SIG/88

Engineering Al solutions

Pass & Credit Task 1

Arunkumar Balaraman
S$223919051

Contents

.. 1
B 1= A O =T [SRR 3
Predictive Analysis of Chronic Kidney Disease Using Machine Learning Modelscccoceeeeieiiicciiiieeeee e, 3
INEFOTUCTION ..ttt ettt e ettt e st e s bt e e s bt e e sa bt e e sabeesabeeesabeeesabeesaneeesabeeesabeeenreesanas 3

(0] o1 =T 4 USSR 3

Y o] o] o Y- ol o AN ST 3

V| oY= [T o TSl o (oYY L o - [TR 4
Issue Resolution iN the data fille ..o st st e e eneees 5
(60 o [T PSPPI 5

(0] o1 =T oV =Y i oo F T T PO OO PP PR UUPUPPRROUPO 5

DE L=l o (=] o= [= A o] o [P PTP PP PPPPT PP 5
(60 o [T PSPPI 5

(0] o1 =T oV =Y i o T3 F OO T PO O PP UUPTPPTOUPO 6
EXPIOratory Data AN@lYSiS. . oo i uiieiiiiiee ettt ettt ettt s te e e s st e e s sttt e e s e bt e e e s s a b e e e s e bee e e s e nbee e s sabeeeesarraee s 7
LTI T L (=l AN =AY PP PSPPI 7
SN T I AN =1 V] LU ST PR 10
Target Class DistriULION:ceii i e e e e e e e e e e e e e e e s aeteeeeeeeesesnntsaaaeeeeeeesnnstannaeaeanan 13
R] £ 10 0] oo] o =T o [=T PP P PP PPPPTPPPRTN 13
TN TST STttt e e e e et e e e e e e e e e e bbbeeeeeeeeeeestbbaaeaaaaaesaasssraaseaaeeeeaassssseseeeaesenanssrrenees 16
T L[I | g TR 16
2T =R\ ToTe [=] PSPPI PPTOTRPN 17
SRl ToTe (=] Y Y (VY i o T o O T ST 18
Hyper Parameters TUNEA IMOTEISueuiiiiiiee ettt e e e e e e e re e e e e e e e rnre e e e e e e e e e ssnnnnaeees 20
Lo 1LY oY [T e 1ol /= ERUUR 23
(6073 ol VT o o AU R TSR 24
TS Y] o3 PP PP PP PPPPTPPPRN 24

[RE] L1 =] o3PS 24

§223919051 Pass & Credit Task report

Target = Credit

Predictive Analysis of Chronic Kidney Disease Using Machine Learning Models

Introduction

The dataset pertains to the initial phase of chronic kidney disease (CKD) among patients
in India. CKD is a severe health condition marked by a steady decline in kidney function over
time. Early detection of CKD is crucial for effective management and slowing its progression. The
dataset encompasses a variety of clinical and demographic factors that could impact CKD
diagnosis, including age, blood pressure, sugar levels, red blood cell counts, among others. This
makes it an all-encompassing source for constructing a predictive model.

Objective

The goal of creating a model with this dataset is to utilize machine learning methods to
precisely forecast the occurrence of chronic kidney disease in patients. This predictive modelling
can significantly contribute to early detection and treatment planning for individuals susceptible
to CKD, thereby enhancing patient outcomes and alleviating the strain on healthcare systems.

By evaluating the performance of various machine learning models, such as Decision
Trees and Random Forests, we attempt to pinpoint the most efficient method for diagnosing
CKD based on the provided clinical and demographic data.

Approach:
The ML pipeline includes the following steps:

e Data Preparation and Loading

e Exploratory Data Analysis

e Feature Importance Evaluation using Information Gain and Random Forest

e Dropping the Least Important Feature

e Train-Test Split

e Standard Scaling for Numerical Columns

e One-Hot Encoding for Categorical Columns and Label Encoding for the Target

e Training Base Models for Decision Tree and Random Forest

e Evaluating Metrics for Imbalanced Datasets using F1 Score, ROC-AUC, Harmonic Mean,
Geometric Mean

e Training Hyperparameter Models for Decision Tree and Random Forest

e Evaluating Metrics for Imbalanced Datasets using F1 Score, ROC-AUC, Harmonic Mean,
Geometric Mean

e Identifying the Best Model for Deployment, Pickling, and Zipping

During the initial data loading, several issues were encountered and resolved by removing tab

characters, correcting spacing around “yes” and “no” values, and fixing duplicated commas. The
cleaned dataset, stored in a new file named modified_chronic_kidney_disease.arff.

SIG788 — Engineering Al Solutions 3

$223919051 Pass & Credit Task report

ML Pipeline Flowchart

Issue Resolution

Removing Tab Characters

Correcting 'Yes' and 'No' Values Spacing

Fixing Comma Duplication

A 4
1. Data Preparation and Load

v
2. Exploratory Data Analysis

v
3. Feature Importance using IG and Random Forest

v
4. Dropped the Least Important Feature

7. Onehot Encoding for Categorical Column

6. Standard Scaler for Numerical Column and Label Encading for Class (Target)

N -

8. Trained the Base Models for Decision Tree and Random Forest

v
5. Train Test Split

v
9. Evaluated Metrics for Imbalanced Datasets

v
10. Trained Hyper Parameters Model for Decision Tree and Random Forest

\ 4
11. Evaluated the Metrics for Imbalanced Datasets

A 4
12. Find the Best Model to Deploy, Pickle and Zip

SIG788 — Engineering Al Solutions

§223919051 Pass & Credit Task report

Issue Resolution in the data file
During the initial data loading, several issues were encountered and resolved by removing tab

characters, correcting spacing around “yes” and “no” values, and fixing duplicated commas. The
cleaned dataset, stored in a new file named modified_chronic_kidney_disease.arff.

