
S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions

1

SIG788
Engineering AI solutions

High Distinction Task 8

Arunkumar Balaraman
S223919051

S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions

2

Contents

 ... 1

Target = High Distinction ... 3

Shortage Product AI Bot .. 3

Introduction .. 3

Objective: .. 3

Technological Implementation: .. 3

Data Utilization: .. 3

Approach: .. 4

OpenAI Api: ... 4

Azure Blob Storage & its containers: .. 6

Azure AI Search: .. 7

Azure Speech Services: ... 7

Azure Computer Vision: .. 8

Create Azure Speech to Text: .. 8

Visual Studio Code: ... 9

Pre-requisites: ... 9

Configure .env file: .. 11

Python SDK: ... 12

Dataset selection for Bot: ... 12

Data Load: ... 12

Azure Search Vector .. 15

Creating the bot .. 18

Conclusion: .. 30

Cleaning Up Activity: ... 30

References: .. 31

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 3

Target = High Distinction

Shortage Product AI Bot

Introduction

This project aims to develop an intelligent bot, named Shortage Product AI Bot, to automate
and personalize product recommendations for customers using advanced AI technologies hosted
using Azure & Flask. This bot is designed to address challenges faced by pharmacies due to the
frequent occurrence of drug shortages and price concessions as described by the Pharmaceutical
Services Negotiating Committee (PSNC).

Objective:

The objective of this project is to create a multi-modal, intelligent recommendation system
that can interact with customers using text, voice & image. This system will utilize Azure's cognitive
services and a custom AI developed with OpenAI technology to deliver personalized drug
recommendations based on current stock levels, price concessions, and customer preferences.

Technological Implementation:

➢ OpenAI API Access: Utilizes OpenAI's models for natural language processing to interpret
and respond to customer queries along with embeddings.

➢ Azure Resource Group: Manages all project resources in a consolidated manner to ensure
efficient access and cost management.

➢ Azure Blob Storage: To tore project data files in a scalable, secure environment.

➢ Azure Container in storage: To load the project file.

➢ Azure AI Search: The embedded data using OpenAI embedding systems has been stored in

Azure AI Search which provides advanced search capabilities across the stored data to
quickly retrieve relevant product information based on customer queries.

➢ Azure Speech Services: to convert speech to text, allowing seamless voice interactions with

the bot.

➢ Azure Computer Vision: Analyzes images to enhance the bot’s understanding using OCT and
response to visual input.

➢ Flask: Serves as application’s backend, handling requests and serving the user interface.

➢ Visual Studio Code: Used for writing and testing the bot’s code.

Data Utilization:

Data from the PSNC website, specifically the generic shortages list from January, February,
and March 2024, were used to train the bot. This data helps the bot understand current market
dynamics and product availability to make accurate recommendations.

Link: https://cpe.org.uk/funding-and-reimbursement/reimbursement/price-concessions/

https://cpe.org.uk/funding-and-reimbursement/reimbursement/price-concessions/

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 4

Approach:

The development of the Shortage Product AI Bot is personalized to address the specific
challenges posed by drug shortages and price concessions. The process is structured to well gather
data, develop a responsive bot, and integrate it with essential services for seamless operation.

Data Collection

Source: Data is sourced from the PSNC (CPE) for monthly price concession files and drug

shortage lists from January to March 2024. This dataset provides comprehensive insights into the
availability and pricing of drugs, essential for the bot's functionality.

Purpose: The collected data enables the bot to understand current market trends, drug

availability, and the impact of price concessions on pharmacy operations. This understanding allows
the bot to make informed recommendations to pharmacies.

Bot Development

Shortage Product AI Bot uses the OpenAI API for natural language processing to understand

and respond to customer queries. All resources are managed through an Azure Resource Group, and
data files are stored in Azure Blob Storage. The project file is loaded using an Azure Container in
storage. The data, processed using OpenAI embedding systems is stored in Azure AI Search for quick
retrieval of product information.

Azure Speech Services convert speech to text for seamless voice interactions and Azure

Computer Vision analyses images for enhanced understanding. Flask handles requests and serves
the user interface and all code is written and tested in Visual Studio Code.

 Now let’s create each service in Azure & Open AI Api.

