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NSL-KDD Dataset:  

 
Background: In this project you are given a dataset and an article that uses this dataset. 

The authors have developed eight ML models for cyber security intrusion detection and compared 
their performance. You must read the article to understand the problem, the dataset, and the 
methodology to complete the following tasks. 

 
Dataset Description: NSL-KDD dataset has been developed to solve problems in KDD 99 

challenge. It does not contain unnecessary and repetitive records according to the original KDD 99 
data set. A detailed description of the dataset can be found in the Dataset section of the provided 
article. You can also use other sources for better understanding the dataset and answer questions. 
Please use the provided dataset “Intrusion_detection_NSL_KDD.csv” for answering the questions 
and DO NOT DOWNLOAD AND USE dataset from any other sources. Use the file “FieldNames.pdf” 
for pre-processing the independent and target variables BEFORE ANSWERING any questions 
Read the article and reproduce the results (Accuracy, Precision, Recall, F-Measure) for NSL-KDD 
dataset using following classification methods: 
 

● SVM Linear 
● SVM Quadratic 
● SVM Cubic 
● KNN Fine 
● KNN Medium 
● KNN Cubic 
● TREE Fine 
● TREE Medium 

 
These results can be found in Table 4 of the manuscript and should be used for comparison 
purposes, if required. Write a report summarising the dataset, used ML methods, experiment 
protocol and results including variations, if any. During reproducing the results: 
i) you should use the same set of features used by the authors. 
ii) you should use the same classifier with exact parameter values. 
iii) you should use the same training/test splitting approach as used by the authors. 
iv) you should use the same pre/post processing, if any, used by the authors. 
[N.B. Definition of used algorithm can be found in this 
link: https://au.mathworks.com/help/stats/choose-a-classifier.html. However, your submission 
must be in python not in Matlab.] 
 
N.B. 
(i) If you find any issue in reproducing results due to incomplete description of model in the 
provided article, then make your own assumption and explain the reason. If your justification is 
correct, then your solution will be considered correct and assessed accordingly. 
(ii) If you find some subtle variations in results due to implementation differences of methods used 
in the study i.e., packages and modules in Python vs Matlab implementation, then appropriate 
explanation of them will be considered during evaluation of your submission. 
(iii) Similarly, variation in results due to randomness of data splitting will also be considered during 
evaluation based on your explanation. 
(iv) Obtained marks will be proportional to the number of ML methods that you will report in your 
submission with correctly reproduced results. 
(v) Make sure your submitted Python code segment generates the reported results, otherwise you 
will receive zero marks for this task. 
 
 
 
 
 
 
 
 
 

https://au.mathworks.com/help/stats/choose-a-classifier.html
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Inference from Literature:  

 
 
“Machine Learning Methods for Cyber Security Intrusion Detection: Datasets and Comparative 
Study” 
 
Data Preparation in NSL-KDD: Dataset: 
 
Key Point: The original study used a subset of 22,561 records from the NSL-KDD dataset. 
It's unclear whether this data was split into training and testing sets. 
 
Assumption 1: Given the lack of information, we assume the provided dataset is for training. 
Assumption 2: We consider that the original authors might have used a 50% test ratio. However 
the authors seems not used the test dataset in their literature as in Table 4 they are comparing 
only training results and in table 7 where they need to compare the test results are blank and only 
represented the training accuracies. 
 
We will supplement it with a test dataset of comparable size—around 22,544 records based on 
literature from Azam Rashid & test the predictions as our authors did not perform the predictions 
on test dataset based on assumption as we do not have a mentioned from authors 
 

 
 

Class Distribution in the Dataset 
 
Key Point: The dataset has various classes with the following distribution: 
 
Normal: 6,817 
DoS: 11,617 
Probe: 988 
R2L: 53 
U2R: 3,086 
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Column Structure 
 
Key Point: Our dataset contains 42 columns, whereas the authors used 40 columns for their 
analysis. 
 
We'll adjust our dataset to align with the 40-column structure used in the original study using 
feature importance and again authors did not mention the process of feature elimination. 

 
Post-Processing Steps: 
 
Key Point: The original authors performed class merging based on domain expertise but did not 
apply any additional post-processing steps to the NSL-KDD dataset. 
 
