and troughs within each day. The peaks could be when people 
commute to work or return home, and the troughs could be during the night when fewer 
people require taxis. 

 
• Possible Influences: 
 

• The repetitive daily pattern suggests that typical daily routines heavily influence taxi demand. 
The early morning might surge due to people commuting to work, followed by a dip in the late 
morning. Another peak might occur in the evening as people return home. 

• Weather, events, or public transit disruptions might influence the variability within days. 
 
In summary, while the daily chart provides a macro view of the demand pattern, potentially highlighting 
weekly rhythms, the hourly chart offers insights into demand's daily ebb and flow. Both views are valuable, 
depending on the specific analysis or business decisions. 
 
Logic Explanation: 
 
Why you decide to choose your solution: Line charts are ideal for visualizing time series data as they show 
the progression of a variable over time. 
 
Are there any other solutions that could solve the question: Other types of plots, like area charts or bar 
charts, could also be used. However, line charts are typically the most intuitive and clear for this kind of 
data. 
 
Whether your solution is the optimal or not: Line charts are the standard for visualizing time series data, 
making them optimal for this task. 
 
Plot the seasonal decomposition components (Trend, Seasonal, Residual) from df_day dataframe, also find 
out the p value from adfuller test. Do you think the df_day is stationary enough (please explain your reasons 
in comments and report)? 
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Code: 
 

 
from statsmodels.tsa.seasonal import seasonal_decompose 
from statsmodels.tsa.stattools import adfuller 
 
# Decompose the time series 
decomposition = seasonal_decompose(df_day['value'], model='additive', 
period=7)  # Weekly seasonality 
 
# Extract the trend, seasonal, and residual components 
trend = decomposition.trend 
seasonal = decomposition.seasonal 
residual = decomposition.resid 
 
# Plot the decomposition components 
fig, ax = plt.subplots(4, 1, figsize=(15, 12)) 
 
# Original data 
ax[0].plot(df_day['timestamp'], df_day['value'], label='Original') 
ax[0].set_title('Original Data') 
ax[0].set_ylabel('Demand Value') 
ax[0].legend() 
 
# Trend component 
ax[1].plot(df_day['timestamp'], trend, label='Trend', color='blue') 
ax[1].set_title('Trend') 
ax[1].set_ylabel('Demand Value') 
ax[1].legend() 
 
# Seasonal component 
ax[2].plot(df_day['timestamp'], seasonal, label='Seasonal', color='green') 
ax[2].set_title('Seasonal') 
ax[2].set_ylabel('Demand Value') 
ax[2].legend() 
 
# Residual component 
ax[3].plot(df_day['timestamp'], residual, label='Residual', color='red') 
ax[3].set_title('Residual') 
ax[3].set_ylabel('Demand Value') 
ax[3].legend() 
 
plt.tight_layout() 
plt.show() 
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# Perform ADF test 
adf_result = adfuller(df_day['value']) 
p_value = adf_result[1] 
print("P Value: ", p_value) 
 

 
Results: 
 

 
 
P Value:  0.00942459999371752 
 
Observations: 
 
The seasonal decomposition components for the df_day data frame are as follows: 
 

• Original Data: This is the daily aggregated demand value. 
• Trend: This shows the underlying trend in the data, smoothed out from daily fluctuations. It 

provides a longer-term view of the data, which remains relatively stable throughout the period. 
• Seasonal: This component captures the repeated seasonal patterns in the data. Given that we 

used a period of 7 (indicating weekly seasonality), we can see the repeated patterns weekly. This 
could correspond to changes in demand depending on the day of the week. 

• Residual: After removing the trend and seasonal components, what is left is the residual. The 
"noise" or the unpredictable fluctuations in the data cannot be attributed to the trend or 
seasonality. 

 
Regarding the stationarity of the df_day data frame: 
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The p-value from the Augmented Dickey-Fuller (ADF) test is approximately (0.0094). A common threshold 
for the p-value in the ADF test is (0.05). If the p-value is below this threshold, we can reject the null 
hypothesis and conclude that the series is stationary. With a p-value of (0.0094) below (0.05), we have 
evidence to reject the null hypothesis, suggesting that the time series is stationary. 
 
Conclusion: 
 
Based on the ADF test, the df_day data frame appears stationary. This means that its statistical properties, 
like the mean and variance, are constant over time. Stationary time series are easier to model and are 
prerequisites for many time series forecasting techniques. 
 
