
S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions

1

SIG788
Engineering AI solutions

Distinction Task 5

Arunkumar Balaraman
S223919051

S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions

2

Contents

 .. 1

Target = Distinction ... 3

Object Detection using Azure's Custom Vision API ... 3

Introduction .. 3

Objective: .. 3

Approach: ... 3

Azure Custom Vision: .. 3

Flowchart: ... 4

Creating Azure Custom Vision: ... 4

Training Custom Vision: .. 8

Pre-requisites: ... 10

Configure .env file: .. 10

Setting up Kaggle folder: .. 11

Selecting 3 Videos for training Images: .. 11

Top 3 Videos ... 13

Category – Tagging ... 15

Video conversion mov to mp4: ... 16

Frame image calculation and selection: ... 17

Create Frame Image: .. 20

Azure Custom Vision Project Image Load: .. 23

Project Creation:.. 23

Normalization: ... 25

Upload Images: .. 25

Validating images in Portal: ... 27

Training: .. 28

Performance: .. 29

Testing a Sample Image: ... 31

Publish Model: .. 32

Clean up Activity: .. 37

References: ... 40

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 3

Target = Distinction

Object Detection using Azure's Custom Vision API

Introduction

 Project uses Microsoft Azure's Custom Vision API to detect and categorize objects in vehicle
tracking in a video.

Objective:

The goal is to create a program that can accurately identify objects the objects in video for
vehicle tracking using Azure's Custom Vision SDK. The program will highlight detected objects,
demonstrating its practical application in real-world scenarios like vehicle tracking analysis.

Approach:

The project involves below steps:

➢ Video Selection: Choose three diverse vehicle videos under different conditions.

➢ Image Extraction: Extract images at one-second intervals from these videos, capturing
vehicles from various angles and distances.

➢ Azure Project Setup: Create an Azure Custom Vision project with object detection and

multi-label prediction capabilities.

➢ Image Tagging: Accurately tag 120 images with bounding boxes around each vehicle
using the parquet bounding box information for the selected video.

➢ Model Training: Train the model using tagged images.

➢ Model Evaluation: Evaluate the model's performance using precision, recall, and mAP

metrics.

➢ Model Deployment: Deploy the trained model efficiently, considering the expected
frequency and volume of video processing.

➢ Model Validation: Test the model's generalization capabilities and real-world

applicability with new videos not included in the training set.

Azure Custom Vision:

Azure Custom Vision is a part of Azure AI Services which allows to build, deploy, and
improve own image classifiers.

Key features include:

➢ Customization to user Scenario: can set model to perceive a particular object for a use

case.
➢ Intuitive Model Creation: Easily build image identifier model using the simple interface.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 4

➢ Flexible Deployment: Run AI Custom Vision in the cloud or on the edge in containers.
➢ Built-in Security: Rely on enterprise-grade security and privacy for data and any trained

models.
➢ Achieve Accuracy Without Complexity: Start training computer vision model by simply

uploading and labelling a few images.
➢ Accelerate Model Creation: A user-friendly interface walks through developing and

deploying custom computer vision models.
➢ Deploy Anywhere: From the Cloud to the Edge: Run models wherever we need them

and according to unique scenario and requirements.

Flowchart:

Creating Azure Custom Vision:

➢ Sign in to Azure Portal: Azure Portal and sign in with Microsoft account Deakin credentials.

Link: https://portal.azure.com/

Landing Page:

https://portal.azure.com/

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 5

➢ Create a New Workspace:
o Click on Create a resource at the top-left corner.

o Search for Custom Vision & select Create from Custom Vision to initiate the
creation process.

➢ Configure the Workspace:
o Crate option: Select Both (Prediction + Training)
o Creating a resource group RG-S223919051-Task5
o Instance Detail name ID-S223919051-Task
o Choose an Azure region Central India which is close to my location.
o Pricing tier has been selected with Free Tier

▪ Training “Free F0 (2 Transaction per second, 2 projects)”
▪ Prediction “Free F0 (2 Transaction per second”

o Then click review and create

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 6

➢ Review and Create: After configuring the details click on Review + create button. Once
Azure validates configuration. Click on Create button to deploy workspace.
Review:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 7

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 8

Workspace deployed:

Training and Prediction spaces are deployed

Training Custom Vision:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 9

1. Get the API Key to authenticate

2. Custom Vision Portal

Now let’s proceed to create the Python SDK;

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 10

Pre-requisites:

Install pre-requisites for Computer Vision in Anaconda prompt.