Code:

In [3]: # Setting Up File to read
file path = 'chronic_kidney disease.arff’

Read the file
with open(file_path, 'r') as file:
file_content = file.readlines()

Applying Correction to the data
file_content = [line.replace('\t’, '') for line in file_content] # Replace all tabs with nothing
file_content = [line.replace(' yes', 'yes').replace('yes ', 'yes') for line in file_content]
file_content = [line.replace(’' no', 'no').replace('no ', 'no') for line in file_content] # Corr
file_content = [line.replace(’,,', ',') for line in file_content] # cCorrect “,,"

Save the m file

modified_file modified_chronic_kidney_disease.arff’

with open(modified_file, 'w') as file:
file.writelines(file_content)

Observation:
Following steps are performed to fix the same:

e Removing Tab Characters: All tab characters were eliminated from the file to ensure
uniform delimiter usage across the dataset.

e Correcting “Yes” and “No” Values Spacing: Rectified spacing problems around “yes” and
“no” values.

e Fixing Comma Duplication: Handled occurrences of repeated commas which
misrepresented the structure of the dataset.

By making these adjustments, stored the refined data in a new file
modified_chronic_kidney_disease.arff. The cleaned dataset has been loaded for further
analysis & which has 400 rows and 25 columns.

Data Preparation
Code:

In [4]: # load the ARFF file
= arff.loadarff(modified_file)

vert the data to a pandas DataFrame
df = pd.DataFrame(data)

Convert byte strings to regular strings for object type columns
df_obj = df.select_dtypes([object])

df[df_obj.columns] = df_obj.apply(lambda x: x.str.decode('utf-8'))

top 5 records
df .head()
age bp sg al su rbe pc pcc ba bgr .. pcv wbcc rbcc htn dm cad appet pe ane class
0 480 800 1020 1 o ? normal notpresent notpresent 1210 440 78000 52 yes yes no good no no ckd
1 70 500 1020 4 O ? normal notpresent notpresent NaN 380 60000 NaN no no no good no no ckd
2 620 800 1010 2 3 normal normal notpresent notpresent 4230 310 75000 NaN no yes no poor no yes ckd
3 480 700 1005 4 O normal abnormal present notpresent 117.0 320 67000 39 yes no no poor yes yes ckd
4 510 800 1010 2 O normal normal notpresent notpresent 106.0 350 7300.0 46 no no no good no no ckd

5 rows x 25 columns

SIG788 — Engineering Al Solutions 5

§223919051 Pass & Credit Task report

Observation:

The dataset has 400 rows and 25 columns and with size of 10,000. As indicated in the instructions
document "chronic_kidney_disease.info.txt".

The DataFrame has null values & few null values are represented as '?' which has been replaced
with np.nan. The missing values are imputed with median for numerical data and mode for
categorical data.

Below is the brief overview of the columns and their respective null percentages:

Age: 2.25%

Blood Pressure (bp): 3.00%

Specific Gravity (sg): 11.75%

Albumin (al): 11.50%

Sugar (su): 12.25%

Red Blood Cells (rbc): 38.00%

Pus Cell (pc): 16.25%

Pus Cell Clumps (pcc): 1.00%

Bacteria (ba): 1.00%

Blood Glucose Random (bgr): 11.00%
Blood Urea (bu): 4.75%

Serum Creatinine (sc): 4.25%

Sodium (sod): 21.75%

Potassium (pot): 22.00%

Hemoglobin (hemo): 13.00%

Packed Cell Volume (pcv): 17.75%
White Blood Cell Count (wbcc): 26.50%
Red Blood Cell Count (rbcc): 32.75%
Hypertension (htn): 0.50%

Diabetes Mellitus (dm): 0.50%
Coronary Artery Disease (cad): 0.50%
Appetite (appet): 0.25%

Pedal Edema (pe): 0.25%

Anemia (ane): 0.25%

Class: 0.00%

No duplicates were found in the DataFrame before or after the imputation.

SIG788 — Engineering Al Solutions 6

§223919051 Pass & Credit Task report

Exploratory Data Analysis
Univariate Analysis
Describe

In [16]: df.describe().T
out[16]
count mean std min 25% 50% 75% max
age 400.0 51.562500 16.982996 20 42.000 55.00 64.000 90.0
bp 4000 76.575000 13.489785 50.0 70.000 80.00 80.000 180.0
bgr 400.0 145.062500 75.260774 220 101.000 121.00 150.000 490.0
bu 4000 56.693000 49.395258 1.5 27.000 42.00 61.750 391.0
sc 4000 2997125 5628886 04 0.900 1.30 2725 76.0
sod 400.0 137631250 9.206332 45 135000 138.00 141.000 163.0
pot 4000 4577250 2.821357 25 4.000 4.40 4.800 47.0
hemo 4000 12.542500 2.716490 31 10.875 12.65 14625 17.8
pev 400.0 39.082500 8162245 9.0 34.000 40.00 44.000 54.0
wbce 4000 8298500000 2529593814 2200.0 6975.000 8000.00 9400.000 26400.0
rbece 400.0 4737750 0.841439 21 4.500 4.80 5.100 80
» The dataset represents a wide age range (2-90 years), with an average of 51.48 years.
> Blood pressure varies among individuals, with a mean of 76.47 mmHg.
» Specific Gravity (sg) averages at 1.017, indicating mostly normal kidney function.

However, Albumin (al) and Sugar (su) levels vary widely (0-5), suggesting varied kidney
function.

» Blood Glucose Random (bgr) levels range from 22-490 mg/dl, indicating diverse metabolic
states.

» Blood Urea (bu) and Serum Creatinine (sc) show significant variation, highlighting
potential kidney function issues.

» Sodium (sod) and Potassium (pot) levels are within normal ranges, but variability suggests
potential imbalances.