OpenAI Api:

 The OpenAI API is a bridge to OpenAI's models. It is used to integrate advanced AI
capabilities in this project without needing to understand the complexities of the model
architecture. This API is used for natural language processing to interpret and respond to various
queries along with the embeddings.

Created OpenAI API key

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 5

Embeddings
OpenAI’s text embeddings measure the relatedness of text strings. Embeddings are

commonly used for:

➢ Search (where results are ranked by relevance to a query string)
➢ Clustering (where text strings are grouped by similarity)
➢ Recommendations (where items with related text strings are recommended)
➢ Anomaly detection (where outliers with little relatedness are identified)
➢ Diversity measurement (where similarity distributions are analyzed)
➢ Classification (where text strings are classified by their most similar label)

Used the model text-embedding-3-small

Azure Resource Group:

Manages all project resources in a consolidated manner to ensure efficient access and cost

management.

Signed in to Azure Portal: Azure Portal and sign in with Microsoft account credentials &
created Azure Resource group.

Link: https://portal.azure.com/

https://portal.azure.com/

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 6

Azure Blob Storage & its containers:

To store project data files in a scalable, secure environment within its container

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 7

Azure AI Search:

The embedded data using OpenAI embedding systems has been stored in Azure AI Search
which provides advanced search capabilities across the stored data to quickly retrieve relevant
product information based on customer queries.

Azure Speech Services:

To convert speech to text, allowing seamless voice interactions with the bot.

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 8

Azure Computer Vision:

Analyses images to enhance the bot’s understanding using OCR (Optical character
recognition) and response to visual input.

Create Azure Speech to Text:

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 9

Visual Studio Code:

Used for writing and testing the bot’s code.

Pre-requisites:

Install pre-requisites for Shortage Product AI Bot in Visual Studio Code terminal.

➢ pip install azure-search-documents
➢ pip install azure-storage-blob
➢ pip install langchain
➢ pip install python-dotenv
➢ pip install openai

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 10

➢ pip install tiktoken
➢ pip install unstructured
➢ pip install -U langchain-openai
➢ pip install -U langchain-community
➢ pip install "unstructured[csv]"
➢ pip install azure-cognitiveservices-speech
➢ pip install scipy
➢ pip install flask-cors
➢ pip install azure-cognitiveservices-vision-computervision

pip install azure-search-documents

This package installs the Azure SDK for Python that allows interaction with Azure AI Search, a
cloud search service with built-in AI capabilities. It provides tools for importing, indexing, and
querying data to quickly find relevant results based on queries.

pip install azure-storage-blob

This command installs the Azure Blob Storage client library for Python. It provides methods

for managing blob storage on Azure, including uploading, downloading, and listing blob items, which
are essential for handling large amounts of unstructured data.

pip install langchain

Langchain is a Python library designed for building language applications using chain-of-
thought prompting strategies. This package facilitates the integration of different language models
and tools, simplifying the creation of sophisticated language processing pipelines.

pip install python-dotenv

This package is used to read key-value pairs from a .env file and set them as environment

variables.

pip install openai

This command installs the official OpenAI Python client library, which allowed to access and

utilize the API provided by OpenAI, including capabilities like GPT-3, embedding, and other AI models
for natural language processing and understanding.

Pip install tiktoken

TikToken is a Python library used for efficiently parsing and handling tokens, particularly
useful in NLP applications were managing a large number of text tokens.

pip install unstructured

This package provides utilities to handle unstructured data in Python. It simplifies operations
such as data extraction, transformation, and storage, which are critical in projects dealing with non-
standard data formats.

pip install -U langchain-openai

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 11

This installs specific components of the Langchain library tailored for integrating OpenAI's
models. It enhances Langchain's capabilities to interface directly with OpenAI's services, making it
easier to implement advanced NLP features.

pip install -U langchain-community

This installs the Langchain Community package, which includes additional tools and
functionalities developed by the Langchain open-source community. These tools often extend
Langchain's core capabilities with new features and improvements.

pip install "unstructured[csv]"

This installs the Unstructured library with additional support for handling CSV files, providing
tools for managing and transforming unstructured data contained in CSV formats.

pip install azure-cognitiveservices-speech

This package installs the Azure Speech SDK for Python, enabling developers to integrate
speech processing capabilities such as speech-to-text.

pip install flask-cors

This package is a Flask extension for handling Cross-Origin Resource Sharing (CORS), making
it possible to configure how Flask app handles cross-domain requests, essential for web applications
exposed to the web.

pip install azure-cognitiveservices-vision-computervision

This installs the Azure Computer Vision client library for Python. It provides tools for
processing and analysing visual data in this case we used OCR.