➢ pip install azure-cognitiveservices-vision-customvision
➢ pip install pillow
➢ pip install python-dotenv

 azure-cognitiveservices-vision-computervision: This command installs the Azure Custom

Vision library, which allows to interact with the Azure Custom Vision service from Python
applications.

 pillow: A PIL fork, Pillow adds image processing capabilities to Python, including opening,

manipulating, and saving various image file formats. It’s commonly used for tasks like
resizing, applying filters, and handling different image formats.

 python-dotenv: This package reads key-value pairs from a .env file and sets them as

environment variables, enhancing the security and flexibility of application’s configuration
management.

Configure .env file:

For Azure Computer Vision services, follow these steps to enhance security:

 After deployment, copy Key1 (subscription_Key) and the endpoint.
 Paste these into a .env file in working directory.
 These will be assigned as environment variables and can be read directly in Python code.

This method ensures subscription_key, endpoint and resource ID are not displayed to users,
enhancing the security of application. Please refer to the snapshot of the .env file.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 11

Setting up Kaggle folder:

The Kaggle.json file is used to interact with Datasets to download data, in this case we would be
using to download the videos.

Selecting 3 Videos for training Images:

Import the necessary libraries in Python SDK:

to connect to the training resource
from azure.cognitiveservices.vision.customvision.training import
CustomVisionTrainingClient

to connect to the prediction resource
from azure.cognitiveservices.vision.customvision.prediction import
CustomVisionPredictionClient

to send the input files in batch; and to identify the object regions; for the training of the
model.
from azure.cognitiveservices.vision.customvision.training.models import
ImageFileCreateBatch, ImageFileCreateEntry, Region

To authenticate the client
from msrest.authentication import ApiKeyCredentials
import os, uuid

To read the local environment variables and secret keys
import os, dotenv
from dotenv import load_dotenv, find_dotenv

To read the dataset
import pandas as pd

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 12

to view images
from IPython.display import Image as img

to process data in batches
import itertools

to draw bounding boxes in local output.
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
import numpy as np

Unzip file
import zipfile

Set os
import os

Setting up Working directory:

Setting Working Directory
os.chdir(r'C:\Users\arunk\OneDrive\Masters\SIG788\Task5')
print(os.getcwd())

Downloaded Parquet file from Kaggle:

The Parquet file has been downloaded and its been zipped in below code. This file will be used to
identify the videos to extract frame and apply bounding boxes information available in this dataset.

Code:

Assign Zip file
zip_file_path = './mot_labels.parquet.zip'
unzipped_folder_path = os.getcwd()

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 13

Unzipping the .parquet.zip file
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
 zip_ref.extractall(unzipped_folder_path)

.parquet file
parquet_file_path = 'mot_labels.parquet'

Loading the .parquet file
df = pd.read_parquet(parquet_file_path)

Display the first 5 rows
df.head()

Output:

Inference on dataset:

The dataset from various videos has been included in Kaggle which would specifically help us
in object detection. The dataset includes annotated frames with details about the presence and
position of objects like cars, pedestrians, bus, cycle, etc. Each object is assigned a unique ID and
category.

Key columns in the dataset:

➢ Bounding Box Coordinates: They are

o box2d.x1, box2d.x2 for horizontal positioning and
o box2d.y1, box2d.y2 for vertical positioning helping in precise object localization.

Top 3 Videos

In the dataset, identifying the 3 videos with a more number of categories by performing a
group by count on VideoName and category. This helps in selecting the top 3 video when car, bus
and bicycle has more occurrence for better training.

Code:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 14

Define a list to store top videos
top_3_videos = []

Iterate over each category
for category in ['bicycle', 'bus', 'car']:
 # Filter the DataFrame
 filtered_df = df[(df['attributes.crowd'] == False) & (df['attributes.occluded'] == False) &
(df['category'] == category)]

 # Group by 'videoName' and count occurrences of the category
 category_counts = filtered_df.groupby('videoName').size()

 # Find the top video and its count
 top_video = category_counts.idxmax()
 top_count = category_counts.max()

 # Print results
 print("Top video for", category, ":", top_video)
 print(category, "count:", top_count)

 # Add top video to the list
 top_3_videos.append((top_video, top_count))

Sort top videos based on count in descending order
top_3_videos.sort(key=lambda x: x[1], reverse=True)

Display the top 3 videos
print("\nTop 3 Videos:")
for i, (video, count) in enumerate(top_3_videos[:3], 1):
 print("{}. Video: {}, Count: {}".format(i, video, count))

Output:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 15

 Manually downloaded these videos to extract frame images as I don’t want to download
all 1000 images where the file size is 20 GB.

