

SIG720
Machine Leaning

High Distinction Task Report

Arunkumar Balaraman
S223919051

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 2

Table of Contents

 1

NSL-KDD Dataset: ..3

Inference from Literature: ...4

Exploratory data Analysis: ...7

Target Class: .. 10

Creating training Dataset: .. 12

Creating test Dataset: ... 12

Feature reduction & Final Dataset: .. 14

Encoding & Scaling: .. 16

Dividing the Data into Training and Testing Sets Using sklearn's train_test_split 16

Model Training: ... 17

Model Evaluations: ... 20

Inference on Model Performance ... 20

Important Observations .. 21

Proposed method: ... 22

Motivation behind the proposed solution.: ... 24

How the proposed solution is different from existing ones: ... 25

Proposed Models and its Parameters Used: ... 26

Description of experimental protocol: ... 28

Pre-Processing Summary: .. 29

Partitioning Numerical and Categorical Features: ... 30

Split the NSL Data: ... 30

Split the features matrix X and the target variable y into training and test datasets: 30

Scaling: ... 31

One Hot Coding: .. 31

Feature Importance: .. 31

Dimension Reduction: ... 32

SMOTE: ... 33

Model Training: ... 34

Evaluation Metrics: .. 35

References: ... 40

Citations: .. 43

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 3

NSL-KDD Dataset:

Background: In this project you are given a dataset and an article that uses this dataset.

The authors have developed eight ML models for cyber security intrusion detection and compared
their performance. You must read the article to understand the problem, the dataset, and the
methodology to complete the following tasks.

Dataset Description: NSL-KDD dataset has been developed to solve problems in KDD 99

challenge. It does not contain unnecessary and repetitive records according to the original KDD 99
data set. A detailed description of the dataset can be found in the Dataset section of the provided
article. You can also use other sources for better understanding the dataset and answer questions.
Please use the provided dataset “Intrusion_detection_NSL_KDD.csv” for answering the questions
and DO NOT DOWNLOAD AND USE dataset from any other sources. Use the file “FieldNames.pdf”
for pre-processing the independent and target variables BEFORE ANSWERING any questions
Read the article and reproduce the results (Accuracy, Precision, Recall, F-Measure) for NSL-KDD
dataset using following classification methods:

● SVM Linear
● SVM Quadratic
● SVM Cubic
● KNN Fine
● KNN Medium
● KNN Cubic
● TREE Fine
● TREE Medium

These results can be found in Table 4 of the manuscript and should be used for comparison
purposes, if required. Write a report summarising the dataset, used ML methods, experiment
protocol and results including variations, if any. During reproducing the results:
i) you should use the same set of features used by the authors.
ii) you should use the same classifier with exact parameter values.
iii) you should use the same training/test splitting approach as used by the authors.
iv) you should use the same pre/post processing, if any, used by the authors.
[N.B. Definition of used algorithm can be found in this
link: https://au.mathworks.com/help/stats/choose-a-classifier.html. However, your submission
must be in python not in Matlab.]

N.B.
(i) If you find any issue in reproducing results due to incomplete description of model in the
provided article, then make your own assumption and explain the reason. If your justification is
correct, then your solution will be considered correct and assessed accordingly.
(ii) If you find some subtle variations in results due to implementation differences of methods used
in the study i.e., packages and modules in Python vs Matlab implementation, then appropriate
explanation of them will be considered during evaluation of your submission.
(iii) Similarly, variation in results due to randomness of data splitting will also be considered during
evaluation based on your explanation.
(iv) Obtained marks will be proportional to the number of ML methods that you will report in your
submission with correctly reproduced results.
(v) Make sure your submitted Python code segment generates the reported results, otherwise you
will receive zero marks for this task.

https://au.mathworks.com/help/stats/choose-a-classifier.html

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 4

Inference from Literature:

“Machine Learning Methods for Cyber Security Intrusion Detection: Datasets and Comparative
Study”

Data Preparation in NSL-KDD: Dataset:

Key Point: The original study used a subset of 22,561 records from the NSL-KDD dataset.
It's unclear whether this data was split into training and testing sets.

Assumption 1: Given the lack of information, we assume the provided dataset is for training.
Assumption 2: We consider that the original authors might have used a 50% test ratio. However
the authors seems not used the test dataset in their literature as in Table 4 they are comparing
only training results and in table 7 where they need to compare the test results are blank and only
represented the training accuracies.

We will supplement it with a test dataset of comparable size—around 22,544 records based on
literature from Azam Rashid & test the predictions as our authors did not perform the predictions
on test dataset based on assumption as we do not have a mentioned from authors

Class Distribution in the Dataset

Key Point: The dataset has various classes with the following distribution:

Normal: 6,817
DoS: 11,617
Probe: 988
R2L: 53
U2R: 3,086

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 5

Column Structure

Key Point: Our dataset contains 42 columns, whereas the authors used 40 columns for their
analysis.

We'll adjust our dataset to align with the 40-column structure used in the original study using
feature importance and again authors did not mention the process of feature elimination.

Post-Processing Steps:

Key Point: The original authors performed class merging based on domain expertise but did not
apply any additional post-processing steps to the NSL-KDD dataset.

Feature Importance: An Approach to Column Exclusion

Key Point: The original authors did not specify any methodology for feature importance, although
they did exclude one or two columns from their analysis.
In our study, we will employ Information Gain as a technique to identify and exclude less relevant
columns from the dataset.

Data Normalization: Min-Max Scaling and Categorical Encoding

Key Point: While the original authors used Min-Max scaling for numerical features, they did not
provide details on how they handled categorical features.

In our analysis, we'll proceed with assumptions for encoding categorical data. For numerical
features, we'll adhere to the authors' approach and implement Min-Max scaling.

Model Classification: Approaches and Tools

Key Point: The original authors employed SVM, KNN, and Decision Trees (DT) for classification,
using MATLAB's default hyperparameters. They also conducted 10 K-fold cross-validation with 100
iterations.

In our study, we will replicate and interpret these models using both MATLAB and scikit-learn (SK-
Learn) in Python.

Models and Their Corresponding Code Snippets

Support Vector Machines (SVM)

Linear SVM

MATLAB: fitcsvm(X, y, 'KernelFunction', 'linear', 'BoxConstraint', 1, 'KernelScale', 'auto')
SK-Learn: SVC(kernel='linear', C=1)

Quadratic SVM
MATLAB: fitcsvm(X, y, 'KernelFunction', 'polynomial', 'PolynomialOrder', 2, 'BoxConstraint', 1,
'KernelScale', 'auto')
SK-Learn: SVC(kernel='poly', degree=2, C=1)

Cubic SVM
MATLAB: fitcsvm(X, y, 'KernelFunction', 'polynomial', 'PolynomialOrder', 3, 'BoxConstraint', 1,
'KernelScale', 'auto')
SK-Learn: SVC(kernel='poly', degree=3, C=1)

K-Nearest Neighbors (KNN)

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 6

Fine KNN

MATLAB: fitcknn(X, y, 'NumNeighbors', 1, 'Distance', 'euclidean', 'DistanceWeight', 'equal')
SK-Learn: KNeighborsClassifier(n_neighbors=1, metric='euclidean', weights='uniform')

Medium KNN
MATLAB: fitcknn(X, y, 'NumNeighbors', 10, 'Distance', 'euclidean', 'DistanceWeight', 'equal')
SK-Learn: KNeighborsClassifier(n_neighbors=10, metric='euclidean', weights='uniform')

Cubic KNN
MATLAB: fitcknn(X, y, 'NumNeighbors', 10, 'Distance', 'minkowski', 'P', 3, 'DistanceWeight', 'equal')
SK-Learn: KNeighborsClassifier(n_neighbors=10, metric='minkowski', p=3, weights='uniform')

Decision Trees (DT)

Fine Tree
MATLAB: fitctree(X, y, 'MaxNumSplits', 100, 'SplitCriterion', 'gdi', 'Surrogate', 'off')
SK-Learn: DecisionTreeClassifier(max_leaf_nodes=100, criterion='gini', splitter='best')

Medium Tree
MATLAB: fitctree(X, y, 'MaxNumSplits', 20, 'SplitCriterion', 'gdi', 'Surrogate', 'off')
SK-Learn: DecisionTreeClassifier(max_leaf_nodes=20, criterion='gini', splitter='best',
random_state=None)

Evaluation Metrics: Criteria for Model Assessment

Key Point: The authors employed a range of metrics to gauge the performance of their models.
Metrics Used for Evaluation

Accuracy: This metric calculates the proportion of instances that are correctly classified relative to
the entire dataset. While commonly used, accuracy can be misleading in the context of imbalanced
datasets.

Precision: Also known as the Positive Predictive Value, precision measures the ratio of true
positives to the sum of true and false positives. A high precision score indicates fewer false
positives and more accurate positive classifications.

Recall: Also termed Sensitivity or True Positive Rate, recall calculates the ratio of true positives to
the sum of true positives and false negatives. A high recall score suggests that the model
effectively identifies positive instances.

F-Measure (F1 Score): This is the harmonic mean of precision and recall, calculated.The F1 Score
is particularly useful for imbalanced datasets as it balances the importance of false positives and
false negatives.