Configure .env file:

For Shortage Product AI Bot we used .env in visual studio to secure the credentials, endpoints
and keys.

 Note: I have deleted all Keys after the project is complete & nothing would work

Also included requirements.txt to reference and replicate the project.

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 12

Python SDK:

Dataset selection for Bot:

 I've curated the Shortage Products dataset from the PSNC website and used it for our
project to efficiently help the pharmacies for the Shortage Product AI Bot. This bot will provide
timely and accurate information about drug shortage for UK healthcare products, which is vital for
efficiently to handle pharmacy operations.

Dataset:

The downloaded file is placed in the folder Data

Data Load:

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 13

 For the creation of the Shortage Product AI Bot services using above mentioned services,
I've performed the following steps:

• Loaded the Shortage Product dataset directly from the PSNC website & using Python.
The same dataset has been loaded into the Azure BLOB storage using python SDK.
Here's the Python code used:

Import necessary libraries for Azure blob storage operations and environment

management.

from azure.storage.blob import BlobServiceClient

from dotenv import load_dotenv

import os

Load environment variables from a .env file located in the same directory as this script.

load_dotenv()

Retrieve necessary environment variables for connecting to Azure Blob Storage.

connection_string = os.environ.get('AZURE_CONN_STRING') # Azure storage account

connection string.

container_name = os.environ.get('CONTAINER_NAME') # Name of the blob container in

Azure.

blob_name = os.environ.get('BLOB_NAME') # Default blob name (not used in this

script).

directory_path = 'Data' # Local directory to upload files from.

Initialize a BlobServiceClient with the Azure storage connection string.

This client will handle all interactions with the blob storage.

blob_service_client = BlobServiceClient.from_connection_string(connection_string)

loop through the directory structure starting at 'Data'.

for root, dirs, files in os.walk(directory_path):

 for file in files:

 # Construct the full local file path.

 file_path = os.path.join(root, file)

 # Calculate the relative path to use as the blob name in the container.

 blob_name = os.path.relpath(file_path, directory_path)

 # Get a blob client using the container and blob name. This client will be used to upload

the file.

 blob_client = blob_service_client.get_blob_client(

 container=container_name, blob=blob_name

)

 # Open the file in binary read mode.

 with open(file_path, "rb") as data:

 # Upload the file to Azure Blob Storage using the blob client.

 blob_client.upload_blob(data)

 # Print a success message indicating the file and its blob path.

 print(f"File {file_path} Successfully uploaded to {blob_name}!")

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 14

Output:

Process:

The above code is used to upload all the files from a local ‘Data’ directory to an Azure Blob
Storage container. The data file is also placed in the Azure Blob container storage. The blob name in
the container corresponds to the relative path of the file in the ‘Data’ directory. The same has been
organized the files in the Azure Blob Storage.

Steps:

Import Libraries: Omporting necessary libraries. BlobServiceClient is used for Azure Blob
Storage operations, os is used for interacting with the operating system, and dotenv is used to
manage environment variables.

Load Environment Variables: The load_dotenv() function loads environment variables from a file
named .env in the working directory.

Retrieve Connection Details: Code retrieves the Azure storage account connection string, the name
of the blob container in Azure, and the default blob name from the environment variables.

Initialize BlobServiceClient: The BlobServiceClient is initialized with the Azure storage connection
string. This client will handle all interactions with the blob storage.

Upload Files: Code then loops through all the files in the ‘Data’ directory. For each file, constructing
the full local file path and creates relative path to use as the blob name in the container. It gets a
blob client using the container and blob name. This client is used to upload the file to Azure Blob
Storage.

Success Message: After file is uploaded, a success message is printed indicating the file and its blob
path.

I have provided the screenshot on the file has been loaded into the Azure Blob.

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 15

As now the data has been loaded into Azure Blob, now let’s proceed to create Azure Search Vector
storage using Open AI API embeddings.