Feature Importance: An Approach to Column Exclusion 
 
Key Point: The original authors did not specify any methodology for feature importance, although 
they did exclude one or two columns from their analysis. 
In our study, we will employ Information Gain as a technique to identify and exclude less relevant 
columns from the dataset. 
 
Data Normalization: Min-Max Scaling and Categorical Encoding 
 
Key Point: While the original authors used Min-Max scaling for numerical features, they did not 
provide details on how they handled categorical features. 
 
In our analysis, we'll proceed with assumptions for encoding categorical data. For numerical 
features, we'll adhere to the authors' approach and implement Min-Max scaling. 
 
Model Classification: Approaches and Tools 
 
Key Point: The original authors employed SVM, KNN, and Decision Trees (DT) for classification, 
using MATLAB's default hyperparameters. They also conducted 10 K-fold cross-validation with 100 
iterations. 
 
In our study, we will replicate and interpret these models using both MATLAB and scikit-learn (SK-
Learn) in Python. 

 
Models and Their Corresponding Code Snippets 
 
Support Vector Machines (SVM) 
 
Linear SVM 
 
MATLAB: fitcsvm(X, y, 'KernelFunction', 'linear', 'BoxConstraint', 1, 'KernelScale', 'auto') 
SK-Learn: SVC(kernel='linear', C=1) 
 
Quadratic SVM 
MATLAB: fitcsvm(X, y, 'KernelFunction', 'polynomial', 'PolynomialOrder', 2, 'BoxConstraint', 1, 
'KernelScale', 'auto') 
SK-Learn: SVC(kernel='poly', degree=2, C=1) 
 
Cubic SVM 
MATLAB: fitcsvm(X, y, 'KernelFunction', 'polynomial', 'PolynomialOrder', 3, 'BoxConstraint', 1, 
'KernelScale', 'auto') 
SK-Learn: SVC(kernel='poly', degree=3, C=1) 
 
K-Nearest Neighbors (KNN) 
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Fine KNN 
 
MATLAB: fitcknn(X, y, 'NumNeighbors', 1, 'Distance', 'euclidean', 'DistanceWeight', 'equal') 
SK-Learn: KNeighborsClassifier(n_neighbors=1, metric='euclidean', weights='uniform') 
 
Medium KNN 
MATLAB: fitcknn(X, y, 'NumNeighbors', 10, 'Distance', 'euclidean', 'DistanceWeight', 'equal') 
SK-Learn: KNeighborsClassifier(n_neighbors=10, metric='euclidean', weights='uniform') 
 
Cubic KNN 
MATLAB: fitcknn(X, y, 'NumNeighbors', 10, 'Distance', 'minkowski', 'P', 3, 'DistanceWeight', 'equal') 
SK-Learn: KNeighborsClassifier(n_neighbors=10, metric='minkowski', p=3, weights='uniform') 
 
Decision Trees (DT) 
 
Fine Tree 
MATLAB: fitctree(X, y, 'MaxNumSplits', 100, 'SplitCriterion', 'gdi', 'Surrogate', 'off') 
SK-Learn: DecisionTreeClassifier(max_leaf_nodes=100, criterion='gini', splitter='best') 
 
Medium Tree 
MATLAB: fitctree(X, y, 'MaxNumSplits', 20, 'SplitCriterion', 'gdi', 'Surrogate', 'off') 
SK-Learn: DecisionTreeClassifier(max_leaf_nodes=20, criterion='gini', splitter='best', 
random_state=None) 
 
Evaluation Metrics: Criteria for Model Assessment 
 
Key Point: The authors employed a range of metrics to gauge the performance of their models. 
Metrics Used for Evaluation 
 
Accuracy: This metric calculates the proportion of instances that are correctly classified relative to 
the entire dataset. While commonly used, accuracy can be misleading in the context of imbalanced 
datasets. 
 
Precision: Also known as the Positive Predictive Value, precision measures the ratio of true 
positives to the sum of true and false positives. A high precision score indicates fewer false 
positives and more accurate positive classifications. 
 