The training frame images would be picked up only from these three videos hence

restricting the dataset to information only for these three videos.

Restricting the datasets to only three videos
restricteddata = df.query('videoName in @topvideos').reset_index(drop=True).copy()
restricteddata.head()

Output:

Category – Tagging

Now let’s restrict the data further into top 6 category for performing training from these videos.

Picking top 6 categories for these images
Top6category = restricteddata['category'].value_counts().head()
Top6category

Output

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 16

The top 6 categories are Car, pedestrian, bicycle, truck, bus & rider are most frequent in these videos
and tagging the images with these categories.

Deleting other categories from the dataset.

creating list of 6 categories
cat_list = top6category.index.to_list()
print(cat_list)

restrict dataset further to 5 categories
restricteddata = restricteddata.query('category in @cat_list').copy()
restricteddata['category'].value_counts()

Output:

Video conversion mov to mp4:

Converting .mov to .mp4 for Azure Custom Vision ensures consistency and avoids potential
errors during model training or inference. The .mp4 format is widely supported and playable on
various devices and platforms, enhancing the versatility and accessibility of the model.

Code:

Loop the top 3 videos
for video_file in topvideos:
 (
 ffmpeg
 .input(video_file + '.mov')
 .output(video_file + '.mp4')
 .global_args('-y') # overwrite .mp4 if available
 .run()
)
 # Print success
 print(f"Converted {video_file + '.mov'} to {video_file + '.mp4'}")

Output:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 17

Successfully converted the .mov into .mp4 files and now let’s proceed to display the .mp4 format
using Ipython.display

Frame image calculation and selection:

Let’s calculate the frame in video against frame in the datasets.

Initialize a list

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 18

video_frames_info = []

Loop through each video to get frame counts
for video in topvideos:
 cap = cv2.VideoCapture(video + '.mp4')
 if not cap.isOpened():
 print(f"Failed to open video: {video + '.mp4'}")
 num_frames = 0
 fps = 0
 else:
 fps = cap.get(cv2.CAP_PROP_FPS)
 num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
 cap.release()

 video_frames_info.append({
 'videoName': video,
 'fps': fps,
 'num_frames': num_frames
 })

Convert to DataFrame
video_frames_df = pd.DataFrame(video_frames_info)

Group by 'videoName' to get the max frame index for each video
max_frame_indices = restricteddata[['frameIndex',
'videoName']].groupby('videoName').max().reset_index()

Merge the two DataFrames on 'videoName' to compare
comparison_df = pd.merge(video_frames_df, max_frame_indices, how='left',
on='videoName', suffixes=('_actual', '_dataset'))

comparison DataFrame
comparison_df

Output:

Inference:

Compared three videos with varying frame rates and total frames.

• All three videos has a frame rate of 30 FPS. The total number of frames varies
significantly among the videos due to differences in video length and frame rate.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 19

The maximum frame index in dataset is notably lower than the actual number of frames for

each video, indicating that the dataset might not encompass the full length of the videos. This
suggests that only a subset of each video's frames is used, possibly due to relevance or dataset
incompleteness.

To overcome this limitation, an integer value obtained by dividing the actual video frames
by the dataset's frame index is used to capture frame images at specific points.

Code:

Loop for each video
for index, row in comparison_df.iterrows():
 video_name = row['videoName'] # Video Name
 num_frames = row['num_frames'] # Num of frames in Video
 max_frame_index = row['frameIndex'] # Max frames in dataset

 # Calculate the adjustment factor for each video
 adjustment_factor = num_frames / max_frame_index

 # Update frameIndex in video_labels where videoName matches
 restricteddata.loc[restricteddata['videoName'] == video_name, 'adjusted_frameIndex'] = (
 restricteddata.loc[restricteddata['videoName'] == video_name, 'frameIndex'] *
adjustment_factor
).round().astype(int)

Checking for Null values in new column
restricteddata['adjusted_frameIndex'].isna().sum()

Output:

Basic check the new column adjusted_frameIndex to match the video

As we now successfully created the adjusted_frameIndex, let’s proceed to create the frame images
and save it a folder to load the images into Azure custom vision for model training.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 20

Create Frame Image:

 We will utilize the adjusted frame index from the dataset for each video to generate images,
which will be stored in a designated folder. Subsequently, employed Python SDK to verify the
precision of the bounding boxes. The images, along with the bounding box data, will then be
uploaded to the Azure Custom Vision project for further analysis.