Azure Search Vector

Code:

import os # Import the OS library for interacting with the operating system.

from langchain_openai import OpenAIEmbeddings # Import OpenAI Embeddings from the

langchain library.

from langchain.vectorstores.azuresearch import AzureSearch # Import Azure Search from

the langchain library.

from langchain_community.document_loaders import AzureBlobStorageContainerLoader #

Import document loader for Azure Blob Storage.

from langchain.text_splitter import CharacterTextSplitter # Import text splitter for breaking

text into smaller pieces.

from dotenv import load_dotenv # Import dotenv to load environment variables from a .env

file.

load_dotenv() # Load environment variables from the .env file.

Retrieve the model name for OpenAI embeddings and Azure search service details from

environment variables.

model: str = os.environ.get('OPENAI_EMBEDDING')

vector_store_address: str = os.environ.get('AZURE_COGNITIVE_SEARCH_SERVICE_NAME')

Create an instance of OpenAI Embeddings with specified model and chunk size.

embeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1)

index_name: str = os.environ.get('AZURE_COGNITIVE_SEARCH_INDEX_NAME')

Setup Azure Search with the endpoint, API key, and the index name.

vector_store: AzureSearch = AzureSearch(

 azure_search_endpoint=vector_store_address,

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 16

 azure_search_key=os.environ.get("AZURE_COGNITIVE_SEARCH_API_KEY"),

 index_name=index_name,

 embedding_function=embeddings.embed_query,

)

Setup a loader to load documents from an Azure Blob Storage container.

loader = AzureBlobStorageContainerLoader(

 conn_str=os.environ.get("AZURE_CONN_STRING"),

 container=os.environ.get("CONTAINER_NAME"),

)

documents = loader.load() # Load documents from the specified container.

Create a text splitter to break down the documents into smaller chunks.

text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=20)

docs = text_splitter.split_documents(documents) # Split documents into smaller parts.

vector_store.add_documents(documents=docs) # Add the split documents to the Azure

Search vector store.

print("Data loaded into vectorstore successfully") # Print a success message once

documents are loaded.

Output

The above code is used to load and split documents from an Azure Blob Storage container,

and then add these split documents to an Azure Search vector store for further processing or
querying. The OpenAI embeddings are used to embed the queries for the Azure Search.

Steps:

import Libraries: The necessary libraries are imported including libraries for interacting with
the operating system, loading environment variables, handling OpenAI embeddings, Azure Search,
document loading from Azure Blob Storage, and text splitting.

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 17

Load Environment Variables: The load_dotenv() function is used to load environment variables from
a .env file.

Retrieve Connection Details: The code retrieves the model name for OpenAI embeddings and Azure
search service details from the environment variables.

Initialize OpenAI Embeddings: An instance of OpenAI Embeddings is created with the specified
model and chunk size.

Setup Azure Search: Azure Search is set up with the endpoint, API key, and the index name. The
embedding function from the OpenAI embeddings instance is also passed to it.

Load Documents from Azure Blob Storage: Loader has been set up to load documents from an
Azure Blob Storage container using the connection string and container name retrieved from the
environment variables. The documents are then loaded from the specified container.

Split Documents: A text splitter is created to break down the documents into smaller chunks. The
documents are then split into smaller parts.

Add Documents to Azure Search Vector Store: The split documents are added to the Azure Search
vector store.

Success Message: A success message is printed after the document are successfully loaded into the
vector store.

Azure Search Vector Storage:

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 18

I have succesSfully integrated OpenAI's Embeddings model, specifically the text-
embedding-3-small variant, into our Azure AI Search service to enhance semantic search
capabilities. search index, 'langchain-vector-bot', which consists of 355 documents that represent
the searchable corpus.

By leveraging the OpenAI model, each document has been transformed into a high-
dimensional vector, effectively capturing the semantic meaning of the text. This conversion enables
the search functionality to go beyond keyword matching, allowing for a deeper understanding of
the context and content within each document. The vectorized representations has 6.3 MB of the
index's total 8.74 MB storage on Azure's servers.