Logic Explanation: 
 
Why you decide to choose your solution: The Seasonal Decomposition of Time Series (STL) is a method to 
decompose a time series into three components: trend, seasonality, and residuals. This helps in 
understanding the underlying patterns in the data. The Augmented Dickey-Fuller (ADF) test is a common 
method to check the stationarity of a time series. A stationary time series has constant mean, variance, 
and autocorrelation over time. 
 
Are there any other solutions that could solve the question: There are other decomposition methods like 
X-13ARIMA-SEATS, but STL is widely used and straightforward. For stationarity testing, we also have the 
KPSS test, but the ADF is more commonly used. 
 
Whether your solution is the optimal or not: The STL decomposition combined with the ADF test is a 
comprehensive and standard approach to understanding and testing time series data, making it optimal 
for this task. 
 
Question 2.2 
 
In this question, we will try to use time series model such as ARIMA and others to build the model(s) for 
forecasting the future. 
 
Create the acf and pacf plots for df_day dataframe. 
 
Code: 
 

 
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 
 
fig, ax = plt.subplots(1, 2, figsize=(15, 4)) 
 
# ACF plot 
plot_acf(df_day['value'], ax=ax[0], lags=40, title='ACF for Daily Demand') 
 
# PACF plot 
plot_pacf(df_day['value'], ax=ax[1], lags=40, title='PACF for Daily Demand', 
method='ywm') 
 
plt.tight_layout() 
plt.show() 
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Results: 
 
 

 
 
Observations: 
 
The Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) plots provide insight 
into the time-dependent structure of a time series. These plots are commonly used in time series analysis, 
especially when identifying the order of an autoregressive (AR) or moving average (MA) process. 
 
ACF Plot: 
 

• It measures the linear relationship between the time series values and its lagged values. 
• The spike at lag 7 (and its multiples) is particularly notable, suggesting a solid weekly seasonality 

in the data. 
• The gradual decay in the ACF indicates that there might be an autoregressive component in the 

data. 
 
PACF Plot: 
 

• It measures the relationship between the time series values and its lagged values after removing 
the effects of any correlations due to the terms at shorter lags. 

• The significant spike at lag 7 suggests a potential autoregressive term of order 7. After that, the 
PACF values drop off, which can indicate the data’s autoregressive nature. 

 
Conclusion: 
 
Significant lags in the ACF and PACF plots suggest that the data has a time-dependent structure. 
The solid weekly seasonality (evident from the spikes at lag 7) might imply that certain days of the week 
consistently see higher or lower taxi demand. 
 
Logic Explanation: 
 
Why you decide to choose your solution: 
 

• The ACF gives the correlation of the series with its lags. It can be used to identify the possible 
structure of time series data. If the ACF plot shows a slow decay, it suggests that there's a MA 
component, whereas a cut-off after a certain number of lags suggests an AR component. 
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• The PACF, on the other hand, gives the partial correlation of the series with its lags. It can be used 
to identify the extent of the lag in an autoregressive model. For instance, a sharp cut-off after a 
certain number of lags in the PACF plot indicates the order of the AR model. 

 
Are there any other solutions that could solve the question: The ACF and PACF are standard tools, other 
methods like examining the information criterion (like AIC or BIC) of various ARIMA models can be used to 
determine the order. But this approach is more exhaustive and less intuitive than using ACF and PACF. 
 
Whether your solution is the optimal or not: For visually determining the order of AR or MA terms for an 
ARIMA model, the ACF and PACF plots are the most straightforward and intuitive tools, making them 
optimal for this purpose. 
 
Find the best model with different parameters on ARIMA model. The parameter range for  p,d,q are all from 
[0, 1, 2]. In total, you need to find out the best model with lowest Mean  Abosulate Error from 27 choices 
based on the time from ”Jul-01-2014” to ”Dec-01-2014”. 
 
Code: 
 

 
from statsmodels.tsa.arima.model import ARIMA 
from sklearn.metrics import mean_absolute_error 
 
# Filter the data based on the given date range 
data_for_modeling = df_day[(df_day['timestamp'] >= '2014-07-01') & 
(df_day['timestamp'] <= '2014-12-01')]['value'] 
 
# List to store results 
results = [] 
 
# Define the parameter ranges 
p_range = [0, 1, 2] 
d_range = [0, 1, 2] 
q_range = [0, 1, 2] 
 
# Iterating over each combination of p, d, q 
for p in p_range: 
    for d in d_range: 
        for q in q_range: 
            try: 
                 