» Hemoglobin (hemo), Packed Cell Volume (pcv), and White (wbcc) and Red Blood Cell
Counts (rbcc) show wide ranges, important for diagnosing conditions like anemia.

Box Plot:

In [20]: # Setting the aesthetics jfor the plots
sns.set(style="whitegrid"”)

Plotting box plots for numerical columns

plt.figure(figsize=(20, 15))

for i, col in enumerate(df_numerical, 1):
plt.subplot(4a, 3, i)
sns.boxplot(data[col])
plt.title(col)

plt.tight_layout()
plt.show()

SIG788 — Engineering Al Solutions 7

$223919051 Pass & Credit Task report

1.0 . 0

00 ' ®

» ¢ %
©
0 -
1w L] &
w
.
oo » -
©) =

wexc &
.] .
2000
]
.
20008
' 6
w00
oo 4
3
000

Significant outliers in attributes such as bgr, bu, sc, sod, pot, and wbcc reflects natural variation
or health conditions.

The IQR differences across parameters like bu and sc denote high variability among individuals.

Histogram and Skewness

In [17]): describe_df = df.describe()
summary_list = []

for column in describe_df.columns:
mean = describe_df[column]['mean’]
std = describe_df[column]['std"]
min_val = describe_df[column]['min’]
max_val = describe_df[column]['max’]

median = describe_df[column]['S0X"]
if mean > median:

skewness = "right skewed"
elif mean < median:

skewness = "left skewed™
else:

skewness = "normally distributed”

summary = f"{column}: has a mean of {mean:.2f} & standard deviation of {std:.2f}. Values range from {min_val} to {max_val} &
summary_list.append(summary)

summary_list
‘ >
Out[17]: ["age: has a mean of 51.56 & standard deviation of 16.98. Values range from 2.0 to 90.0 & left skewed.',
‘bp: has a mean of 76.58 & standard deviation of 13.49. Values range from 50.0 to 180.0 & left skewed.’,
‘bgr: has a mean of 145.06 & standard deviation of 75.26. Values range from 22.0 to 490.0 & right skewed.’,
‘b has a mean of 56.69 & standard deviation of 49.40. Values range from 1.5 to 391.0 & right skewed.',
sc: has a mean of 3.00 & standard deviation of 5.63. Values range from .4 to 76.0 & right skewed.',
‘sod: has a mean of 137.63 & standard deviation of 9.21. Values range from 4.5 to 163.0 & left skewed.',
‘pot: has a mean of 4.58 & standard deviation of 2.82. Values range from 2.5 to 47.@ & right skewed.',
‘hemo: has a mean of 12.54 & standard deviation of 2.72. Values range from 3.1 to 17.8 & left skewed.',
‘pcv: has a mean of 39.08 & standard deviation of 8.16. Values range from 9.0 to 54.0 & left skewed.',
‘wbcc: has a mean of 8298.50 & standard deviation of 2529.59. Values range from 2200.0 to 26400.0 & right skewed.’,
‘rbcc: has a mean of 4.74 & standard deviation of ©.84. Values range from 2.1 to 8.0 & left skewed.']

SIG788 — Engineering Al Solutions 8

§223919051 Pass & Credit Task report

Distribution of age Distribution of bp Distribution of bgr Distribution of bu

- o 0
o 20 @ 60 80 S0 s 100 125 150 175 o 100 200 300 400 500 o

\
\
| ‘lm T} 51—
100 200
age bp bgr by
Distribution of sc Distribution of sod Distribution of pot Distribution of hemo

300 400

60 2] ol 8
i L | 6 _ | od A

ount

Col
ount
8

o
20 <0 00 o 25 %0 » 100 125 150 10 20 0 <0 25 50 15 100 125 150 175
sod por hemo

Distribution of wbcc Distribution of rbcc

5000 10000 15000 20000 25000 2 3 4 S 6 7]
wbece rbee

Histogram and Skewness:

>

>

'age: has a mean of 51.56 & standard deviation of 16.98. Values range from 2.0 to 90.0 &
left skewed.',

'bp: has a mean of 76.58 & standard deviation of 13.49. Values range from 50.0 to 180.0
& left skewed.',

'bgr: has a mean of 145.06 & standard deviation of 75.26. Values range from 22.0 to 490.0
& right skewed.',

'bu: has a mean of 56.69 & standard deviation of 49.40. Values range from 1.5 t0 391.0 &
right skewed.’,

'sc: has a mean of 3.00 & standard deviation of 5.63. Values range from 0.4 to 76.0 & right
skewed.',

'sod: has a mean of 137.63 & standard deviation of 9.21. Values range from 4.5 to 163.0
& left skewed.',

'pot: has a mean of 4.58 & standard deviation of 2.82. Values range from 2.5 to 47.0 &
right skewed.’,

'hemo: has a mean of 12.54 & standard deviation of 2.72. Values range from 3.1 to 17.8
& left skewed.',

'pcv: has a mean of 39.08 & standard deviation of 8.16. Values range from 9.0 to 54.0 &
left skewed.',

'wbcc: has a mean of 8298.50 & standard deviation of 2529.59. Values range from 2200.0
to 26400.0 & right skewed.’,

'rbcc: has a mean of 4.74 & standard deviation of 0.84. Values range from 2.1 to 8.0 & left
skewed.'

SIG788 — Engineering Al Solutions 9

$223919051 Pass & Credit Task report

> Right-skewed distributions in al, su, bgr, bu, and sc indicate most values are low with a tail
towards higher values. also, left-skewed distributions in age, bp, and hemo suggest a
concentration of higher values.

> The non-normal distributions of sg, sod, and hemo reflect the complex of medical data.