Selecting 33 random frames to save image in output folder for each Video Name.

33 random frames per video
def select_random_frames(frames, count=33):
 if len(frames) > count:
 return np.random.choice(frames, size=count, replace=False)
 return frames

unique_frames_per_video =
restricteddata.groupby('videoName')['adjusted_frameIndex'].unique().apply(lambda x:
select_random_frames(np.sort(x)))

Function to read the frame index from dataframe and save image
def save_specific_frame(video_path, frame_number, output_filename):
 cap = cv2.VideoCapture(video_path)
 cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
 success, frame = cap.read()
 if success:
 cv2.imwrite(output_filename, frame)
 cap.release()

Image directory
image_directory = 'ImageFrames'
if not os.path.exists(image_directory):
 os.makedirs(image_directory)

Loop for each item
for video_name, frames in unique_frames_per_video.items():
 video_path = video_name + '.mp4'
 for frame_number in frames:
 output_filename = os.path.join(image_directory,
f"{video_name}_frame_{int(frame_number)}.png")
 save_specific_frame(video_path, frame_number, output_filename)

List unique_frames_per_video
selected_frames = [(video_name, frame) for video_name, frames in
unique_frames_per_video.items() for frame in frames]

Frame selection
filtered_dataset = restricteddata[restricteddata.apply(lambda row: (row['videoName'],
row['adjusted_frameIndex']) in selected_frames, axis=1)].reset_index(drop=True)

99 images are saved in the below path to load the same into Azure Custom Vision project.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 21

As we now saved the images, let’s display 2 images for each video name to ensure the

bounding boxes are correctly aligned to train the images in Custom vision project.

function to diplay the saved images with bounding boxes
def display_image_with_annotations(image_path, annotations):
 """
 Displays an image with bounding boxes and category labels.

 Parameters:
 - image_path: Path to the image file.
 - annotations: DataFrame containing bounding box and category information.
 """
 # Load the image
 img = Image.open(image_path)

 # Create a figure
 fig, ax = plt.subplots(1, figsize=(12, 8))
 ax.imshow(img)

 # Draw bounding boxes and labels
 for _, row in annotations.iterrows():
 x1, y1, x2, y2 = row['box2d.x1'], row['box2d.y1'], row['box2d.x2'], row['box2d.y2']
 width, height = x2 - x1, y2 - y1
 rect = patches.Rectangle((x1, y1), width, height, linewidth=1, edgecolor='r',
facecolor='none')
 ax.add_patch(rect)
 ax.text(x1, y1, row['category'], color='white', backgroundcolor='red')

 plt.show()

Loop to run to display 2 images per videofile
for video_name in filtered_dataset['videoName'].unique():
 # Filter the dataset for this videoName
 video_data = filtered_dataset[filtered_dataset['videoName'] == video_name]

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 22

 # Get two unique frames
 unique_frames = video_data['adjusted_frameIndex'].unique()[:2]

 for frame in unique_frames:
 # Filter annotations for selected frame
 frame_annotations = video_data[video_data['adjusted_frameIndex'] == frame]

 # Image filename
 image_filename = f"{video_name}_frame_{int(frame)}.png"
 image_path = os.path.join(image_directory, image_filename)

 # Display the image with annotations
 display_image_with_annotations(image_path, frame_annotations)

Output:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 23

As we now validated the bounding boxes are correctly assigned, now let’s loaded the images
into Azure custom vision project.

Azure Custom Vision Project Image Load:

 As we have validated the images with bounding boxes, we will start to set up the
environment variables for the key, subscription and endpoint for both train and prediction.

Read the environment file to access secret keys
load_dotenv()

Replace with valid values
VISION_TRAINING_ENDPOINT = os.environ["VISION_TRAINING_ENDPOINT"]
training_key = os.environ["VISION_TRAINING_KEY"]
prediction_key = os.environ["VISION_PREDICTION_KEY"]
prediction_resource_id = os.environ["VISION_PREDICTION_RESOURCE_ID"]
VISION_PREDICTION_ENDPOINT= os.environ["VISION_PREDICTION_ENDPOINT"]

Project Creation:

create variables for training resource
credentials = ApiKeyCredentials(in_headers={"Training-key": training_key})
trainer = CustomVisionTrainingClient(VISION_TRAINING_ENDPOINT, credentials)

create variables for prediction resource
prediction_credentials = ApiKeyCredentials(in_headers={"Prediction-Key": prediction_key})
predictor = CustomVisionPredictionClient(VISION_PREDICTION_ENDPOINT,
prediction_credentials)

publish_iteration_name = "VehicleDetection"

Find the object detection domain
obj_detection_domain = next(domain for domain in trainer.get_domains() if
 domain.type == "ObjectDetection" and domain.name == "General")

Create a new project
print("Creating project...")
Use uuid to avoid project name collisions.
project =
trainer.create_project(publish_iteration_name,domain_id=obj_detection_domain.id)
Created
print("Created...")