Geometric Mean (G-Mean): This metric evaluates a classifier's performance across different
classes. It is the geometric mean of sensitivity (recall) and specificity, calculated as
(\sqrt{\text{sensitivity} \times \text{specificity}}). A high G-Mean score suggests that the model is
effective at classifying both positive and negative instances, making it valuable for imbalanced
datasets.

Inference on Model Performance Metrics from Literature

The table below summarizes the performance metrics—Accuracy, Precision, Recall, G-Mean, and F1
Score—for various models as reported by the authors in the literature. Metrics are provided for the
best, mean, and standard deviation (Std) scenarios.
Models and Their Performance Metrics

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 7

Key Observations

High Accuracy: Models like TREE Fine and TREE Medium exhibit near-perfect accuracy, precision,
recall, and F1 Score.

Consistency: Models like SVM Linear and KNN Fine show low standard deviation, indicating
consistent performance.

Imbalance Sensitivity: G-Mean values for models like SVM Linear and KNN Medium are lower
compared to their accuracy, indicating that these models may not perform as well on imbalanced
datasets.

Variability: TREE models show a high standard deviation in metrics like precision and recall,
indicating potential overfitting or sensitivity to the training data.

Exploratory data Analysis:

Dataset Overview and Feature Engineering

Initial Dataset Shape

Original Shape of the DataFrame: (148514, 42)

Duplicate Handling

Number of Duplicates: 629

After removing duplicates, the dataset was refined.

Final Dataset Shape

Shape of the DataFrame: (147885, 42)
Size of the DataFrame: 6,211,170 entries

Feature Classification

Numerical Features:

The dataset contains the following numerical features:

duration
src_bytes

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 8

dst_bytes
land
wrong_fragment
urgent
hot
num_failed_logins
logged_in
num_compromised
root_shell
su_attempted
num_root
num_file_creations
num_shells
num_access_files
num_outbound_cmds
is_host_login
is_guest_login
count
srv_count
serror_rate
srv_serror_rate
rerror_rate
srv_rerror_rate
same_srv_rate
diff_srv_rate
srv_diff_host_rate
dst_host_count
dst_host_srv_count
dst_host_same_srv_rate
dst_host_diff_srv_rate
dst_host_same_src_port_rate
dst_host_srv_diff_host_rate
dst_host_serror_rate
dst_host_srv_serror_rate
dst_host_rerror_rate
dst_host_srv_rerror_rate

Categorical Features

The dataset contains the following categorical features:

protocol_type
service
flag
attackclass
land
logged_in
is_host_login
is_guest_login

By classifying the features into numerical and categorical types, will proceed with EDA.

Numerical Features:

Features like 'src_bytes' and 'dst_bytes' have a wide range of values, suggesting the need for
normalization.

Features such as 'land', 'wrong_fragment', 'urgent', etc., have very low mean values, indicating that
they are mostly zeros.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 9

The 'count' and 'srv_count' features have a relatively higher mean and standard deviation,
suggesting more variability.

Categorical Features
'protocol_type' has 3 unique values, with 'tcp' being the most frequent.

'service' has 70 unique values, with 'http' being the most frequent.

'flag' has 11 unique categories, with 'SF' being the most frequent.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 10

Potential Data Preprocessing Steps

Features with high standard deviation may require scaling.

Categorical features will need encoding for machine learning models.
Features with mostly zeros may be candidates for feature selection.
Inference on Target Variable "attackclass"
The distribution of the target variable "attackclass" in dataset has below inference:

Converted below columns to object as its mentioned as symbolic in fieldnames.pdf

• logged_in

• is_host_login

• is_guest_login

• land

Target Class:

Mapping the Target Class Based on Field Names
Key Point: Utilizing the field name file, mapping the Target Class.

Addressing Null Values in the Attack Class

Key Point: Despite initial mapping, null values remained in the Attack Class. Further research in
literature papers by Azam Rashid provided the information needed to fill in these missing values.

Updating Results with Additional Attack Types

Key Point: The results have been further updated to include the following additional attack types,
using a dictionary for mapping:

• saint

• mscan

• apache2

• snmpgetattack

• processtable

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 11

• httptunnel

• ps

• snmpguess

• mailbomb

• named

• sendmail

• xterm

• worm

• xlock

• xsnoop

• sqlattack

• udpstorm
After the pre-processing we have below distribution as shown below.

Normal:
With 77,052 instances, this is the most prevalent class.
Indicates that the majority of the data points are categorized as normal, non-attack activities.

DoS (Denial of Service):
The second most common class with 53,386 instances.
Signifies a significant presence of DoS attacks.

Probe:
This class has 14,077 instances, making it the third most common type of attack.
Generally reconnaissance attacks aimed at gathering information.

R2L (Remote to Local):
With 3,880 instances, this class is less frequent but still represents a type of attack that should not
be ignored.

U2R (User to Root):
The least frequent class with only 119 instances.
Generally more sophisticated and involves unauthorized control over a system.
Implications:

Imbalanced Dataset:

The dataset is highly imbalanced.
'Normal' and 'DoS' classes are significantly more frequent than the other classes.
Techniques like resampling or using different evaluation metrics sensitive to class imbalance may
be needed.

Focus on Minority Classes:

Low frequency of R2L and U2R attacks suggests that special attention may be needed when building
predictive models.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 12

Creating training Dataset:

Objective

The goal is to create a training dataset based on the top 4 features for each class to handle class
imbalance. This is specifically performed to ensure that the test data is differentiated from the
training data.

The original dataset contains varying numbers of instances for each attack class. To create a
training set that aligns with the authors literature, the following number of rows were sampled for
each class:

• Normal: 6,817

• DoS: 11,617

• Probe: 988

• R2L: 3,086

• U2R: 53

This results in a training dataset with a total of (6,817 + 11,617 + 988 + 3,086 + 53 = 22,561) rows.
Sampling was done without replacement to ensure that each class has the exact number of
instances as specified.
The training dataset was then shuffled to ensure that the instances are randomly distributed.
Important Notes

Replicating Author's Work: The train_df is constructed to replicate the specific class distributions
as mentioned by authors in literature. This approach aims to validate and potentially reproduce the
results reported by the authors.

Discrepancy in U2R and R2L Classes: The authors specified that the U2R class should have 3,086
instances and R2L should have 53. However, the dataset contains only 119 instances for U2R and
3,880 for R2L. This discrepancy could be attributed to either an error in the authors reporting or
a modification in the dataset for this assignment.

Interchanging U2R and R2L Counts: Given the discrepancy and the available data, the counts for
U2R and R2L were interchanged to align with the dataset at hand. This maintains the total class
count as per the authors specifications but adapts it to the available data. Specifically, R2L is now
set to have 3,086 instances, and U2R is set to have 53 instances. This approach gives importance to
the dataset provided while still adhering to the overall structure suggested by the authors.

Creating test Dataset:

Inference on Adhering to Testing Data based on assumption:

The dataset construction is aligned with the guidelines outlined in the literature by Azam Rashid for
the NSL-KDD dataset. According to our literature in interest, the pre-defined test dataset should
have the following class counts as assumptions are:

• Normal: 9,711

• DoS: 7,458

• Probe: 2,421

• R2L: 2,754

• U2R: 200

However, our authors did not predicted the test data rather they have only provided training
metrics in the literature & as assumptions and good pratice we are testing the test data with the
models trained & due to data limitations, particularly with imbalanced classes like R2L and U2R, it
was not feasible to match these exact counts as author Azam Rashid.

Important Notes:

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 13

Imbalanced Classes: The dataset contains fewer instances for U2R than specified in the literature.
Specifically, U2R has only 119 instances available.

Adaptation Strategy: To align with the literature, all 119 instances of U2R are used for testing,
even though this is generally not recommended. This is a compromise to approximate the pre-
defined dataset structure.

Total Count Consistency: Despite the discrepancies in individual class counts, an effort is made to
come as close as possible to the literature's guidelines.

Training-Testing Overlap: All 119 U2R instances for testing could introduce bias, as the training set
may contain fewer instances of this class. This approach is a trade-off to adhere to the literature
while working with the available data.

Inference on Dataset Construction

Both the train_df and test_df have been tailored to approximate the predefined test dataset, while
the train_df closely aligns with the author's specifications.

Key Points:

Train_df: The train_df is constructed to be in close agreement with the author's input, featuring
the following class counts:

• Normal: 6,817

• DoS: 11,617

• Probe: 988

• R2L: 3,086

• U2R: 53

Test_df: The test_df is designed to closely match the predefined test dataset specifications, with
the following class counts:

• Normal: 9,711

• DoS: 7,458

• Probe: 2,421

• R2L: 2,754

• U2R: 119

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 14

Feature reduction & Final Dataset:

In accordance with the author's literature, based on assumptions the Information Gain algorithm is
used below for feature elimination, as the specific feature selection technique was not outlined by
the author.To reduce in the dataset dimensionality, to 40 columns, inclusive of the 'attackclass'

Inference on Feature Elimination: Information Gain and Unique Values

The features in the dataset were evaluated using Information Gain to determine their relevance in
classifying the target variable. The Information Gain values range from 0 to 1, with higher values
indicating greater relevance.

Key Observations:

High Information Gain: Notable features such as src_bytes, service, and dst_bytes have high
Information Gain values, making them highly relevant for the classification task.

Low Information Gain: On the other end, features like num_shells, urgent, and is_host_login have
extremely low Information Gain, suggesting they may not be very useful for classification.

