SIG788 — Engineering Al Solutions

SIG/88

Engineering Al solutions

High Distinction Task 8

Arunkumar Balaraman
522391905f

§223919051 High Distinction Task 8

Contents
... 1
BIE T8 (=i o [T={ T D11 o [Tt o o I PSR 3
Y gTe] = 1=l e oo (U Tor Y N = o USRS 3
ToTd oY [V o1 [o] o RSO PRSP UPTTOPPRRRPI 3
(0] o JT=To1 41V OO PP OO RU PR UPRPPPRT 3
L=Iel el e] [oT=dTor= M T gTo 11T g 1< a1 =1 o) o APPSR 3
DY N U a1 1Y oo L T T T TP P PSP OPROPPTP 3
i o] o]0 Y- o O TP UPPPPRRPON 4
(O] o1=1 oV Y I A] T PP PPPPPPPOPPI 4
AZUre Blob STOrage & itS CONTAINEIS:uviiiiiiei e e e e ee e e st e e e s e e e e e s s teeeesntaeeesnsteeeeansaeeesnnseeesanseneeennsens 6
AZUIE Al SEAICR: ..ttt ettt e st e e bt e e bt e e s a bt e s a bt e e bt e e ate e subeeea b e e e be e e heeeehbe e e be e s beeeabeeeenreennreean 7
AZUIE SPEECIN SEIVICES: .eoutiiiiitiiieeette ettt ettt st e e st e et e e stteesate e st e e esbaeeaeeesabeesabeesaseesasaeessbeesabaesaseeeraeeeasseesabeeenbaeensseesaseesnsenans 7
AZUIE COMPUEET ViSION: 1 iitteee ettt e ettt e e e e e e ab b e et e e e e e s bbb e e e eeeeessanns b b eeeeeesasnsrbbeeeeesesaansrbbeeeeessssannsrnnnns 8
(O T L AV T I o T=T=T ol o I o T <D SR 8
ViISUGI STUAIO COUR: .ttt ettt ettt ettt e a e st e et e e e bt e e abeesateeeabee e neeesabeesabeeeabeeebeeeamseesabeesabeeebeeesnneesabeeas 9
o R Lo T TR (T P TP P PP PPPPPPPPPPPN 9
(00T o) iT={U =TT o AV] LT PR 11
oV a0 T] SRS 12
Dataset SEIECION FOr BOL:ciiiiiiii ettt et e st e ettt ettt e abeesabeesbeeabeeesabeesabeesabeeebaeasabeesabeesabeeennes 12
(DY Mo T o O T O OO T O TP PO PSP TP PR UPPTRVPTOPPTON 12
AZUFE SEAICH VBCEO ... ettt ettt b e bt b e e s bt e s bt e bt e bt e bt e bt e sheesb e e saeesbeesaeesaeesaeesbeesbeesabesnnesnnesanesanes 15
(T LA TaY =8 o o T<I Yo AR PSRRI 18
CONCIUSION: ...ttt ettt ettt ettt e bt e at e e e a bt e et e e e bee e s te e aeeeeaeeeeab e e e aseeeaneeeambeeeabeeeabee e nbeesmbeeeabeeebeeeabeeennreesabeeans 30
(@ LT Y Y[a = U T ANt 1Y Y RS 30
2 (=T T Yol T O P S PP P U PTPPUPRUPRPPRON 31

SIG788 — Engineering Al Solutions 2

§223919051 High Distinction Task 8

Target = High Distinction

Shortage Product Al Bot
Introduction

This project aims to develop an intelligent bot, named Shortage Product Al Bot, to automate
and personalize product recommendations for customers using advanced Al technologies hosted
using Azure & Flask. This bot is designed to address challenges faced by pharmacies due to the

frequent occurrence of drug shortages and price concessions as described by the Pharmaceutical
Services Negotiating Committee (PSNC).

Objective:
The objective of this project is to create a multi-modal, intelligent recommendation system
that can interact with customers using text, voice & image. This system will utilize Azure's cognitive

services and a custom Al developed with OpenAl technology to deliver personalized drug
recommendations based on current stock levels, price concessions, and customer preferences.

Technological Implementation:

» OpenAl API Access: Utilizes OpenAl's models for natural language processing to interpret
and respond to customer queries along with embeddings.

» Azure Resource Group: Manages all project resources in a consolidated manner to ensure
efficient access and cost management.

> Azure Blob Storage: To tore project data files in a scalable, secure environment.

> Azure Container in storage: To load the project file.

> Azure Al Search: The embedded data using OpenAl embedding systems has been stored in
Azure Al Search which provides advanced search capabilities across the stored data to

quickly retrieve relevant product information based on customer queries.

> Azure Speech Services: to convert speech to text, allowing seamless voice interactions with
the bot.

> Azure Computer Vision: Analyzes images to enhance the bot’s understanding using OCT and
response to visual input.

> Flask: Serves as application’s backend, handling requests and serving the user interface.
> Visual Studio Code: Used for writing and testing the bot’s code.
Data Utilization:
Data from the PSNC website, specifically the generic shortages list from January, February,
and March 2024, were used to train the bot. This data helps the bot understand current market

dynamics and product availability to make accurate recommendations.

Link: https://cpe.org.uk/funding-and-reimbursement/reimbursement/price-concessions/

SIG788 — Engineering Al Solutions 3

https://cpe.org.uk/funding-and-reimbursement/reimbursement/price-concessions/

§223919051 High Distinction Task 8

Approach:

The development of the Shortage Product Al Bot is personalized to address the specific
challenges posed by drug shortages and price concessions. The process is structured to well gather
data, develop a responsive bot, and integrate it with essential services for seamless operation.

Data Collection

Source: Data is sourced from the PSNC (CPE) for monthly price concession files and drug
shortage lists from January to March 2024. This dataset provides comprehensive insights into the
availability and pricing of drugs, essential for the bot's functionality.

Purpose: The collected data enables the bot to understand current market trends, drug
availability, and the impact of price concessions on pharmacy operations. This understanding allows
the bot to make informed recommendations to pharmacies.

Bot Development

Shortage Product Al Bot uses the OpenAl API for natural language processing to understand
and respond to customer queries. All resources are managed through an Azure Resource Group, and
data files are stored in Azure Blob Storage. The project file is loaded using an Azure Container in
storage. The data, processed using OpenAl embedding systems is stored in Azure Al Search for quick
retrieval of product information.

Azure Speech Services convert speech to text for seamless voice interactions and Azure
Computer Vision analyses images for enhanced understanding. Flask handles requests and serves

the user interface and all code is written and tested in Visual Studio Code.

Now let’s create each service in Azure & Open Al Api.
OpenAl Api:
The OpenAl APl is a bridge to OpenAl's models. It is used to integrate advanced Al
capabilities in this project without needing to understand the complexities of the model
architecture. This APl is used for natural language processing to interpret and respond to various

gueries along with the embeddings.

