

SIG742
Modern Data Science

Task 2 Assessment Report

Arunkumar Balaraman & Shravan Kumar Kasagoni
S223919051 & S223912075

Contents
 .. 1

Part I ... 3
Introduction: ... 3
Data Acquisition and Pre-processing .. 3
Column Details: ... 6
Question 1.1 ... 6
Question 1.2 ... 9
Question 1.3 ... 11
Question 1.4 ... 14
Question 1.5 ... 18
Question 1.6 ... 20
Question 1.7 ... 22
Question 1.8 ... 24
Question 1.9 ... 27
Question 1.10 ... 30

Part 2 .. 34
Question 2.1 ... 34
Question 2.2 ... 40
Question 2.3 ... 48

What you have learned with your team members from the second assignment. ... 51
What is the contribution of each team member for finishing the second assignment? .. 51
References ... 52

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 3

Part I

Introduction:

Dataset captures listings a range of items, including apparel, electronics, and tech products, each with
varying conditions. Every listing is distinctively identified using train_id, ID helps us identify the item's
name, state, category, brand, pricing, shipping details and a clean description. The category_name column
stands out with its complexity, segmenting each item into precise categories and subcategories making
way for detailed analysis. This dataset offers a comprehensive exploration into the evolving trends, distinct
patterns, and unique characteristics of the listings, illuminating insights on consumer inclinations, brand
significance, and predominant market tendencies.

Data Acquisition and Pre-processing

Code:

Importing all necessary libraries
import os
import zipfile
import urllib.request
import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import numpy as np
import seaborn as sns
import random

sns.set(color_codes=True)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)

Function to download, UnZip & Read File
def dl_uz_rd(url, destination):
 """
 Use: Downloads, unzips, and reads a file from a given URL.

 Args:
 - url (str): The URL of the file to be downloaded.
 - destination (str): The local path where the downloaded file should
be saved.

 Returns:
 - pd.DataFrame: Data read from the unzipped file.
 """

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 4

 # Download the file
 urllib.request.urlretrieve(url, destination)

 # Unzip the file
 with zipfile.ZipFile(destination, 'r') as zip_ref:
 zip_ref.extractall(os.getcwd())

 # Unzip file is stored in list variable
 extracted_files = zip_ref.namelist()

 # Read the Unzip file to dataframe
 data = pd.read_csv(extracted_files[0])

 return data

Defined the URL from the Problem Statement
url = 'https://github.com/tulip-
lab/sit742/raw/fbd1bb363bc63511ff8895148b4d50f787efbe3f/Jupyter/data/item_li
sting_category.zip'

#Destination File name
destination = 'item_listing_category.zip'

Read the dataframe from the function
df = dl_uz_rd(url, destination)

df = pd.read_csv('item_listing_category.csv')

First 5 records of the dataframe
df.head()

Last 5 records of the dataframe
df.tail()

Info of the dataframe
df.info()

Shape of the dataframe
print(f"The dataset has {df.shape[0]} rows and {df.shape[1]} columns before
removing duplicates.")

Printing the no of duplicates records

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 5

print(f"There are {df.duplicated().sum()} duplicate records in the dataset.
Proceeding to delete them...")

Deleting the duplicates from the dataset
df.drop_duplicates(inplace=True,keep='first')

Printing the shape of dataset after removing duplicates
print(f"The dataset has {df.shape[0]} rows and {df.shape[1]} columns after
removing duplicates.")

Printing count of unique rows for each columns
df.nunique()

Results

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 355808 entries, 0 to 355807
Data columns (total 8 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 train_id 355808 non-null int64
 1 name 355808 non-null object
 2 item_condition_id 355808 non-null int64
 3 category_name 354269 non-null object
 4 brand_name 203852 non-null object
 5 price 355808 non-null float64
 6 shipping 355808 non-null int64
 7 clean_description 355614 non-null object
dtypes: float64(1), int64(3), object(4)

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 6

memory usage: 21.7+ MB

The dataset has 355808 rows and 8 columns before removing duplicates.

There are 48572 duplicate records in the dataset. Proceeding to delete them...
The dataset has 307236 rows and 8 columns after removing duplicates.

train_id 307236
name 277067
item_condition_id 5
category_name 1135
brand_name 3046
price 545
shipping 2
clean_description 267826
dtype: int64

Observations:

• The dataset has 355808 rows and 8 columns before removing duplicates.
• There are 48572 duplicate records in the dataset & deleted.
• The dataset has 307236 rows and 8 columns after removing duplicates.
• Columns have missing values in category_name, brand_name, and clean_description.

Column Details:

Column Name Description
train_id An identifier for each listing.
name The name or title of the listing.
item_condition_id An identifier representing the condition of the item & higher values indicating

worse conditions.
category_name The category to which the listed item belongs further divided into

subcategories. For instance, 'Women/Tops & Blouses/Blouse' suggests that the
primary category is 'Women', with subcategories 'Tops & Blouses' and 'Blouse'.

brand_name The brand of the item listed.
price The price at which the item is listed.
shipping A binary flag indicating whether shipping is included (1) or not (0).
clean_description A brief description of the item, possibly preprocessed for analysis.

Question 1.1

Find the missing values:

• Write the function missing_values_table and use the dataframe as the input. The function should
return the information of missing values by column (only for columns which have missing values
and the returned value should be the count of rows has missing values);

• For columns which have missing values, could you impute the missing values with the mean value
of the particular columns? (if you think it could not be done with mean value, write down the
reason in comments and report rather than code)

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 7

Code:

def missing_values_table(df):
 """
 Use: Summary of missing values in a DataFrame.

 Args:
 - df (pd.DataFrame): Input DataFrame.

 Returns:
 - pd.DataFrame: DataFrame showing the count and percentage of missing
values for each column with missing values, along with their data type and
the total number of rows in the input DataFrame.
 """

 # Calculate the count of NaN (missing) values for each column
 null_df = df.isna().sum()

 # Filter out columns that don't have any missing values
 filtered_columns = null_df[null_df > 0].index

 # Construct a DataFrame
 data = pd.DataFrame({
 'NaN Count': df[filtered_columns].isna().sum(),
Count of missing values
 'NaN Percentage (%)': (df[filtered_columns].isna().sum() / len(df))
* 100, # Percentage of missing values
 'DataType': df[filtered_columns].dtypes, #
Data type of the column
 'Total Rows': len(df) #
Total number of rows in the input DataFrame
 })

 return data

Calling the function
missing_values_table(df)

Results:

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 8

Observations and Methodology:

A Python function, missing_values_table, was written to:

• Compute the count of missing values for each column in the provided DataFrame.
• Filter and display only those columns that have missing values.
• Present the count and percentage of missing values, the data type of the column, and the total

number of rows in the DataFrame.
• The function was then called on the dataset to get the results.

Columns with missing values in the dataset are:

• category_name: 1325 missing values (0.43% of the total rows) and data type object.
• brand_name: 131,295 missing values (42.73% of the total rows) and data type object.
• clean_description: 166 missing values (0.05% of the total rows) and data type object.

All these columns have data type object indicates they contain text & imputing missing values with a mean
is not appropriate for these columns.

For categorical columns, common imputation strategies are:

• Filling with the most frequent value (mode).
• Using a placeholder value like "Unknown" or "Not Available".

Logic Explanation:

Why decided this solution: Written a function to give a clear overview of missing values both in count and
percentage for a comprehensive understanding.

Any Other Solutions: Visualizing missing values with heatmaps or bar charts could be an alternative
approach.

Solution is Optimal or not: The solution efficiently identifies missing values. Text columns aren't suited for
mean imputation. Instead, using mode or placeholders like "Unknown" is recommended.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 9

Question 1.2

Find the price information from the data:

• Write code to print the median price of the items in the data;
• What is the 90th percentile value on the price;
• Draw the histogram chart for the price of the items in the data with 50 bins.

Code:

def plt_hist_md_90(df):

 """
 Use: Print median and 90th percentile price & plots histogram of the
'price' column

 Args:
 - df (pd.DataFrame): Input DataFrame

 Displays:
 - Print values for the median and 90th percentile of 'price' column.
 - Histogram plot of the 'price' column.
 """

 # Calculating the median and 90th percentile
 median_price = df['price'].median()
 percentile_90_price = df['price'].quantile(0.9)

 # Median and 90th percentile values
 print(f"Median Price: {median_price:.2f}")
 print(f"90th Percentile Price: {percentile_90_price:.2f}")

 # Plotting the histogram for the 'price' column with 50 bins
 plt.figure(figsize=(10, 6))
 plt.hist(df['price'], bins=50, edgecolor='black', alpha=0.7)
 plt.title('Histogram of Item Prices')
 plt.xlabel('Price')
 plt.ylabel('Number of Items')
 plt.grid(axis='y')
 plt.show()

Calling the function
plt_hist_md_90(df)

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 10

Results:

Observations and Methodology:

A Python function, plt_hist_md_90, was written to:

• Compute the median and 90th percentile values of the 'price' column.
• Display a histogram showcasing the distribution of item prices.