Creating the bot

Code:

import os

import azure.cognitiveservices.speech as speechsdk

from flask import Flask, request, jsonify, render_template, session, redirect, url_for

from werkzeug.utils import secure_filename

from dotenv import load_dotenv

from langchain.retrievers import AzureCognitiveSearchRetriever

from langchain.chains import ConversationalRetrievalChain

from langchain.chat_models import ChatOpenAI

from langchain.memory import ConversationBufferMemory

from langchain.prompts import PromptTemplate

from flask_cors import CORS

from azure.cognitiveservices.vision.computervision import ComputerVisionClient

from msrest.authentication import CognitiveServicesCredentials

from azure.cognitiveservices.vision.computervision.models import OperationStatusCodes

import time

Load environment variables from .env file

load_dotenv()

Initialize the Flask application

app = Flask(__name__)

app.secret_key = os.getenv('SECRET_KEY', '123') # Use a secret key from environment

variables or default to '123'

Set up Azure Computer Vision client using credentials from environment variables

endpoint = os.getenv('AZURE_CV_ENDPOINT')

subscription_key = os.getenv('AZURE_CV_SUBSCRIPTION_KEY')

computervision_client = ComputerVisionClient(endpoint,

CognitiveServicesCredentials(subscription_key))

Allow cross-origin requests on all routes

CORS(app)

def recognize_from_microphone():

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 19

 # Set up the speech recognition with Azure Cognitive Services

 speech_config = speechsdk.SpeechConfig(subscription=os.getenv('SPEECH_KEY'),

region=os.getenv('SPEECH_REGION'))

 speech_config.speech_recognition_language = "en-US"

 audio_config = speechsdk.audio.AudioConfig(use_default_microphone=True)

 speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config,

audio_config=audio_config)

 # Perform speech recognition

 result = speech_recognizer.recognize_once_async().get()

 # Handle the results of speech recognition

 if result.reason == speechsdk.ResultReason.RecognizedSpeech:

 return result.text

 elif result.reason == speechsdk.ResultReason.NoMatch:

 return "No speech could be recognized."

 elif result.reason == speechsdk.ResultReason.Canceled:

 return f"Speech recognition canceled: {result.cancellation_details.reason}"

@app.route('/recognize_speech', methods=['POST'])

def recognize_speech():

 # Endpoint to recognize speech from a microphone input

 text = recognize_from_microphone()

 return jsonify({'text': text})

Set up memory for conversation history

memory = ConversationBufferMemory(memory_key="chat_history",

return_messages=True, output_key="answer")

def load_chain():

 # Configure the conversational chain with Langchain and Azure Cognitive Search

 prompt_template = """You are a helpful assistant for questions about UK Shortage

Products.

 {context}

 Question: {question}

 Answer here:"""

 PROMPT = PromptTemplate(template=prompt_template, input_variables=["context",

"question"])

 retriever = AzureCognitiveSearchRetriever(content_key="content", top_k=10)

 return ConversationalRetrievalChain.from_llm(

 llm=ChatOpenAI(),

 memory=memory,

 retriever=retriever,

 combine_docs_chain_kwargs={"prompt": PROMPT},

)

chain = load_chain()

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 20

@app.route('/', methods=['GET', 'POST'])

def home():

 # Home page that handles both displaying and posting chat messages

 if 'history' not in session:

 session['history'] = []

 if request.method == 'POST':

 user_input = request.form.get('user_input', '').strip()

 if user_input:

 response = chain.run(question=user_input)

 session['history'].extend([

 {'text': user_input, 'user': True},

 {'text': response, 'user': False}

])

 session.modified = True

 else:

 print("No input to process.")

 return render_template('chat.html', history=session.get('history', []))

Set allowed extensions for image uploads

ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}

UPLOAD_FOLDER = 'imageupload'

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

def allowed_file(filename):

 # Check if the uploaded file is an allowed type

 return '.' in filename and \

 filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/upload_image', methods=['POST'])

def upload_image():

 # Handle image uploads and process them for OCR

 if 'image' not in request.files:

 return redirect(request.url)

 file = request.files['image']

 if file.filename == '':

 return redirect(request.url)

 if file and allowed_file(file.filename):

 filename = secure_filename(file.filename)

 filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)

 file.save(filepath)

 question = get_text_from_image(filepath)

 if question:

 response = chain.run(question=question)

 session['history'].extend([

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 21

 {'text': question, 'user': True},

 {'text': response, 'user': False}

])

 session.modified = True

 return redirect(url_for('home'))

 else:

 return "No text recognized or text was empty."

 return 'File type not supported'

def get_text_from_image(image_path):