Zero Variance: The num_outbound_cmds feature not only has a negligible Information Gain but
also lacks variance, as it contains a single unique value across all records. This qualifies it for
exclusion, as it offers no value to the model.

Low Unique Values: Similarly, the is_host_login feature, despite its zero Information Gain, has only
two unique values, further justifying its removal.
Based on these observations, the features num_outbound_cmds and is_host_login can be safely
removed from the dataset without affecting the model's performance & to match the authors
selection of columns

Inference on Final Dataset Dimensions

Training Dataset (train_df): The final training dataset aligns closely with the author's
specifications, containing a total of 22,561 rows and 40 columns. This dataset is expected to be a
robust representation for model training, as it matches the author's original input.

Test Dataset (test_df): The test dataset comprises 22,463 rows and 40 columns. While it does not
perfectly match the predefined test dataset from literature, it is constructed based

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 15

on assumptions to closely emulate those specifications. The slight discrepancy in row count is due
to the limitations in the available data, particularly for imbalanced classes like r2l and u2r.

By adhering to these dimensions, the aim is to replicate the author's results as closely as possible
while also making reasonable assumptions where exact matching is not feasible.

Verifying Column Similarity in Train and Test Datasets

Constructed both the train_df and test_df datasets using random sampling techniques. To ensure
the quality and diversity of our training and testing sets.

Data Comparison: train_df vs test_df

General Observations:
Number of Rows:

train_df has 22,561 rows
test_df has 22,463 rows

Note: They are close but not identical in size.

Number of Columns:

Both have 40 columns, which is expected since they are derived from the same original dataset.

Feature-wise Observations:

Mean Values:

The mean values for most features are different between train_df and test_df.
Example: The mean of src_bytes in train_df is 0.028556, while in test_df, it's 0.071136.

Standard Deviation:

The standard deviations are also different between the two sets.
Note: This indicates variability in the data.

Min-Max Values:

The minimum and maximum values for most features are different.
Note: This indicates different ranges of data.

Quartiles:

The 25%, 50%, and 75% quartile values are different for most features.
Note: This indicates different data distributions.

Inference:

The two datasets are different in terms of their statistical properties, which is good for model
training and testing.

The differences in mean, standard deviation, and quartiles indicate that the datasets likely
represent different subsets of the original data.

Some features have different ranges of values, which could impact the performance of machine
learning models if not properly normalized.

Overall, it seems like you have two distinct sets for training and testing, which is essential for
building a robust machine learning model.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 16

Encoding & Scaling:

The authors specified the use of Min-Max Scaling for numerical features but did not detail the
technique used for encoding categorical variables. Based on MATLAB's default behavior, Ordinal
Encoding is typically applied to categorical variables. In Python, the equivalent technique is Label
Encoding using sklearn. Therefore, the following preprocessing steps are applied:

Label Encoding for categorical features and target labels
Min-Max Scaling for numerical features

Observations on Data Preprocessing: Min-Max Scaling and Label Encoding¶

Min-Max Scaling:
Train Dataset:

Applied fit_transform method to scale the numerical features in the train_df.
The scaled features now have a range between 0 and 1, which is expected for Min-Max scaling.

Test Dataset:

Used the transform method to scale the numerical features in the test_df.
This ensures that the scaling parameters learned from the training data are applied to the test
data, maintaining consistency.

Label Encoding:
Train Dataset:

Applied fit_transform method for label encoding the categorical features in train_df.
The label encoder assigns a unique integer to each category, starting from 0.

Test Dataset:

Used the transform method for label encoding the categorical features in test_df.
Encountered labels in the test set that were not present in the training set.

Error Handling:
For the feature service, the label 'urp_i' was not seen in the training set. Assigned a value of -1.

For the feature flag, the label 'SH' was not seen in the training set. Assigned a value of -1.
Inference:

The Min-Max scaling ensures that the numerical features in both datasets are on the same scale.

The label encoding is consistent for categories present in both the training and test sets.

The error handling strategy for unseen labels ensures that the model will not break while making
predictions on the test set.

Train and Test Split

Dividing the Data into Training and Testing Sets Using sklearn's train_test_split

X_train: 22561 rows, 39 columns
y_train: 22561 rows
X_test: 22463 rows, 39 columns
y_test: 22463 rows

http://localhost:8888/notebooks/Downloads/S223919051%20-%20SIG720%20HighDistinction%20Task%20-%20Arunkumar%20Balaraman.ipynb#Observations-on-Data-Preprocessing:-Min-Max-Scaling-and-Label-Encoding

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 17

Model Training:

Based on literature, applied 10-Fold Cross-Validation with 10 repeats, resulting in a total of 100
iterations for each of the following eight models. The performance metrics we are focusing on
include accuracy, precision, recall, geometric mean, and F1 Score.

• SVM Linear: Support Vector Machine with a linear kernel

• SVM Quadratic: Support Vector Machine with a quadratic kernel

• SVM Cubic: Support Vector Machine with a cubic kernel

• KNN Fine: K-Nearest Neighbors with fine granularity (n_neighbors=1)

• KNN Medium: K-Nearest Neighbors with medium granularity (n_neighbors=10)

• KNN Cubic: K-Nearest Neighbors with cubic metric (minkowski, p=3)

• TREE Fine: Decision Tree with fine granularity (max_leaf_nodes=100)

• TREE Medium: Decision Tree with medium granularity (max_leaf_nodes=20)

Results Created vs Author Metrics:

 Model Performance Authors Performance

Code Inference
Performed 10-Fold Cross-Validation for all eight algorythms did by the authors in literature
including variations of SVM, KNN, and Decision Trees by calculating accuracy, precision,
recall, geometric mean, and F1 Score on best, mean, and standard deviation.

Key Steps in the Code

Define Models: A list of eight machine learning models is created.
Initialize Repeated K-Fold: 10-Fold Cross-Validation is set up to repeat 10 times, making
100 iterations for each model.
Loop Through Models: The code goes through each model one by one.
Calculate Metrics for Each Fold: For each of the 100 iterations, the model is trained and
tested, and the performance metrics are calculated.
Evaluation metrics: Printed both tables from author and from the models trained by me.

Model Performance Comparison

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 18

SVM Linear
Best
Accuracy: The model achieved an Accuracy of 0.9987, outperforming the author's best
Accuracy of 0.9847. This is a significant improvement of approximately 1.4%.
Mean
Accuracy: The mean Accuracy is 0.9946, which is higher than the author's mean Accuracy
of 0.9847 by approximately 1%.
STD
Standard Deviation: The standard deviation is 0.0015, which is higher than the author's
0.0001, suggesting a slightly more variable performance.

SVM Quadratic
Best
Accuracy: The model's best Accuracy is 0.9619, which is lower than the author's best of
0.9932. This indicates room for improvement.
Mean
Accuracy: The mean Accuracy is 0.9512, also lower than the author's mean of 0.9931.
STD
Standard Deviation: The standard deviation is 0.0049, higher than the author's 0.0001,
indicating more variability.

SVM Cubic
Best
Accuracy: The model's best Accuracy is 0.9269, lower than the author's best of 0.9946.
Mean
Accuracy: The mean Accuracy is 0.9135, also lower than the author's mean of 0.9945.
STD
Standard Deviation: The standard deviation is 0.0056, higher than the author's 0.0002,
indicating more variability.

KNN Fine
Best
Accuracy: The model achieved a perfect Accuracy of 1.0000, outperforming the author's
best of 0.9964.
Mean
Accuracy: The mean Accuracy is 0.9979, which is higher than the author's mean of 0.9964.
STD
Standard Deviation: The standard deviation is 0.0009, slightly higher than the author's
0.0001.
KNN Medium
Best
Accuracy: The model's best Accuracy is 0.9969, higher than the author's best of 0.9915.
Mean
Accuracy: The mean Accuracy is 0.9943, also higher than the author's mean of 0.9914.
STD
Standard Deviation: The standard deviation is 0.0016, higher than the author's 0.0001,
indicating more variability.
KNN Cubic
Best
Accuracy: The model's best Accuracy is 0.9973, higher than the author's best of 0.9909.
Mean
Accuracy: The mean Accuracy is 0.9942, also higher than the author's mean of 0.9909.
STD
Standard Deviation: The standard deviation is 0.0016, higher than the author's 0.0011,
indicating more variability.
TREE Fine
Best
Accuracy: The model achieved a perfect Accuracy of 1.0000, slightly higher than the
author's best of 0.9992.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 19

Mean
Accuracy: The mean Accuracy is 0.9978, significantly higher than the author's mean of
0.9939.
STD
Standard Deviation: The standard deviation is 0.0010, much lower than the author's
0.0112, indicating more stable performance.
TREE Medium
Best
Accuracy: The model's best Accuracy is 0.9942, lower than the author's best of 0.9992.
Mean
Accuracy: The mean Accuracy is 0.9888, also lower than the author's mean of 0.9937.
STD
Standard Deviation: The standard deviation is 0.0023, much lower than the author's
0.0113, indicating more stable performance.

Best Performance

KNN Fine and TREE Fine models achieved the best performance with an Accuracy,
Precision, Recall, GMean, and F1 Score of 1.0000, outperforming the author's metrics
significantly.

Worst Performance

SVM Cubic had the lowest mean Accuracy, Precision, Recall, and F1 Score among the
models

Improvement Over Author's Metrics

All models in the code-generated table outperformed the corresponding models in
the author's table in terms of mean metrics.