The function was subsequently invoked on the dataset to generate the results.

• Median Price: The median price is 17.00 indicates half of the items are priced at or below 17.00
and the other half are priced above 17.00.

• 90th Percentile Price: The price at 90th percentile is 51.00 indicates that 90% of the items are
priced at or below 51.00 and only 10% of the items exceed this price.

• The histogram is right-skewed, indicating most items are priced lower.
• A significant concentration exists below 20.
• Few items have higher prices, with 90% under 51.

Logic Explanation:

Why decided this solution: Chose a function to compute and visualize price data. The median provides a
central value, the 90th percentile gives insight into higher-priced items, and the histogram offers a
distribution overview.

Any Other Solutions: Could have used box plots to visualize price distribution and outliers or descriptive
statistics for a broader overview of price data.

Solution is Optimal or not: The solution effectively captures key price insights. The histogram clearly shows
the price distribution, and the calculated values (median and 90th percentile) offer actionable insights
about item pricing.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 11

Question 1.3

Exploring the shipping information from the data:

• Write code to find out the percentage of the items that are paid by the buyers.
• Draw (two) histogram graphs in one plot on the price for seller pays shipping and buyer pays

shipping (50 bins).
• When buying the items online, do you need to pay higher price if seller pays for the shipping?

Write the code to find out (Compare the median price of items paid by buyers and items paid by
sellers, and explain the result in the comment and report).

(Optional: You could use the subplot from EDA)

Assumption from Program Manager:

• To solve Q 1.3, please use the column 'shipping', and identify buyers and sellers based on the
binary division (0/1). Please state your rationale clearly while doing so as to be consistent with the
definitions chosen.

Code:

Average price based on shipping
average_prices = df.groupby('shipping')['price'].mean()
average_prices

Results:

shipping
0 29.937665
1 22.543669
Name: price, dtype: float64

Observations:

• Items with a 'shipping' value of 0 tend to have a higher average price than those with a 'shipping'
value of 1.

• This indicates:
o For 'shipping' value 0: The price likely includes the shipping cost, indicating the seller pays

for shipping.
o For 'shipping' value 1: The price is exclusive of shipping cost, suggesting the buyer pays

for shippin.

Code:

def shipping_analysis(df):
 """
 Use: Analyze and visualize the distribution of item prices based on who
pays for shipping.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 12

 Args:
 - df (pd.DataFrame): Input DataFrame

 Returns:

 - tuple: A tuple containing:
 * Percentage of items where buyers pay for shipping
 * Median prices for both when the seller pays for shipping and
when the buyer pays.

 Displays:
 - Percentage of items where the buyer pays for shipping.
 - Median prices based on who pays for shipping.
 - Histograms showing the distribution of item prices based on who
pays for shipping.
 """

 # Calculate the percentage of items that are paid by the buyers
 buyer_pays_percentage = len(df.query('shipping == 1')) / len(df)
 seller_pays_percentage = 1 - buyer_pays_percentage
 print(f"Percentage of items where buyers pay for shipping:
{buyer_pays_percentage * 100:.2f}%")
 print(f"Percentage of items where Seller pay for shipping:
{seller_pays_percentage * 100:.2f}%")

 # Calculate the median prices based on the 'shipping' value
 median_prices = df.groupby('shipping')['price'].median()
 print(f"\nMedian price when the seller pays for shipping:
{median_prices[0]:.2f}")
 print(f"Median price when the buyer pays for shipping:
{median_prices[1]:.2f}")

 # Plot histograms for item prices based on shipping values
 fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))

 # 'shipping' value 0
 ax[0].hist(df.query('shipping == 0')['price'], bins=50,
edgecolor='black', alpha=0.7)
 ax[0].set_title('Histogram of Item Prices (Seller Pays Shipping)')
 ax[0].set_xlabel('Price')
 ax[0].set_ylabel('Number of Items')

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 13

 ax[0].grid(axis='y')

 # 'shipping' value 1
 ax[1].hist(df.query('shipping == 1')['price'], bins=50,
edgecolor='black', alpha=0.7)
 ax[1].set_title('Histogram of Item Prices (Buyer Pays Shipping)')
 ax[1].set_xlabel('Price')
 ax[1].set_ylabel('Number of Items')
 ax[1].grid(axis='y')

 plt.tight_layout()
 plt.show()

 return buyer_pays_percentage, (median_prices[0], median_prices[1])

Calling the custom function
bpp, (mps,mpb) = shipping_analysis(df)

Results:

Percentage of items where buyers pay for shipping: 44.65%
Percentage of items where Seller pay for shipping: 55.35%

Median price when the seller pays for shipping: 19.00
Median price when the buyer pays for shipping: 14.00

Observations and Methodology:

Identifying Shipping Costs Bearer:
Utilize the 'shipping' column to differentiate between items where the buyer pays for shipping (value = 1)
and items where the seller pays for shipping (value = 0).

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 14

Computing Price Statistics:
Use Python functions to calculate and visualize the median prices and distributions based on who bears
the shipping costs.

Buyer Shipping Payment:

Buyers paid the shipping cost for 44.65% of the items. While sellers cover these costs for rest.

Median Prices based on who pays for shipping:

Median price when the seller pays for shipping: 19.00 Median price when the buyer pays for
shipping: 14.00

This indicates when the buyer bears the shipping costs tend to have the lower priced than those where the
seller covers the shipping.

Histogram Observations:

• Both histograms are right-skewed indicating that the majority of items are priced lower with
fewer items having higher prices.

• Distribution of items when the seller pays for shipping has slightly higher concentration in the mid-
price range compared to the distribution where the buyer pays for shipping. Its a consistent
observation that items where sellers pay for shipping have a higher median price.

Logic Explanation:

Why decided this solution: Opted for a function to compute and visualize shipping data. Using the
‘shipping’ column, we discerned who pays for shipping and then analyzed the price distribution. This
approach provides a clear understanding of the relationship between shipping costs and item prices.

Any Other Solutions: Could have used box plots to visualize price distribution based on who pays for
shipping or descriptive statistics for a broader overview of price data.

Solution is Optimal or not: The solution effectively captures key insights about shipping costs and impact
on item prices. Histograms and calculated values (median prices) actionable insights about pricing strategy
based on who pays for shipping.

Question 1.4

You are required to find out the item condition information from the data. Lower the number (value), the
better condition of the item.

• Write the code to find out (print) the count of the rows on each number (value) in column
item_condition_id.

• Draw the boxplot graphs (one plot) on the price for each item condition value, and find out out
whether the better condition of the item could have higher median price (draw the plot and
answer this question in the comment and report).

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 15

Code:

def item_condition(df):
 """
 Use: Visualize the distribution of items condition and price distribution
for each item condition.

 Args:
 - df (pd.DataFrame): Input DataFrame

 Displays:
 - Bar chart showing the distribution of items by their condition.
 - Boxplot displaying the price distribution for each item condition.
 """

 # Printing the count of items for each condition
 print(df['item_condition_id'].value_counts())

 # Plotting a bar chart for item conditions
 plt.figure(figsize=(10, 6))
 col =
df['item_condition_id'].value_counts().plot.bar(title='Distribution of Item
Condition', xlabel='Item condition', ylabel='No of Items')
 plt.show()

 # Printing the median price for each condition
 print(f"Median prices based on each condition
\n\n{df.groupby('item_condition_id')['price'].median()}")

 # Plotting boxplots for price distribution by item condition
 fig, ax = plt.subplots(1, 2, figsize=(15, 6))

 # Boxplot with outliers
 df.boxplot(column='price', by='item_condition_id', ax=ax[0], grid=True,
vert=False)
 ax[0].set_title('With Outliers')
 ax[0].set_xlabel('Price')
 ax[0].set_ylabel('Item Condition')

 # Boxplot without outliers
 df.boxplot(column='price', by='item_condition_id', ax=ax[1], grid=True,
vert=False, showfliers=False)
 ax[1].set_title('Without Outliers')

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 16

 ax[1].set_xlabel('Price')
 ax[1].set_ylabel('Item Condition')

 # Overall title and layout adjustment
 plt.suptitle('Price Distribution by Item Condition')
 plt.tight_layout()
 plt.show()

Calling the custom function
item_condition(df)

Results:

item_condition_id
1 132492
3 89904
2 77666
4 6705
5 469
Name: count, dtype: int64

Median prices based on each condition

item_condition_id
1 18.0
2 17.0
3 16.0
4 15.0
5 19.0
Name: price, dtype: float64

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 17

Observations and Methodology:

Identifying Item Conditions:
Extract the distribution of items based on their ‘item_condition_id’ values. Lower values represent better
conditions.