Bivariate Analysis
Box Plot with Class

Code:

In [21]: # Plot Box plot
plt.figure(figsize=(15,10))

for i, column in enumerate(df_numerical.columns):
plt.subplot(3, 4, i+l)
sns.boxplot(x="class', y=column, data=df)
plt.title(f'{column} vs class"')

plt.tight_layout()

plt.show()
age vs class bp vs class bgr vs class bu vs class
500 00
175 : H '
- !
150 ©0 200 '
@ "’
125 X0
a‘.': B B B2
100 200
100
0 50 o 0
okd notckd cd notckd chd notckd axd notckd
dass dass dass dass
SC vs dass sod vs class pot vs class hemo vs class
¢ ¢ . s
e ——
40 . "
. - —:%
M 100 » 25
40 ° =
2 N 8 8 . g 100
2
2‘:_ + 50 75
i - o l 50
| e— e
o 0 o 25 :
chd notckd ckd noftckd chd notckd ched notckd
dass dass dass dass
pov vs class whcce vs class rbce vs class

* 8 +
50 25000

. 7
o é 20000 +

6
8 & 0
10000 ' 4
“
10 ' ,
chd

ckd notckd ckd nolckd
dass dass dass

nolckd

Box plots reveal distinct distributions for parameters like hemo, and pcv when compared against
the disease presence class, suggesting these variables are key in distinguishing between classes.

SIG788 — Engineering Al Solutions 10

5223919051

Co-relation Analysis

Code:

Pass & Credit Task report

In [22]: # Correlation Analysis

corr = df_numerical.corr()

plt.figure(figsize=(10, 8))

sns.heatmap(corr, annot=True, cmap='coolwarm', fmt

plt.title('Correlation Matrix')
plt.show()

=".2f", linewidths=.05)

age

bgr

bu

wbcc pev hemo pot sod

rbce

Correlation Matrix

014 023 019 013 -0.09 005

. o‘ 09

014 piKivm 015 018 014 -0.10 006 mm 0.02
023 0.15 012 007 013 005 mm 0.12

0'13 0.14 0.07 .

005 006 005 034 020 007 puK

009 002 012 004 001 001 008 -0.14

- . .m 0.31 0-12 ﬁ | | |
age bp bgr bu sc sod

pot

o-u o'm
0' 20 m 0.01

007 033 034 001

010 0.12 -0.08

% j mm o.& 0.10 o“‘

0.67

pcv wbce

1.0

08

06

-04

-02

0.12
- 00

1.00

rbce

» Hemoglobin (hemo) and Packed Cell Volume (pcv) show a strong positive correlation
(~0.90), indicating they are consistent indicators of each other's levels.

» Serum Creatinine (sc) and Sodium (sod) show a strong negative correlation (~-0.69),
suggesting that as sc levels increase, sod levels decrease, potentially indicating kidney

SIG788 —

function

Engineering Al Solutions

impairment.

11

$223919051 Pass & Credit Task report

Pairplot Analysis:
Code:

In [24]: # Plot Pair plot
sns.pairplot(df[df_numerical.columns])
plt.show()

1y
RS
o oA

.' _‘J A .

uilthe -

i
i
; glx*- =
—_
F
e
PP (1
et

A

r

-M/t -

PR

wadies M
g f “ .;': -
T O i e

¥ ek o
F e | -': .
3

]

f

Ll
:

it

1E

i

. AN .-, . 2 8
2 %"u’; -, %’- « oo
Hr L W
4_0 '
§ W le—
R -, -
o e

",
M]
* o kil | cyabipene

~ 3
LT LM

= = L ALI- i
. . :::;:,‘ 'f\ - f s ::‘ - ,.: - 1 ,,;
el . R B P ot e, R

©aEEs il oo ' :
c: - i1 ' ”. - P ,r bl 3 b . e ow .: . “ f—— - . 8o
oG [| [T R - | L | R AR A

oy
aif o

EEE R

R s R A

> Hemoglobin (hemo) and Packed Cell Volume (pcv) show a strong positive correlation,
useful for diagnosing conditions like anemia or blood disorders.

> Age shows diverse patterns when plotted against various parameters, highlighting the
complexity of age's interaction with physiological parameters and disease markers.

> Outliers are present in variables like bgr, Blood Urea (bu), and Serum Creatinine (sc),
potentially indicating extreme cases or severe health conditions.

SIG788 — Engineering Al Solutions 12

$223919051 Pass & Credit Task report

> Serum Creatinine (sc) and Blood Urea (bu) show a positive correlation, suggesting that
their joint increase could signal kidney impairment or disease.

Target Class Distribution:

Code:

In [25]: # Target class distribution
plt.figure(figsize=(6, 4))
sns.countplot(x='class’', data=df)
plt.title('Distribution of Target Class')
plt.show()

Distribution of Target Class
250

150

count

100

notckd

class

Target class distribution

The distribution of the target class in the dataset represents patients having chronic kidney
disease (ckd) and those without (notckd). Specifically, there are 150 cases classified as ckd and
250 cases classified as notckd.

The dataset is imbalanced, with a larger number of notckd cases. This imbalance could influence
the performance of a predictive model.

Feature Importance

Feature importance is a practice of assigning scores to the independent features for a
machine learning model based on their influence in predicting the target variable, scores would
be indicated which features are more significant in model's predictions and which features could
potentially be ignored without loosing too much predictive power.