Created OpenAl API key

Project APl keys

Project AP keys have replaced user APi keys.

View user AP! keys
ng project based API keys for more granular control over your resources,

NAME SECRET KEY CREATED LAST USED CREATED BY PERMISSIONS

+ Create new secret key

SIG788 — Engineering Al Solutions 4

§223919051 High Distinction Task 8

Embeddings
OpenAl’s text embeddings measure the relatedness of text strings. Embeddings are
commonly used for:

Search (where results are ranked by relevance to a query string)

Clustering (where text strings are grouped by similarity)

Recommendations (where items with related text strings are recommended)
Anomaly detection (where outliers with little relatedness are identified)
Diversity measurement (where similarity distributions are analyzed)
Classification (where text strings are classified by their most similar label)

YVVYVYVVYVYY

Used the model text-embedding-3-small
Azure Resource Group:

Manages all project resources in a consolidated manner to ensure efficient access and cost
management.

Signed in to Azure Portal: Azure Portal and sign in with Microsoft account credentials &
created Azure Resource group.

Link: https://portal.azure.com/

Create a resource group
@ \Vaiidation passed.

Basics Tags Review + create

Basics

Free Trial
group RG-IntelligentBot
Region East US

Home

Resource groups =

Defaiilt Directon
LDefault Directory

Create £03 Manageview - () Refresh L ExporttoCSV 5 Open query

l }::‘ter for any field Subscription equals all Location equals all X 7 Add filter

Showing 1 to 1 of 1 records.

SIG788 — Engineering Al Solutions

https://portal.azure.com/

5223919051

Azure Blob Storage & its containers:

High Distinction Task 8

To store project data files in a scalable, secure environment within its container

Home > Storage accounts >

Create a storage account

Basics Advanced

“View automation template

Networking Data protection Encryption Tags

Basics

Subcription Free Trial
Resource group RG-IntelligentBot
Location East US

Storage account name strintelligentbot
Performance Standard
Replication Locally-redundant storage (LRS)
Advanced

Enable hierarchical namespace Disabled

Enable SFTP Disabled

Enable network file system v3 Disabled

Allow cross-tenant replication Disabled

Access tier Hot

Enable large file shares Disabled
Security

Secure transfer Enabled

Blob anonymous access Disabled

Allow storage account key access Enabled

Default to Microsoft Entra authorization in Disabled

the Azure portal

Minimum TLS version Version 1.2
Permitted scope for copy operations From any storage account
(preview)

Networking

Review + create

Home

& strintelligentbot_1713758519171 | Overview =

Search il Deiete 1) Redeploy & Downlosd () Refresh

@ Your deployment is complete
3 Inputs
Deployment name: strinteligentbot 1713758519171
Outputs Subseription: Free Tral
Resource group: intellgentSot

~ Deployment details

@ sinteligentbovdenut

© stinteligentbot/defauit

© sintsligen
~ Nextsteps

Go to resource

Resource Type

Start time 4/22/2024, 33225 AM
Correlation ID: 6752da5d-ecT0-4e(3-856e-ea49346bcdcr

Status.

Micrasoft Storage/storageAccounts lesenaces oK
Microsoft Storage/storagedccounts/blobServices oK

Microssft Storaga/storagedccounts 3

Operation details
Operation detads

Operat

detais

Operat

New container

Name *

I cnt-intellbotl

vde Anonymous access level

o The access level is set to private because anonymous access is
disabled on this storage account.

v Advanced

SIG788 — Engineering Al Solutions

5223919051

High Distinction Task 8

Home > strintelligentbot_1713758519171 | Overview > strintelligentbot
= strintelligentbot | Containers ¢

Storage decount

Search t Container () Refresh A7 Give feedback

= Ovenview = Search containers by prefix
B Actity log
@ Tz Nome Last modified Anonymous access level
X Diagnose and solve problems. 0O swgs 4722/2024, G:32:58 AM Private
A Access Control AM) O entiintelibot 472272024, 93435 AM Private
& Data migration

Azure Al Search:

The embedded data using OpenAl embedding systems has been stored in Azure Al Search
which provides advanced search capabilities across the stored data to quickly retrieve relevant

product information based on customer queries.

Home > Azure Al services | Al Search

Create a search service
@ \validation Success

Basics Scale Tags Review + create

Basics
Subscription Free Trial
Resource Group RG-IntelligentBot
Location WestUS 2
Service name (new) search-intellbot
Pricing tier free (50 MB, max 1 replicas, max 1 partitions, max 1 search units)
Estimated cost per month %0.00
Scale
Replicas 1
Partitions 1
Home

« search-service-search-intellbot | Overview <
9 pepoyment

@ Deete (© Caxel T Redeploy & Downlosd () Refresh

=== Deployment is in progress

T inputs
B Ossormtneme s seschienc sewch it

OCutpels Subscnpton Free

> Temgiste Resurcegow G

v Deployment details

Start time: A/22/2028, 121153 PM
Comelation 1D : 826c669d-Tde9-4638-9ele-c3eb2dididc2

Status

Operation details

Azure Speech Services:

To convert speech to text, allowing seamless voice interactions with the bot.

SIG788 — Engineering Al Solutions

5223919051

High Distinction Task 8

K Disgnote and sobve problems.
Resource Management

Keys and Endpaint
B Exeyption

Pricing tier

Home
: spchintellbot = =
* Speech service
Search [l Delete
© Ovenview
& Activity log e =
B Aecess control (UM e
* o -

 4febicTi-<1c2-4372-858- 590017666831

: &k tag

Get started with your resource in Speech Studio
Tty out all use cases and see other custom tools for building Speech Al modis

-
"Hl' Go ch 'S
e

Keys and endpoint

APIKind - SpeechServices
Priong fer : Free
Endpont - hitps//eastus apicogritive microsoft.com/

Manage keys = Click here to mansge keys

Azure Computer Vis

ion:

Analyses images to enhance the bot’s understanding using OCR (Optical character
recognition) and response to visual input.

Home

@cv-intdlbot 2 %

outer vision

Search [l Deete
Overview A~ Essentials.
Activity log Resource group (move) : R-inteligentis

: Acte
: EsstUS
dfiebcTFc1c2-4372-8058-590 7686831

: Addtaes

Get started with your resource in Vision Studio

Try out 3l Computer Vision features and build your own custom models.