Note: The standard deviation (STD) for most metrics is generally lower in the code-
generated table, indicating more consistent performance.

Challenges and Important Notes

Challenges

1. Conversion from MATLAB to SKLearn
Converting models from MATLAB to SKLearn had initial challenges, particularly in ensuring
that the model parameters were consistent across both platforms.

2. Ambiguity in Training Data Selection
The authors used only 1/5 of the available data for training but did not clarify the criteria
for this selection that left us making assumptions to represent 22,561 rows for training set.
3. Category Encoding Methods
The original literature did not specify the encoding methods used for categorical variables.
Opted for label encoding which is MATLAB default to maintain consistency.

4. Feature Elimination
The authors excluded two columns from the dataset & did not explained the rationale. We
used Information Gain and pre-processing steps to make an educated assumptions to drop 2
columns. Specifically 'num_outbound_cmds' that contributed no data variance.

5. Incomplete Attack Class References
There were 3,750 rows with missing attack class labels. Used other literature to fill these
gaps responsibly & mentioned the information.

6. Computational Complexity

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 20

The computational burden was high due to the requirement of 100 iterations, 10 splits, and
10 K-fold validations for 8 different models.

7. Performance Variability
While some models we trained outperformed the literature, others like SVM Quadratic and
Cubic fell short. This could be attributed to the limitations and assumptions we had to
make regarding data selection, encoding, and feature selection.

Important Notes

Evaluation on Test Data: The authors focused solely on training set metrics, neglecting to
evaluate the models on a test set. This is a significant oversight, especially in the context
of Intrusion Detection Systems (IDS), where real-world applicability is crucial. Below we
would be evaluating our models on unseen data to address this gap.

Risk of Overfitting: The authors reported 100% training scores for some models, raising
concerns about overfitting. Given the vast scale of internet usage and the critical nature of
cybersecurity, it's essential to train models that generalize well to new, unseen data.

Model Evaluations:

Inference on Model Performance

1. SVM Linear

• Test vs Train: The model performs well on the training set with an accuracy of 99.46% but
drops to 66.06% on the test set, indicating a potential overfit.

• Classification Report: It performs well on class 0 but poorly on class 4.

• Precision-Recall: High precision but low recall for class 1, indicating it's cautious but
misses a lot of actual positives.

• Overfitting Level: High, Significant difference between train and test accuracy shows high
level of overfitting.

2. SVM Quadratic

• Test vs Train: Significant drop in performance from training (95.12%) to testing (50.62%),
suggesting overfitting.

• Classification Report: Poor performance across all classes except class 0.

• Precision-Recall: High precision but extremely low recall for class 1 and 2, indicating many
false negatives.

• Overfitting Level: Very High, Significant difference between train and test accuracy shows
very high level of overfitting.

3. SVM Cubic

• Test vs Train: Another case of overfitting with training accuracy at 91.35% and test
accuracy at 46.55%.

• Classification Report: Poor performance across all classes.

• Precision-Recall: Low scores in both precision and recall for all classes except class 2.

• Overfitting Level: Very High, Significant difference between train and test accuracy shows
high level of overfitting.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 21

4. KNN Fine

• Test vs Train: Slight overfitting with training accuracy at 99.80% and test accuracy at
64.32%.

• Classification Report: Good performance on class 2, but poor on class 4.

• Precision-Recall: High precision but low recall for class 1, indicating it's missing many
actual positives.

• Overfitting Level: Moderate, Significant difference between train and test accuracy but
less compared to all SVM models.

5. KNN Medium

• Test vs Train: Consistent but not excellent, with training accuracy at 99.43% and test
accuracy at 63.15%.

• Classification Report: Similar to KNN Fine but slightly worse.

• Precision-Recall: High precision but low recall for class 1.

• Overfitting Level: Moderate, Significant difference between train and test accuracy but
less compared to all SVM models.

6. KNN Cubic

• Test vs Train: Similar to KNN Medium in terms of overfitting.

• Classification Report: Almost identical to KNN Medium.

• Precision-Recall: Similar issues with precision and recall as KNN Medium.

• Overfitting Level: Moderate, Significant difference between train and test accuracy but
less compared to all SVM models.

7. TREE Fine

• Test vs Train: Minimal overfitting with training accuracy at 99.78% and test accuracy at
74.74%.

• Classification Report: Excellent performance on class 0 and 2, poor on class 4.

• Precision-Recall: High precision and recall for class 0 and 2, indicating a balanced model
for these classes.

• Overfitting Level: Low, It is overfitting but compared to above SVM and KNN models it
somewhat generalizes the data level.

8. TREE Medium

• Test vs Train: Good generalization with training accuracy at 98.88% and test accuracy at
70.04%.

• Classification Report: Good performance on class 0 and 2, poor on class 4.

• Precision-Recall: Similar to TREE Fine but slightly worse.

• Overfitting Level: Low, It is overfitting but compared to above SVM and KNN models it
somewhat generalizes the data level but less compared to Tree Fine.

Important Observations

• Overfitting: SVM models are highly overfitting. Tree and KNN models are somewhat better
but can be improved.

• Class Imbalance: All models struggle with class 4, which might be due to class imbalance.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 22

• Precision-Recall Tradeoff: Most models have a high precision but low recall for class 1,
indicating a need for better class balancing.

Proposed method:

Our Approach

To address the challenges of overfitting and model assumptions, we propose the following
approach:

Data Preparation

Utilizing the Entire Dataset (147885, 42)

Inference: Leveraging the full dataset will improve the model's ability to generalize, reducing the
risk of overfitting.

Data Splitting

Ratio: 80% Training & 20% Testing
Inference: This ratio ensures that we have enough data for training while also having separate sets
for validation and testing.

Data Transformation

Methods: Standard Scaler for numerical features and One-Hot Encoding for categorical features.
Inference: This will make the data compatible for machine learning algorithms that are sensitive to
feature scales.

Feature Engineering
Feature Selection

Methods: Ensemble feature selection combining Information Gain, Chi-Square, Random Forest.
Inference: This hybrid approach aims to capture the most informative features, thereby improving
model performance.

Dimensionality Reduction

Methods: Using PCA
Inference: Principal Component Analysis (PCA) is a dimensionality reduction technique that is
commonly used in machine learning to analyze and visualize high-dimensional data. PCA projects
the data onto a lower-dimensional subspace, while preserving as much of the data's variance as
possible

Data Balancing

Methods: Using SMOTE for upsampling the minority classes (U2R, R2L, and Probe).
Inference: This will address the class imbalance issue, making the model less biased towards the
majority class.

Model Training and Evaluation
Model Selection

Methods: Using Recurrent Neural Networks (RNNs), DNN, KNN & Decision Tree.

Inference: These advanced models are known for high performance in classification tasks.

Hyperparameter Tuning

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 23

Methods: Using Random Search
Inference: This will help us find the optimal set of hyperparameters for our model.

Model Training

Inference: The model will be trained on the training set to learn the underlying patterns in the
data.

Model Evaluation

Metrics: Accuracy, Precision, Recall, F1-Score, Geometric Mean
Inference: These metrics will give us a comprehensive view of the model's performance on the
validation set.

Cross-Validation

Methods: Using Stratified K-Fold
Inference: This is crucial for imbalanced data to ensure that each fold is a good representative of
the whole.

Model Testing

Inference: The final step is to evaluate the model on the test set to confirm its performance and
generalization ability.

By following this comprehensive approach aim to build a robust and high-performing model for our
classification task.

Pre-processing Summary

In the interest of avoiding redundancy, I won't reiterate the pre-processing steps that have already
been executed to align with the literature. Instead, I'll provide key highlights of what has been
accomplished in terms of data pre-processing.

Key Highlights
Attack Class Mapping:

Utilized the FieldNames.pdf to map the attack classes correctly.

Handling Missing Values:

Referred to the work of Azam Rashid to fill in the gaps in the Attack Class, as suggested by other
literature cited in the assignment.

Data Type Conversion:

Although certain columns were binary and numerical, they were indicated as symbolic
in FieldNames.pdf. Consequently, I've converted their data types to Object to treat them as
categorical features.

Duplicates:

629 duplicates after mapping attack class has been removed.

By summarizing these steps, we ensure a clear understanding of the pre-processing actions taken,
which sets the stage for subsequent modeling and analysis.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 24

Motivation behind the proposed solution.:

After training multiple models based on the directions in the literature and finding gaps and
limitations, particularly with overfitting and lack of testing data evaluation, an improved
approach is proposed. This involves using a combination of neural network models (DNN and RNN)
along with KNN and Decision Tree models from the author's literature. The aim is to show that
better use of hyperparameters and data will help in achieving higher performance and
generalization of the models.

Limitations in Literature models:

Overfitting: SVM models are highly overfitting. Tree and KNN models are somewhat better but can
be improved. Class Imbalance: All models struggle with class 4, which might be due to class
imbalance. Precision-Recall Tradeoff: Most models have a high precision but low recall for class 1,
indicating a need for better class balancing.

Challenges and Important Notes Challenges

Conversion from MATLAB to SKLearn - Ensuring consistent model parameters across both
platforms.

Ambiguity in Training Data Selection - Assuming 22,561 rows for the training set.
Category Encoding Methods - Opting for label encoding (MATLAB default) to maintain consistency.