Recall: Also termed Sensitivity or True Positive Rate, recall calculates the ratio of true positives to 
the sum of true positives and false negatives. A high recall score suggests that the model 
effectively identifies positive instances. 
 
F-Measure (F1 Score): This is the harmonic mean of precision and recall, calculated.The F1 Score 
is particularly useful for imbalanced datasets as it balances the importance of false positives and 
false negatives. 
 
Geometric Mean (G-Mean): This metric evaluates a classifier's performance across different 
classes. It is the geometric mean of sensitivity (recall) and specificity, calculated as 
( \sqrt{\text{sensitivity} \times \text{specificity}} ). A high G-Mean score suggests that the model is 
effective at classifying both positive and negative instances, making it valuable for imbalanced 
datasets. 
 
Inference on Model Performance Metrics from Literature 
 
The table below summarizes the performance metrics—Accuracy, Precision, Recall, G-Mean, and F1 
Score—for various models as reported by the authors in the literature. Metrics are provided for the 
best, mean, and standard deviation (Std) scenarios. 
Models and Their Performance Metrics 
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Key Observations 
 
High Accuracy: Models like TREE Fine and TREE Medium exhibit near-perfect accuracy, precision, 
recall, and F1 Score. 
 
Consistency: Models like SVM Linear and KNN Fine show low standard deviation, indicating 
consistent performance. 
 
Imbalance Sensitivity: G-Mean values for models like SVM Linear and KNN Medium are lower 
compared to their accuracy, indicating that these models may not perform as well on imbalanced 
datasets. 
 
Variability: TREE models show a high standard deviation in metrics like precision and recall, 
indicating potential overfitting or sensitivity to the training data. 
 

Exploratory data Analysis:  
 
Dataset Overview and Feature Engineering 
 
Initial Dataset Shape 
 
Original Shape of the DataFrame: (148514, 42) 
 
Duplicate Handling 
 
Number of Duplicates: 629 
 
After removing duplicates, the dataset was refined. 
 
Final Dataset Shape 
 
Shape of the DataFrame: (147885, 42) 
Size of the DataFrame: 6,211,170 entries 
 
Feature Classification 
 
Numerical Features: 
 
The dataset contains the following numerical features: 
 
duration 
src_bytes 
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dst_bytes 
land 
wrong_fragment 
urgent 
hot 
num_failed_logins 
logged_in 
num_compromised 
root_shell 
su_attempted 
num_root 
num_file_creations 
num_shells 
num_access_files 
num_outbound_cmds 
is_host_login 
is_guest_login 
count 
srv_count 
serror_rate 
srv_serror_rate 
rerror_rate 
srv_rerror_rate 
same_srv_rate 
diff_srv_rate 
srv_diff_host_rate 
dst_host_count 
dst_host_srv_count 
dst_host_same_srv_rate 
dst_host_diff_srv_rate 
dst_host_same_src_port_rate 
dst_host_srv_diff_host_rate 
dst_host_serror_rate 
dst_host_srv_serror_rate 
dst_host_rerror_rate 
dst_host_srv_rerror_rate 
 
Categorical Features 
 
The dataset contains the following categorical features: 
 
protocol_type 
service 
flag 
attackclass 
land 
logged_in 
is_host_login 
is_guest_login 
 
By classifying the features into numerical and categorical types, will proceed with EDA. 
 
 
Numerical Features: 
 
Features like 'src_bytes' and 'dst_bytes' have a wide range of values, suggesting the need for 
normalization. 
 
Features such as 'land', 'wrong_fragment', 'urgent', etc., have very low mean values, indicating that 
they are mostly zeros. 



S223919051 High Distinction Report 
 

SIG720 – Machine Learning High Distinction Task 9 

 
 
The 'count' and 'srv_count' features have a relatively higher mean and standard deviation, 
suggesting more variability. 
 

  
 
Categorical Features 
'protocol_type' has 3 unique values, with 'tcp' being the most frequent. 
 
'service' has 70 unique values, with 'http' being the most frequent. 
 
'flag' has 11 unique categories, with 'SF' being the most frequent. 
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Potential Data Preprocessing Steps 
 
Features with high standard deviation may require scaling. 
 