Output:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 24

 The project Vehicle detection has been successfully created in Azure custom vision platform
using Python SDK.

Let's now condense the data into a single row per image. Since an image contains multiple

objects represented as rows, we'll create dictionary records for categories and bounding box
information to consolidate the data.

Function to aggregate categories and corresponding boxes together
def aggregate_categories_and_boxes(group):
 categories_boxes = []
 for _, row in group.iterrows():
 categories_boxes.append({
 'category': row['category'],
 'box': {'x1': row['box2d.x1'], 'y1': row['box2d.y1'], 'x2': row['box2d.x2'], 'y2':
row['box2d.y2']}
 })
 return categories_boxes

Group by 'videoName' and 'adjusted_frameIndex', then apply the aggregation function
aggregated_data = filtered_dataset.groupby(['videoName',
'adjusted_frameIndex']).apply(aggregate_categories_and_boxes).reset_index(name='catego
ries_boxes')

aggregated data head
aggregated_data.head()

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 25

output:

Normalization:

We performed normalization of the x1, x2, y1, & y2 to ensure:

➢ Coordinate System Compatibility: Normalizing bounding box coordinates to a standard
range ensures compatibility across different systems and platforms, and meets the
expectations of object detection models.

➢ Scale Invariance: Normalization ensures consistent object treatment across varying image
resolutions, enhancing model robustness by focusing on the object's relative space in the
image.

➢ Flexibility and Generalization: Normalization enables flexible model operation across
different deployment environments and improves model generalization, enhancing
performance on real-world tasks.

➢ Efficient Training: Normalization simplifies the learning process by reducing coordinate
value ranges and maintains stable gradients during training, preventing issues like exploding
or vanishing gradients.

Normalize the x1, x2, y1, y2
def normalize_box(box, image_width=1280, image_height=720):

 return {
 "left": box['x1'] / image_width,
 "top": box['y1'] / image_height,
 "width": (box['x2'] - box['x1']) / image_width,
 "height": (box['y2'] - box['y1']) / image_height,
 }

Upload Images:

def upload_image(row):
 image_filename = f"{row['videoName']}_frame_{int(row['adjusted_frameIndex'])}.png"
 image_path = os.path.join('ImageFrames', image_filename)

 if not os.path.exists(image_path):
 print(f"File not found: {image_path}")
 return

 regions = []

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 26

 for cb in row['categories_boxes']:
 category = cb['category']
 box = cb['box']

 if category not in tags_cache:
 # Create tag if not in cache and update the cache
 created_tag = trainer.create_tag(project.id, category)
 tags_cache[category] = created_tag.id

 tag_id = tags_cache[category]
 normalized_box = normalize_box(box)

 regions.append(Region(tag_id=tag_id, left=normalized_box['left'],
top=normalized_box['top'], width=normalized_box['width'],
height=normalized_box['height']))

 with open(image_path, "rb") as image_contents:
 tagged_images_with_regions = [ImageFileCreateEntry(name=image_filename,
contents=image_contents.read(), regions=regions)]

 upload_result = trainer.create_images_from_files(project.id,
ImageFileCreateBatch(images=tagged_images_with_regions))

 if not upload_result.is_batch_successful:
 print(f"Failed to upload image: {image_filename}")
 for image in upload_result.images:
 print("Image status: ", image.status)
 else:
 print(f"Successfully uploaded {image_filename} with regions.")

Cache existing tags to avoid duplication errors
tags_cache = {tag.name: tag.id for tag in trainer.get_tags(project.id)}

Apply the function to each row of the DataFrame
aggregated_data.apply(upload_image, axis=1)

print("Image upload to Azure Custom Vision is complete.")

Output:

Inference:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 27

Loaded all the 99 images with its region and tag name information for the Azure custom vision

project for the training of the model with the 6 categories

1. Bicycle
2. Car
3. Pedestrian
4. Truck
5. Bus
6. rider

Validating images in Portal:
Image 1 with region and tags.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 28

Image2 with region and tags.