Keys and endpoint

@ These eys ave used 1 access your ATure Al senvices APL DO 1ot Share your Keys. Siore them

exampe, using ATure Key VBU We 50 PECOmmend regenenating these keys repuany. Ony cne ey
o

50 make 30 AP Ol Vo

Create Azure Speech to Text:

ComputerVision
Free

etps:/fcv-intelbot cogritvesenvices.anue com/

Manage keys : Cick here 10 mandos keg

All services > Azure Al services | Speech

Create Speech Services

Basics Network Identity Tags

7 View automation template

TERMS

By clicking “Create”, | (3) agree to the legal
listed above: (b) authorze Microsoft to bill

and with the

service

Review + create

terms and privacy statement(s) associated with the Marketplace offering(s)
my current payment method for the fees associated with the offenngfs).

with the same billing frequency as my Azure subscription; and (c) agree that Microsoft may share my contact, usage

and other transactionsl

details,

Basics
Subscription
Resource group
Region

Name

Prcing bee

Identity type

rider(s) of the offering(s) for support, bil

actrities. Microsoht does not provide nghts for thed-party offenngs. See the Azure Marketplace Terms for additionsl

Free Trial
RG-5223919051-Task8
EastUS
$223919051-SS
Standard SO

All networks, inchuding the internet, can access this resource.

None

SIG788 — Engineering Al Solutions

5223919051

High Distinction Task 8

& Microsoft.CognitiveServicesSpeechServices-20240420133600 | Overview

® Delete Redeploy & Downiced () Refesh

& Overvew <
o @ Your deployment is complete
=% @ Oeployment name - Microsoft CognameSenncesSpeechSennces- 2024042013600 Sattme ;4202024 13706 PM ‘
Outputs Subscription > Comelation 1D : 1398efSb-e5¢c-4d29-97b-Tal4bkcd8ddS »
2 Template Resource group Tasi 3
.
v Deployment details <
Resource Type Status. Operation detals -
o @ Acure Alsenvices Crested Operstion detsis :
“ Next steps ¢
!
Give feedback ?
Visual Studio Code:
Used for writing and testing the bot’s code.
® blobpy X % azurecognitive_search.py ® app.py & env requirements.txt

& Task8 > @ blob.py

1
2 from azure.storage.blob import BlobServiceClient
J 3 from dotenv import load_dotenv
4 import os

5

6 &

7 load_dotenv()
8

9

11 container_name = os.environ.get('CONTAINER_NAME')
12 blob_name = os.environ.get('BLOB_NAME')
13 directory_path = ‘Data’

20 for root, dirs, files in os.walk(directory_path):
21 for file in files:

23 file_path = os.path.join(root, file)

20)

32 with open(file_path, "rb") as data:

34 blob_client.upload_blob(data)

EBUG CONSOLE TERMINAL PORTS

PS C:\Users\arunk\OneDrive\Masters\SIG788\Task8> []

1@ connection_string = os.environ.get('AZURE_CONN_STRING')

25 blob_name = os.path.relpath(file_path, directory_path)

27 blob_client = blob_service_client.get_blob_client(
28 container=container_name, blob=blob_name

17 blob_service_client = BlobServiceClient.from_connection_string(connection_string)

path/to/the/uploads

Pre-requisites:

Install pre-requisites for Shortage Product Al Bot in Visual Studio Code terminal.

pip install azure-storage-blob
pip install langchain

pip install python-dotenv

pip install openai

YV VVYVYYVY

SIG788 — Engineering Al Solutions

pip install azure-search-documents

§223919051 High Distinction Task 8

pip install tiktoken

pip install unstructured

pip install -U langchain-openai

pip install -U langchain-community

pip install "unstructured[csv]"

pip install azure-cognitiveservices-speech

pip install scipy

pip install flask-cors

pip install azure-cognitiveservices-vision-computervision

VVVVVYVYVYYVY

pip install azure-search-documents

This package installs the Azure SDK for Python that allows interaction with Azure Al Search, a
cloud search service with built-in Al capabilities. It provides tools for importing, indexing, and
guerying data to quickly find relevant results based on queries.
pip install azure-storage-blob

This command installs the Azure Blob Storage client library for Python. It provides methods
for managing blob storage on Azure, including uploading, downloading, and listing blob items, which
are essential for handling large amounts of unstructured data.
pip install langchain

Langchain is a Python library designed for building language applications using chain-of-
thought prompting strategies. This package facilitates the integration of different language models
and tools, simplifying the creation of sophisticated language processing pipelines.

pip install python-dotenv

This package is used to read key-value pairs from a .env file and set them as environment
variables.

pip install openai

This command installs the official OpenAl Python client library, which allowed to access and
utilize the API provided by OpenAl, including capabilities like GPT-3, embedding, and other Al models
for natural language processing and understanding.

Pip install tiktoken

TikToken is a Python library used for efficiently parsing and handling tokens, particularly
useful in NLP applications were managing a large number of text tokens.

pip install unstructured
This package provides utilities to handle unstructured data in Python. It simplifies operations
such as data extraction, transformation, and storage, which are critical in projects dealing with non-

standard data formats.

pip install -U langchain-openai

SIG788 — Engineering Al Solutions 10

§223919051 High Distinction Task 8

This installs specific components of the Langchain library tailored for integrating OpenAl's
models. It enhances Langchain's capabilities to interface directly with OpenAl's services, making it
easier to implement advanced NLP features.
pip install -U langchain-community

This installs the Langchain Community package, which includes additional tools and
functionalities developed by the Langchain open-source community. These tools often extend
Langchain's core capabilities with new features and improvements.

pip install "unstructured[csv]"

This installs the Unstructured library with additional support for handling CSV files, providing
tools for managing and transforming unstructured data contained in CSV formats.

pip install azure-cognitiveservices-speech

This package installs the Azure Speech SDK for Python, enabling developers to integrate
speech processing capabilities such as speech-to-text.

pip install flask-cors

This package is a Flask extension for handling Cross-Origin Resource Sharing (CORS), making
it possible to configure how Flask app handles cross-domain requests, essential for web applications
exposed to the web.

pip install azure-cognitiveservices-vision-computervision

This installs the Azure Computer Vision client library for Python. It provides tools for
processing and analysing visual data in this case we used OCR.

Configure .env file:

For Shortage Product Al Bot we used .env in visual studio to secure the credentials, endpoints
and keys.

Note: | have deleted all Keys after the project is complete & nothing would work

TASKS (WORKSPACE

Also included requirements.txt to reference and replicate the project.