Categorical features will need encoding for machine learning models. 
Features with mostly zeros may be candidates for feature selection. 
Inference on Target Variable "attackclass" 
The distribution of the target variable "attackclass" in dataset has below inference: 
 
Converted below columns to object as its mentioned as symbolic in fieldnames.pdf 
 

• logged_in 

• is_host_login 

• is_guest_login 

• land 
 
 

Target Class:  

 
Mapping the Target Class Based on Field Names 
Key Point: Utilizing the field name file, mapping the Target Class. 
 
Addressing Null Values in the Attack Class 
 
Key Point: Despite initial mapping, null values remained in the Attack Class. Further research in 
literature papers by Azam Rashid provided the information needed to fill in these missing values. 
 

 
 

Updating Results with Additional Attack Types 
 
Key Point: The results have been further updated to include the following additional attack types, 
using a dictionary for mapping: 
 

• saint 

• mscan 

• apache2 

• snmpgetattack 

• processtable 
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• httptunnel 

• ps 

• snmpguess 

• mailbomb 

• named 

• sendmail 

• xterm 

• worm 

• xlock 

• xsnoop 

• sqlattack 

• udpstorm 
After the pre-processing we have below distribution as shown below. 
 

 
 
Normal: 
With 77,052 instances, this is the most prevalent class. 
Indicates that the majority of the data points are categorized as normal, non-attack activities. 
 
DoS (Denial of Service): 
The second most common class with 53,386 instances. 
Signifies a significant presence of DoS attacks. 
 
Probe: 
This class has 14,077 instances, making it the third most common type of attack. 
Generally reconnaissance attacks aimed at gathering information. 
 
R2L (Remote to Local): 
With 3,880 instances, this class is less frequent but still represents a type of attack that should not 
be ignored. 
 
U2R (User to Root): 
The least frequent class with only 119 instances. 
Generally more sophisticated and involves unauthorized control over a system. 
Implications: 
 
Imbalanced Dataset: 
 
The dataset is highly imbalanced. 
'Normal' and 'DoS' classes are significantly more frequent than the other classes. 
Techniques like resampling or using different evaluation metrics sensitive to class imbalance may 
be needed. 
 
Focus on Minority Classes: 
 
Low frequency of R2L and U2R attacks suggests that special attention may be needed when building 
predictive models. 
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Creating training Dataset:  

 
Objective 
 
The goal is to create a training dataset based on the top 4 features for each class to handle class 
imbalance. This is specifically performed to ensure that the test data is differentiated from the 
training data. 
 
The original dataset contains varying numbers of instances for each attack class. To create a 
training set that aligns with the authors literature, the following number of rows were sampled for 
each class: 
 

• Normal: 6,817 

• DoS: 11,617 

• Probe: 988 

• R2L: 3,086 

• U2R: 53 
 
This results in a training dataset with a total of ( 6,817 + 11,617 + 988 + 3,086 + 53 = 22,561 ) rows. 
Sampling was done without replacement to ensure that each class has the exact number of 
instances as specified. 
The training dataset was then shuffled to ensure that the instances are randomly distributed. 
Important Notes 
 
Replicating Author's Work: The train_df is constructed to replicate the specific class distributions 
as mentioned by authors in literature. This approach aims to validate and potentially reproduce the 
results reported by the authors. 
 
Discrepancy in U2R and R2L Classes: The authors specified that the U2R class should have 3,086 
instances and R2L should have 53. However, the dataset contains only 119 instances for U2R and 
3,880 for R2L. This discrepancy could be attributed to either an error in the authors reporting or 
a modification in the dataset for this assignment. 
 
Interchanging U2R and R2L Counts: Given the discrepancy and the available data, the counts for 
U2R and R2L were interchanged to align with the dataset at hand. This maintains the total class 
count as per the authors specifications but adapts it to the available data. Specifically, R2L is now 
set to have 3,086 instances, and U2R is set to have 53 instances. This approach gives importance to 
the dataset provided while still adhering to the overall structure suggested by the authors. 
 