 # Use Azure Computer Vision to extract text from an uploaded image

 with open(image_path, "rb") as image_stream:

 read_response = computervision_client.read_in_stream(image_stream, raw=True)

 read_operation_location = read_response.headers["Operation-Location"]

 operation_id = read_operation_location.split("/")[-1]

 while True:

 read_result = computervision_client.get_read_result(operation_id)

 if read_result.status not in ['notStarted', 'running']:

 break

 time.sleep(1)

 if read_result.status == OperationStatusCodes.succeeded:

 text = []

 for text_result in read_result.analyze_result.read_results:

 for line in text_result.lines:

 text.append(line.text)

 return " ".join(text)

 return "No text recognized"

if __name__ == '__main__':

 app.run(debug=True)

Chat.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Shortage Product AI Chat</title>

<style>

 body {

 font-family: 'Arial', sans-serif;

 background-color: #f7f7f7;

 display: flex;

 justify-content: center;

 align-items: center;

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 22

 height: 100vh;

 margin: 0;

 }

 .chat-container {

 width: 400px;

 height: 600px;

 border-radius: 8px;

 background-color: #fff;

 box-shadow: 0 4px 8px rgba(0,0,0,0.2);

 display: flex;

 flex-direction: column;

 overflow: hidden;

 }

 .chat-header {

 background-color: #4CAF50;

 color: #fff;

 padding: 16px;

 font-size: 24px;

 text-align: center;

 }

 .chat-body {

 padding: 10px;

 overflow-y: auto;

 flex-grow: 1;

 background: #e5ddd5;

 display: flex;

 flex-direction: column;

 }

 .message {

 display: flex;

 align-items: center;

 padding: 10px;

 border-radius: 18px;

 color: white;

 max-width: 75%;

 word-wrap: break-word;

 }

 .bot-message {

 background-color: #007bff;

 align-self: flex-start;

 text-align: left;

 }

 .user-message {

 background-color: #34b7f1;

 align-self: flex-end;

 text-align: right;

 }

 .logo {

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 23

 display: flex;

 justify-content: center;

 align-items: center;

 width: 50px;

 height: 50px;

 background-color: #ccc;

 border-radius: 50%;

 color: black;

 font-weight: bold;

 font-size: 14px;

 text-transform: uppercase;

 }

 .chat-footer {

 padding: 10px;

 background-color: #f0f0f0;

 display: flex;

 }

 .chat-footer input[type="text"] {

 flex-grow: 1;

 padding: 10px;

 margin-right: 10px;

 border: 1px solid #ccc;

 border-radius: 18px;

 outline: none;

 height: 40px;

 }

 .chat-footer input[type="submit"] {

 padding: 10px 20px;

 background-color: #4CAF50;

 border: none;

 border-radius: 18px;

 color: #fff;

 cursor: pointer;

 outline: none;

 height: 40px;

 }

</style>

</head>

<body>

 <div class="chat-container">

 <div class="chat-header">

 Shortage Product AI

 </div>

 <div class="chat-body" id="chatBody">

 {% for entry in history %}

 <div class="message {{ 'user-message' if entry.user else 'bot-message' }}">

 <div class="message-text">{{ entry.text }}</div>

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 24

 </div>

 {% endfor %}

 </div>

 <div class="chat-footer">

 <div class="chat-footer">

 <form action="/" method="post">

 <button type="button" id="microphone-btn" onmousedown="startRecording()"

onmouseup="stopRecording()" ontouchstart="startRecording()" ontouchend="stopRecording()">🎤

Hold to Speak</button>

 <input type="text" name="user_input" id="user_input" placeholder="Ask a question..."

autocomplete="off">

 <input type="submit" value="Send">

 </form>

 <form action="/upload_image" method="post" enctype="multipart/form-data">

 <input type="file" name="image" accept="image/*">

 <input type="submit" value="Upload Image">

 </form>

 </div>

 </div>

 </div>

 <script>

 var recognition;

 function startRecording() {

 var SpeechRecognition = SpeechRecognition || webkitSpeechRecognition;

 recognition = new SpeechRecognition();

 recognition.continuous = false; // Set to false as we want the recognition to stop after a single

result

 recognition.interimResults = false; // We only want final results

 recognition.lang = 'en-US'; // Set the language of the recognition

 recognition.start(); // Start recognition

 recognition.onresult = function(event) {

 var transcript = event.results[0][0].transcript;

 var userInputField = document.getElementById('user_input');

 userInputField.value = transcript; // Set the recognized text to the input field

 console.log('Transcript:', transcript);

 recognition.stop(); // Stop recognition after receiving the first result

 };

 recognition.onend = function() {

 if (userInputField.value) { // Check if there is text to submit

 document.querySelector('form').submit(); // Submit the form

 }

 };

 }

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 25

 function stopRecording() {

 if (recognition) {

 recognition.stop(); // This will also trigger the onend event

 }

 }

 </script>

</body>

</html>

App.py

Environment Variables: loading environment variables which store confidential information
like the secret key and Azure service credentials.