SIG788 — Engineering Al Solutions 11

5223919051

High Distin

ction Task 8

File Edit Selection View Go Run Terminal Help

EXPLORER

~ TASKS (WORKSPACE)

> backup

v Data
@ Shortageproducts.csv
> images

> imageupload

~ static
= botk g
& userlogo.png
v templates

P Tasic (Warkspace)

© chathtml © en

1 install azure-search-documents

2 install azure-storage-blob

3 install langchain

4 install python-dotenv

5 install openai

6 install tiktoken

7 install unstructured

2 install -u langchain-openai

9 install -U langchain-community

10 install “unstructured[csv]”

1 install azure-cognitiveservices-speech
12 install scipy

13 install flask-cors

14 install azure-cognitiveservices-vision-computervision
15

requirements.txt X

Python SDK:
Dataset selection for Bot:

I've curated the Shortage Products dataset from the PSNC website and used it for our
project to efficiently help the pharmacies for the Shortage Product Al Bot. This bot will provide
timely and accurate information about drug shortage for UK healthcare products, which is vital for
efficiently to handle pharmacy operations.

Dataset:

Community
Pharmacy
England

.

Home

Funding & Reimbursement

A-Z of funding topics

Monthly payments

NHS statistics

Our Briefings: Funding &

Reimbu

Pharmacy funding

Reimbursement

Our work

Funding & Reimbursement > Price concession archive

Funding & Quality & & Supply yServices Digital & Technology LPCs &Local

Price concession archive

Updated o 3

The following list is an archive of price concessions granted.

Price archive

March 2024
February 2024

January 2024

The downloaded file is placed in the folder Data

8 Shoogeproductsesy X
B Shotageproduct

OruglD,Drug reported

ere’s a shortage of Aaiodarone 209mg tablets pack size of 28.The

ere’s 3 shortage of Amoxi: 25emg/3al oral suspension pack si:

is month is 4.4Sbut regular
is 4.22but regular pric
of 389.The special price this month is
n 6eong powder for 5 infection vials pack size of 2.The special
ine 160g ts pack size of 84.The spec e this sonth .785ut regu
*s 3 shortage of Betamethasone valerate 9.1 size of 30.The special his month is 1
es a shortage of Betamethasone valerate 9.1 size of 109.The speci
re’s 3 shortage of Bimatoprost 109micrograas/ of 3.The spec
of Bimatoprost 3eemicrograss ye drops pack s
of Bumetanide lng tablets pac <
of Calcipotriol 8.995% / Bet

s mor

of 3.The special pric
ut regular pr
of 30.The spach
e6but regular

of Chlorphenasine 2mg/5
of Cinacalcet 3dmg tab
of Clarithromycin 1.

€ 28.The special price thi
ral suspension pack of 70.The special price
oral suspension pack size of 70.The specla
Seemg tablets pack size of
18mg tablets pack size of 38.The special p
20le Sodmg pessaries

—

this sonth is
this month s

mcath

price this 8but

ice this month is 4.46but regul

s 2.5but regular price is 9.975 GaP"
t regular price is
price this sonth is
SSbot regular price is

1s 1.0152 Gas"
ice is 2.314 G~

e is 0.5486 89~

3.64but regular price is 8.4
price

this sonth
ice is 1.8575
2] price this month is 11.58b
price & 712 G8P~

.5258 689"
3.24but regular price
4.79 GeP~

4.14but regular
5.860ut regular
price is 3.13 88"
1.6485 GBP”

3.4965 Gep~
regular price is 1.6632 GB9"

9

is

Data Load:

SIG788 — Engineering Al Solutions

12

$223919051 High Distinction Task 8

For the creation of the Shortage Product Al Bot services using above mentioned services,
I've performed the following steps:

e lLoaded the Shortage Product dataset directly from the PSNC website & using Python.
The same dataset has been loaded into the Azure BLOB storage using python SDK.
Here's the Python code used:

Import necessary libraries for Azure blob storage operations and environment
management.

from azure.storage.blob import BlobServiceClient

from dotenv import load_dotenv

import os

Load environment variables from a .env file located in the same directory as this script.
load_dotenv()

Retrieve necessary environment variables for connecting to Azure Blob Storage.
connection_string = os.environ.get('AZURE_CONN_STRING') # Azure storage account
connection string.

container_name = os.environ.get('CONTAINER _NAME') # Name of the blob container in

Azure.

blob_name = os.environ.get('BLOB_NAME') # Default blob name (not used in this
script).

directory_path = 'Data’ # Local directory to upload files from.

Initialize a BlobServiceClient with the Azure storage connection string.
This client will handle all interactions with the blob storage.
blob_service_client = BlobServiceClient.from_connection_string(connection_string)

loop through the directory structure starting at 'Data’.
for root, dirs, files in os.walk(directory_path):
for file in files:
Construct the full local file path.
file_path = os.path.join(root, file)
Calculate the relative path to use as the blob name in the container.
blob_name = os.path.relpath(file_path, directory_path)
Get a blob client using the container and blob name. This client will be used to upload
the file.
blob_client = blob_service_client.get_blob_client(
container=container_name, blob=blob_name

)

Open the file in binary read mode.

with open(file_path, "rb") as data:
Upload the file to Azure Blob Storage using the blob client.
blob_client.upload_blob(data)

Print a success message indicating the file and its blob path.
print(f"File {file_path} Successfully uploaded to {blob_name}!")

SIG788 — Engineering Al Solutions 13

§223919051 High Distinction Task 8

Output:

25 blob_name = os.path.relpath(file path, directory path)
27 blob_client blob_service client.get _blob_client(

8 container=container_name, blob=blob_name

A°)

31

with open(file_path, "rb"™) as data:
blob_client.upload_blob(data)

PS C:\Users\arunk\OneDrive\Masters\SIG788\Task8> python blob.py
File Data\Shortageproducts.csv Successfully uploaded to Shortageproducts.csv!
PS C:\Users\arunk\OneDrive\Masters\SIG788\Tasks> ||

Process:

The above code is used to upload all the files from a local ‘Data’ directory to an Azure Blob
Storage container. The data file is also placed in the Azure Blob container storage. The blob name in
the container corresponds to the relative path of the file in the ‘Data’ directory. The same has been

organized the files in the Azure Blob Storage.
Steps:

Import Libraries: Omporting necessary libraries. BlobServiceClient is used for Azure Blob
Storage operations, os is used for interacting with the operating system, and dotenv is used to

manage environment variables.

Load Environment Variables: The load_dotenv() function loads environment variables from a file
named .env in the working directory.

Retrieve Connection Details: Code retrieves the Azure storage account connection string, the name

of the blob container in Azure, and the default blob name from the environment variables.

Initialize BlobServiceClient: The BlobServiceClient is initialized with the Azure storage connection
string. This client will handle all interactions with the blob storage.

Upload Files: Code then loops through all the files in the ‘Data’ directory. For each file, constructing

the full local file path and creates relative path to use as the blob name in the container. It gets a
blob client using the container and blob name. This client is used to upload the file to Azure Blob
Storage.

Success Message: After file is uploaded, a success message is printed indicating the file and its blob

path.

| have provided the screenshot on the file has been loaded into the Azure Blob.