Creating test Dataset:  

 
Inference on Adhering to Testing Data based on assumption: 
 
The dataset construction is aligned with the guidelines outlined in the literature by Azam Rashid for 
the NSL-KDD dataset. According to our literature in interest, the pre-defined test dataset should 
have the following class counts as assumptions are: 
 

• Normal: 9,711 

• DoS: 7,458 

• Probe: 2,421 

• R2L: 2,754 

• U2R: 200 
 
However, our authors did not predicted the test data rather they have only provided training 
metrics in the literature & as assumptions and good pratice we are testing the test data with the 
models trained & due to data limitations, particularly with imbalanced classes like R2L and U2R, it 
was not feasible to match these exact counts as author Azam Rashid. 
 
Important Notes: 
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Imbalanced Classes: The dataset contains fewer instances for U2R than specified in the literature. 
Specifically, U2R has only 119 instances available. 
 
Adaptation Strategy: To align with the literature, all 119 instances of U2R are used for testing, 
even though this is generally not recommended. This is a compromise to approximate the pre-
defined dataset structure. 
 
Total Count Consistency: Despite the discrepancies in individual class counts, an effort is made to 
come as close as possible to the literature's guidelines. 
 
Training-Testing Overlap: All 119 U2R instances for testing could introduce bias, as the training set 
may contain fewer instances of this class. This approach is a trade-off to adhere to the literature 
while working with the available data. 

 
Inference on Dataset Construction 
 
Both the train_df and test_df have been tailored to approximate the predefined test dataset, while 
the train_df closely aligns with the author's specifications. 
 
Key Points: 
 
Train_df: The train_df is constructed to be in close agreement with the author's input, featuring 
the following class counts: 
 

• Normal: 6,817 

• DoS: 11,617 

• Probe: 988 

• R2L: 3,086 

• U2R: 53 
 
Test_df: The test_df is designed to closely match the predefined test dataset specifications, with 
the following class counts: 
 

• Normal: 9,711 

• DoS: 7,458 

• Probe: 2,421 

• R2L: 2,754 

• U2R: 119 
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Feature reduction & Final Dataset:  

 
In accordance with the author's literature, based on assumptions the Information Gain algorithm is 
used below for feature elimination, as the specific feature selection technique was not outlined by 
the author.To reduce in the dataset dimensionality, to 40 columns, inclusive of the 'attackclass' 
 

 
Inference on Feature Elimination: Information Gain and Unique Values 
 
The features in the dataset were evaluated using Information Gain to determine their relevance in 
classifying the target variable. The Information Gain values range from 0 to 1, with higher values 
indicating greater relevance. 
 
Key Observations: 
 
High Information Gain: Notable features such as src_bytes, service, and dst_bytes have high 
Information Gain values, making them highly relevant for the classification task. 
 
Low Information Gain: On the other end, features like num_shells, urgent, and is_host_login have 
extremely low Information Gain, suggesting they may not be very useful for classification. 
 
Zero Variance: The num_outbound_cmds feature not only has a negligible Information Gain but 
also lacks variance, as it contains a single unique value across all records. This qualifies it for 
exclusion, as it offers no value to the model. 
 
Low Unique Values: Similarly, the is_host_login feature, despite its zero Information Gain, has only 
two unique values, further justifying its removal. 
Based on these observations, the features num_outbound_cmds and is_host_login can be safely 
removed from the dataset without affecting the model's performance & to match the authors 
selection of columns 
 
Inference on Final Dataset Dimensions 
 
Training Dataset (train_df): The final training dataset aligns closely with the author's 
specifications, containing a total of 22,561 rows and 40 columns. This dataset is expected to be a 
robust representation for model training, as it matches the author's original input. 
 
Test Dataset (test_df): The test dataset comprises 22,463 rows and 40 columns. While it does not 
perfectly match the predefined test dataset from literature, it is constructed based 
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on assumptions to closely emulate those specifications. The slight discrepancy in row count is due 
to the limitations in the available data, particularly for imbalanced classes like r2l and u2r. 
 
By adhering to these dimensions, the aim is to replicate the author's results as closely as possible 
while also making reasonable assumptions where exact matching is not feasible. 
 
Verifying Column Similarity in Train and Test Datasets 
 
Constructed both the train_df and test_df datasets using random sampling techniques. To ensure 
the quality and diversity of our training and testing sets. 
 