 As we now successfully loaded the image along with region and tag name to Azure custom
vision project, let’s proceed with training.

Training:

import time

print ("Training...")
iteration = trainer.train_project(project.id)
while (iteration.status != "Completed"):
 iteration = trainer.get_iteration(project.id, iteration.id)
 print ("Training status: " + iteration.status)
 time.sleep(1)

Output:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 29

➢ Initiate Training: The `trainer.train_project(project.id)` command starts the model training
using the uploaded images and tags.

➢ Polling for Status: A while loop checks the training status continuously. The
`trainer.get_iteration(project.id, iteration.id)` retrieves the current training iteration and
prints the status.

➢ Waiting for Completion: The `time.sleep(1)` command pauses the script for a second before
checking the status again, preventing excessive server requests.

➢ Completion: Once the iteration status is 'Completed', the loop exits, indicating the end of
training. The model is then ready for testing or predictions.

Performance:

Below are the performance metrics in which the model would be evaluated.

➢ Intersection over Union (IoU): Measures the overlap between the predicted bounding box
and the ground truth box to assess localization accuracy.

➢ Precision: The ratio of true positives to the sum of true and false positives, indicating the

accuracy of positive predictions.

➢ Recall: The ratio of true positives to the sum of true positives and false negatives, reflecting
the model's ability to correctly identify all positives.

➢ Mean Average Precision (mAP): The average of the Average Precision (AP) for each class,

providing a score for the model's overall detection accuracy. It uses the ground-truth
bounding box and the detected box for calculation.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 30

Model Performance:

Thresholds:

- Probability Threshold (50%): The model classifies detections as positive if the confidence level is at
least 50%.

- Overlap Threshold (30%): Predicted bounding boxes are considered true positives if they overlap at
least 30% with the ground truth.

Performance Metrics:

- Precision (94.6%): The model's predictions are 94.6% accurate.

- Recall (55.7%): The model identifies 55.7% of all actual tags.

- mAP (75.0%): The model has a good balance of precision and recall across different classes.

Performance Per Tag:

- Truck: Precision is 100%, recall is 52.6%, AP is 77.6%, and image count is 70.

- Bicycle: Precision is 100%, recall is 48.3%, AP is 75.4%, and image count is 23 (red bar).

- Bus: Precision is 100%, recall is 66.7%, AP is 90.2%, and image count is 39 (red bar).

- Car: Precision is 94.4%, recall is 59.8%, AP is 75.4%, and image count is 88.

- Rider: Precision is 90.0%, recall is 60.0%, AP is 66.1%, and image count is 21 (red bar).

- Pedestrian: Precision is 87.5%, recall is 43.8%, AP is 65.1%, and image count is 59.

Image Count Imbalance:

- The red bars for 'bicycle', 'bus', and 'rider' indicates an imbalanced or insufficient dataset for these
classes.

Conclusion:

The model exhibits high precision across all tags, but the recall rates are significantly lower,
indicating missed true positives. This is especially evident for 'bicycle', 'bus', and 'rider' tags, which
have fewer images in the dataset. The overall mAP score of 75.0% suggests a moderate balance of
precision and recall. However, there's substantial room for improvement while adding more images
while working on live projects.

Limitation:

The model's performance is constrained by the limited number of images due to the use of a
free tier. To avoid exhausting resources on a single project and to preserve them for upcoming
projects, the quantity of images is kept minimal. This limitation could potentially affect the model's
learning ability, especially for imbalanced classes.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 31

Improvement Strategies:

Improvements in recall could be achieved through data augmentation, model tuning, and

adding more training data, particularly for underrepresented classes.

Testing a Sample Image:

Tested the image using browse file

Testing a image using web url image

Testing:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 32

Test Results:

Truck Detection: The model correctly identifies a truck with a confidence of 44.4%. The bounding
box accurately encompasses the vehicle.

Pedestrian Detection: The model identifies a pedestrian with a high confidence of 86.9%, assuming
the bounding box accurately encloses a person.

Car Detection: The model identifies a car with a high confidence of 86.6%, provided the bounding
box correctly identifies a car in the image.

Quick Test Insights:

These tests have been conducted on the random web URL image provides an immediate
sense of the model's performance on individual instances. However, they may not fully reflect the
model's accuracy in a production environment as they are based on single instances rather than a
diverse set of test data. Let’s publish the model and test the same with a video.