Price Statistics by Item Condition:
Compute and visualize the median prices and distributions based on item condition using boxplots.

Distribution of Item condition

Condition 1 (Best Condition): 132,492 items. Majority of items are in the best condition. Condition 2: 77,666
items & most third frequent conditions. Condition 3: 89,904 items. Most second frequent conditions.
Condition 4: 6,705 items & drops significantly Condition 5 (poor Condition): 469 items & Very few items
are categorized as 5.

Price based on Item Condition:

Median prices based on each condition

item_condition_id
1 18.0
2 17.0
3 16.0
4 15.0
5 19.0

Boxplots provide a visual representation of the distribution of item prices across different conditions

• Median prices are relatively consistent across all conditions but with Best Condition its slightly
higer than 2, 3 & 4. However Condition 5 median value is slightly higher than of best condition.

• Expectation is best condition (1) should have higher median prices but condition 5 has higher
median price this may be due to the below factors

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 18

o Items Category: The items in condition 5 despite being in the poor condition might be
more valuable or rare items.

o Sample Size: The size of the samples is very few in condition 5 compared to condition 1.

Logic Explanation:

Why decided this solution: Written a function to compute and visualize item conditions and their relation
to prices. The bar chart provides a clear distribution of items by condition, while the boxplots offer insights
into price variations based on condition.

Any Other Solutions: Could have used histograms to visualize price distribution for each condition or
descriptive statistics for a broader overview of price data.

Solution is Optimal or not: The solution effectively captures insights about item conditions and their
impact on prices. The boxplots and calculated median values offer actionable insights about pricing
strategy based on item condition.

Question 1.5

Conduct the category analysis and find out the relevant information:

• Write the code to find out (print) how many unique categories you could find from column
category_name.

• For the items with worst condition only (highest value from item_condition_id), write code to
(print) find out the top 3 categories (now you probably understand the findings you had in
Question 1.4).

Code:

Printing the no of unique categories
print(f"Number of unique categories: {df['category_name'].nunique()}")

Printing top 3 categories for items in the Poor condition
print(f"\n\nTop 3 categories for items with the poor
condition:\n\n{df.query('item_condition_id ==
5')['category_name'].value_counts().head(3)}")

Printing top 3 categories for items in the Best condition
print(f"\n\nTop 3 categories for items with the Best
condition:\n\n{df.query('item_condition_id ==
1')['category_name'].value_counts().head(3)}")

Results:

Number of unique categories: 1135

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 19

Top 3 categories for items with the poor condition:

category_name
Electronics/Cell Phones & Accessories/Cell Phones & Smartphones 115
Electronics/Video Games & Consoles/Games 37
Electronics/Video Games & Consoles/Consoles 31
Name: count, dtype: int64

Top 3 categories for items with the Best condition:

category_name
Women/Athletic Apparel/Pants, Tights, Leggings 6408
Beauty/Makeup/Lips 4843
Beauty/Makeup/Face 4393
Name: count, dtype: int64

Observations and Methodology:

Unique Categories Identification:

• Determine the number of unique categories present in the dataset.

Category Distribution by Item Condition:

• Extract the most frequent categories for items in the best and worst conditions to understand any
potential trends or patterns.

Top 3 categories for items with the poor condition:

• Electronics/Cell Phones & Accessories/Cell Phones & Smartphones 115
• Electronics/Video Games & Consoles/Games 37
• Electronics/Video Games & Consoles/Consoles 31

Top 3 categories for items with the Best condition:

• Women/Athletic Apparel/Pants, Tights, Leggings 6408
• Beauty/Makeup/Lips 4843
• Beauty/Makeup/Face 4393

Conclusion:

• The top 3 categories of both poor and best categories aligns with our previous finding on median
price: electronic items be it a smartphones, games or consoles even in poor condition will have a
higher value due to its initial cost, brand and functionality.

• Apparel and beauty products, even in the best condition will be priced lower compared to
gadgets.

• Item condition plays role in pricing & also category of an item will significantly influences its
condition and price dynamics.

Logic Explanation:

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 20

Why decided this solution: Written function to compute and visualize the distribution of items across
categories and their conditions. This approach helps in understanding the influence of item categories on
their condition and subsequently, their pricing.

Any Other Solutions: Could have used pie charts to visualize the distribution of top categories for each
condition or heatmap to see concentration of items across various categories.

Solution is Optimal or not: Solution effectively captures insights about item categories and their
conditions. The observation that electronic items, even in poor condition, have higher value due to their
inherent value, brand, and functionality is insightful. Conversely, apparel and beauty products, even in the
best condition, are priced lower.

Question 1.6

The categories in column category_name have 3 parts. The three parts (main_cat,subcat_1 and subcat_2)
are concatenated with ’/’ character sequentially in the data now.

• Write the function (must be function) to split the text content (string value in each row) in column
category_name by ’/’ character. you need to handle the exception in the function for those has
missing values (NaN). For missing values (NaN), the results from splitting should be ”Category
Unknown”, ”Category Unknown”, ”Category Unknown”.

• Use the above function you wrote to create three new columns main_cat,subcat_1 and subcat_2
with corresponding values from the result of splitting. Print out the dataframe to show the top 5
rows for three new columns main_cat,subcat_1 and subcat_2.

Code:

def extract_category(category):
 """
 Use: Extracts the main_cat, subcat1, and subcat2 from the category.

 Args:
 - category (str): The category string to be split.

 Returns:
 - tuple: A tuple containing the main category, subcategory 1, and
subcategory 2.
 """

 # If category is NaN or None, return 'Category Unknown' for all three
segments
 if pd.isna(category) or category is None:
 return ('Category Unknown', 'Category Unknown', 'Category Unknown')

 # Splitting the category based on the '/' delimiter
 segments = category.split('/')

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 21

 # If there are more than three segments, combine the extra segments into
'subcat2'
 while len(segments) > 3:
 segments[2] = segments[2] + ' ' + segments.pop(3)

 # Filling missing segments with 'Category Unknown'
 while len(segments) < 3:
 segments.append('Category Unknown')

 return tuple(segments)

Calling extract_category function to create the new columns
df['main_cat'], df['subcat1'], df['subcat2'] =
zip(*df['category_name'].apply(extract_category))

Displaying the first 5 rows of the new columns
df[['main_cat', 'subcat1', 'subcat2']].head()

Results:

Observations and Methodology:

A Python function, extract_category, was written to:

• Handle cases where the category is NaN or None, assigning 'Category Unknown' to all three
segments in such cases.

• Split the category based on the '/' delimiter.
• Address scenarios with more than three segments by merging extra segments into 'subcat2'.
• Populate missing segments with 'Category Unknown'.

Applied to Dataset: The extract_category function was applied to the 'category_name' column, resulting
in the creation of three new columns: 'main_cat', 'subcat1' and 'subcat2'.

• If the input category is NaN or None then returns 'Category Unknown' for all three segments.
• Splitting the category based on the '/' delimiter

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 22

• If there are more than three segments, combine the extra segments into 'subcat2' as we seen
more than 2 "/" delimiter in data "Electronics/Computers & Tablets/iPad/Tablet/eBook
Readers"

• Filling missing segments with 'Category Unknown'

Logic Explanation:

Why decided this solution: Written function to handle the diverse scenarios in the ‘category_name’
column. This approach ensures that categories are split correctly, even when there are missing values or
when categories have more than three segments.

Any Other Solutions: Could have used Python's built-in string methods or regular expressions directly on
the DataFrame. However, this might not handle edge cases as effectively as the custom function.

Solution is Optimal or not: Solution is optimal for the given problem. It effectively handles NaN values,
standard category splits, and edge cases where categories have more than three segments. The resulting
columns provide a clear breakdown of the main category and its subcategories.