SIG788 — Engineering Al Solutions 13

$223919051 Pass & Credit Task report

Information Gain (IG) is a measure helps to identify which features are the most informative for
predicting the target variable & used with decision tree algorithms and is based on the concept
of entropy from information theory.

|: # Splitting X and y for Predicting Feature importance
= df.drop(’class’, axis=1)
y = df["class’]

>

|: # Creating copy
X_label_encoded = X.copy()

Select Categorical Columns
df_cat = X_label_encoded.select_dtypes(include=["object’]).columns

applying Label encoding for categorical Columns

for col in df_cat:
le = LabelEncoder()
Fit Label encoder and return encoded Labels
X_label_encoded[col] = le.fit_transform(X[col].astype(str))

]: y = LabelEncoder().fit_transform(y)

Information Gain (IG) is a measure helps to identify which features are the most informative for predicting the target variable & used with decision tree
algorithms and is based on the concept of entropy from information theory.

|: # Calculate Information Gain (mutual information) for each feature
info_gain = mutual_info_classif(X_label_encoded, y)

|: # Create a DataFrame for better visualization
info_gain_df = pd.DataFrame({ Feature’: X_label_encoded.columns, ‘Information Gain': info_gain}).sort_values(by="'Information Gair
info_gain_df

Chart

Feature Importance based on Information Gain

hemo
pcv

rbce

sod
htn

pot
bu
bgr
bp
appet
ane
pc
whbee
pe
cad

Features

®

age
pcc
rbc
ba

0

o

0.1 02 03 04
Information Gain

Random Forest uses a measure based on the decrease in node impurity & is Gini impurity or
entropy in case of classification, and variance in case of regression. Every time a feature is used

SIG788 — Engineering Al Solutions 14

§223919051 Pass & Credit Task report

to split data, the impurity of the child nodes is calculated. The difference between the impurity of
the parent node and the weighted impurity of the child nodes gives us the impurity decrease. The
feature importance for a feature is calculated as the average impurity decrease for that feature
across all trees in the forest.

In [32]: X_train, X_test, y_train, y_test = train_test_split(X_label_encoded, y, test_size=08.2, random_state=42)
Train a RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100, random_state=42)

rf.fit(X_train, y_train)

Get feature importance from the Random.

feature_importance_rf = pd.DataFrame({'F ‘Importance’: rf.feature_importances_}).sort_values(by="Importance’,
feature_importance_rf
'
Chart
In [33]: plt.figure(figsize=(18, 6
sns.barplot(x="Import e', data=feature_importance_rf, palette='viridis')
plt.title('F on RandomForest Classifier')

plt.xlabel(
plt.ylabel('Fe
plt.show()

Feature Importance based on RandomForest Classifier

Features

8
..||||II||||“|H|

appet
wbce

pc

rbc
pe
ane
pcc
ba
cad

0

o

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Importance

Feature Importance:

High Importance Features: Hemoglobin (hemo), Packed Cell Volume (pcv), Serum Creatinine (sc),
Specific Gravity (sg), and Red Blood Cell Count (rbcc) are consistently ranked high in importance
by both Random Forest and Information Gain, indicating its importance for prediction.

Moderately Important Features: Albumin (al), Diabetes Mellitus (dm), and Sodium (sod) shows
moderate importance with slight ranking variations, suggesting their significant contribution for

prediction.

Low Importance: Hypertension (htn), Blood Glucose Random (bgr), and Blood Urea (bu) show
some ranking variance and are generally considered of moderate to low importance. Age, Blood

SIG788 — Engineering Al Solutions 15

5223919051

Pass & Credit Task report

Pressure (bp), and Potassium (pot) are ranked lower, indicating they might have less impact on

the model.

No Importance: Pus Cell Clumps (pcc), Bacteria (ba), and Coronary Artery Disease (cad)
consistently show little to no importance, suggesting it may not significantly influence the
predictions and could be dropped without affecting performance significantly.

Dropping pcc & ba due to zero importance scores.

Train Test Split

Code:
In [34]: g cC ba
X = df.drop(columns=[‘class’, pcc’,'ba’], axis=1)
In [35]: # Splitting the data into t ng and testing sets

et
X_train, X_test, y_train, y test = train_test_split(X, y, test_size=0.2, random_state=42,stratify=y)
print("X_train shape:", X_train.shape)
nt("X_test shape:”, X_test.shape)
t("y_train shape:", y_train.shape)
nt("y_test shape:”, y_test.shape)

X_train shape: (320, 22)
X_test shape: (8@, 22)
y_train shape: (32e,)
y_test shape: (8e,)

Column Drop: Columns pcc and ba were dropped based on the feature importance.

Imbalanced Dataset: Stratification is used during data split to ensure balanced representation of
each target class in the train and test sets, crucial for avoiding bias in classification tasks.

Split Ratio: Divided into 80% for training and 20% for testing.
Dataset Sizes:

X_train shape: (320, 22)

X_test shape: (80, 22)

y_train shape: (320,)
y_test shape: (80,)

Feature Scaling
Code:

fying categorical and numerical columns
categorical_cols X_train.select_dtypes(include=[‘object’, ‘b
numerical_cols X_train.select_dtypes(include=["'float64’', 'inté

In [37]: # Identifyi

) .columns.tolist()
) .columns.tolist()

1]
]

Preprocessing for numerical

numerical_transformer

- Piééline{steps:[('scala"', StandardScaler())])

Preprocessing for categorica

C data
categorical_transformer

Pipeline(steps=[('onehot’, OneHotEncoder(handle_unknown="ignore®'))])

Bundle preprocessing fj L eri
preprocessor ColumnTransformer(
transformers=[
('num’, numerical_transformer,
('cat’, categorical_transformer,

ng for numerical and categorical data

numerical_cols),
categorical_cols)])

SIG788 — Engineering Al Solutions 16

§223919051 Pass & Credit Task report

In

[38]: # Define the mode

r', preprocessor),

decision_tree_model Pipeline(steps=[("pr
‘cl r', DecisionTreeClassifier(random_state=42))])

('cl

random_forest_model = Pipeline(steps=[(‘pr sor', preprocessor),
('classifier’, RandomForestClassifier(random_state=42))])

Encoding the target variable since it’s categ
label_encoder = LabelEncoder()

y_train_encoded = label_encoder.fit_transform(y_train)
y_test_encoded = label_encoder.transform(y_test)

Preprocessing Summary:

» Feature Segregation: Features were divided into numerical and categorical types for
Scaling.
» Standard Scaling: Applied StandardScaler for Numerical features & standardizing
features by removing the mean and scaling to unit variance.
» One-Hot Encoding: Applied OneHotEncoder for categorical features converting them
into a binary matrix representation.
> Integration: Preprocessing steps were combined using ColumnTransformer, allowing
concurrent application of numerical and categorical transformers to their respective
columns. This ensures correct preprocessing, enhances reproducibility and efficiency.
> Label Encoding: Applied to the target variable (y) to convert categorical labels into a
numeric format
Base Model:
Code:
In [38]: # Define the models

decision_tree_model = Pipeline(steps=[('pr essor', preprocessor),
('classifier’, DecisionTreeClassifier(random_state=42))])

random_forest_model = Pipeline(steps=[('preprocessor’, preprocessor),
('classifier’, RandomForestClassifier(random_state=42))])

Encoding the target variable since it's categorical
label_encoder = LabelEncoder()

y_train_encoded = label_encoder.fit_transform(y_train)
y_test_encoded = label_encoder.transform(y_test)

Fit the models
decision_tree_model.fit(X_train, y_train_encoded)
random_forest_model.fit(X_train, y_train_encoded)

Decision tree Model:

In [52]: decision_tree_model

out[s2]: |, Pipeline
i preprocessor: ColumnTransformer
‘. num . cat
- StandardScaleré (. OneHotEncoder

‘StandardScaler()g iOneHotEncoder(handle_unknown:'ignore')é

| « DecisionTreeClassifier

;DecisionTreeClassifier(random_state=42)é

SIG788 — Engineering Al Solutions 17

§223919051 Pass & Credit Task report

Random Forest Model:

In [53]: random_forest_model

Out[53 S Pipeline

L preprocessor: ColumnTransformer

> num > cat

v Standar‘dScaler‘g OneHotEncoder

StandardScaler()| |OneHotEncoder(handle_unknown="ignore’

T

%. RandomForestClassifier

%RandomForestClassifier(random_state=42)%

» Reproducibility: A random state of 42 was set for two models to ensure consistent results
across multiple runs.

> Baseline Models: Trained two models, Decision Tree Classifier and Random Forest
Classifier, integrated into pipelines with preprocessing steps for feature scaling and
encoding.

> Pipelines: Used to encapsulate the entire process from raw data preprocessing to model
training in a single workflow, simplifying the code and minimizing data leakage risk.

> Decision Tree Classifier Pipeline: Includes a preprocessor for handling numerical and
categorical features, followed by the classifier itself.

» Random Forest Classifier Pipeline: Includes a preprocessor for handling numerical and
categorical features, followed by the classifier itself

Base Model Evaluation:

Code:

n to calculate metrics

te_metrics(model, X_train, y_train, X_test, y_test):

= g predictions and probabilities

train_preds = model.predict(X_train)

test_preds = model.predict(X_test)

train_probs = model.predict_proba(X_train)[:, 1] # Probability of positive class
test_probs = model.predict_proba(X_test)[:, 1]

Calculating metrics
metrics =
‘Train F1': f1_score(y_train, train_preds),
‘Test F1': f1_score(y_test, test_preds),
‘Train ROC AUC': roc_auc_score(y_train, train_probs),
‘Test ROC AUC': roc_auc_score(y_test, test_probs),
‘Train Precision’: precision_score(y_train, train_preds),
‘Test Pre on': precision_score(y_test, test_preds),
‘Train Recall’: recall_score(y_train, train_preds),
‘Test 1': recall_score(y_test, test_preds),
‘Train Harmonic Mean': hmean([precision_score(y_train, train_preds), recall_score(y_train, train_preds)]),
‘Test Harmonic Mean': hmean([precision_score(y_test, test_preds), recall_score(y_test, test_preds)]),
‘Train Geometric Mean': gmean([precision_score(y_train, train_preds), recall_score(y_train, train_preds)]),
‘Test Geometric Mean': gmean([precision_score(y_test, test_preds), recall_score(y_test, test_preds)]),
}

return metrics, train_preds, test_preds

SIG788 — Engineering Al Solutions 18

5223919051

Classification Report & Confusion Matrix

Pass & Credit Task report

In [39]: print('confusion matrix - Decision Tree')
print(confusion_dt)
print('Classification report - Decision Tree')
print(report_dt)
confusion matrix - Decision Tree
[[49 1)
[327]]
Classification report - Decision Tree
precision recall fl-score support
] 2.94 0.98 0.96 50
3 0.96 9.90 0.93 30
accuracy 0.95 80
macro avg .95 2.94 0.95 80
weighted avg 0.95 0.95 0.95 80
In [40]: print('confusion matrix - Random Forest')
print(confusion_rf)
print('Classification report - Random Forest')
print(report_rf)
confusion matrix - Random Forest
[[5e e]
[2 28]]
Classification report - Random Forest
precision recall fl-score support
] 2.96 1.0 0.98 50
1 1.0 .93 9.97 30
accuracy 0.97 80
macro avg 0.98 .97 0.97 80
weighted avg ©.98 0.97 0.97 80
Chart:
100 Test Metrics Comparison: Decision Tree vs. Random Forest
mmm Decision Tree
mmm Random Forest
0.98
0.96
2
094
092 I I I
0.90
Test F1 Test ROC AUC Test Harmonic Mean Test Geometric Mean
Metric

SIG788 — Engineering Al Solutions

19

§223919051 Pass & Credit Task report

Model Comparison
Overfitting Analysis:

Decision Tree: Achieves a perfect F1 score of 1.0 on training data, dropping to 0.931 on the test
set, indicating potential overfitting. Precision remains high, but recall drops from 1.0 in training
to 0.9 in testing.

Random Forest: Also achieves a perfect F1 score of 1.0 on training data, with a slight decrease to
0.966 on the test set. This model maintains perfect precision and high recall, suggesting less
overfitting than the Decision Tree.