SIG788 — Engineering Al Solutions

14

$223919051 High Distinction Task 8

Home > strintelligentbot | Containers >

cnt-intellbot
Container
[£ Search W < T Upload r:* Change access level () Refresh
T Overview Authentication method: Access key (Switch to Microsoft Entra user account)

Location: cnt-intellbot
£ Diagnose and solve problems

Search blobs by prefix (case-sensitive)

Ra Access Control (IAM)

Settings *g Add filter
@ Shared access tokens
Name Modified
Access policy
\
Il Properties D Shortageproducts.csv 4/22/2024, 1
O Metadata

As now the data has been loaded into Azure Blob, now let’s proceed to create Azure Search Vector
storage using Open Al APl embeddings.

Azure Search Vector

Code:

import os # Import the OS library for interacting with the operating system.

from langchain_openai import OpenAlEmbeddings # Import OpenAl Embeddings from the
langchain library.

from langchain.vectorstores.azuresearch import AzureSearch # Import Azure Search from
the langchain library.

from langchain_community.document_loaders import AzureBlobStorageContainerLoader #
Import document loader for Azure Blob Storage.

from langchain.text_splitter import CharacterTextSplitter # Import text splitter for breaking
text into smaller pieces.

from dotenv import load_dotenv # Import dotenv to load environment variables from a .env

file.
load_dotenv() # Load environment variables from the .env file.

Retrieve the model name for OpenAl embeddings and Azure search service details from
environment variables.

model: str = os.environ.get('OPENAI_EMBEDDING')

vector_store_address: str = os.environ.get('AZURE_COGNITIVE_SEARCH_SERVICE_NAME')

Create an instance of OpenAl Embeddings with specified model and chunk size.
embeddings: OpenAlEmbeddings = OpenAlEmbeddings(deployment=model, chunk_size=1)
index_name: str = os.environ.get('AZURE_COGNITIVE_SEARCH_INDEX_NAME')

Setup Azure Search with the endpoint, APl key, and the index name.
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,

SIG788 — Engineering Al Solutions 15

5223919051

azure_search_key=os.environ.get("AZURE_COGNITIVE_SEARCH_API_KEY"),
index_name=index_name,

embedding_function=embeddings.embed_query,

loader = AzureBlobStorageContainerLoader(
conn_str=os.environ.get("AZURE_CONN_STRING"),
container=os.environ.get("CONTAINER_NAME"),

)

documents = loader.load()

text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=20)
docs = text_splitter.split_documents(documents)

vector_store.add _documents(documents=docs)

print("Data loaded into vectorstore successfully")

High Distinction Task 8

Output
r. contalier ~us. environ. gecy \.x./JlHL\h.Y_!F-C 1
3)
31 documents = loader.load()
32
34 text_splitter = CharacterTextSplitter(chunk_size=30@, chunk_overlap=20)
35 docs = text_splitter.split_documents(documents)
36
37 vector_store.add_documents (documents=docs)
39 print("Data loaded into vectorstore successfully™)
40

PS C:\Users\arunk\OneDrive\Masters\SIG788\Task8> python blob.py

File Data\Shortageproducts.csv Successfully uploaded to Shortageproducts.csv!

PS C:\Users\arunk\OneDrive\Masters\SIG788\Task8> python azurecognitive_search.py
Data loaded into vectorstore successfully

PS C:\Users\arunk\OneDrive\Masters\SIG788\Task8> []

The above code is used to load and split documents from an Azure Blob Storage container,

and then add these split documents to an Azure Search vector store for further processing or
qguerying. The OpenAl embeddings are used to embed the queries for the Azure Search.

Steps:

import Libraries: The necessary libraries are imported including libraries for interacting with
the operating system, loading environment variables, handling OpenAl embeddings, Azure Search,

document loading from Azure Blob Storage, and text splitting.

SIG788 — Engineering Al Solutions

§223919051 High Distinction Task 8

Load Environment Variables: The load_dotenv() function is used to load environment variables from
a .env file.

Retrieve Connection Details: The code retrieves the model name for OpenAl embeddings and Azure
search service details from the environment variables.

Initialize OpenAl Embeddings: An instance of OpenAl Embeddings is created with the specified
model and chunk size.

Setup Azure Search: Azure Search is set up with the endpoint, API key, and the index name. The
embedding function from the OpenAl embeddings instance is also passed to it.

Load Documents from Azure Blob Storage: Loader has been set up to load documents from an
Azure Blob Storage container using the connection string and container name retrieved from the

environment variables. The documents are then loaded from the specified container.

Split Documents: A text splitter is created to break down the documents into smaller chunks. The
documents are then split into smaller parts.

Add Documents to Azure Search Vector Store: The split documents are added to the Azure Search
vector store.

Success Message: A success message is printed after the document are successfully loaded into the
vector store.

Azure Search Vector Storage:

<= search-intellbot | Indexes =

langchain-vector-bot

SIG788 — Engineering Al Solutions 17

§223919051 High Distinction Task 8

| have succesSfully integrated OpenAl's Embeddings model, specifically the text-
embedding-3-small variant, into our Azure Al Search service to enhance semantic search
capabilities. search index, 'langchain-vector-bot', which consists of 355 documents that represent
the searchable corpus.

By leveraging the OpenAl model, each document has been transformed into a high-
dimensional vector, effectively capturing the semantic meaning of the text. This conversion enables
the search functionality to go beyond keyword matching, allowing for a deeper understanding of
the context and content within each document. The vectorized representations has 6.3 MB of the
index's total 8.74 MB storage on Azure's servers.

Creating the bot

Code:

import os

import azure.cognitiveservices.speech as speechsdk

from flask import Flask, request, jsonify, render_template, session, redirect, url_for
from werkzeug.utils import secure_filename

from dotenv import load_dotenv

from langchain.retrievers import AzureCognitiveSearchRetriever

from langchain.chains import ConversationalRetrievalChain

from langchain.chat_models import ChatOpenAl

from langchain.memory import ConversationBufferMemory

from langchain.prompts import PromptTemplate

from flask_cors import CORS

from azure.cognitiveservices.vision.computervision import ComputerVisionClient
from msrest.authentication import CognitiveServicesCredentials

from azure.cognitiveservices.vision.computervision.models import OperationStatusCodes
import time

load_dotenv()

app = Flask(__name__)
app.secret_key = os.getenv('SECRET_KEY', '123')

endpoint = os.getenv('AZURE_CV_ENDPOINT')
subscription_key = os.getenv('AZURE_CV_SUBSCRIPTION_KEY')
computervision_client = ComputerVisionClient(endpoint,
CognitiveServicesCredentials(subscription_key))

CORS(app)

def recognize_from_microphone():