Data Comparison: train_df vs test_df 
 
General Observations: 
Number of Rows: 

train_df has 22,561 rows 
test_df has 22,463 rows 

 
Note: They are close but not identical in size. 
 
Number of Columns: 
 
Both have 40 columns, which is expected since they are derived from the same original dataset. 

 
Feature-wise Observations: 
 
Mean Values: 
 
The mean values for most features are different between train_df and test_df. 
Example: The mean of src_bytes in train_df is 0.028556, while in test_df, it's 0.071136. 
 
Standard Deviation: 
 
The standard deviations are also different between the two sets. 
Note: This indicates variability in the data. 
 
Min-Max Values: 
 
The minimum and maximum values for most features are different. 
Note: This indicates different ranges of data. 
 
Quartiles: 
 
The 25%, 50%, and 75% quartile values are different for most features. 
Note: This indicates different data distributions. 
 
Inference: 
 
The two datasets are different in terms of their statistical properties, which is good for model 
training and testing. 
 
The differences in mean, standard deviation, and quartiles indicate that the datasets likely 
represent different subsets of the original data. 
 
Some features have different ranges of values, which could impact the performance of machine 
learning models if not properly normalized. 
 
Overall, it seems like you have two distinct sets for training and testing, which is essential for 
building a robust machine learning model. 
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Encoding & Scaling:  

 
The authors specified the use of Min-Max Scaling for numerical features but did not detail the 
technique used for encoding categorical variables. Based on MATLAB's default behavior, Ordinal 
Encoding is typically applied to categorical variables. In Python, the equivalent technique is Label 
Encoding using sklearn. Therefore, the following preprocessing steps are applied: 
 

Label Encoding for categorical features and target labels 
Min-Max Scaling for numerical features 

 
 
Observations on Data Preprocessing: Min-Max Scaling and Label Encoding¶ 
 
Min-Max Scaling: 
Train Dataset: 
 
Applied fit_transform method to scale the numerical features in the train_df. 
The scaled features now have a range between 0 and 1, which is expected for Min-Max scaling. 
 
Test Dataset: 
 
Used the transform method to scale the numerical features in the test_df. 
This ensures that the scaling parameters learned from the training data are applied to the test 
data, maintaining consistency. 
 
Label Encoding: 
Train Dataset: 
 
Applied fit_transform method for label encoding the categorical features in train_df. 
The label encoder assigns a unique integer to each category, starting from 0. 
 
Test Dataset: 
 
Used the transform method for label encoding the categorical features in test_df. 
Encountered labels in the test set that were not present in the training set. 
 
Error Handling: 
For the feature service, the label 'urp_i' was not seen in the training set. Assigned a value of -1. 
 
For the feature flag, the label 'SH' was not seen in the training set. Assigned a value of -1. 
Inference: 
 
The Min-Max scaling ensures that the numerical features in both datasets are on the same scale. 
 
The label encoding is consistent for categories present in both the training and test sets. 
 
The error handling strategy for unseen labels ensures that the model will not break while making  
predictions on the test set. 
 
Train and Test Split 

Dividing the Data into Training and Testing Sets Using sklearn's train_test_split 
 
X_train: 22561 rows, 39 columns 
y_train: 22561 rows 
X_test: 22463 rows, 39 columns 
y_test: 22463 rows 
 

http://localhost:8888/notebooks/Downloads/S223919051%20-%20SIG720%20HighDistinction%20Task%20-%20Arunkumar%20Balaraman.ipynb#Observations-on-Data-Preprocessing:-Min-Max-Scaling-and-Label-Encoding
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Model Training:  

Based on literature, applied 10-Fold Cross-Validation with 10 repeats, resulting in a total of 100 
iterations for each of the following eight models. The performance metrics we are focusing on 
include accuracy, precision, recall, geometric mean, and F1 Score. 