Flask App Initialization: A new Flask application instance is created, along with configuration
for CORS (Cross-Origin Resource Sharing) to allow the app to handle requests from different origins.

Azure Services Setup: Setting up clients for Azure AI Services, Speech and Computer Vision,
using the credentials from the environment variables. These services enable the bot to understand
speech input and analyse images.

Speech Recognition: Function recognize_from_microphone() is defined to handle speech
recognition using Azure's Speech SDK. Function listens for speech input from the default
microphone, processes it, and returns the recognized text.

Speech Recognition Endpoint: Route /recognize_speech is set up to handle POST requests that
trigger the speech recognition function and return the recognized text as JSON.

Conversation Memory: Application with ConversationBufferMemory object to keep track of the
conversation history. This memory is used to maintain context during a conversation with the bot.

Conversational Retrieval Chain: The load_chain() function configures a
ConversationalRetrievalChain from the Langchain library, which uses Azure Cognitive Search for
document retrieval, and OpenAI's Chat model for generating responses.

Home Page Endpoint: Route / serves the home page and handles both displaying and
posting chat messages. It uses session storage to retain chat history.

Image Upload and Processing: It defines an allowed file extension list and sets up an upload
folder. Route /upload_image is created to handle image uploads, save them securely, and process
them using Azure's OCR (Optical Character Recognition) to extract text.

OCR Function: The get_text_from_image() function sends images to the Azure Computer

Vision service to extract text, which can then be used as input to the conversational chain.

Main Block: Block checks if the script is the main program and, if so, runs the Flask app.

Chat.html

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 26

HTML Structure: The document uses HTML5 and is set to English. Meta tags are used for

proper rendering and touch zooming.

Styling: Inline CSS styles are used to create a modern chat interface. The chat window is

centered on the page.

Chat Header: The header contains the title “Shortage Product AI”.

Chat Body: This section displays the chat history. Messages are styled differently based on

whether they’re from the user or the bot.

Chat Footer: This section contains the input form for sending messages. It includes a

microphone button for speech-to-text functionality, a text input for typing messages, and a send
button. There’s also a form for image uploads.

Speech-to-Text Functionality: JavaScript is used for speech recognition. The recognized

speech is populated into the text input field.

Speech Recognition Trigger: The microphone button is wired to start and stop the speech
recognition.

Automatic Form Submission: The form is automatically submitted when speech recognition
ends and there’s text in the input field.

Image Upload: Users can upload images, which are sent to a server-side endpoint for
processing.

Responsive Design: The chat interface adjusts to the screen size, making it accessible on
both desktop and mobile devices.

Integration with Flask: The HTML integrates with a Flask application, allowing to interact
with the bot in multiple ways. The Flask application uses these inputs to converse with users,
leveraging Azure services to enhance the bot’s capabilities.

Output

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 27

I am very pleased to be successful in completion of AI-driven chatbot project, designed to
address the critical issue of pharmaceutical product shortages. This chatbot, showcased in the
attached screenshot, exemplifies the integration of multiple advanced technologies to deliver real-
time, user-friendly interactions and information retrieval.

Key Capabilities and Features:

Semantic Search Integration: Utilizing OpenAI's text-embedding-3-small embeddings model,
we have empowered Azure AI Search to understand and retrieve information on product shortages
semantically. This allows the bot to provide contextually relevant information, such as specific
product prices and stock levels, as evidenced by the detailed responses regarding "Piroxicam Gel"
pricing in the user interface.

Speech-to-Text Interaction: The chatbot features a 'Hold to Speak' function that enables

voice-based queries. This function capitalizes on Azure's Speech SDK, allowing users to
communicate with the bot in a natural and accessible manner.