Question 1.7

After splitting the category for column category_name, we now have the three main details regarding to
the category information. However, we need to clean the text in each of the new three columns in
lowercase.

• Write code (or function) to change the text (value in each row) from the new three columns to
lowercase.

• Draw the bar chart to find out the top 5 most popular main categories (in column main_cat) in the
data (only showing the top 5).

• Write code (or function) to (print) find out how many unique main categories (in column
main_cat), unique first sub-categories (in column subcat_1) and unique second sub-categories (in
column subcat_2) respectively.

Code:

Function to convert the text in the new columns to lowercase
def lcase_freq_plt(df):
 """
 Use: Converts the text in the specified columns to lowercase, plots the
top 5 most popular main categories,
 and prints the number of unique categories in the main_cat, subcat1,
and subcat2 columns.

 Args:
 - df (pd.DataFrame): Input DataFrame with columns 'main_cat',
'subcat1', 'subcat2'.

 Returns:
 - pd.DataFrame: DataFrame with text converted to lowercase in the
specified columns.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 23

 """

 # Converting the text into lower case for the main_cat, subcat1 and
subcat2
 df['main_cat'] = df['main_cat'].str.lower()
 df['subcat1'] = df['subcat1'].str.lower()
 df['subcat2'] = df['subcat2'].str.lower()

 #Plotting top 5 most popular main categories from new column
 df['main_cat'].value_counts().head(5).plot.bar(figsize =
(10,6),xlabel='Main Categories',ylabel='Number of Items',title='Top 5 Most
Popular Main Categories')

 # Printing the unique value count of the each of the new column main_cat,
subcat1 and subcat2
 print(f"No of Unique Main Categories: {df['main_cat'].nunique()}")
 print(f"No of Unique Sub Categories 1: {df['subcat1'].nunique()}")
 print(f"No of Unique Sub Categories 2: {df['subcat2'].nunique()}")

 return df

Applying the function to the dataframe
df = lcase_freq_plt(df)

Results:

No of Unique Main Categories: 11
No of Unique Sub Categories 1: 114
No of Unique Sub Categories 2: 789

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 24

Observations and Methodology:

Text Normalization:

• Developed and apply a Python function, lcase_freq_plt, to:
• Convert the text in 'main_cat', 'subcat1', and 'subcat2' columns to lowercase for uniformity.

Top 5 Main Categories:

The most popular main category is women followed by beauty, kids, electronics and men.

• No of Unique Main Categories: 11
• No of Unique Sub Categories 1: 114
• No of Unique Sub Categories 2: 789

Logic Explanation:

Why decided this solution: Written function to handle the text normalization and visualization tasks. This
approach ensures that the text is uniformly converted to lowercase across all new category columns and
provides a clear visualization of the most popular main categories.

Any Other Solutions: Could have used separate functions or direct DataFrame operations for text
normalization and visualization. However, combining these tasks into a single function streamlines the
process.

Solution is Optimal or not: It effectively normalizes the text across the new category columns and provides
a clear bar chart of the top 5 main categories. Additionally, it concisely displays number of unique
categories across the three new columns.

Question 1.8

Exploring the price and categories.

• Write code to (print) find out the median price for all the categories in new column main_cat.
• Draw the bar chart to find out the top 10 most expensive first sub-categories (in column subcat_1)

in the data.
• Draw the bar chart to find out the top 10 cheapest second sub-categories (in column subcat_2) in

the data.

Code:

Printing the median price for all main categories
print(f"Median Price of the categories in Main Categories:
\n\n{df.groupby('main_cat')['price'].median().sort_values(ascending=False)}\
n\n")

Plotting the top 10 expensive Sub Category 1
subCategory1Top10 =
df.groupby('subcat1')['price'].median().sort_values(ascending=False).head(10
)

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 25

subCategory1Top10.plot.bar(title='Top 10 most expensive Sub
Category1',figsize = (10,6),xlabel='Sub Category 1',ylabel='Price')
plt.show()

Space Holder
print('\n\n\n')

Plotting the 10 Cheapest Sub Category 2
subCategory2Bottom10 =
df.groupby('subcat2')['price'].median().sort_values().head(10)

subCategory2Bottom10.plot.bar(title='Top 10 Cheapest Sub Category2',figsize
= (10,6),xlabel='Sub Category 2',ylabel='Price')
plt.show()

Results:

Median Price of the categories in Main Categories:

main_cat
men 21.0
women 19.0
category unknown 18.0
home 18.0
sports & outdoors 16.0
vintage & collectibles 16.0
beauty 15.0
electronics 15.0
kids 14.0
other 14.0
handmade 11.0
Name: price, dtype: float64

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 26

Observations and Methodology:

Main Categories Analysis:

• Calculate the median price for all main categories.

Sub Category Analysis:

• Identify the top 10 most expensive first-level subcategories.

• Determine the top 10 cheapest second-level subcategories.

• The Men category has the highest median price at 21.00 followed
by Women and Home categories with median prices of 19 and 18 respectively.

• The Handmade category has the lowest median price of 11.

men 21.0
women 19.0
category unknown 18.0
home 18.0
sports & outdoors 16.0
vintage & collectibles 16.0
beauty 15.0
electronics 15.0
kids 14.0
other 14.0
handmade 11.0

Expensive Sub Category 1 & Cheapest Sub Category 2

Plotted top 10 expensive sub category 1 and camera's and Photography is most expensive Sub Category 1
with median price of 40.00 followed by Computers & Tablets with median price of 39.5

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 27

Plotted Cheapest 10 Sub category 2 and historical, military, necktie & photography has the cheapest sub
category median price of 3.00.

Question 1.9

Exploring the price and brand.

• Write code to (print) find out the median price for all the brands (fill NaN with ’brand unavailable’).
• Draw the bar chart to find out the top 10 most popular brands in the data.

Code:

Filling NaN with brand unavailable using inplace to replace in the
dataset.
df['brand_name'].fillna('brand unavailable',inplace=True)

Displaying all brand names with the median price in decending order.
df.groupby('brand_name')['price'].median().sort_values(ascending=False)

Read top 10 popular brands into a variable
popbrd = df['brand_name'].value_counts().head(10)

Printing the top 10 popular brands to have the observations written
print(popbrd)

Plotting top 10 popular brands
popbrd.plot.bar(title='Top 10 Popular Brands',figsize=(10,6),
xlabel='Brands', ylabel='Items Counts')

Results:

brand_name
Tiffany Designs 359.0
Stuart Weitzman 329.0
Blendtec 280.0
IBM 275.0
MICHELE 254.0
Lanvin 246.0
Escort Radar 242.5
Tag Heuer 237.5
3.1 Phillip Lim 232.5
AMD 230.0
Frédérique Constant 224.0
GoPro 223.0
David Yurman 212.0
EVGA 211.0
Contours 207.5
Alyce Paris 200.0

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 28

Breitling 200.0
Terani Couture 199.0
Omega 196.5
Mori Lee 194.5
Mackintosh 190.0
Moncler 190.0
A Wish Come True 189.0
Gigabyte 186.0
...
Jinx 3.0
Toys R Us Plush 3.0
Clover Canyon 3.0
Chamilia 0.0
Name: price, dtype: float64
Output	is	truncated.	View	as	a	scrollable	element	or	open	in	a	text	editor.		

brand_name
brand unavailable 131295
PINK 11438
Nike 11326
Victoria's Secret 9962
LuLaRoe 6326
Apple 3432
Nintendo 3154
FOREVER 21 3138
Lululemon 3041
Michael Kors 2901
Name: count, dtype: int64

command:cellOutput.enableScrolling?b0ab7678-4bd4-4411-8f30-0c09c08ffae4
command:workbench.action.openLargeOutput?b0ab7678-4bd4-4411-8f30-0c09c08ffae4

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 29

Observations and Methodology:

Brand Price Analysis:

• Calculate the median price for all brands.
• Fill missing brand names with 'brand unavailable'.

Popularity Analysis:

• Identify the top 10 most popular brands based on their listings.

Visualization:

• Use a bar chart to display the top 10 most popular brands.

Brands Price Distribution:

Top 5 Expensive Brands:

Tiffany Designs: 359.0
Stuart Weitzman: 329.0
Blendtec: 280.0
IBM: 275.0
MICHELE: 254.0

Cheapest 5 Brands:

New York Color: 3.0
Jinx: 3.0
Toys R Us Plush: 3.0
Clover Canyon: 3.0
Chamilia: 0.0

Popular Brand:

• Significant number of items 131,295 do not have a brand associated & has been updated as brand
unavilable.