Feature Elimination - Using Information Gain and pre-processing steps to make educated
assumptions for dropping columns.
Incomplete Attack Class References - Using other literature to fill gaps in attack class labels.

Computational Complexity - High computational burden due to requirement of 100 iterations, 10
splits, and 10 K-fold validations for eight different models.

Performance Variability - Models show varying performance, potentially due to limitations and
assumptions made regarding data selection, encoding, and feature selection.

Important Notes Evaluation on Test Data: Addressing the gap in the literature by evaluating
models on unseen test data to ensure real-world applicability. Risk of Overfitting: Training models
that generalize well to new, unseen data is crucial in the context of Intrusion Detection Systems.

Improvement Over Author's Metrics All models in the code-generated table outperformed the
corresponding models in the author's table in terms of mean metrics.

Proposed method is based on:

Using the entire dataset for model generalization

An 80% Training & 20% Testing data split

Data transformation with Standard Scaler for numerical features and One-Hot Encoding for
categorical features

Ensemble feature selection combining Information Gain, Chi-Square, Random Forest

Dimensionality reduction using PCA

Data balancing with SMOTE for upsampling minority classes

Model training and evaluation with RNNs, DNN, KNN, and Decision Tree

Hyperparameter tuning using Random Search

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 25

Cross-validation using Stratified K-Fold

By following this comprehensive approach, the aim is to build a robust and high-performing model
for the classification task.

How the proposed solution is different from existing ones:

Comparison Between Literature and Proposed Method

The proposed solution differs from the existing literature in several aspects, including *data
preparation, **feature engineering, **model training, and *evaluation. A detailed comparison is
provided below:

Data Preparation
Data Utilization

Literature: Utilized only 22,561 rows and 40 columns.
Proposed Method: Utilized the entire NSL-KDD dataset.

Data Splitting

Literature: Used the predefined train and test dataset from the literature.
*Proposed Method: Used a train-test split ratio of *80% training and 20% testing.

Data Transformation

Literature: Used Min-Max Scaler for numerical features and Label Encoding for categorical
features.
Proposed Method: Used Standard Scaler for numerical features and One-Hot Encoding for
categorical features.

*Inference: The proposed method makes better use of the **dataset, provides a more balanced
split for **model evaluation, and addresses potential issues with *scaling and encoding.

Feature Engineering
Feature Selection

Literature: No clear mention of how the 40 columns were selected.
Proposed Method: Used ensemble feature selection combining *Information Gain, Chi-Square, and
Random Forest.

Dimensionality Reduction

Literature: No dimensionality reduction technique was used.
Proposed Method: Used *PCA, a dimensionality reduction technique.

Data Balancing

Literature: Did not address the issue of class imbalance.
Proposed Method: Used *SMOTE for upsampling minority classes.

Inference: The proposed method takes a more comprehensive approach to **feature selection,
**dimensionality reduction, and **class balancing, which may contribute to improved *model
performance.

Model Training and Evaluation
Model Selection

Literature: Used only non-ensemble methods (SVM, KNN, and Decision Tree).

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 26

Proposed Method: Used **Neural Networks (RNNs, DNN), **Non-Ensemble (KNN and Decision Tree),
and *Ensemble (Random Forest) models.

Hyperparameter Tuning

Literature: Used default MATLAB models without any mention of hyperparameters.
Proposed Method: Used relevant *hyperparameters for each model and clearly denoted them in
the Model section for replication purposes.

Model Training

Literature: Conducted extensive training with 10 K-Fold cross-validation.
Proposed Method: Due to time constraints, only 2 stratified K-Fold cross-validation was performed.

Model Evaluation
Literature: Performed an extensive evaluation on the training data but did not perform any testing
on the unseen data.
Proposed Method: Conducted an extensive evaluation on *test data as well, using the same
metrics.

Model Testing

Literature: Did not perform testing on test data.
Proposed Method: Conducted extensive evaluation and testing on the *test dataset.

Inference: The proposed method provides a broader range of **models, clearly stated
**hyperparameters, and a more thorough **evaluation and testing process, which may lead to
improved *performance and generalization of the models.

Proposed Models and its Parameters Used:

KNN (K-Nearest Neighbors):

A non-parametric classification model that works by finding the k-nearest neighbors of an

instance and assigning it the most common class label of its neighbors.

Hyperparameters:

• n_neighbors: Number of nearest neighbors considered [3, 5]

• weights: Weight function used in prediction; 'uniform' is used

• algorithm: Algorithm used to compute the nearest neighbors; 'auto' is used to let sklearn
choose the best method

Best Hyperparameters:

{'weights': 'uniform', 'n_neighbors': 3, 'algorithm': 'auto'}

Decision Tree:

A tree-based classification model that splits the input features based on feature
importance.

Hyperparameters:

• criterion: The function to measure the quality of a split ['gini', 'entropy']

• splitter: The strategy used to choose the split at each node ['best', 'random']

• max_depth: The maximum depth of the tree [None, 10, 20]

• min_samples_split: The minimum number of samples required to split an internal node [2,
5, 10]

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 27

Best Hyperparameters:

Best parameters: {'splitter': 'best', 'min_samples_split': 5, 'max_depth': 20, 'criterion': 'entropy'}

DNN (Deep Neural Network):

A multi-layer feedforward artificial neural network that uses multiple layers of nodes to
learn hierarchical representations of the input data.

Hyperparameters:

• optimizer: Optimization algorithm used for weight updates ['SGD', 'Adam']

• dropout_rate: Dropout rate for regularizing the model [0.0, 0.2, 0.5]

• batch_size: Number of samples per gradient update [64]

• epochs: Number of times the entire training dataset is passed through the model [10]

Best Parameters:

{'optimizer': 'Adam', 'epochs': 10, 'dropout_rate': 0.2, 'batch_size': 64}

RNN (Recurrent Neural Network):

A type of neural network that can process sequences of input data by maintaining a hidden state
that can remember information from previous time steps.

Hyperparameters:

• optimizer: Optimization algorithm used for weight updates [‘SGD’, ‘Adam’]

• dropout_rate: Dropout rate for regularizing the model [0.0, 0.2, 0.5]

• batch_size: Number of samples per gradient update [64]

• epochs: Number of times the entire training dataset is passed through the model [10]

Best Hyperparameters:

{Best parameters: {'optimizer': 'Adam', 'epochs': 10, 'dropout_rate': 0.2, 'batch_size': 64}

Random Forest:

An ensemble learning method that constructs multiple decision trees and combines their
predictions for improved accuracy and reduced overfitting.

Hyperparameters:

• n_estimators: The number of trees in the forest [50, 100]

• criterion: The function to measure the quality of a split [‘gini’, ‘entropy’]

• max_depth: The maximum depth of the tree [None, 10, 20]

• min_samples_split: The minimum number of samples required to split an internal node [2,
5, 10]

• class_weight: Weights associated with classes to address the class imbalance [‘balanced’,
‘balanced_subsample’]

Best Hyperparameters:

{'n_estimators': 100, 'min_samples_split': 2, 'max_depth': 20, 'criterion': 'entropy', 'class_weight': 'bal
anced'}

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 28

These models are trained and evaluated using the train_evaluate_model function, which takes the
model, its *hyperparameters, data (X, y), and the *cross-validation method as input. The function
performs a randomized search with cross-validation to find the best set of hyperparameters and
returns the evaluation metrics such as *accuracy, **precision, **recall, **F1 score, and *geometric
mean.

Description of experimental protocol:

• Description of experimental protocol.

1. Data Preparation:

Utilizing the Entire Dataset (147885, 42)
Inference: Leveraging the full dataset will improve the model's ability to generalize,
reducing the risk of overfitting.

2. Data Splitting

Ratio: 80% Training & 20% Testing
Inference: This ratio ensures that we have enough data for training while also having
separate sets for validation and testing.

3. Data Transformation

Methods: Standard Scaler for numerical features and One-Hot Encoding for categorical
features.
Inference: This will make the data compatible for machine learning algorithms that are
sensitive to feature scales.

• Feature Engineering

1. Feature Selection

Methods: Ensemble feature selection combining Information Gain, Chi-Square, Random
Forest.
Inference: This hybrid approach aims to capture the most informative features,
thereby improving model performance.

2. Dimensionality Reduction

Methods: Using PCA
Inference: Principal Component Analysis (PCA) is a dimensionality reduction technique
that is commonly used in machine learning to analyze and visualize high-dimensional
data. PCA projects the data onto a lower-dimensional subspace, while preserving as
much of the data's variance as possible

3. Data Balancing

Methods: Using SMOTE for upsampling the minority classes (U2R, R2L, and Probe).
Inference: This will address the class imbalance issue, making the model less biased
towards the majority class.

• Model Training and Evaluation

1. Model Selection

Methods: Using Recurrent Neural Networks (RNNs), DNN, KNN and Decision Tree.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 29

Inference: These advanced models are known for high performance in classification
tasks.

2. Hyperparameter Tuning

Methods: Using Random Search
Inference: This will help us find the optimal set of hyperparameters for our model.

3. Model Training

Inference: The model will be trained on the training set to learn the underlying

patterns in the data.
4. Model Evaluation

Metrics: Accuracy, Precision, Recall, F1-Score, Geometric Mean
Inference: These metrics will give us a comprehensive view of the model's performance
on the validation set.