SIG788 — Engineering Al Solutions 18

$223919051 High Distinction Task 8

Set up the speech recognition with Azure Cognitive Services

speech_config = speechsdk.SpeechConfig(subscription=0s.getenv('SPEECH_KEY'),
region=os.getenv('SPEECH_REGION'))

speech_config.speech_recognition_language = "en-US"

audio_config = speechsdk.audio.AudioConfig(use_default_microphone=True)

speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config,
audio_config=audio_config)

Perform speech recognition
result = speech_recognizer.recognize_once_async().get()

Handle the results of speech recognition
if result.reason == speechsdk.ResultReason.RecognizedSpeech:
return result.text
elif result.reason == speechsdk.ResultReason.NoMatch:
return "No speech could be recognized."
elif result.reason == speechsdk.ResultReason.Canceled:
return f"Speech recognition canceled: {result.cancellation_details.reason}"

@app.route('/recognize_speech', methods=['POST'])

def recognize_speech():
Endpoint to recognize speech from a microphone input
text = recognize_from_microphone()
return jsonify({'text'": text})

Set up memory for conversation history
memory = ConversationBufferMemory(memory_key="chat_history",
return_messages=True, output_key="answer")

def load_chain():

Configure the conversational chain with Langchain and Azure Cognitive Search

prompt_template = """You are a helpful assistant for questions about UK Shortage
Products.

{context}

Question: {question}

Answer here:"""

PROMPT = PromptTemplate(template=prompt_template, input_variables=["context",
"question"])

retriever = AzureCognitiveSearchRetriever(content_key="content", top_k=10)

return ConversationalRetrievalChain.from_lIm(
[Im=ChatOpenAl(),
memory=memory,
retriever=retriever,
combine_docs_chain_kwargs={"prompt": PROMPT},

chain = load_chain()

SIG788 — Engineering Al Solutions 19

$223919051 High Distinction Task 8

@app.route('/', methods=['GET', 'POST'])
def home():
Home page that handles both displaying and posting chat messages
if 'history' not in session:
session['history'] =[]

if request.method == 'POST"
user_input = request.form.get('user_input', "").strip()
if user_input:
response = chain.run(question=user_input)
session['history'].extend([
{'text': user_input, 'user': True},
{'text'": response, 'user': False}
1)
session.modified = True
else:
print("No input to process.")

return render_template('chat.html’, history=session.get('history’, 1))

Set allowed extensions for image uploads
ALLOWED_EXTENSIONS = {'png’, 'jpg’, 'jpeg’, 'gif'}
UPLOAD_FOLDER = 'imageupload'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

def allowed_file(filename):
Check if the uploaded file is an allowed type
return'.' in filename and \
filename.rsplit(".', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/upload_image', methods=['"POST'])
def upload_image():
Handle image uploads and process them for OCR
if 'image' not in request.files:
return redirect(request.url)
file = request.files['image']
if file.filename ==":
return redirect(request.url)
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD FOLDER'], filename)
file.save(filepath)
question = get_text_from_image(filepath)

if question:
response = chain.run(question=question)
session['history'].extend([

SIG788 — Engineering Al Solutions 20

5223919051 High Distinction Task 8

{'text': question, 'user': True},
{'text": response, 'user': False}
1)
session.modified = True
return redirect(url_for(‘home'))
else:
return "No text recognized or text was empty."
return 'File type not supported'

def get_text_from_image(image_path):
Use Azure Computer Vision to extract text from an uploaded image
with open(image_path, "rb") as image_stream:

read_operation_location = read_response.headers["Operation-Location"]
operation_id = read_operation_location.split("/")[-1]

while True:
read_result = computervision_client.get_read_result(operation_id)
if read_result.status not in ['notStarted’, 'running'l:
break
time.sleep(1)

if read_result.status == OperationStatusCodes.succeeded:
text =]
for text_result in read_result.analyze_result.read_results:
for line in text_result.lines:
text.append(line.text)
return " ".join(text)
return "No text recognized"
if _name__ ==' main__ "
app.run(debug=True)

read_response = computervision_client.read_in_stream(image_stream, raw=True)

Chat.html

<IDOCTYPE htm/>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Shortage Product Al Chat</title>
<style>
body {
font-family: 'Arial', sans-serif;
background-color: #f7f7f7;
display: flex;
justify-content: center;
align-items: center;

SIG788 — Engineering Al Solutions

21

5223919051

height: 100vh;
margin: 0;

}

.chat-container {
width: 400px;
height: 600px;
border-radius: 8px;
background-color: #fff;

box-shadow: 0 4px 8px rgbha(0,0,0,0.2);

display: flex;
flex-direction: column;
overflow: hidden;

}
.chat-header {

background-color: #4CAF50;

color: #fff;
padding: 16px;
font-size: 24px;
text-align: center;

}

.chat-body {
padding: 10px;
overflow-y: auto;
flex-grow: 1;
background: #e5ddd5;
display: flex;
flex-direction: column;

}

.message {
display: flex;
align-items: center;
padding: 10px;
border-radius: 18px;
color: white;
max-width: 75%;
word-wrap: break-word;

}

.bot-message {
background-color: #007bff;
align-self: flex-start;
text-align: left;

}

.user-message {
background-color: #34b7f1;
align-self: flex-end;
text-align: right;

}

logo {

SIG788 — Engineering Al Solutions

High Distinction Task 8

22

5223919051 High Distinction Task 8

display: flex;
justify-content: center;
align-items: center;
width: 50px;

height: 50px;
background-color: #ccc;
border-radius: 50%;
color: black;
font-weight: bold;
font-size: 14px;
text-transform: uppercase;

}

.chat-footer {
padding: 10px;
background-color: #fOf0f0;
display: flex;

}

.chat-footer input[type="text"] {
flex-grow: 1;
padding: 10px;
margin-right: 10px;
border: 1px solid #ccc;
border-radius: 18px;
outline: none;
height: 40px;

}

.chat-footer input[type="submit"] {
padding: 10px 20px;
background-color: #4CAF50;
border: none;
border-radius: 18px;
color: #fff;
cursor: pointer;
outline: none;
height: 40px;

</style>
</head>
<body>
<div class="chat-container">
<div class="chat-header">
Shortage Product Al
</div>
<div class="chat-body" id="chatBody">
{% for entry in history %}
<div class="message {{ 'user-message' if entry.user else 'bot-message' }}">
<div class="message-text">{{ entry.text }}</div>

SIG788 — Engineering Al Solutions

23

$223919051 High Distinction Task 8

</div>
{% endfor %}
</div>
<div class="chat-footer">
<div class="chat-footer">
<form action="/" method="post">
<button type="button" id="microphone-btn" onmousedown="startRecording()"
onmouseup="stopRecording()" ontouchstart="startRecording()" ontouchend="stopRecording()"> A
Hold to Speak</button>
<input type="text" name="user_input" id="user_input" placeholder="Ask a question..."
autocomplete="off">
<input type="submit" value="Send">
</form>
<form action="/upload_image" method="post" enctype="multipart/form-data">
<input type="file" name="image" accept="image/*">
<input type="submit" value="Upload Image">
</form>
</div>