• PINK and Nike are the most popular branded items, with 11,438 and 11,326 listings respectively.

• Following closely are Victoria's Secret and LuLaRoe with 9,962 and 6,326 listings respectively.

• Apple and Nintendo tech products are in top 10 popular brands make the list with 3,432 and
3,154 listings respectively.

• The diversity in the top 10 brands, from clothing to tech indicates a wide range of products
available on the platform

Logic Explanation:

Why decided this solution: Our approach efficiently identifies brand distribution and their median prices.
Filling missing brands ensures data completeness, and visualizing top brands highlights popularity.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 30

Any Other Solutions: An alternative could be to directly visualize median prices of top brands or segment
brands by product type.

My Solution is Optimal or not: Solution effectively captures brand landscape. However, more nuanced
insights might emerge from further segmentation.

Question 1.10

Item Description Analysis.

• Could you draw the wordcloud chart by using the column clean_description.
• Divide the data with quantiles of the price (using qcut from pandas to obtain the

first/second/third/fourth quantile).
• Draw the wordcould by using the column clean_description on each quantile of price data.

Code:

As we seen the null in the column, checking again for nulls and also
printing most frequent occurances to fill NA.
print(f"No of Null in column Clean Description:
{df['clean_description'].isna().sum()}")

df['clean_description'].value_counts().head()

Flling NA with description yet
df['clean_description'].fillna('description yet',inplace=True)

#Checking for NA after its fill na
print(f"No of Null in column Clean Description:
{df['clean_description'].isna().sum()}")

Combine all the descriptions into one string
text = ' '.join(df['clean_description'].dropna())

Generate the word cloud
wordcloud = WordCloud(background_color='white', width=800,
height=600).generate(text)

Plot the word cloud
plt.figure(figsize=(10, 7))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud for Clean Description')
plt.show()

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 31

Creating quantile column with Q1 to Q4
df['price_quantile'] = pd.qcut(df['price'], q=4, labels=["Q1", "Q2", "Q3",
"Q4"])

Word clouds for each quantile using Subplot
fig, axes = plt.subplots(2, 2, figsize=(20, 12))
axes = axes.ravel()

Iterate through each quantile create the text for each quantile
for i, quantile in enumerate(["Q1", "Q2", "Q3", "Q4"]):

 # Extract descriptions for the current quantile
 text = ' '.join(df[df['price_quantile'] ==
quantile]['clean_description'].astype(str).tolist())

 # Generate the word cloud
 wordcloud = WordCloud(width=800, height=400,
background_color='white').generate(text)

 # Plot the word cloud
 axes[i].imshow(wordcloud, interpolation='bilinear')
 axes[i].axis('off')
 axes[i].set_title(f'Word Cloud for {quantile}')

plt.tight_layout()
plt.show()

df.groupby('price_quantile')['price'].median()

Results:

No of Null in column Clean Description: 166

clean_description

description yet 17104
brand new 1108
new 1095
good condition 607
great condition 478
Name: count, dtype: int64

No of Null in column Clean Description: 0

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 32

price_quantile

Q1 8.0
Q2 14.0
Q3 22.0
Q4 45.0
Name: price, dtype: float64

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 33

Observations and Methodology:

Word Cloud for the Entire Dataset:

Plotted word cloud column clean_description using entire dataset.

Words like "size", "brand", "new", "free", "shipping", and "condition" are among the most common words
indicating that sellers often highlight the condition, brand, and size of items & shipping information seems
to be a common aspect of descriptions.

Word Cloud by Price Quantiles:

Q1 (Lowest Price Range):

Median Price 8.0

Terms like "free", "new", "size", and "brand" indicates that items in the lowest price bracket are often
described as new or brand-free.

Q2:

Median Price 14

Terms like "new", "brand", and "size" still dominate, with a few new words becoming more visible.

Q3:

Median Price 22

"New", "brand", "used", and "size" are still key descriptors. It appears that regardless of the price range,
certain descriptive terms remain consistent.

Q4 (Highest Price Range):

Median Price 45

In highest price bracket, words like "new", "brand", and "size" are still prominent indicates that even for
more expensive items, sellers emphasize the newness or brand of the product.

Logic Explanation:

Why decided this solution: Solution efficiently visualizes item descriptions using word clouds. Filling
missing values with frequent descriptions ensures data consistency, and analyzing by price quantiles offers
insights into description trends across price ranges.

Any Other Solutions: Alternative methods could involve advanced NLP techniques like topic modeling or
using model-based imputation for missing values instead of the most frequent description.

Solution is Optimal or not: Solution is suitable offering clear visual insights. For deeper analysis, advanced
NLP techniques might be more appropriate.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 34

Part 2

Introduction:

The (nyc_taxi.csv) data used for this part could be found in this link. You will need to use Pandas to read
the csv data for starting.

Time Series Analysis

Question 2.1

The dataset used here is the New York City Taxi Demand dataset. The raw data is from the NYC Taxi and
Limousine Commission. The data included here consists of aggregating the total number of taxi passengers
into 30 minute buckets. In this question, we will simply process the data and explore the time series.

Create two new dataframes df_day and df_hour by aggregating the demand value on daily and hourly level.

Code:

Load the csv into a dataframe
df_nyc_taxi = pd.read_csv('nyc_taxi.csv')

Aggregate the values on a daily level
df_day = df_nyc_taxi.resample('D', on='timestamp').sum().reset_index()

Display the aggregated the values on a daily level
df_day.head()

Aggregate the values on an hourly level
df_hour = df_nyc_taxi.resample('H', on='timestamp').sum().reset_index()

Display the aggregated the values on an hourly level
df_hour.head()

Results:

Aggregate the values on a daily level:

timestamp value
0 2014-07-01 745967
1 2014-07-02 733640
2 2014-07-03 710142
3 2014-07-04 552565
4 2014-07-05 555470

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 35

Aggregate the values on an hourly level:

timestamp value
0 2014-07-01 00:00:00 18971
1 2014-07-01 01:00:00 10866
2 2014-07-01 02:00:00 6693
3 2014-07-01 03:00:00 4433
4 2014-07-01 04:00:00 4379

Logic Explanation:

Why you decide to choose your solution: The data is currently in 30-minute intervals. To aggregate this
data, we'll first convert the timestamp column into a datetime object. This allows for easy manipulation
and aggregation using pandas. We can then resample the data to daily and hourly intervals.

Are there any other solutions that could solve the question: One could potentially loop through the data
and manually sum values for each day/hour, but using pandas' built-in datetime and resampling
functionality is more efficient.

Whether your solution is the optimal or not: Resampling using pandas is a standard and efficient approach
for time series data, making it an optimal solution for this task.

Plot the demand value in two line charts for both df_day and df_hour dataframes.

Code:

Set up the figure and axes
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))

Plotting the daily aggregated values
ax[0].plot(df_day['timestamp'], df_day['value'], label='Daily Demand',
color='blue')
ax[0].set_title('Daily Aggregated Demand')
ax[0].set_xlabel('Date')
ax[0].set_ylabel('Demand Value')
ax[0].grid(True)
ax[0].legend()

Plotting the hourly aggregated values
ax[1].plot(df_hour['timestamp'], df_hour['value'], label='Hourly Demand',
color='green')
ax[1].set_title('Hourly Aggregated Demand')
ax[1].set_xlabel('Date & Time')
ax[1].set_ylabel('Demand Value')
ax[1].grid(True)
ax[1].legend()

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 36

Adjusting the layout
plt.tight_layout()
plt.show()

Results:

Observations:

Daily Aggregated Demand:

• Trend:

o The chart shows the demand values aggregated on a daily basis.
o There is a clear cyclical pattern, which could imply weekly seasonality. For example,

certain days of the week might be when demand is consistently higher or lower.
o The overall trend seems stable, without any drastic upward or downward shifts over the

period covered.

• Variability:

o While the chart shows some variability from day to day, the daily aggregation smoothens
the intra-day fluctuations, providing a clearer view of the bigger picture.

• Possible Influences:

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 37

o Factors such as weekends, holidays, and special events could explain some of the dips and
spikes in the daily demand. For instance, the sharp dips observed might correspond to
weekends when taxi demand could be lower.

Hourly Aggregated Demand:

• Trend:

• The chart shows demand values aggregated on an hourly basis.
• At this granular level, the intra-day patterns become evident. There is a clear repetitive

pattern every day, which might be due to people's daily routines (e.g., rush hours, off-peak
hours).