Publish Model:

Code:

Publish model
The iteration is now trained. Publish it to the project endpoint
trainer.publish_iteration(project.id, iteration.id, publish_iteration_name,
prediction_resource_id)
print ("Done!")

Output:

Prediction & Testing:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 33

As now we have published the model and created the prediction URL, now let’s create the Python
SDK to test the prediction URL for the image from local machine by sending a 1 minute video file
selected from youtube.

Youtube Video:

I have selected the below three minutes video for testing the model prediction.

URL: https://www.youtube.com/watch?v=jj8CfZDPeBs

Video Selected:

The video has been downloaded using the link https://ssyoutube.com/en169ZG/youtube-video-
downloader to the local machine and then used video trimmer from the link https://online-video-
cutter.com/#google_vignette to trim the video to 1 minute and saved the video as Test Video.mp4
in the working directory.

Then the test video.mp4 has been sent to the model for the prediction & detecting the object
detection.

https://www.youtube.com/watch?v=jj8CfZDPeBs
https://ssyoutube.com/en169ZG/youtube-video-downloader
https://ssyoutube.com/en169ZG/youtube-video-downloader
https://online-video-cutter.com/#google_vignette
https://online-video-cutter.com/#google_vignette

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 34

Code:

Function to extract the frame per second.

function to extract frame per second
def extract_frames(video_path, frame_interval):

 # Initialize video capture
 cap = cv2.VideoCapture(video_path)

 # Get the frames per second (fps) of the video
 fps = cap.get(cv2.CAP_PROP_FPS)

 # Initialize frame count
 frame_count = 0

 # Loop through video frames
 while cap.isOpened():
 ret, frame = cap.read() # Read a frame from the video
 if not ret:
 break

 # Check if the current frame number for interval
 if frame_count % int(fps * frame_interval) == 0:
 yield frame

 frame_count += 1 # Increment the frame count

 # Release the video capture object to free resources
 cap.release()

Function to send frame to Azure custom vision model using the prediction key and prediction url for
the image.

Function to send frame to Azure prediction Api & return Json response
def predict_frame(image, url, prediction_key):

 headers = {
 'Content-Type': 'application/octet-stream', # Indicates that the body contains binary
data.
 'Prediction-Key': prediction_key # Authentication key required by the API.
 }
 # Sends the POST request to the API.
 response = requests.post(url, headers=headers, data=image)

 # Parses and returns the response as JSON.
 return response.json()

Function to draw the bounding boxes and labelling for the predicted image with the given threshold.

function to draw bounding boxes and label to the frame with the probalility threshold

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 35

def draw_predictions(frame, predictions, probability_threshold=0.001):

 # loop through the predicitons
 for prediction in predictions['predictions']:
 probability = prediction['probability']

 # Only draw predictions with probability
 if probability > probability_threshold:

 # Get the bounding box for the prediction
 bbox = prediction['boundingBox']

 # Get the label for the prediction
 tag = prediction['tagName']

 # Calculate the pixel coordinates of the bounding box
 left = int(bbox['left'] * frame.shape[1])
 top = int(bbox['top'] * frame.shape[0])
 width = int(bbox['width'] * frame.shape[1])
 height = int(bbox['height'] * frame.shape[0])

 # Draw a rectangle around the detected object
 cv2.rectangle(frame, (left, top), (left + width, top + height), (0, 255, 0), 2)

 # Draw the label and probability for bounding box
 label = f"{tag}: {probability:.2f}"
 cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255,
0), 2)

 return frame

Now let’s pass the test video into the model prediction to object detect in the video one frame per
second to reduce the usage cost in Azure.

Test Video file
video_file = 'Test Video.mp4'

To read load the prediction URL
load_dotenv()

#Read the predition URL from environment variables
prediction_url = os.environ["Vision_PREDICTION_URL"]

Initialize video capture to get video properties
cap = cv2.VideoCapture(video_file)
ret, frame = cap.read()
height, width = frame.shape[:2]
cap.release()

Initialize VideoWriter to save output

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 36

fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 1.0, (width, height))

Extract and predict using one frame per second
for frame in extract_frames(video_file, frame_interval=1.0): # Extract one frame per second
 _, buffer = cv2.imencode('.jpg', frame)
 response = predict_frame(buffer.tobytes(), prediction_url, prediction_key)
 frame_with_predictions = draw_predictions(frame, response, 0.5) # Apply thresholds of
50%
 out.write(frame_with_predictions)

Release the VideoWriter
out.release()

Output:

 The output.avi has been created and saved in the working directory.