</div>

</div>
<script>
var recognition;
function startRecording() {
var SpeechRecognition = SpeechRecognition | | webkitSpeechRecognition;
recognition = new SpeechRecognition();
recognition.continuous = false; // Set to false as we want the recognition to stop after a single

result
recognition.interimResults = false; // We only want final results
recognition.lang = 'en-US'; // Set the language of the recognition
recognition.start(); // Start recognition
recognition.onresult = function(event) {
var transcript = event.results[0][0].transcript;
var userlnputField = document.getElementByld('user_input');
userlnputField.value = transcript; // Set the recognized text to the input field
console.log('Transcript:', transcript);
recognition.stop(); // Stop recognition after receiving the first result
1

recognition.onend = function() {
if (userlnputField.value) { // Check if there is text to submit
document.querySelector('form').submit(); // Submit the form
}
1

SIG788 — Engineering Al Solutions 24

§223919051 High Distinction Task 8

function stopRecording() {
if (recognition) {
recognition.stop();
}
}

script

body
html

App.py

Environment Variables: loading environment variables which store confidential information
like the secret key and Azure service credentials.

Flask App Initialization: A new Flask application instance is created, along with configuration
for CORS (Cross-Origin Resource Sharing) to allow the app to handle requests from different origins.

Azure Services Setup: Setting up clients for Azure Al Services, Speech and Computer Vision,
using the credentials from the environment variables. These services enable the bot to understand
speech input and analyse images.

Speech Recognition: Function recognize_from_microphone() is defined to handle speech
recognition using Azure's Speech SDK. Function listens for speech input from the default
microphone, processes it, and returns the recognized text.

Speech Recognition Endpoint: Route /recognize_speech is set up to handle POST requests that
trigger the speech recognition function and return the recognized text as JSON.

Conversation Memory: Application with ConversationBufferMemory object to keep track of the
conversation history. This memory is used to maintain context during a conversation with the bot.

Conversational Retrieval Chain: The load_chain() function configures a
ConversationalRetrievalChain from the Langchain library, which uses Azure Cognitive Search for
document retrieval, and OpenAl's Chat model for generating responses.

Home Page Endpoint: Route / serves the home page and handles both displaying and
posting chat messages. It uses session storage to retain chat history.

Image Upload and Processing: It defines an allowed file extension list and sets up an upload
folder. Route /upload_image is created to handle image uploads, save them securely, and process

them using Azure's OCR (Optical Character Recognition) to extract text.

OCR Function: The get_text_from_image() function sends images to the Azure Computer
Vision service to extract text, which can then be used as input to the conversational chain.

Main Block: Block checks if the script is the main program and, if so, runs the Flask app.

Chat.html

SIG788 — Engineering Al Solutions 25

§223919051 High Distinction Task 8

HTML Structure: The document uses HTML5 and is set to English. Meta tags are used for
proper rendering and touch zooming.

Styling: Inline CSS styles are used to create a modern chat interface. The chat window is
centered on the page.

Chat Header: The header contains the title “Shortage Product Al”.

Chat Body: This section displays the chat history. Messages are styled differently based on
whether they’re from the user or the bot.

Chat Footer: This section contains the input form for sending messages. It includes a
microphone button for speech-to-text functionality, a text input for typing messages, and a send

button. There’s also a form for image uploads.

Speech-to-Text Functionality: JavaScript is used for speech recognition. The recognized
speech is populated into the text input field.

Speech Recognition Trigger: The microphone button is wired to start and stop the speech
recognition.

Automatic Form Submission: The form is automatically submitted when speech recognition
ends and there’s text in the input field.

Image Upload: Users can upload images, which are sent to a server-side endpoint for
processing.

Responsive Design: The chat interface adjusts to the screen size, making it accessible on
both desktop and mobile devices.

Integration with Flask: The HTML integrates with a Flask application, allowing to interact
with the bot in multiple ways. The Flask application uses these inputs to converse with users,

leveraging Azure services to enhance the bot’s capabilities.

Output

SIG788 — Engineering Al Solutions 26

$223919051 High Distinction Task 8

Shortage Product Al

I\Jlllyl \I\IUIIIy WIVITLO PALUN J1LT VI 1VVU.
- Regular price: 1.17 GBP - Special
price: 3.25 GBP Co-codamol
30mg/500mg capsules pack size of
100: - Regular price: 1.6929 GBP -
Special price: 6.27 GBP Co-codamol
30mg/500mg tablets pack size of 30: -
Regular price: 0.2904 GBP - Special
price: 1.32 GBP Co-codamol
30mg@/500mg tablets pack size of 100:
- Regular price: 0.88 GBP - Special
price: 4.4 GBP

PIROXICAM GEL BP PIROXICAM
GEL BP 30g

The special price for Piroxicam 0.5%
gel pack size of 30 in Feb-24 is 1.83
GBP, and the regular price is 0.7686
GBP.

Choose File

Upload Image

[A Hold to Speak J No file chosen

Ask a question

| am very pleased to be successful in completion of Al-driven chatbot project, designed to
address the critical issue of pharmaceutical product shortages. This chatbot, showcased in the
attached screenshot, exemplifies the integration of multiple advanced technologies to deliver real-
time, user-friendly interactions and information retrieval.

Key Capabilities and Features:

Semantic Search Integration: Utilizing OpenAl's text-embedding-3-small embeddings model,
we have empowered Azure Al Search to understand and retrieve information on product shortages
semantically. This allows the bot to provide contextually relevant information, such as specific
product prices and stock levels, as evidenced by the detailed responses regarding "Piroxicam Gel"
pricing in the user interface.

Speech-to-Text Interaction: The chatbot features a 'Hold to Speak' function that enables

voice-based queries. This function capitalizes on Azure's Speech SDK, allowing users to
communicate with the bot in a natural and accessible manner.

SIG788 — Engineering Al Solutions 27

§223919051 High Distinction Task 8

Image Processing and Text Extraction: An innovative image upload capability allows users to
input data via pictures, such as photographs of product lists or prescriptions. Leveraging Azure's
Computer Vision OCR, the system extracts text from images, making the data available for
processing and response by the chatbot.

Responsive Web Design: The user interface, as part of the Flask application, is designed to
be clean and intuitive, ensuring accessibility across devices. The conversation history is presented in
an easily navigable format, with distinct visual cues for user and bot messages.

Conversational Memory: Through ConversationBufferMemory, the chatbot maintains the
context of interactions, providing continuity across a session. This aspect is particularly important
when dealing with complex inquiries about product availability and shortages.