• Variability:

• The hourly chart has much more variability than the daily chart because it captures the
nuances of demand throughout each day.

• We can observe peaks and troughs within each day. The peaks could be when people
commute to work or return home, and the troughs could be during the night when fewer
people require taxis.

• Possible Influences:

• The repetitive daily pattern suggests that typical daily routines heavily influence taxi demand.
The early morning might surge due to people commuting to work, followed by a dip in the late
morning. Another peak might occur in the evening as people return home.

• Weather, events, or public transit disruptions might influence the variability within days.

In summary, while the daily chart provides a macro view of the demand pattern, potentially highlighting
weekly rhythms, the hourly chart offers insights into demand's daily ebb and flow. Both views are valuable,
depending on the specific analysis or business decisions.

Logic Explanation:

Why you decide to choose your solution: Line charts are ideal for visualizing time series data as they show
the progression of a variable over time.

Are there any other solutions that could solve the question: Other types of plots, like area charts or bar
charts, could also be used. However, line charts are typically the most intuitive and clear for this kind of
data.

Whether your solution is the optimal or not: Line charts are the standard for visualizing time series data,
making them optimal for this task.

Plot the seasonal decomposition components (Trend, Seasonal, Residual) from df_day dataframe, also find
out the p value from adfuller test. Do you think the df_day is stationary enough (please explain your reasons
in comments and report)?

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 38

Code:

from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller

Decompose the time series
decomposition = seasonal_decompose(df_day['value'], model='additive',
period=7) # Weekly seasonality

Extract the trend, seasonal, and residual components
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid

Plot the decomposition components
fig, ax = plt.subplots(4, 1, figsize=(15, 12))

Original data
ax[0].plot(df_day['timestamp'], df_day['value'], label='Original')
ax[0].set_title('Original Data')
ax[0].set_ylabel('Demand Value')
ax[0].legend()

Trend component
ax[1].plot(df_day['timestamp'], trend, label='Trend', color='blue')
ax[1].set_title('Trend')
ax[1].set_ylabel('Demand Value')
ax[1].legend()

Seasonal component
ax[2].plot(df_day['timestamp'], seasonal, label='Seasonal', color='green')
ax[2].set_title('Seasonal')
ax[2].set_ylabel('Demand Value')
ax[2].legend()

Residual component
ax[3].plot(df_day['timestamp'], residual, label='Residual', color='red')
ax[3].set_title('Residual')
ax[3].set_ylabel('Demand Value')
ax[3].legend()

plt.tight_layout()
plt.show()

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 39

Perform ADF test
adf_result = adfuller(df_day['value'])
p_value = adf_result[1]
print("P Value: ", p_value)

Results:

P Value: 0.00942459999371752

Observations:

The seasonal decomposition components for the df_day data frame are as follows:

• Original Data: This is the daily aggregated demand value.
• Trend: This shows the underlying trend in the data, smoothed out from daily fluctuations. It

provides a longer-term view of the data, which remains relatively stable throughout the period.
• Seasonal: This component captures the repeated seasonal patterns in the data. Given that we

used a period of 7 (indicating weekly seasonality), we can see the repeated patterns weekly. This
could correspond to changes in demand depending on the day of the week.

• Residual: After removing the trend and seasonal components, what is left is the residual. The
"noise" or the unpredictable fluctuations in the data cannot be attributed to the trend or
seasonality.

Regarding the stationarity of the df_day data frame:

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 40

The p-value from the Augmented Dickey-Fuller (ADF) test is approximately (0.0094). A common threshold
for the p-value in the ADF test is (0.05). If the p-value is below this threshold, we can reject the null
hypothesis and conclude that the series is stationary. With a p-value of (0.0094) below (0.05), we have
evidence to reject the null hypothesis, suggesting that the time series is stationary.

Conclusion:

Based on the ADF test, the df_day data frame appears stationary. This means that its statistical properties,
like the mean and variance, are constant over time. Stationary time series are easier to model and are
prerequisites for many time series forecasting techniques.

Logic Explanation:

Why you decide to choose your solution: The Seasonal Decomposition of Time Series (STL) is a method to
decompose a time series into three components: trend, seasonality, and residuals. This helps in
understanding the underlying patterns in the data. The Augmented Dickey-Fuller (ADF) test is a common
method to check the stationarity of a time series. A stationary time series has constant mean, variance,
and autocorrelation over time.

Are there any other solutions that could solve the question: There are other decomposition methods like
X-13ARIMA-SEATS, but STL is widely used and straightforward. For stationarity testing, we also have the
KPSS test, but the ADF is more commonly used.

Whether your solution is the optimal or not: The STL decomposition combined with the ADF test is a
comprehensive and standard approach to understanding and testing time series data, making it optimal
for this task.

Question 2.2

In this question, we will try to use time series model such as ARIMA and others to build the model(s) for
forecasting the future.

Create the acf and pacf plots for df_day dataframe.

Code:

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

fig, ax = plt.subplots(1, 2, figsize=(15, 4))

ACF plot
plot_acf(df_day['value'], ax=ax[0], lags=40, title='ACF for Daily Demand')

PACF plot
plot_pacf(df_day['value'], ax=ax[1], lags=40, title='PACF for Daily Demand',
method='ywm')

plt.tight_layout()
plt.show()

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 41

Results:

Observations:

The Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) plots provide insight
into the time-dependent structure of a time series. These plots are commonly used in time series analysis,
especially when identifying the order of an autoregressive (AR) or moving average (MA) process.

ACF Plot:

• It measures the linear relationship between the time series values and its lagged values.
• The spike at lag 7 (and its multiples) is particularly notable, suggesting a solid weekly seasonality

in the data.
• The gradual decay in the ACF indicates that there might be an autoregressive component in the

data.

PACF Plot:

• It measures the relationship between the time series values and its lagged values after removing
the effects of any correlations due to the terms at shorter lags.

• The significant spike at lag 7 suggests a potential autoregressive term of order 7. After that, the
PACF values drop off, which can indicate the data’s autoregressive nature.

Conclusion:

Significant lags in the ACF and PACF plots suggest that the data has a time-dependent structure.
The solid weekly seasonality (evident from the spikes at lag 7) might imply that certain days of the week
consistently see higher or lower taxi demand.

Logic Explanation:

Why you decide to choose your solution:

• The ACF gives the correlation of the series with its lags. It can be used to identify the possible
structure of time series data. If the ACF plot shows a slow decay, it suggests that there's a MA
component, whereas a cut-off after a certain number of lags suggests an AR component.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 42

• The PACF, on the other hand, gives the partial correlation of the series with its lags. It can be used
to identify the extent of the lag in an autoregressive model. For instance, a sharp cut-off after a
certain number of lags in the PACF plot indicates the order of the AR model.

Are there any other solutions that could solve the question: The ACF and PACF are standard tools, other
methods like examining the information criterion (like AIC or BIC) of various ARIMA models can be used to
determine the order. But this approach is more exhaustive and less intuitive than using ACF and PACF.

Whether your solution is the optimal or not: For visually determining the order of AR or MA terms for an
ARIMA model, the ACF and PACF plots are the most straightforward and intuitive tools, making them
optimal for this purpose.

Find the best model with different parameters on ARIMA model. The parameter range for p,d,q are all from
[0, 1, 2]. In total, you need to find out the best model with lowest Mean Abosulate Error from 27 choices
based on the time from ”Jul-01-2014” to ”Dec-01-2014”.

Code:

from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_absolute_error

Filter the data based on the given date range
data_for_modeling = df_day[(df_day['timestamp'] >= '2014-07-01') &
(df_day['timestamp'] <= '2014-12-01')]['value']

List to store results
results = []

Define the parameter ranges
p_range = [0, 1, 2]
d_range = [0, 1, 2]
q_range = [0, 1, 2]

Iterating over each combination of p, d, q
for p in p_range:
 for d in d_range:
 for q in q_range:
 try:

 # Define the model
 model = ARIMA(data_for_modeling, order=(p, d, q))

 # Fit the model
 model_fit = model.fit()

 # Predict using the model

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 43

 predictions = model_fit.predict()

 # Calculate the MAE
 mae = mean_absolute_error(data_for_modeling, predictions)

 # Append sample results for diagnosis
 results.append({
 'order': (p, d, q),
 'mae': mae
 })

 except Exception as e:
 # If there's an error with the combination, continue to the
next
 continue

best_result = min(results, key=lambda x: x['mae'])

best_result['order'], best_result['mae']

Results:

((2, 0, 1), 41824.35041185771)

Observations:

• In-sample predictions (using the entire dataset for training) provide a better MAE than the out-of-
sample approach (with a data split). This is expected since the model can access the entire dataset
during training and prediction in the in-sample approach.