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 28

Image Processing and Text Extraction: An innovative image upload capability allows users to
input data via pictures, such as photographs of product lists or prescriptions. Leveraging Azure's
Computer Vision OCR, the system extracts text from images, making the data available for
processing and response by the chatbot.

Responsive Web Design: The user interface, as part of the Flask application, is designed to
be clean and intuitive, ensuring accessibility across devices. The conversation history is presented in
an easily navigable format, with distinct visual cues for user and bot messages.

Conversational Memory: Through ConversationBufferMemory, the chatbot maintains the

context of interactions, providing continuity across a session. This aspect is particularly important
when dealing with complex inquiries about product availability and shortages.

The project objectives has been met to have reliable tool for healthcare professionals and

supply chain managers to quickly obtain information on medication availability and pricing changes.
The final product not only meets these objectives but also enhances user experience through multi-
modal interaction capabilities—text, voice, and image inputs.

Also by changing the secret key of flask application, the Bot would be initiated for the new chat
interface for the new users.

SECRET_KEY = 345852

Link: http://127.0.0.1:5000

http://127.0.0.1:5000/

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 29

Image selection:

I have provided the image input and retrived the results.

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 30

Conclusion:

Project stands as a testament to the potential of AI to transform industry-specific challenges
into opportunities for innovation and improved service delivery. The bot is now well-equipped to
assist in managing the complexities of pharmaceutical supply chains, thereby contributing to better
healthcare outcomes.

Cleaning Up Activity:

As completed the project, cleaning up the resources and resource group to reduce cost on
the Azure subscription.

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 31

References:

 Microsoft Learn (no.date.) "Azure Cognitive Language Service Question Answering client
library for Python - version 1.1.0" Available at: https://learn.microsoft.com/en-
us/python/api/overview/azure/ai-language-questionanswering-readme?view=azure-python

 Great Learning (2024) " Week 5 - Language Understanding & Azure AI Fundamentals"
Mentor session Available at:
https://olympus.mygreatlearning.com/mentorship_recordings/2317305

 Community pharmacy England (no.date.) “Price Concession” available at:

https://cpe.org.uk/funding-and-reimbursement/reimbursement/price-concessions/

 Great Learning (2024) "Case study on Computer Vision & Custom Vision using Python SDK"
Available at: https://olympus.mygreatlearning.com/courses/109553?module_id=747540

 Microsoft Learn (no.date.) "Quickstart: Image Analysis" Available at:
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-

https://learn.microsoft.com/en-us/python/api/overview/azure/ai-language-questionanswering-readme?view=azure-python
https://learn.microsoft.com/en-us/python/api/overview/azure/ai-language-questionanswering-readme?view=azure-python
https://olympus.mygreatlearning.com/mentorship_recordings/2317305
https://cpe.org.uk/funding-and-reimbursement/reimbursement/price-concessions/
https://olympus.mygreatlearning.com/courses/109553?module_id=747540
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-sdk/image-analysis-client-library?tabs=windows%2Cvisual-studio&pivots=programming-language-python

 S223919051 High Distinction Task 8

SIG788 – Engineering AI Solutions 32

sdk/image-analysis-client-library?tabs=windows%2Cvisual-studio&pivots=programming-
language-python

 Microsoft Learn (no.date.) "Call the Image Analysis 3.2 API" Available at:

https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/how-to/call-
analyze-image?tabs=python

 Great Learning (2024) "Case study on Computer Vision & Custom Vision using Python

SDK" Available at:
https://olympus.mygreatlearning.com/courses/109553?module_id=747540

 Alam Smith (Sep 23, 2021) "Azure Computer Vision using Python" Available at:

https://www.youtube.com/watch?v=3Zfcn1tsSwE&t=142s

 Coding Crashcourses (18th Aug 2023) “LangChain on Microsoft Azure - ChatBot with Azure Web
Service & Azure Cognitive Search” Available at:
https://www.youtube.com/watch?v=WAedZvSDZAI&t=188s

https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-sdk/image-analysis-client-library?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/quickstarts-sdk/image-analysis-client-library?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/how-to/call-analyze-image?tabs=python
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/how-to/call-analyze-image?tabs=python
https://olympus.mygreatlearning.com/courses/109553?module_id=747540
https://www.youtube.com/watch?v=3Zfcn1tsSwE&t=142s
https://www.youtube.com/watch?v=WAedZvSDZAI&t=188s