The project objectives has been met to have reliable tool for healthcare professionals and
supply chain managers to quickly obtain information on medication availability and pricing changes.
The final product not only meets these objectives but also enhances user experience through multi-
modal interaction capabilities—text, voice, and image inputs.

Also by changing the secret key of flask application, the Bot would be initiated for the new chat
interface for the new users.

SECRET_KEY = 345852

151 text.append(line.text)

warnings.warn(b b
c:\Users\arunk\OneDrive\Masters\SIG788\Task8\.conda\lib\site-packages\langchain_core_api\deprecation.py:119: LangChainDeprecation
in LangChain ©8.0.10 and will be removed in ©.2.8. An updated version of the class exists in the langchain-openai package and shou
-U langchain-openai® and import as “from langchain_openai import ChatOpenAI’.

warn_deprecated(

* Serving Flask app "app’

* Debug mode: on
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
* Running on http://127.0.0.1:5000

ss CTRL+C to quit

with watchdog (windowsapi)

Link: http://127.0.0.1:5000

SIG788 — Engineering Al Solutions 28

http://127.0.0.1:5000/

5223919051

High Distinction Task 8

& 6 a ® 127.00.1:5000

S @ O [shortage Product Al Chat x +

F) Work [7) Personal [Express VPN [3) McAfee Security [LastPasspassword.. [Amazoncouk-Onl. [Agoda

Shortage Product Al

[# Hold to Speak | [‘Choose File | No file chosen

Ask a question

Upload Image

Image selection:

| have provided the image input and retrived the results.

Organize » New folder
£ Home

B Gotery e

v @ Anunkumsr - Pe “ p——

@ lorazepamijpg @ Piroxicam.jpeg

> T3 Apps

> T Attachments
> @ Desktop

> [Documents
> T Email attachm
> T Masters

> T Microsoft Tear

+ 4 0 Arunkumor-Persanal > Mosters » SIGTES » Toskd » images

x
Search images y

o- O @

Fie name: |

V} Image files (" xbrmy" tif:* if:ic

Ulead o bl Cone

[# Holato spea | (Chooss Fie | No fle chosen
Upload Image

Ask a question

SIG788 — Engineering Al Solutions

29

5223919051

assist you with?

A Hold to Speak

Ask a question

Shortage Product Al

e s wnaaras s e

I'm sorry, but | do not have information
on paracetamol availability at the
moment. Is there anything else | can

Based on the information provided,
there is currently a shortage of
Piroxicam 0.5% gel in pack sizes of 60
and 112, but there is no specific
mention of a shortage of Piroxicam gel
in a 30g pack size. It is recommended
to check with local pharmacies or
healthcare providers for the most up-
to-date information on the availability
of Piroxicam gel in a 30g pack size

PIROXICAM GEL BP PIROXICAM
GEL BP 30g

v

Choose File | No file chosen
Upload Image

Conclusion:

High Distinction Task 8

Project stands as a testament to the potential of Al to transform industry-specific challenges

into opportunities for innovation and improved service delivery. The bot is now well-equipped to

assist in managing the complexities of pharmaceutical supply chains, thereby contributing to better

healthcare outcomes.

Cleaning Up Activity:

As completed the project, cleaning up the resources and resource group to reduce cost on

the Azure subscription.

All resources ¢

Page [1 |t Showeg 114 of & rconds

Locaton 74

a5

Wes U5 2

s

s

Delete Resources

Stormge sccount

SIG788 — Engineering Al Solutions

30

$223919051 High Distinction Task 8

Delete a resource group X

The following resource group and all its dependent resources will be permanently deleted. g
Resource group to be deleted

(##) RG-IntelligentBot [

Dependent resources to be deleted (4)

All dependent resources, including hidden types, are shown

Name Resource type
@ cv-intellbot Azure Al services
& search-intellbot Search service
@ spchintellbot Azure Al services
== strintelligentbot Storage account

Enter resource group name to confirm deletion *

[RG-IntelligentBot

References:
+ Microsoft Learn (no.date.) "Azure Cognitive Language Service Question Answering client

+

library for Python - version 1.1.0" Available at: https://learn.microsoft.com/en-
us/python/api/overview/azure/ai-language-questionanswering-readme?view=azure-python

Great Learning (2024) " Week 5 - Language Understanding & Azure Al Fundamentals"
Mentor session Available at:
https://olympus.mygreatlearning.com/mentorship recordings/2317305

Community pharmacy England (no.date.) “Price Concession” available at:
https://cpe.org.uk/funding-and-reimbursement/reimbursement/price-concessions/

Great Learning (2024) "Case study on Computer Vision & Custom Vision using Python SDK"
Available at: https://olympus.mygreatlearning.com/courses/109553?module id=747540

Microsoft Learn (no.date.) "Quickstart: Image Analysis" Available at:
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-

SIG788 — Engineering Al Solutions 31

https://learn.microsoft.com/en-us/python/api/overview/azure/ai-language-questionanswering-readme?view=azure-python
https://learn.microsoft.com/en-us/python/api/overview/azure/ai-language-questionanswering-readme?view=azure-python
https://olympus.mygreatlearning.com/mentorship_recordings/2317305
https://cpe.org.uk/funding-and-reimbursement/reimbursement/price-concessions/
https://olympus.mygreatlearning.com/courses/109553?module_id=747540
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-sdk/image-analysis-client-library?tabs=windows%2Cvisual-studio&pivots=programming-language-python

§223919051 High Distinction Task 8

sdk/image-analysis-client-library?tabs=windows%2Cvisual-studio&pivots=programming-
language-python

4 Microsoft Learn (no.date.) "Call the Image Analysis 3.2 API" Available at:
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/how-to/call-
analyze-image?tabs=python

4 Great Learning (2024) "Case study on Computer Vision & Custom Vision using Python
SDK" Available at:
https://olympus.mygreatlearning.com/courses/109553?module id=747540

4 Alam Smith (Sep 23, 2021) "Azure Computer Vision using Python" Available at:
https://www.youtube.com/watch?v=3Zfcn1tsSwE&t=142s

Coding Crashcourses (18th Aug 2023) “LangChain on Microsoft Azure - ChatBot with Azure Web
Service & Azure Cognitive Search” Available at:
https://www.youtube.com/watch?v=WAedZvSDZAI&t=188s

SIG788 — Engineering Al Solutions 32

https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-sdk/image-analysis-client-library?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-sdk/image-analysis-client-library?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/how-to/call-analyze-image?tabs=python
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/how-to/call-analyze-image?tabs=python
https://olympus.mygreatlearning.com/courses/109553?module_id=747540
https://www.youtube.com/watch?v=3Zfcn1tsSwE&t=142s
https://www.youtube.com/watch?v=WAedZvSDZAI&t=188s