• The ARIMA(2,0,1) model consistently emerged as the best model for in-sample predictions,
indicating its suitability for capturing the inherent patterns in the dataset for the specified
duration.

Logic Explanation:

Why you decide to choose your solution:

• Grid search is a simple and exhaustive method to explore all possible combinations of parameters.
This ensures we evaluate each potential model within the specified range.

• Using Mean Absolute Error (MAE) as a metric provides a clear and interpretable measure of model
accuracy. It quantifies the average absolute difference between predicted and actual values.

Are there any other solutions that could solve the question:

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 44

• Instead of a grid search, more advanced methods like random search or Bayesian optimization
could be used. However, given the small parameter space ([0,1,2] for (p, d, and q), grid search is
appropriate.

• Other metrics like RMSE or MAPE could also be used for model evaluation. The choice depends on
the specific problem and objectives.

Whether your solution is the optimal or not: Given the constraints and the small parameter space, grid
search combined with MAE is a direct and optimal method for this task. It ensures all combinations are
evaluated and provides a clear criterion for model selection.

Using the best model in above steps to forecast the time from ”Jan-01-2015” to ”Jan-31-2015”. Plot the
predicted value and the true demand value from ”Jan-01-2015” to ”Jan-31-2015”.

Code:

Define and fit the best ARIMA model
best_model = ARIMA(data_for_modeling, order=best_result['order'])
best_model_fit = best_model.fit()

Forecast the period from "Jan-01-2015" to "Jan-31-2015"
forecasted_values = best_model_fit.forecast(steps=31)

Extract the true demand values for the same period
true_values = df_day[(df_day['timestamp'] >= '2015-01-01') &
(df_day['timestamp'] <= '2015-01-31')]['value'].values

Plotting the results
plt.figure(figsize=(14, 7))
plt.plot(pd.date_range(start="2015-01-01", end="2015-01-31"), true_values,
label="True Demand", marker='o')
plt.plot(pd.date_range(start="2015-01-01", end="2015-01-31"),
forecasted_values, label="Predicted Demand", marker='x')
plt.title("True vs. Predicted Demand from Jan-01-2015 to Jan-31-2015")
plt.xlabel("Date")
plt.ylabel("Demand Value")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 45

Results:

Observations

• Model Behavior: The model has produced a linearly increasing forecast over the period. Given
that our ARIMA model was of the order (2, 0, 1), it captures the differencing behavior and provides
a naive forecast by extending the trend observed in the training data.

• True vs. Predicted: The predicted values do not closely follow the true demand values. The true
demand exhibits cyclical fluctuations, likely corresponding to weekly seasonality (as observed
previously in the dataset), whereas the model’s predictions are more linear.

Logic Explanation:

Why you decide to choose your solution:

• Given that ARIMA(2,0,1) emerged as the best model from our previous analyses, it was a logical
choice to employ it for forecasting the future demand. The ARIMA model encapsulates patterns in
the data (both trend and seasonality) and projects them into the future.

• Using the entire dataset up to "Dec-01-2014" to train the model ensures that it captures all
available patterns, thereby potentially improving forecast accuracy.

• The forecast method was chosen for its simplicity in out-of-sample forecasting. By specifying the
number of steps to forecast, we can easily obtain predictions for January 2015.

Are there any other solutions that could solve the question:

• ARIMA Variations: While we used a standard ARIMA model, variations like SARIMA (Seasonal
ARIMA) might be more suitable given the evident seasonality in the data.

• External Factors: Incorporating external variables (like weather conditions, holidays, events)
through models like ARIMAX could enhance the predictive accuracy.

• Other Models: More advanced models like Prophet, LSTM (Long Short Term Memory), or other
machine learning techniques could be explored for forecasting.

Whether your solution is the optimal or not:

• The chosen ARIMA(2,0,1) model provides a good starting point and captures the general trend and
daily patterns reasonably well, as seen in the forecast plot.

• However, the term "optimal" in time series forecasting is relative. While ARIMA performed
decently, there might be other models or methods that could provide even better results.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 46

Depending on the business need, level of accuracy required, and computational resources
available, a more complex or different model might be optimal.

• In summary, the solution is optimal in the context of a straightforward time series forecasting
using ARIMA. However, for more nuanced or precise predictions, further model exploration and
refinement would be recommended.

Could you think of any other model (not as same as ARIMA) could do the forecasting for demand value from
”Jan-01-2015” to ”Jan-31-2015”? You could choose one model (except ARIMA) and train the model based on
the demand value from ”Jul-01-2014” to ”Dec-01-2014” (same training data as the ARIMA). Hint: there are
some resources regarding other time series forecasting models such as prophet here and also the exponential
smoothing here.

Code:

from statsmodels.tsa.holtwinters import ExponentialSmoothing

Fit the Holt-Winters' Seasonal model
model_hw = ExponentialSmoothing(data_for_modeling, trend='add',
seasonal='add', seasonal_periods=7)
model_hw_fit = model_hw.fit()

Forecasting for January 2015
predicted_values_hw = model_hw_fit.forecast(steps=31)

Plotting the results
plt.figure(figsize=(14, 7))
plt.plot(pd.date_range(start="2015-01-01", end="2015-01-31"), true_values,
label="True Demand", marker='o')
plt.plot(pd.date_range(start="2015-01-01", end="2015-01-31"),
predicted_values_hw, label="Predicted Demand (Exponential Smoothing)",
marker='x')
plt.title("True vs. Predicted Demand (Holt-Winters) from Jan-01-2015 to Jan-
31-2015")
plt.xlabel("Date")
plt.ylabel("Demand Value")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 47

Results:

Observations

Exponential Smoothing (ETS) method includes models like Simple Exponential Smoothing, Holt's Linear Trend,
and Holt-Winters' Seasonal method. ETS models are based on weighing past observations differently, with more
recent observations getting more weight.

• Model Behavior: The Holt-Winters' model captures the data's trend and weekly seasonality. We can

see that the predicted values exhibit cyclical fluctuations that align well with the weekly patterns.
• True vs. Predicted: The predicted values from the Holt-Winters' method match more closely with the

true demand values when compared to the ARIMA predictions. The cyclical patterns due to weekly
seasonality are well captured.

• Trend Capture: The model successfully captures the upward trend in demand observed in the latter
half of January.

Conclusion:

The Holt-Winters' Seasonal method fits the data well and captures the essential patterns, including the trend
and seasonality. This suggests it might be a more appropriate model for this dataset than the simple differencing
ARIMA model we used earlier.

Logic Explanation:

Why you decide to choose your solution:

• The Exponential Smoothing method, specifically the Holt-Winters method (Triple Exponential
Smoothing), was chosen because it's designed to handle both trend and seasonality. Given our previous
observations about the data having daily patterns, this method seemed apt.

• The Holt-Winters method takes into account the additive trend and additive seasonality with a seasonal
period of 7 (indicative of weekly patterns). This aims to capture the observed daily oscillations in the
taxi demand.

Are there any other solutions that could solve the question:

• Model Variations: We used an additive model for both trend and seasonality. Depending on the nature
of the data, multiplicative models could also be explored.

• Other Methods: As discussed earlier, ARIMA and its variations, as well as models like Prophet or LSTM,
can also be used for forecasting.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 48

• Parameter Tuning: The smoothing parameters of the Exponential Smoothing model (like alpha, beta,
gamma) can be optimized further for better results.

Whether your solution is the optimal or not:

• The chosen Holt-Winters method provides a reasonable approximation of the demand trend for
January 2015, as seen in the forecast plot. It captures the oscillatory pattern well.

• However, defining "optimal" is relative in forecasting. While the current approach performs decently,
further fine-tuning of parameters or trying other models might yield even better accuracy.

• The warning suggests that the optimization didn't converge. This indicates that there might be room
for improvement by tweaking the model's parameters or settings.

Question 2.3

In this question, we will detect the anomaly within the df_day dataframe.

Create the Weekday column according to the timestamp column in df_day dataframe. The value in Weekday
column should be from [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’,’Friday’, ’Saturday’, ’Sunday’]. Also
create the Hour, Day, Month, Year, Month_day (numeric format on day of the month), Lag (yesterday’s
demand value), and Rolling_Mean (rolling 7 days mean demand value, minimized period is 1) 7 new columns
in df_day dataframe according to the timestamp column.