Performance on Imbalanced Datasets:

Decision Tree: Favors the majority class (0), with more false negatives than false positives. The
Test ROC AUC of 0.94 suggests room for improvement in handling the minority class.

Random Forest: has very good performance with no false positives and few false negatives,
demonstrating strong ability to handle the imbalanced dataset. The Test ROC AUC of 0.999
indicates exceptional class differentiation ability.

Conclusion: The Random Forest model outperforms the Decision Tree indicating better
generalization, stronger handling of the imbalanced dataset and higher precision, recall, and F1
scores. The Decision Tree, while performing well, shows signs of overfitting and weaker handling
of imbalance.

Hyper Parameters Tuned Models
Code:

n [45]: from sklearn.model_selection import RandomizedSearchCV
import numpy as np

: np.arange(2, 20),
np.arange(1, 20)
‘entropy’]

Hyperparameter

rf_param_grid
cl ‘: np.arange(10, 200, 19),

p.arange(3, 20),

: np.arange(2, 20),

np.arange(1,

', 'entropy']

dt_random_search = RandomizedSearchCV(decision_tree_model, dt_param grid, n_iter=10, cv=5, scoring='roc_auc', random_state=42, n_

ety anagomizeas (V for Random Forest
rf_random_search =

ndomizedSearchCV(random_forest_model, rf_param_grid, n_iter=10, cv=5, scoring="roc_suc', random_state=42, n_

dt_random_search.fit(X_train, y_train_encoded)
rf_random_search.fit(X_train, y_train_encoded)
best_dt_model = dt_random_search.best_estimator_
best_rf_model = rf_random_search.best_estimator_

SIG788 — Engineering Al Solutions 20

$223919051 Pass & Credit Task report

Best Models:
Decision Tree:

In [46]: best_dt_model

...

Out[46]:

e preprocessor: ColumnTransformer

e num > cat

i v StandardScaler

v OneHotEncoder

; StandardScaler()
' T

I, oo E—— st SRS

él- DecisionTreeClassifier

OneHotEncoder (handle_unknown="ignore") |

DecisionTreeClassifier(criterion="entropy', max_depth=18, min_samples_leaf=19,}
min_samples_split=18, random_state=42)

S
Random Forest:
In [47]: best_rf_model
Out[47]: :, Pipeline

i- preprocessor: ColumnTransformer i

> num » cat

é -StandardScalerl

» OneHotEncoder é

é X RandomForestClassifier

I
§RandomForestClassifier(criterion='entropy', max_depth=7, min_samples_leaf=3, t
' min_samples_split=12, n_estimators=6@, random_state=42)|!

T T

Confusion Matrix and Classification Report
Decision Tree Tuned Model

In [49]: print('confusion matrix - Decision Tree')
print(confusion_dt_tuned)
print('Classification report - Decision Tree')
print(report_dt_tuned)

confusion matrix - Decision Tree

[[47 3]
[5 25]]
Classification report - Decision Tree
precision recall fl-score support
9 .90 2.94 0.92 50
s | .89 .83 0.86 30
accuracy 0.90 80
macro avg .99 ©.89 0.89 80
weighted avg 2.90 0.90 0.90 80

SIG788 — Engineering Al Solutions

21

$223919051 Pass & Credit Task report
Random Forest Tuned Model:
In [50]: print(’confusion matrix - Random Forest')
print(confusion_rf_tuned)
print('Classification report - Random Forest')
print(report_dt_tuned)
confusion matrix - Random Forest
[[49 1]
i 3:271)
Classification report - Random Forest
precision recall fl-score support
7] 2.90 2.94 0.92 50
1 .89 9.83 0.86 30
accuracy 0.90 80
macro avg .90 ©.89 0.89 80
weighted avg 2.90 0.90 0.90 80
Chart:
100 Test Metrics Comparison: Decision Tree vs. Random Forest
. mmm Decision Tree
mmm Random Forest
0.98
0.96
0.94
e
c§ 0.92
0.90
0.88
= N
Test F1 Test ROC AUC Test Harmonic Mean Test Geometric Mean
Metric

Model Comparison

Overfitting Analysis:

> Decision Tree Base Model: Achieves perfect 1.0 scores on training metrics, which drop on
the test set, suggesting potential overfitting.

SIG788 — Engineering Al Solutions

22

§223919051 Pass & Credit Task report

» Random Forest Base Model: Displays perfect training scores with high test scores,
indicating slight overfitting, but less than the Decision Tree due to superior test
performance.

» Decision Tree Tuned Model: Shows reduced training metrics compared to its base model,
suggesting less overfitting. However, the decrease in test metrics indicates a trade-off
between generalization and overall performance.

» Random Forest Tuned Model: Exhibits high training and test metrics, indicating excellent
generalization and slight overfitting due to near-perfect scores.

Performance on Imbalanced Datasets:

» Decision Tree Base Model: Displays high precision and recall for both classes, slightly
favouring the majority class.

» Random Forest Base Model: Demonstrates excellent precision and recall, slightly
outperforming the Decision Tree in handling the minority class.

» Tuned Models: Show a decrease in performance metrics compared to their base models.
The Decision Tree Tuned Model shows a significant drop in recall for the minority class,
indicating decreased performance on the imbalanced dataset. The Random Forest Tuned
Model maintains high precision but sees a drop in recall for the minority class.

Final Model pickle

The Random Forest Base Model is recommended as the final model for this scenario due
to its high performance on both the training and test sets, excellent precision and recall values
for the minority class, and strong balance between high performance and generalization
capability on the imbalanced dataset.

While tuning aims to improve model performance and generalization, in this case, the
Random Forest Base Model already provides a strong balance.