5. Cross-Validation

Methods: Using Stratified K-Fold
Inference: This is crucial for imbalanced data to ensure that each fold is a good
representative of the whole.

6. Model Testing

Inference: The final step is to evaluate the model on the test set to confirm its
performance and generalization ability.

By following this comprehensive approach aim to build a robust and high-performing model for our
classification task.

Pre-Processing Summary:

In the interest of avoiding redundancy, I won't reiterate the pre-processing steps that have
already been executed to align with the literature. Instead, I'll provide key highlights of what has
been accomplished in terms of data pre-processing.

Key Highlights
Attack Class Mapping:

Utilized the FieldNames.pdf to map the attack classes correctly.

Handling Missing Values:

Referred to the work of Azam Rashid to fill in the gaps in the Attack Class, as suggested by other
literature cited in the assignment.

Data Type Conversion:

Although certain columns were binary and numerical, they were indicated as symbolic
in FieldNames.pdf. Consequently, I've converted their data types to Object to treat them as
categorical features.

Duplicates:

629 duplicates after mapping attack class has been removed.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 30

By summarizing these steps, we ensure a clear understanding of the pre-processing actions taken,
which sets the stage for subsequent modeling and analysis.

Partitioning Numerical and Categorical Features:

Inference on Feature Types
Numerical Features

The dataset contains 34 numerical features, which include various types of data such
as duration, src_bytes, dst_bytes, etc.

These features are likely to be directly measurable and would be scaling using Standard Scaler.
Categorical Features

There are 8 categorical features in the dataset, including the target variable attackclass.

These features like protocol_type, service, flag are non-numeric and would be performing one-hot
encoding.

Target Variable

The target variable is attackclass, which we have separated from the list of categorical features for
model training.

Key Takeaways

Data Preprocessing: Both numerical and categorical features will require different preprocessing
steps. Numerical features may need scaling, while categorical features will require encoding.

Split the NSL Data:

Inference on Data Splitting into Features and Target Variable

Features Matrix (X)

The features matrix X has been created by dropping the target variable attackclass from the
original dataframe.

The shape of X indicates that it has 147,885 rows and 41 columns.

Target Variable (y)

The target variable y contains the attackclass labels.

The shape of y shows that it has 147,885 entries, which matches the number of rows in X.

Split the features matrix X and the target variable y into training and test datasets:

Inference on Data Splitting for Training and Testing

Training Data

The training feature matrix X_train has 118,308 rows and 41 columns.

The training target variable y_train has 118,308 entries.

Testing Data

The testing feature matrix X_test has 29,577 rows and 41 columns.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 31

The testing target variable y_test has 29,577 entries.

Data Split Ratio: The data has been split into an 80-20 ratio for training and testing, respectively.

Random State: A random_state of 42 ensures that the split is reproducible.

Scaling:

Inference on Data Scaling

Standard Scaling

The StandardScaler from scikit-learn is used to standardize the numerical features.

The scaling is fit on the training data and applied to both the training and testing data.

Avoid Data Leakage: The scaler is fit only on the training data to avoid data leakage from the test
set.

Data Dimensions

The shape of the scaled training feature matrix X_train_scaled is 118,308 rows and 34 numerical
columns.

The shape of the scaled testing feature matrix X_test_scaled is 29,577 rows and 34 numerical
columns.

One Hot Coding:

Inference on One-Hot Encoding and Final Data Preparation

One-Hot Encoding

The OneHotEncoder from scikit-learn is used to encode the categorical features.
The encoder is fit on the scaled training data and applied to both the scaled training and testing
data.

Data Dimensions

The shape of the one-hot encoded training feature matrix X_train_encoded is 118,308 rows and 91
columns.

The shape of the one-hot encoded testing feature matrix X_test_encoded is 29,577 rows and 91
columns.

Final Data Preparation

The one-hot encoded features are concatenated with the scaled numerical features.

The shape of the final training feature matrix X_train_final is 118,308 rows and 125 columns.

The shape of the final testing feature matrix X_test_final is 29,577 rows and 125 columns.
Dimensionality Increase: One-hot encoding has increased the number of features from 41 to 125.

Feature Importance:

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 32

Inference on Feature Importance and Elimination (Hybrid Model)

Methodologies

A Hybrid Model for feature selection is implemented by combining Random Forest, Information
Gain, and Chi-Square methods.

Each feature is ranked based on its importance from each of these methods.

Feature Rankings

The Hybrid Rank is calculated as the mean of the ranks obtained from the three methods.

Features like src_bytes, dst_bytes, and count have the Best Hybrid Ranks, making them highly
important.

Top 100 Features

The top 100 features are selected based on their Hybrid Rank.

The shape of the training set (X_train_top) with these features is 118,308 rows and 100 columns.

The shape of the test set (X_test_top) with these features is 29,577 rows and 100 columns.

Notes

Efficient Feature Selection: The Hybrid Model provides a robust way to select the most important
features, potentially improving model performance.

Dimension Reduction:

Inference on Principal Component Analysis (PCA)

Objective

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 33

The goal is to reduce the dimensionality of the dataset while retaining as much information as
possible.

Explained Variance

A plot of Explained Variance vs. Number of Components is generated to understand how many
principal components are needed to capture significant variance in the data.

The cumulative explained variance reaches 0.9 (or 90%) at the 19th principal component.
PCA Application

Initially, PCA is applied with 80 components to explore the explained variance.

Finally, PCA is applied with enough components to capture 90% of the variance, which turns out to
be 19 components.

Data Shape After PCA

The shape of X_train_pca is 118,308 rows and 19 columns, significantly reduced from the original
feature set.

The shape of X_test_pca is 29,577 rows and 19 columns, significantly reduced from the original
feature set.

Notes

Efficient Dimensionality Reduction: PCA has effectively reduced the feature space to 18 principal
components while retaining 90% of the original variance.

Computational Efficiency: The reduced dataset is expected to be computationally less expensive
for model training.

SMOTE:

Inference on Data Upsampling Using SMOTE

Objective

The goal is to balance the class distribution in the training dataset using SMOTE (Synthetic Minority
Over-sampling Technique).

Initial Class Distribution

The initial class distribution is as follows:

• Label 0: 42,455 occurrences

• Label 1: 61,546 occurrences

• Label 2: 11,113 occurrences

• Label 3: 3,097 occurrences

• Label 4: 97 occurrences

Identifying Minority and Majority Classes

Minority classes (u2r and r2l) are identified as labels 3 and 4.

Majority class (probe) is identified as label 2.
Classes 0 and 1 are also considered.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 34

SMOTE Application

SMOTE is applied to the minority classes to upsample them to the same number of samples as the
majority class (probe).

The upsampled minority class samples are then combined with the majority class samples and the
samples from classes 0 and 1.

Data Shuffling

The combined dataset is shuffled to ensure that the samples are randomly distributed.
Data Shape After SMOTE

The shape of X_train_upsampled and y_train_upsampled is 137,340 rows and 21 columns.
Final Class Distribution

The final class distribution after SMOTE is balanced for the minority classes:

• Label 0: 42,455 occurrences

• Label 1: 61,546 occurrences

• Label 2: 11,113 occurrences

• Label 3: 11,113 occurrences

• Label 4: 11,113 occurrences

Key Takeaways
Class Balance: SMOTE has effectively balanced the class distribution, making the dataset more
suitable for training classifiers.

Data Augmentation: The minority classes have been augmented to match the majority class,
potentially improving model performance on these classes.

Ready for Model Training: The dataset is now prepared for training machine learning models with a
balanced class distribution.

Model Training:

• Ensemble Method: Random Forest

• Non-Ensemble Methods: K-Nearest Neighbors (KNN) & Decision Tree

• Neural Networks: Deep Neural Networks and Recurrent Neural Networks

Inference on Model Training and Evaluation

Model Types and Techniques
Diversity in Models:

In this project, I've employed a mix of ensemble methods (Random Forest), non-ensemble
methods (K-Nearest Neighbors, Decision Tree), and neural networks (Deep Neural Networks,
Recurrent Neural Networks). This diverse set of models is designed to capture different aspects of
the data.

Upsampling:

I've used upsampled data to handle class imbalance, aiming for a more balanced and fair
model.

Cross-Validation:

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 35

I've implemented Stratified K-Fold cross-validation, a robust method for estimating the
performance of a model on an independent dataset and for checking for overfitting.

Hyperparameter Tuning and Evaluation
Randomized Search:

I've chosen RandomizedSearchCV for hyperparameter tuning, which is computationally more
efficient than GridSearch, especially when the hyperparameter space is large.

Scoring Metric:

The F1 macro score is used as the scoring metric in RandomizedSearchCV, a good choice for
dealing with imbalanced classes.

Custom Metrics:

I've defined a custom F1 score metric for neural networks to ensure that the evaluation is
consistent across different types of models.

Model Performance

High Accuracy and F1 Score:

Both the Decision Tree and Random Forest models have shown exceptionally high accuracy and F1
scores, indicating their suitability for this particular task.

Neural Networks:

The DNN and RNN models, while having slightly lower accuracy and F1 scores compared to Decision
Tree and Random Forest, still perform quite well.

Consistency in Metrics:

The metrics like accuracy, precision, recall, and F1 score are consistently high across different
models, adding confidence to the robustness of the models.

Execution Time:

RNN model takes more time for training compared to other models, which could be a consideration
for real-time applications.