Code:

Creating 'Weekday' column
df_day['Weekday'] = df_day['timestamp'].dt.strftime('%A')

Creating 'Hour', 'Day', 'Month', 'Year', and 'Month_day' columns
df_day['Hour'] = df_day['timestamp'].dt.hour
df_day['Day'] = df_day['timestamp'].dt.dayofweek
df_day['Month'] = df_day['timestamp'].dt.month
df_day['Year'] = df_day['timestamp'].dt.year
df_day['Month_day'] = df_day['timestamp'].dt.day

Creating 'Lag' column
df_day['Lag'] = df_day['value'].shift(1)

Creating 'Rolling_Mean' column
df_day['Rolling_Mean'] = df_day['value'].rolling(window=7,
min_periods=1).mean()

Displaying the updated dataframe
df_day.head()

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 49

Results:

timesta
mp

value Weekday Hou
r

Da
y

Mont
h

Yea
r

Month_d
ay

Lag Rolling_Mea
n

0 2014-07-
01

74596
7

Tuesday 0 1 7 201
4

1 NaN 745967.0000
00

1 2014-07-
02

73364
0

Wednesd
ay

0 2 7 201
4

2 745967.
0

739803.5000
00

2 2014-07-
03

71014
2

Thursday 0 3 7 201
4

3 733640.
0

729916.3333
33

3 2014-07-
04

55256
5

Friday 0 4 7 201
4

4 710142.
0

685578.5000
00

4 2014-07-
05

55547
0

Saturday 0 5 7 201
4

5 552565.
0

659556.8000
00

Observations

• Daily Aggregation: The data has been aggregated on a daily basis, with the Hour column showing
0 for all rows, which is expected.

• Variation in Demand: There's a noticeable variation in daily demand. For example, there's a
significant drop in demand on July 4th and 5th compared to other days. This could be attributed
to the fact that July 4th is Independence Day in the U.S., a national holiday, which might have
affected the taxi demand.

• Lag Column: The Lag column represents the demand of the previous day. It starts with NaN for
July 1, 2014, because there's no data for June 30, 2014, in the dataframe.

• Rolling Mean: The Rolling_Mean column provides a 7-day moving average of the demand. In the
initial days, this value is based on fewer than 7 days due to the min_periods parameter set to 1.
As days progress, the rolling mean stabilizes to represent the average of the last 7 days.

• Weekday Analysis: From the data provided, demand seems to be slightly lower on weekends (July
5th - Saturday and July 6th - Sunday) compared to weekdays. However, this observation is based
on a very limited sample and may not be a consistent trend.

• Month_day: The Month_day and Day columns are redundant since they represent the same
information. This column might have been added for clarity or for specific processing
requirements.

Using Isolation Forest with above crafted features in df_day to find out the date which is identified as ’outlier’.

Code:

from sklearn.ensemble import IsolationForest

Drop non-numeric columns and handle NaN values
df_day_clean = df_day.drop(columns=['timestamp', 'Weekday']).fillna(0)

Initialize Isolation Forest

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 50

clf = IsolationForest(contamination=0.05, random_state=42) # Assuming ~5% of
the data might be outliers

Fit the model
clf.fit(df_day_clean)

Predict anomalies
df_day['anomaly'] = clf.predict(df_day_clean)

Extract the dates that are identified as outliers
outlier_dates = df_day[df_day['anomaly'] == -1]['timestamp']

outlier_dates

Results:

0 2014-07-01
123 2014-11-01
178 2014-12-26
180 2014-12-28
181 2014-12-29
187 2015-01-04
188 2015-01-05
209 2015-01-26
210 2015-01-27
211 2015-01-28
214 2015-01-31

Observations

• The first date, 2014-07-01, might be flagged because it's the start of the dataset and lacks a
previous day's data (NaN in the 'Lag' column).

• 2014-12-26 is the day after Christmas, and 2015-01-01 is New Year's Day. Both are significant
holidays in many regions, so the demand might be different from typical days.

• A series of days at the end of January 2015 (from 2015-01-26 to 2015-01-31) have been identified
as outliers. This might indicate some unusual event or pattern during that period.

• 2014-11-01 is close to Halloween (October 31st), which could influence taxi demand.

Logic Explanation:

Why you decide to choose your solution:

• Feature Engineering: Time series data often benefits from feature engineering based on timestamps.
Features like lag values and rolling means can capture the data's temporal structures, while weekday,
month, and other time-related attributes can account for periodic patterns.

• Isolation Forest: It's an effective model for anomaly detection in datasets. Instead of measuring
distances like many other anomaly detection algorithms, it isolates anomalies based on the principle
that anomalies are few and different, making them easier to isolate.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 51

Are there any other solutions that could solve the question:

• Feature Engineering: Additional features could be crafted, such as capturing holiday effects or
considering lagged values over different periods.

• Anomaly Detection Models: Models like One-Class SVM, DBSCAN, or LOF (Local Outlier Factor) can also
be used for anomaly detection. However, Isolation Forest is computationally efficient and often
provides good results without extensive parameter tuning.

Whether your solution is the optimal or not:

The crafted features and the use of Isolation Forest provide a robust solution for identifying outliers in time
series data. However, "optimal" in anomaly detection is subjective. The chosen approach offers a balance
between model simplicity, computational efficiency, and detection effectiveness. Further validation, like
understanding the real-world context of detected outlier dates, could provide insights into model adjustments
or refinements. For example, many of the detected dates are around the New Year period, suggesting special
events or holidays affecting taxi demand.

What you have learned with your team members from the second assignment.

Arunkumar Balaraman:

• Arun's dedication to excellence is evident in his thorough analysis of each question and clear, concise
responses. He possesses a profound understanding of machine learning.

• Arun proactively initiated the conversation as soon as the assignment was released. He also actively
collaborates with other batch members (learning groups), which I will desire.

Shravan Kumar Kasagoni:

• Shravan's meticulous coding, evident in IPYNB and PDF formats, showcases his deep commitment to
excellence. While many dismiss minor code warnings, he proactively addresses them, staying updated
with the latest libraries. Observing his standards highlights areas I aim to improve in.

What is the contribution of each team member for finishing the second assignment?

Arunkumar Balaraman:

• Arun took charge of the coding for part 1 of the assignment and thoroughly reviewed the questions
and answers in part 2.

• Arun ensured that the work of part 1 was completed quickly and analyzed and helped with model
metrics for ARIMA for time series analysis.

• Arun diligently worked to provide dependable outcomes for data acquisition and manipulation.
Arun went through each section of the code and improved comprehension. We collaborated
closely, exchanging codes via WhatsApp and Google Drive and Google Colab, and held daily Zoom
meetings. In these sessions, we cross-validated each other's work to ensure the models and EDA
were robust for the assessment.

Shravan Kumar Kasagoni:

• Shravan primarily took charge of the coding for part 2 of the assignment.

 S223919051 & S223912075 Task 2 Assessment Report

SIG742 – Modern Data Science 52

• Shravan ensured that the work was aligned with the most updated tools available efficiently and
accurately.

• Shravan worked diligently to produce a solid time series forecast for the assignment's second part.
Shravan also walked through each code segment, enhancing the understanding. We collaborated
closely, exchanging codes via WhatsApp and Google Drive and Google Colab, and held daily Zoom
meetings. In these sessions, we cross-validated each other's work to ensure the models and EDA
were robust for the assessment.

References

Shah, R. (18 September 2023) How to Build Word Cloud in Python?, Analytics Vidhya.

Shah, A. (21 August 2023) Quantile and Decile, TutorialsPoint.

Olympus Site (September 2023) Week 4: Data Analytics 1 (Time series Data). My Great Learning.

Brownlee, J. (28 December 2020) How to Make Out-of-Sample Forecasts with ARIMA in Python, Machine
Learning Mastery.

Statsmodel (2023) ARIMA, accessed 01 Oct 2023.

Statsmodel (2023) ExponentialSmoothing, accessed 02 Oct 2023.

Scikit-learn (2023) version 1.3.1 IsolationForest, accessed 03 Oct 2023.

https://www.analyticsvidhya.com/blog/2021/05/how-to-build-word-cloud-in-python/
https://www.tutorialspoint.com/finding-the-quantile-and-decile-ranks-of-a-pandas-dataframe-column
https://olympus.mygreatlearning.com/courses/100317?module_id=668160
https://machinelearningmastery.com/make-sample-forecasts-arima-python/
https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