Code:

In [S57]: # Save the Random Forest Base model to a pickle file
joblib.dump(random_forest_model, ‘random_forest_model.pkl')
Create a new zip file containing the pickle file
with zipfile.ZipFile('random_forest_model.zip', 'w') as myzip:

myzip.write('random_forest_model.pkl', 'random_forest_model.pkl')

Folder Structure Files:

TITOUTTET - CTITOTIC —KTOTTEy ~OTSEaTe 31T
| random_forest_model.pkl @

random_forest_model.zip @

SIG788 — Engineering Al Solutions 23

§223919051 Pass & Credit Task report

Conclusion:

>

>

>

Predictive analysis, machine learning models like Random Forest will help in early
detection of CKD.

This approach enhances patient care by enabling timely interventions and personalized
treatment plans.

The study's success highlights machine learning's potential in medical diagnostics and its
ability to handle complex datasets.

Next Steps:

>

Model Preparation: Create a scoring script for predictions and define an Azure ML
environment with all necessary Python dependencies. Also, create an inference
configuration specifying the Docker image and scoring script.

Model Deployment: Deploy the model as a web service in Azure Container Instances (ACl)
or Azure Kubernetes Service (AKS) using the Model.deploy() function.

Model Utilization: Test the deployed model by obtaining the REST endpoint of the web
service and sending data for prediction. Then, consume the endpoint in application for
real-time predictions.

References

>

Great Learning. (2024). Introduction to Data Frames in pandas. Available at:
https://olympus.mygreatlearning.com/courses/97366/pages/4-dot-1-introduction-to-
data-frames-in-pandas

Great Learning. (2024). Outliers, Missing, Censored, and Incorrect Data. Available at:
https://olympus.mygreatlearning.com/courses/97366/pages/4-dot-5-outliers-missing-
censored-and-incorrect-data

Great Learning Olympus. (2023). Site for PGP for Artificial intelligence and machine
learning study materials. Available at:
https://olympus.mygreatlearning.com/courses/74001

Scikit-Learn. (No Date). Hyper parameter tuning. Available at: https://scikit-
learn.org/stable/modules/grid search.html

Sruthi E R. (2024, Jan 03). Understand Random Forest Algorithms With Examples
(Updated 2024) Available at:
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/

Brownlee, J. (No Date). Metrics for Imbalanced Classification Books. Available at:
https://machinelearningmastery.com/imbalanced-classification-with-python/

Jain, A. (2018). Hyperparameters and Parameters in Machine Learning: What's the
difference? Avialble at: https://www.analyticsvidhya.com/blog/2018/08/difference-
between-parameters-and-hyperparameters/

SIG788 — Engineering Al Solutions 24

https://olympus.mygreatlearning.com/courses/97366/pages/4-dot-1-introduction-to-data-frames-in-pandas
https://olympus.mygreatlearning.com/courses/97366/pages/4-dot-1-introduction-to-data-frames-in-pandas
https://olympus.mygreatlearning.com/courses/97366/pages/4-dot-5-outliers-missing-censored-and-incorrect-data
https://olympus.mygreatlearning.com/courses/97366/pages/4-dot-5-outliers-missing-censored-and-incorrect-data
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://machinelearningmastery.com/imbalanced-classification-with-python/
https://www.analyticsvidhya.com/blog/2018/08/difference-between-parameters-and-hyperparameters/
https://www.analyticsvidhya.com/blog/2018/08/difference-between-parameters-and-hyperparameters/

§223919051 Pass & Credit Task report

» Goyal, P. (2018). Feature Importance and Why It’s Important. Avialble at:
https://towardsdatascience.com/feature-importance-and-why-its-important-
c46d326e81d2

» Patel, K. (2018). Why, How and When to Scale your Features. Available at:
https://medium.com/greyatom/why-how-and-when-to-scale-your-features-
4b30ab09db5e

» Brownlee, J. (October 16, 2019). Information Gain and Mutual Information for Machine
Learning. Machine Learning Mastery. Available at:
https://machinelearningmastery.com/information-gain-and-mutual-information/

» Sethi, A. (March 6, 2020). One Hot Encoding vs. Label Encoding using Scikit-Learn.
Analytics Vidhya. Available at: https://www.analyticsvidhya.com/blog/2020/03/one-hot-
encoding-vs-label-encoding-using-scikit-learn/

» scikit-learn. 1.10. Decision Trees. Available at: https://scikit-
learn.org/stable/modules/tree.html

» Kim, C. (July 14, 2022). Decision Tree Classifier with Scikit-Learn from Python. Medium.
Available at: https://medium.com/@chyun55555/decision-tree-classifier-with-scikit-
learn-from-python-e83f38079fea

» Doshi, N. (March 19, 2022). 5 Most Important Metrics for Model Evaluation in Machine
Learning. Towards Data Science. Available at: https://towardsdatascience.com/5-most-
important-metrics-for-model-evaluation-in-machine-learning-c74fc9d0609f

» Microsoft Developer (Jul 10, 2020) How do you deploy a machine learning model as a
web service within Azure Available at:
https://www.youtube.com/watch?v=n8h6 Expf38

SIG788 — Engineering Al Solutions 25

https://towardsdatascience.com/feature-importance-and-why-its-important-c46d326e81d2
https://towardsdatascience.com/feature-importance-and-why-its-important-c46d326e81d2
https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e
https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e
https://machinelearningmastery.com/information-gain-and-mutual-information/
https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-encoding-using-scikit-learn/
https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-encoding-using-scikit-learn/
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://medium.com/@chyun55555/decision-tree-classifier-with-scikit-learn-from-python-e83f38079fea
https://medium.com/@chyun55555/decision-tree-classifier-with-scikit-learn-from-python-e83f38079fea
https://towardsdatascience.com/5-most-important-metrics-for-model-evaluation-in-machine-learning-c74fc9d0609f
https://towardsdatascience.com/5-most-important-metrics-for-model-evaluation-in-machine-learning-c74fc9d0609f
https://www.youtube.com/watch?v=n8h6_Expf38