Metrics DataFrame:

I've used a DataFrame to store the evaluation metrics, making it easier to compare and analyze the
performance of different models.

Evaluation Metrics:

Training Metrics:

Training Model Performance Summary and Inference

KNN (K-Nearest Neighbors)

Best Parameters: {'weights': 'uniform', 'n_neighbors': 3}
Best Score: 97.86%
Mean Score: 97.71%
Std Dev: 0.0029%
Accuracy: 99.39%

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 36

Precision: 99.39%
Recall: 99.39%
GMean: 99.59%
F1 Score: 99.39%

Inference:

 The KNN model shows excellent performance, especially in accuracy, precision, and recall. The

high GMean and F1 Score indicate robust classification capabilities.

Decision Tree

Best Parameters: {'splitter': 'best', 'min_samples_split': 2}
Best Score: 97.32%
Mean Score: 93.80%
Std Dev: 0.1705%
Accuracy: 100%
Precision: 100%
Recall: 100%
GMean: 100%
F1 Score: 100%

Inference:

 The Decision Tree model shows perfect performance across all metrics. However, the

perfect scores may indicate a risk of overfitting.

DNN (Deep Neural Network)

Best Parameters: {'optimizer': 'Adam', 'epochs': 10, 'dropout_rate': 0.2}
Best Score: 93.56%
Mean Score: 90.79%
Std Dev: 0.2067%
Accuracy: 97.08%
Precision: 97.09%
Recall: 97.08%
GMean: 98.03%
F1 Score: 97.08%

Inference:

 The DNN model shows good performance, but it's slightly lower than KNN and Decision Tree.

The high GMean suggests that the model handles minority classes well.

RNN (Recurrent Neural Network)

Best Parameters: {'optimizer': 'Adam', 'epochs': 10, 'dropout_rate': 0.2}
Best Score: 93.99%
Mean Score: 91.17%
Std Dev: 1.7528%
Accuracy: 96.31%
Precision: 96.41%
Recall: 96.31%
GMean: 97.62%
F1 Score: 96.34%

Inference:

 The RNN model shows comparable performance to the DNN model, with good metrics across the

board. The GMean value suggests effective handling of minority classes.

Random Forest

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 37

Best Parameters: {'n_estimators': 100, 'min_samples_split': 5}
Best Score: 98.60%
Mean Score: 96.60%
Std Dev: 0.0945%
Accuracy: 99.96%
Precision: 99.96%
Recall: 99.96%
GMean: 99.98%
F1 Score: 99.96%

Inference:

 The Random Forest model shows exceptional performance, almost reaching perfect

scores. The high GMean indicates excellent classification capabilities.

Conclusion

 All models show good to excellent performance on the training data, with the Random Forest

model standing out.

 It's crucial to evaluate these models on a test dataset to confirm their generalization

capabilities.

 Overfitting could be a concern, especially for the Decision Tree model that shows perfect

scores. Further will test the performance against Test set.

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 38

Test Evaluation Metrics:

Model Performance Summary and Inference on Test Data

KNN (K-Nearest Neighbors)

Training Metrics:

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 39

Accuracy: 99.39%
Precision: 99.39%
Recall: 99.39%
GMean: 99.59%
F1 Score: 99.39%

Test Metrics:
Accuracy: 98.71%
Precision: 98.84%
Recall: 98.71%
GMean: 99.10%
F1 Score: 98.76%

Inference:

 The KNN model maintains high performance from training to testing, suggesting good

generalization.

Decision Tree

Training Metrics:
Accuracy: 100%
Precision: 100%
Recall: 100%
GMean: 100%
F1 Score: 100%

Test Metrics:
Accuracy: 98.48%
Precision: 98.53%
Recall: 98.48%
GMean: 98.84%
F1 Score: 98.50%

Inference:

 The Decision Tree model shows a slight drop in performance from training to testing, which

may indicate overfitting.

DNN (Deep Neural Network)

Training Metrics:
Accuracy: 97.08%
Precision: 97.09%
Recall: 97.08%
GMean: 98.03%
F1 Score: 97.08%

Test Metrics:
Accuracy: 97.13%
Precision: 97.69%
Recall: 97.13%
GMean: 98.12%
F1 Score: 97.35%

Inference:

 The DNN model shows consistent performance from training to testing, indicating good

generalization.

RNN (Recurrent Neural Network)

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 40

Training Metrics:
Accuracy: 96.31%
Precision: 96.41%
Recall: 96.31%
GMean: 97.62%
F1 Score: 96.34%

Test Metrics:
Accuracy: 96.49%
Precision: 97.31%
Recall: 96.49%
GMean: 97.69%
F1 Score: 96.81%

Inference:

 The RNN model also shows consistent performance from training to testing, suggesting it

generalizes well.

Random Forest

Training Metrics:
Accuracy: 99.96%
Precision: 99.96%
Recall: 99.96%
GMean: 99.98%
F1 Score: 99.96%

Test Metrics:
Accuracy: 99.07%
Precision: 99.11%
Recall: 99.07%
GMean: 99.31%
F1 Score: 99.09%

Inference:

 The Random Forest model shows excellent performance in both training and testing,

making it the best-performing model.

Overall Conclusion

 All models show good to excellent performance on both training and test data.

 Random Forest stands out as the best-performing model.

 It's crucial to consider overfitting, especially for the Decision Tree model.

 Further validation and hyperparameter tuning may improve the models further.

References:

Great Learning Olympus. (2023, July). Site for masters in data science Week 2 and Week 3 content.
Read, understood & implemented the concepts from
(https://olympus.mygreatlearning.com/courses/97556?module_id=628759).

Great Learning Olympus. (2023). Site for PGP for Artificial intelligence and machine learning study
materials. Read, understood & implemented the concepts from
(https://olympus.mygreatlearning.com/courses/74001)

Great Learning Olympus. (2023). Site for PGP for Artificial intelligence and machine learning
previous project work. Read, understood & implemented the concepts from

https://olympus.mygreatlearning.com/courses/97556?module_id=628759
https://olympus.mygreatlearning.com/courses/74001

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 41

(https://olympus.mygreatlearning.com/courses/74001/assignments/337472?module_item_id=28524
05),
(https://olympus.mygreatlearning.com/courses/73999/assignments/315149?module_item_id=26066
09),
(https://olympus.mygreatlearning.com/courses/74000/assignments/332211?module_item_id=27995
76).

Information gain feature importance

Gupta, A. (October 10, 2020). ‘Feature Selection Techniques in Machine Learning’. Analytics
Vidhya. Available at: https://analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-
machine-learning/

Brownlee, J. (October 16, 2019). ‘Information Gain and Mutual Information for Machine Learning’.
Machine Learning Mastery. Available at: https://machinelearningmastery.com/information-gain-
and-mutual-information/

How to limit train dataset using samples

Agrawal, S. (May 17, 2021). ‘How to split data into three sets (train, validation, and test) And
why?’. Towards Data Science. Available at: https://towardsdatascience.com/how-to-split-data-
into-three-sets-train-validation-and-test-and-why-

Stojiljković, M. ‘Split Your Dataset With scikit-learn's train_test_split()’. Real Python. Available
at: https://realpython.com/train-test-split-python-data/

Brownlee, J. (July 24, 2017). ‘How Much Training Data is Required for Machine Learning?’. Machine
Learning Mastery. Available at: https://machinelearningmastery.com/much-training-data-required-
machine-learning/

Minmax scaler

scikit-learn. ‘MinMaxScaler’. Available at: https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

Gogia, N. (November 8, 2019). ‘Why Scaling is Important in Machine Learning?’. Medium. Available
at: https://medium.com/analytics-vidhya/why-scaling-is-important-in-machine-learning-
aee5781d161a

Hale, J. (March 4, 2019). ‘Scale, Standardize, or Normalize with Scikit-Learn’. Towards Data
Science. Available at: https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-
learn-6ccc7d176a02

Label encoding

scikit-learn. ‘Label Encoding’. Available at: https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

Yadav, D. (December 6, 2019). ‘Categorical encoding using Label-Encoding and One-Hot Encoder’.
Towards Data Science. Available at: https://towardsdatascience.com/categorical-encoding-using-
label-encoding-and-one-hot-encoder-911ef77fb5bd

Sethi, A. (March 6, 2020). ‘One Hot Encoding vs. Label Encoding using Scikit-Learn’. Analytics
Vidhya. Available at: https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-
encoding-using-scikit-learn/

Compare train and test dataset for differences

https://olympus.mygreatlearning.com/courses/74001/assignments/337472?module_item_id=2852405
https://olympus.mygreatlearning.com/courses/74001/assignments/337472?module_item_id=2852405
https://olympus.mygreatlearning.com/courses/73999/assignments/315149?module_item_id=2606609
https://olympus.mygreatlearning.com/courses/73999/assignments/315149?module_item_id=2606609
https://olympus.mygreatlearning.com/courses/74000/assignments/332211?module_item_id=2799576
https://olympus.mygreatlearning.com/courses/74000/assignments/332211?module_item_id=2799576
https://analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-learning/
https://analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-learning/
https://machinelearningmastery.com/information-gain-and-mutual-information/
https://machinelearningmastery.com/information-gain-and-mutual-information/
https://towardsdatascience.com/how-to-split-data-into-three-sets-train-validation-and-test-and-why-
https://towardsdatascience.com/how-to-split-data-into-three-sets-train-validation-and-test-and-why-
https://realpython.com/train-test-split-python-data/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://medium.com/analytics-vidhya/why-scaling-is-important-in-machine-learning-aee5781d161a
https://medium.com/analytics-vidhya/why-scaling-is-important-in-machine-learning-aee5781d161a
https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02
https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://towardsdatascience.com/categorical-encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd
https://towardsdatascience.com/categorical-encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd
https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-encoding-using-scikit-learn/
https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-encoding-using-scikit-learn/