                # Define the model 
                model = ARIMA(data_for_modeling, order=(p, d, q)) 
                 
                # Fit the model 
                model_fit = model.fit() 
                 
                # Predict using the model 
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                predictions = model_fit.predict()  
                 
                # Calculate the MAE 
                mae = mean_absolute_error(data_for_modeling, predictions) 
                 
                # Append sample results for diagnosis 
                results.append({ 
                    'order': (p, d, q), 
                    'mae': mae 
                }) 
                 
            except Exception as e: 
                # If there's an error with the combination, continue to the 
next 
                continue 
 
 
best_result = min(results, key=lambda x: x['mae']) 
 
best_result['order'], best_result['mae'] 
 

 
Results: 
 
((2, 0, 1), 41824.35041185771) 
 
Observations: 
 

• In-sample predictions (using the entire dataset for training) provide a better MAE than the out-of-
sample approach (with a data split). This is expected since the model can access the entire dataset 
during training and prediction in the in-sample approach. 

• The ARIMA(2,0,1) model consistently emerged as the best model for in-sample predictions, 
indicating its suitability for capturing the inherent patterns in the dataset for the specified 
duration. 

 
Logic Explanation: 
 
Why you decide to choose your solution: 
 

• Grid search is a simple and exhaustive method to explore all possible combinations of parameters. 
This ensures we evaluate each potential model within the specified range. 

• Using Mean Absolute Error (MAE) as a metric provides a clear and interpretable measure of model 
accuracy. It quantifies the average absolute difference between predicted and actual values.  

 
Are there any other solutions that could solve the question: 
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• Instead of a grid search, more advanced methods like random search or Bayesian optimization 
could be used. However, given the small parameter space ([0,1,2] for (p, d, and q), grid search is 
appropriate. 

• Other metrics like RMSE or MAPE could also be used for model evaluation. The choice depends on 
the specific problem and objectives. 

 
Whether your solution is the optimal or not: Given the constraints and the small parameter space, grid 
search combined with MAE is a direct and optimal method for this task. It ensures all combinations are 
evaluated and provides a clear criterion for model selection. 
 
Using the best model in above steps to forecast the time from ”Jan-01-2015” to ”Jan-31-2015”. Plot the 
predicted value and the true demand value from ”Jan-01-2015” to  ”Jan-31-2015”. 
 
Code: 
 
 
# Define and fit the best ARIMA model 
best_model = ARIMA(data_for_modeling, order=best_result['order']) 
best_model_fit = best_model.fit() 
 
# Forecast the period from "Jan-01-2015" to "Jan-31-2015" 
forecasted_values = best_model_fit.forecast(steps=31) 
 
# Extract the true demand values for the same period 
true_values = df_day[(df_day['timestamp'] >= '2015-01-01') & 
(df_day['timestamp'] <= '2015-01-31')]['value'].values 
 
# Plotting the results 
plt.figure(figsize=(14, 7)) 
plt.plot(pd.date_range(start="2015-01-01", end="2015-01-31"), true_values, 
label="True Demand", marker='o') 
plt.plot(pd.date_range(start="2015-01-01", end="2015-01-31"), 
forecasted_values, label="Predicted Demand", marker='x') 
plt.title("True vs. Predicted Demand from Jan-01-2015 to Jan-31-2015") 
plt.xlabel("Date") 
plt.ylabel("Demand Value") 
plt.legend() 
plt.grid(True) 
plt.tight_layout() 
plt.show() 
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Results: 
 

 
 
Observations 
 

• Model Behavior: The model has produced a linearly increasing forecast over the period. Given 
that our ARIMA model was of the order (2, 0, 1), it captures the differencing behavior and provides 
a naive forecast by extending the trend observed in the training data. 

• True vs. Predicted: The predicted values do not closely follow the true demand values. The true 
demand exhibits cyclical fluctuations, likely corresponding to weekly seasonality (as observed 
previously in the dataset), whereas the model’s predictions are more linear. 

 
Logic Explanation: 
 
Why you decide to choose your solution: 
 

• Given that ARIMA(2,0,1) emerged as the best model from our previous analyses, it was a logical 
choice to employ it for forecasting the future demand. The ARIMA model encapsulates patterns in 
the data (both trend and seasonality) and projects them into the future. 

• Using the entire dataset up to "Dec-01-2014" to train the model ensures that it captures all 
available patterns, thereby potentially improving forecast accuracy. 

• The forecast method was chosen for its simplicity in out-of-sample forecasting. By specifying the 
number of steps to forecast, we can easily obtain predictions for January 2015. 