Conclusion:

The project successfully automated for object detection using videos by extracting frames
from YouTube videos and predicting using an Azure Custom Vision model.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 37

Limitations:

- Limited Training Data: The model was trained with only 99 images, limiting its ability to generalize
across varied real-world scenarios.

- Model Overfitting: There's a risk of overfitting due to the limited training data.

- Frame Rate Dependency: The current setup uses only one frame per second will not be adequate
for all scenarios.

Next Steps:

- Increase Training Data: Enhance the training dataset with more diverse images to improve model
accuracy.

- Enhance Model Training: Experiment with different architectures and hyperparameters, and
consider data augmentation techniques.

- Implement Continuous Learning: Establish a mechanism for continuous learning from new data,
including incorrect predictions.

- Refine Thresholds and Evaluation Metrics: Adjust the probability threshold and implement
additional metrics like F1-score for a comprehensive understanding of the model's performance.

Clean up Activity:

As we now completed the project, let’s delete the resource and custom vision project.

Unpublish the Model:

Unpublished:

Deleting the project:

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 38

Deleted the project, now we will get into Azure portal to delete the resources and resources group.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 39

Now click on managed deleted resources and purge the deleted resources permanently

Now click on resource groups and delete resource group

After finishing the work, I have ensured to delete all the resources and resource group to ensure no
extra billing for unused resources.

 S223919051 Distinction Task 5

SIG788 – Engineering AI Solutions 40

References:

 Great Learning (2024) "Case study on Computer Vision & Custom Vision using Python SDK"
Available at: https://olympus.mygreatlearning.com/courses/109553?module_id=747540

 Geeksofgeeks (no.date.) “Python PIL | ImageDraw.Draw.text()” Available at:
https://www.geeksforgeeks.org/python-pil-imagedraw-draw-text/

 Microsoft Learn (no.date.) " Custom Vision documentation" Available at:
https://learn.microsoft.com/en-us/azure/ai-services/custom-vision-service/

 Microsoft Learn (no.date.) " Quickstart: Create an image classification project with the
Custom Vision client library or REST API" Available at: https://learn.microsoft.com/en-
us/azure/ai-services/custom-vision-service/quickstarts/image-
classification?tabs=windows%2Cvisual-studio&pivots=programming-language-python

 Microsoft Learn (no.date.) " Quickstart: Create an object detection project with the Custom
Vision client library" Available at: https://learn.microsoft.com/en-us/azure/ai-
services/custom-vision-service/quickstarts/object-detection?tabs=windows%2Cvisual-
studio&pivots=programming-language-python

 Furturelearn (no.date) "Extracting video frames using OpenCV" available at:
https://www.futurelearn.com/info/courses/introduction-to-image-analysis-for-plant-
phenotyping/0/steps/305359

 City Channel Columbia MO (Apr 10, 2015) “Sharing the Road: Pedestrian, Bicycle, and

Motor Vehicle Safety” Used as test image and Available at:
https://www.youtube.com/watch?v=jj8CfZDPeBs

 ssyoutube (no.date) "Video Download from youtune" available at:
https://ssyoutube.com/en169ZG/youtube-video-downloader

 onlinevideocutter (no.date) "Video Trimmer" available at: https://online-video-
cutter.com/#google_vignette

https://olympus.mygreatlearning.com/courses/109553?module_id=747540
https://www.geeksforgeeks.org/python-pil-imagedraw-draw-text/
https://learn.microsoft.com/en-us/azure/ai-services/custom-vision-service/
https://learn.microsoft.com/en-us/azure/ai-services/custom-vision-service/quickstarts/image-classification?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/custom-vision-service/quickstarts/image-classification?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/custom-vision-service/quickstarts/image-classification?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/custom-vision-service/quickstarts/object-detection?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/custom-vision-service/quickstarts/object-detection?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/ai-services/custom-vision-service/quickstarts/object-detection?tabs=windows%2Cvisual-studio&pivots=programming-language-python
https://www.futurelearn.com/info/courses/introduction-to-image-analysis-for-plant-phenotyping/0/steps/305359
https://www.futurelearn.com/info/courses/introduction-to-image-analysis-for-plant-phenotyping/0/steps/305359
https://www.youtube.com/watch?v=jj8CfZDPeBs
https://ssyoutube.com/en169ZG/youtube-video-downloader
https://online-video-cutter.com/#google_vignette
https://online-video-cutter.com/#google_vignette