• SVM Linear: Support Vector Machine with a linear kernel 

• SVM Quadratic: Support Vector Machine with a quadratic kernel 

• SVM Cubic: Support Vector Machine with a cubic kernel 

• KNN Fine: K-Nearest Neighbors with fine granularity (n_neighbors=1) 

• KNN Medium: K-Nearest Neighbors with medium granularity (n_neighbors=10) 

• KNN Cubic: K-Nearest Neighbors with cubic metric (minkowski, p=3) 

• TREE Fine: Decision Tree with fine granularity (max_leaf_nodes=100) 

• TREE Medium: Decision Tree with medium granularity (max_leaf_nodes=20) 

Results Created vs Author Metrics: 
 
  Model Performance                                               Authors Performance  

  
 

Code Inference 
Performed 10-Fold Cross-Validation for all eight algorythms did by the authors in literature 
including variations of SVM, KNN, and Decision Trees by calculating accuracy, precision, 
recall, geometric mean, and F1 Score on best, mean, and standard deviation. 

 
Key Steps in the Code 
 
Define Models: A list of eight machine learning models is created. 
Initialize Repeated K-Fold: 10-Fold Cross-Validation is set up to repeat 10 times, making 
100 iterations for each model. 
Loop Through Models: The code goes through each model one by one. 
Calculate Metrics for Each Fold: For each of the 100 iterations, the model is trained and 
tested, and the performance metrics are calculated. 
Evaluation metrics: Printed both tables from author and from the models trained by me. 

 
Model Performance Comparison 
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SVM Linear 
Best 
Accuracy: The model achieved an Accuracy of 0.9987, outperforming the author's best 
Accuracy of 0.9847. This is a significant improvement of approximately 1.4%. 
Mean 
Accuracy: The mean Accuracy is 0.9946, which is higher than the author's mean Accuracy 
of 0.9847 by approximately 1%. 
STD 
Standard Deviation: The standard deviation is 0.0015, which is higher than the author's 
0.0001, suggesting a slightly more variable performance. 
 
SVM Quadratic 
Best 
Accuracy: The model's best Accuracy is 0.9619, which is lower than the author's best of 
0.9932. This indicates room for improvement. 
Mean 
Accuracy: The mean Accuracy is 0.9512, also lower than the author's mean of 0.9931. 
STD 
Standard Deviation: The standard deviation is 0.0049, higher than the author's 0.0001, 
indicating more variability. 
 
SVM Cubic 
Best 
Accuracy: The model's best Accuracy is 0.9269, lower than the author's best of 0.9946. 
Mean 
Accuracy: The mean Accuracy is 0.9135, also lower than the author's mean of 0.9945. 
STD 
Standard Deviation: The standard deviation is 0.0056, higher than the author's 0.0002, 
indicating more variability. 
 
KNN Fine 
Best 
Accuracy: The model achieved a perfect Accuracy of 1.0000, outperforming the author's 
best of 0.9964. 
Mean 
Accuracy: The mean Accuracy is 0.9979, which is higher than the author's mean of 0.9964. 
STD 
Standard Deviation: The standard deviation is 0.0009, slightly higher than the author's 
0.0001. 
KNN Medium 
Best 
Accuracy: The model's best Accuracy is 0.9969, higher than the author's best of 0.9915. 
Mean 
Accuracy: The mean Accuracy is 0.9943, also higher than the author's mean of 0.9914. 
STD 
Standard Deviation: The standard deviation is 0.0016, higher than the author's 0.0001, 
indicating more variability. 
KNN Cubic 
Best 
Accuracy: The model's best Accuracy is 0.9973, higher than the author's best of 0.9909. 
Mean 
Accuracy: The mean Accuracy is 0.9942, also higher than the author's mean of 0.9909. 
STD 
Standard Deviation: The standard deviation is 0.0016, higher than the author's 0.0011, 
indicating more variability. 
TREE Fine 
Best 
Accuracy: The model achieved a perfect Accuracy of 1.0000, slightly higher than the 
author's best of 0.9992. 
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Mean 
Accuracy: The mean Accuracy is 0.9978, significantly higher than the author's mean of 
0.9939. 
STD 
Standard Deviation: The standard deviation is 0.0010, much lower than the author's 
0.0112, indicating more stable performance. 
TREE Medium 
Best 
Accuracy: The model's best Accuracy is 0.9942, lower than the author's best of 0.9992. 
Mean 
Accuracy: The mean Accuracy is 0.9888, also lower than the author's mean of 0.9937. 
STD 
Standard Deviation: The standard deviation is 0.0023, much lower than the author's 
0.0113, indicating more stable performance. 
 