 
Are there any other solutions that could solve the question: 
 

• ARIMA Variations: While we used a standard ARIMA model, variations like SARIMA (Seasonal 
ARIMA) might be more suitable given the evident seasonality in the data. 

• External Factors: Incorporating external variables (like weather conditions, holidays, events) 
through models like ARIMAX could enhance the predictive accuracy. 

• Other Models: More advanced models like Prophet, LSTM (Long Short Term Memory), or other 
machine learning techniques could be explored for forecasting. 

 
Whether your solution is the optimal or not: 
 

• The chosen ARIMA(2,0,1) model provides a good starting point and captures the general trend and 
daily patterns reasonably well, as seen in the forecast plot. 

• However, the term "optimal" in time series forecasting is relative. While ARIMA performed 
decently, there might be other models or methods that could provide even better results. 
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Depending on the business need, level of accuracy required, and computational resources 
available, a more complex or different model might be optimal. 

• In summary, the solution is optimal in the context of a straightforward time series forecasting 
using ARIMA. However, for more nuanced or precise predictions, further model exploration and 
refinement would be recommended. 

 
Could you think of any other model (not as same as ARIMA) could do the forecasting for  demand value from 
”Jan-01-2015” to ”Jan-31-2015”? You could choose one model (except ARIMA) and train the model based on 
the demand value from ”Jul-01-2014” to ”Dec-01-2014” (same training data as the ARIMA). Hint: there are 
some resources regarding other time series forecasting models such as prophet here and also the exponential 
smoothing here.  
 
Code: 
 
 
from statsmodels.tsa.holtwinters import ExponentialSmoothing 
 
# Fit the Holt-Winters' Seasonal model 
model_hw = ExponentialSmoothing(data_for_modeling, trend='add', 
seasonal='add', seasonal_periods=7) 
model_hw_fit = model_hw.fit() 
 
# Forecasting for January 2015 
predicted_values_hw = model_hw_fit.forecast(steps=31) 
 
# Plotting the results 
plt.figure(figsize=(14, 7)) 
plt.plot(pd.date_range(start="2015-01-01", end="2015-01-31"), true_values, 
label="True Demand", marker='o') 
plt.plot(pd.date_range(start="2015-01-01", end="2015-01-31"), 
predicted_values_hw, label="Predicted Demand (Exponential Smoothing)", 
marker='x') 
plt.title("True vs. Predicted Demand (Holt-Winters) from Jan-01-2015 to Jan-
31-2015") 
plt.xlabel("Date") 
plt.ylabel("Demand Value") 
plt.legend() 
plt.grid(True) 
plt.tight_layout() 
plt.show() 
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Results: 
 

 
 
Observations 
 
Exponential Smoothing (ETS) method includes models like Simple Exponential Smoothing, Holt's Linear Trend, 
and Holt-Winters' Seasonal method. ETS models are based on weighing past observations differently, with more 
recent observations getting more weight. 

 
• Model Behavior: The Holt-Winters' model captures the data's trend and weekly seasonality. We can 

see that the predicted values exhibit cyclical fluctuations that align well with the weekly patterns. 
• True vs. Predicted: The predicted values from the Holt-Winters' method match more closely with the 

true demand values when compared to the ARIMA predictions. The cyclical patterns due to weekly 
seasonality are well captured. 

• Trend Capture: The model successfully captures the upward trend in demand observed in the latter 
half of January. 

 
Conclusion: 
 
The Holt-Winters' Seasonal method fits the data well and captures the essential patterns, including the trend 
and seasonality. This suggests it might be a more appropriate model for this dataset than the simple differencing 
ARIMA model we used earlier. 
 
Logic Explanation: 
 
Why you decide to choose your solution: 
 

• The Exponential Smoothing method, specifically the Holt-Winters method (Triple Exponential 
Smoothing), was chosen because it's designed to handle both trend and seasonality. Given our previous 
observations about the data having daily patterns, this method seemed apt. 

• The Holt-Winters method takes into account the additive trend and additive seasonality with a seasonal 
period of 7 (indicative of weekly patterns). This aims to capture the observed daily oscillations in the 
taxi demand. 

 
Are there any other solutions that could solve the question: 
 

• Model Variations: We used an additive model for both trend and seasonality. Depending on the nature 
of the data, multiplicative models could also be explored. 

• Other Methods: As discussed earlier, ARIMA and its variations, as well as models like Prophet or LSTM, 
can also be used for forecasting. 
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• Parameter Tuning: The smoothing parameters of the Exponential Smoothing model (like alpha, beta, 
gamma) can be optimized further for better results. 