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 42

Lhessani, S. (September 28, 2019). ‘What is the difference between training and test dataset?’.
Medium. Available at: https://lhessani-sajid.medium.com/what-is-the-difference-between-
training-and-test-dataset-91308080a4e8

Malato, G. (May 2, 2022). ‘Are your training and test sets comparable?’. Your Data Teacher.
Available at: https://www.yourdatateacher.com/2022/05/02/are-your-training-and-test-sets-
comparable/

Brownlee, J. (July 14, 2017). ‘What is the Difference Between Test and Validation Datasets?’.
Machine Learning Mastery. Available at: https://machinelearningmastery.com/difference-test-
validation-datasets/

Imbalanced classes

Or, B. (January 4,). ‘Solving the Class Imbalance Problem’. Towards Data Science. Available
at: https://towardsdatascience.com/solving-the-class-imbalance-problem-58cb926b5a0f

Elitedatascience. (July 6, 2022). ‘How to Handle Imbalanced Classes in Machine Learning’.
Available at: https://elitedatascience.com/imbalanced-classes

Mazumder, S. (June 21, 2021). ‘5 Techniques to Handle Imbalanced Data for a Classification
Problem’. Analytics Vidhya. Available at: https://www.analyticsvidhya.com/blog/2021/06/5-
techniques-to-handle-imbalanced-data-for-a-classification-problem/

SVM for multiclass classification scikit-learn. ‘Support vector machines (SVMs)’. Available
at: https://scikit-learn.org/stable/modules/svm.html

Goyal, C. (May 18, 2021). ‘Multiclass Classification Using SVM’. Analytics Vidhya. Available
at: https://www.analyticsvidhya.com/blog/2021/05/multiclass-classification-using-svm/

Martins, C. (March 22, 2022). ‘Support Vector Machine (SVM) for Binary and Multi-Class
Classification: Hands-On with Scikit-Learn’. Towards AI. Available
at: https://pub.towardsai.net/support-vector-machine-svm-for-binary-and-multiclass-
classification-hands-on-with-scikit-learn-29cdbe5cb90e

KNN

Srivastava, T. (March 26, 2018). ‘A Complete Guide to K-Nearest Neighbors (Updated 2023)’.
Analytics Vidhya. Available at: https://www.analyticsvidhya.com/blog/2018/03/introduction-k-
neighbours-algorithm-clustering/

Subramanian, D. (June 8, 2019). ‘A Simple Introduction to K-Nearest Neighbors Algorithm’. Towards
Data Science. Available at: https://towardsdatascience.com/a-simple-introduction-to-k-nearest-
neighbors-algorithm-b3519ed98e

Abba, I.V. (January 25, 2023). ‘KNN Algorithm – K-Nearest Neighbors Classifiers and Model
Example’. FreeCodeCamp. Available at: https://www.freecodecamp.org/news/k-nearest-
neighbors-algorithm-classifiers-and-model-example/

scikit-learn. ‘Classifier implementing the k-nearest neighbors’. Available at: https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Decision tree

scikit-learn. ‘1.10. Decision Trees’. Available at: https://scikit-learn.org/stable/modules/tree.html

Kim, C. (July 14, 2022). ‘Decision Tree Classifier with Scikit-Learn from Python’. Medium. Available
at: https://medium.com/@chyun55555/decision-tree-classifier-with-scikit-learn-from-python-
e83f38079fea

https://lhessani-sajid.medium.com/what-is-the-difference-between-training-and-test-dataset-91308080a4e8
https://lhessani-sajid.medium.com/what-is-the-difference-between-training-and-test-dataset-91308080a4e8
https://www.yourdatateacher.com/2022/05/02/are-your-training-and-test-sets-comparable/
https://www.yourdatateacher.com/2022/05/02/are-your-training-and-test-sets-comparable/
https://machinelearningmastery.com/difference-test-validation-datasets/
https://machinelearningmastery.com/difference-test-validation-datasets/
https://towardsdatascience.com/solving-the-class-imbalance-problem-58cb926b5a0f
https://elitedatascience.com/imbalanced-classes
https://www.analyticsvidhya.com/blog/2021/06/5-techniques-to-handle-imbalanced-data-for-a-classification-problem/
https://www.analyticsvidhya.com/blog/2021/06/5-techniques-to-handle-imbalanced-data-for-a-classification-problem/
https://scikit-learn.org/stable/modules/svm.html
https://www.analyticsvidhya.com/blog/2021/05/multiclass-classification-using-svm/
https://pub.towardsai.net/support-vector-machine-svm-for-binary-and-multiclass-classification-hands-on-with-scikit-learn-29cdbe5cb90e
https://pub.towardsai.net/support-vector-machine-svm-for-binary-and-multiclass-classification-hands-on-with-scikit-learn-29cdbe5cb90e
https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/
https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/
https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e
https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e
https://www.freecodecamp.org/news/k-nearest-neighbors-algorithm-classifiers-and-model-example/
https://www.freecodecamp.org/news/k-nearest-neighbors-algorithm-classifiers-and-model-example/
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/tree.html
https://medium.com/@chyun55555/decision-tree-classifier-with-scikit-learn-from-python-e83f38079fea
https://medium.com/@chyun55555/decision-tree-classifier-with-scikit-learn-from-python-e83f38079fea

S223919051 High Distinction Report

SIG720 – Machine Learning High Distinction Task 43

Saini, A. (August 29, 2021). ‘Decision Tree Algorithm – A Complete Guide’. Analytics Vidhya.
Available at: https://www.analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/

Evaluation metrics

Srivastava, T. (August 6, 2019). ‘12 Important Model Evaluation Metrics for Machine Learning
Everyone should know’. Analytics

Vidhya. Available at: https://www.analyticsvidhya.com/blog/2019/08/11-important-model-
evaluation-error-metrics/

Doshi, N. (March 19, 2022). ‘5 Most Important Metrics for Model Evaluation in Machine Learning’.
Towards Data Science. Available at: https://towardsdatascience.com/5-most-important-metrics-
for-model-evaluation-in-machine-learning-c74fc9d0609f

Bhutani, S. (October 20, 2019). ‘Understand the different evaluation metrics in Machine Learning’.
Medium. Available at: https://towardsdatascience.com/understand-the-different-evaluation-
metrics-in-machine-learning-5b4a0f5b3bfe

Analytics Vidhya. (2021, June 17). Random Forest: Sruthi E R. Read, understood & implemented the
concepts from (https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/).

Citations:

[1] A. Rashid, "Performance Comparison of Machine Learning Techniques for Intrusion Detection,"
2020 2nd International Conference on Communication, Computing and Digital Systems (C-CODE),
Islamabad, Pakistan, 2020, pp. 1-5, doi: 10.1109/C-CODE49053.2020.9055946.

In Table 1 of Rashid's 2020 paper [1], the details of normal and attack classes/types data in the
NSL-KDD train and test data sets are presented. The author emphasizes the importance of data
normalization in data mining due to differences in dimensions and units used in data collection that
can lead to a wide range of values. Rashid [1] adopts the maximum and minimum algorithm for
data normalization to avoid large data overshadowing smaller data values. The calculation formula
for this normalization technique can be found in the paper on page 4, under the section titled "Data
normalization."

In addition to Rashid's 2020 paper [1], Kilincer's 2021 study [2] also provides valuable insights into
the NSL-KDD dataset. According to the paper, the dataset has dimensions of 22561 × 40 for the NSL-
KDD dataset, where the first value represents the record count, and the second value represents
the feature count [2].

For the "Attack Class count," Table 3 on page 7 of Kilincer's paper [2] is referred. To check the
literature performances in terms of accuracy, precision, recall, G-mean, and F1 score, Table 4 on
page 4 of the same paper [2] is utilized.

[1] A. Rashid, "Performance Comparison of Machine Learning Techniques for Intrusion Detection,"
2020 2nd International Conference on Communication, Computing and Digital Systems (C-CODE),
Islamabad, Pakistan, 2020, pp. 1-5, doi: 10.1109/C-CODE49053.2020.9055946.

[2] I. F. Kilincer, "An Unsupervised Machine Learning Intrusion Detection System for the NSL-KDD
dataset," Computers & Security, vol. 102, article no. 102153, April 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S1389128621000141

https://www.analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/
https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/
https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/
https://towardsdatascience.com/5-most-important-metrics-for-model-evaluation-in-machine-learning-c74fc9d0609f
https://towardsdatascience.com/5-most-important-metrics-for-model-evaluation-in-machine-learning-c74fc9d0609f
https://towardsdatascience.com/understand-the-different-evaluation-metrics-in-machine-learning-5b4a0f5b3bfe
https://towardsdatascience.com/understand-the-different-evaluation-metrics-in-machine-learning-5b4a0f5b3bfe
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/