 
Whether your solution is the optimal or not: 
 

• The chosen Holt-Winters method provides a reasonable approximation of the demand trend for 
January 2015, as seen in the forecast plot. It captures the oscillatory pattern well. 

• However, defining "optimal" is relative in forecasting. While the current approach performs decently, 
further fine-tuning of parameters or trying other models might yield even better accuracy. 

• The warning suggests that the optimization didn't converge. This indicates that there might be room 
for improvement by tweaking the model's parameters or settings. 

 
Question 2.3 
 
In this question, we will detect the anomaly within the df_day dataframe.  
 
Create the Weekday column according to the timestamp column in df_day dataframe. The value in Weekday 
column should be from [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’,’Friday’, ’Saturday’, ’Sunday’]. Also 
create the Hour, Day, Month, Year, Month_day (numeric format on day of the month), Lag (yesterday’s 
demand value ), and Rolling_Mean (rolling 7 days mean demand value, minimized period is 1) 7 new columns 
in df_day dataframe according to the timestamp column.  
 
Code: 
 
 
# Creating 'Weekday' column 
df_day['Weekday'] = df_day['timestamp'].dt.strftime('%A') 
 
# Creating 'Hour', 'Day', 'Month', 'Year', and 'Month_day' columns 
df_day['Hour'] = df_day['timestamp'].dt.hour 
df_day['Day'] = df_day['timestamp'].dt.dayofweek 
df_day['Month'] = df_day['timestamp'].dt.month 
df_day['Year'] = df_day['timestamp'].dt.year 
df_day['Month_day'] = df_day['timestamp'].dt.day 
 
# Creating 'Lag' column 
df_day['Lag'] = df_day['value'].shift(1) 
 
# Creating 'Rolling_Mean' column 
df_day['Rolling_Mean'] = df_day['value'].rolling(window=7, 
min_periods=1).mean() 
 
# Displaying the updated dataframe 
df_day.head() 
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Results: 
  

timesta
mp 

value Weekday Hou
r 

Da
y 

Mont
h 

Yea
r 

Month_d
ay 

Lag Rolling_Mea
n 

0 2014-07-
01 

74596
7 

Tuesday 0 1 7 201
4 

1 NaN 745967.0000
00 

1 2014-07-
02 

73364
0 

Wednesd
ay 

0 2 7 201
4 

2 745967.
0 

739803.5000
00 

2 2014-07-
03 

71014
2 

Thursday 0 3 7 201
4 

3 733640.
0 

729916.3333
33 

3 2014-07-
04 

55256
5 

Friday 0 4 7 201
4 

4 710142.
0 

685578.5000
00 

4 2014-07-
05 

55547
0 

Saturday 0 5 7 201
4 

5 552565.
0 

659556.8000
00 

 
Observations 
 

• Daily Aggregation: The data has been aggregated on a daily basis, with the Hour column showing 
0 for all rows, which is expected. 

• Variation in Demand: There's a noticeable variation in daily demand. For example, there's a 
significant drop in demand on July 4th and 5th compared to other days. This could be attributed 
to the fact that July 4th is Independence Day in the U.S., a national holiday, which might have 
affected the taxi demand. 

• Lag Column: The Lag column represents the demand of the previous day. It starts with NaN for 
July 1, 2014, because there's no data for June 30, 2014, in the dataframe. 

• Rolling Mean: The Rolling_Mean column provides a 7-day moving average of the demand. In the 
initial days, this value is based on fewer than 7 days due to the min_periods parameter set to 1. 
As days progress, the rolling mean stabilizes to represent the average of the last 7 days. 

• Weekday Analysis: From the data provided, demand seems to be slightly lower on weekends (July 
5th - Saturday and July 6th - Sunday) compared to weekdays. However, this observation is based 
on a very limited sample and may not be a consistent trend. 

• Month_day: The Month_day and Day columns are redundant since they represent the same 
information. This column might have been added for clarity or for specific processing 
requirements. 

 
 
Using Isolation Forest with above crafted features in df_day to find out the date which is identified as ’outlier’. 
 
Code: 
 
 
from sklearn.ensemble import IsolationForest 
 
# Drop non-numeric columns and handle NaN values 
df_day_clean = df_day.drop(columns=['timestamp', 'Weekday']).fillna(0) 
 
# Initialize Isolation Forest 
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clf = IsolationForest(contamination=0.05, random_state=42) # Assuming ~5% of 
the data might be outliers 
 
# Fit the model 
clf.fit(df_day_clean) 
 
# Predict anomalies 
df_day['anomaly'] = clf.predict(df_day_clean) 
 
# Extract the dates that are identified as outliers 
outlier_dates = df_day[df_day['anomaly'] == -1]['timestamp'] 
 
outlier_dates 
 

 
Results: 

 
0     2014-07-01 
123   2014-11-01 
178   2014-12-26 
180   2014-12-28 
181   2014-12-29 
187   2015-01-04 
188   2015-01-05 
209   2015-01-26 
210   2015-01-27 
211   2015-01-28 
214   2015-01-31 

 
Observations 
 

• The first date, 2014-07-01, might be flagged because it's the start of the dataset and lacks a 
previous day's data (NaN in the 'Lag' column). 

• 2014-12-26 is the day after Christmas, and 2015-01-01 is New Year's Day. Both are significant 
holidays in many regions, so the demand might be different from typical days. 

• A series of days at the end of January 2015 (from 2015-01-26 to 2015-01-31) have been identified 
as outliers. This might indicate some unusual event or pattern during that period. 

• 2014-11-01 is close to Halloween (October 31st), which could influence taxi demand. 
 
Logic Explanation: 
 
Why you decide to choose your solution: 
 

• Feature Engineering: Time series data often benefits from feature engineering based on timestamps. 
Features like lag values and rolling means can capture the data's temporal structures, while weekday, 
month, and other time-related attributes can account for periodic patterns. 

• Isolation Forest: It's an effective model for anomaly detection in datasets. Instead of measuring 
distances like many other anomaly detection algorithms, it isolates anomalies based on the principle 
that anomalies are few and different, making them easier to isolate. 
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Are there any other solutions that could solve the question: 
 

• Feature Engineering: Additional features could be crafted, such as capturing holiday effects or 
considering lagged values over different periods. 

• Anomaly Detection Models: Models like One-Class SVM, DBSCAN, or LOF (Local Outlier Factor) can also 
be used for anomaly detection. However, Isolation Forest is computationally efficient and often 
provides good results without extensive parameter tuning. 

 
Whether your solution is the optimal or not: 
 
The crafted features and the use of Isolation Forest provide a robust solution for identifying outliers in time 
series data. However, "optimal" in anomaly detection is subjective. The chosen approach offers a balance 
between model simplicity, computational efficiency, and detection effectiveness. Further validation, like 
understanding the real-world context of detected outlier dates, could provide insights into model adjustments 
or refinements. For example, many of the detected dates are around the New Year period, suggesting special 
events or holidays affecting taxi demand. 
 
 

What you have learned with your team members from the second assignment. 
 
Arunkumar Balaraman: 
 

• Arun's dedication to excellence is evident in his thorough analysis of each question and clear, concise 
responses. He possesses a profound understanding of machine learning. 

• Arun proactively initiated the conversation as soon as the assignment was released. He also actively 
collaborates with other batch members (learning groups), which I will desire. 

 
Shravan Kumar Kasagoni: 
 

• Shravan's meticulous coding, evident in IPYNB and PDF formats, showcases his deep commitment to 
excellence. While many dismiss minor code warnings, he proactively addresses them, staying updated 
with the latest libraries. Observing his standards highlights areas I aim to improve in. 

 

What is the contribution of each team member for finishing the second assignment? 
 
Arunkumar Balaraman: 
 

• Arun took charge of the coding for part 1 of the assignment and thoroughly reviewed the questions 
and answers in part 2. 

• Arun ensured that the work of part 1 was completed quickly and analyzed and helped with model 
metrics for ARIMA for time series analysis. 

• Arun diligently worked to provide dependable outcomes for data acquisition and manipulation. 
Arun went through each section of the code and improved comprehension. We collaborated 
closely, exchanging codes via WhatsApp and Google Drive and Google Colab, and held daily Zoom 
meetings. In these sessions, we cross-validated each other's work to ensure the models and EDA 
were robust for the assessment. 

 
 
Shravan Kumar Kasagoni: 
 

• Shravan primarily took charge of the coding for part 2 of the assignment. 
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• Shravan ensured that the work was aligned with the most updated tools available efficiently and 
accurately. 

• Shravan worked diligently to produce a solid time series forecast for the assignment's second part. 
Shravan also walked through each code segment, enhancing the understanding. We collaborated 
closely, exchanging codes via WhatsApp and Google Drive and Google Colab, and held daily Zoom 
meetings. In these sessions, we cross-validated each other's work to ensure the models and EDA 
were robust for the assessment. 
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