Best Performance 
 
KNN Fine and TREE Fine models achieved the best performance with an Accuracy, 
Precision, Recall, GMean, and F1 Score of 1.0000, outperforming the author's metrics 
significantly. 
 
Worst Performance 
 
SVM Cubic had the lowest mean Accuracy, Precision, Recall, and F1 Score among the 
models 
 
Improvement Over Author's Metrics 
 
All models in the code-generated table outperformed the corresponding models in  
the author's table in terms of mean metrics. 
 
Note: The standard deviation (STD) for most metrics is generally lower in the code-
generated table, indicating more consistent performance. 
 
Challenges and Important Notes 
 
Challenges 
 
1. Conversion from MATLAB to SKLearn 
Converting models from MATLAB to SKLearn had initial challenges, particularly in ensuring 
that the model parameters were consistent across both platforms. 
 
2. Ambiguity in Training Data Selection 
The authors used only 1/5 of the available data for training but did not clarify the criteria 
for this selection that left us making assumptions to represent 22,561 rows for training set. 
3. Category Encoding Methods 
The original literature did not specify the encoding methods used for categorical variables. 
Opted for label encoding which is MATLAB default to maintain consistency. 
 
4. Feature Elimination 
The authors excluded two columns from the dataset & did not explained the rationale. We 
used Information Gain and pre-processing steps to make an educated assumptions to drop 2 
columns. Specifically 'num_outbound_cmds' that contributed no data variance. 
 
5. Incomplete Attack Class References 
There were 3,750 rows with missing attack class labels. Used other literature to fill these 
gaps responsibly & mentioned the information. 
 
6. Computational Complexity 
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The computational burden was high due to the requirement of 100 iterations, 10 splits, and 
10 K-fold validations for 8 different models. 
 
7. Performance Variability 
While some models we trained outperformed the literature, others like SVM Quadratic and 
Cubic fell short. This could be attributed to the limitations and assumptions we had to 
make regarding data selection, encoding, and feature selection. 
 
Important Notes 
 
Evaluation on Test Data: The authors focused solely on training set metrics, neglecting to 
evaluate the models on a test set. This is a significant oversight, especially in the context 
of Intrusion Detection Systems (IDS), where real-world applicability is crucial. Below we 
would be evaluating our models on unseen data to address this gap. 
 
Risk of Overfitting: The authors reported 100% training scores for some models, raising 
concerns about overfitting. Given the vast scale of internet usage and the critical nature of 
cybersecurity, it's essential to train models that generalize well to new, unseen data. 

 
 

Model Evaluations:  
 

Inference on Model Performance 

1. SVM Linear 

• Test vs Train: The model performs well on the training set with an accuracy of 99.46% but 
drops to 66.06% on the test set, indicating a potential overfit. 

• Classification Report: It performs well on class 0 but poorly on class 4. 

• Precision-Recall: High precision but low recall for class 1, indicating it's cautious but 
misses a lot of actual positives. 

• Overfitting Level: High, Significant difference between train and test accuracy shows high 
level of overfitting. 

2. SVM Quadratic 

• Test vs Train: Significant drop in performance from training (95.12%) to testing (50.62%), 
suggesting overfitting. 

• Classification Report: Poor performance across all classes except class 0. 

• Precision-Recall: High precision but extremely low recall for class 1 and 2, indicating many 
false negatives. 

• Overfitting Level: Very High, Significant difference between train and test accuracy shows 
very high level of overfitting. 

3. SVM Cubic 

• Test vs Train: Another case of overfitting with training accuracy at 91.35% and test 
accuracy at 46.55%. 

• Classification Report: Poor performance across all classes. 

• Precision-Recall: Low scores in both precision and recall for all classes except class 2. 

• Overfitting Level: Very High, Significant difference between train and test accuracy shows 
high level of overfitting. 
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4. KNN Fine 

• Test vs Train: Slight overfitting with training accuracy at 99.80% and test accuracy at 
64.32%. 

• Classification Report: Good performance on class 2, but poor on class 4. 

• Precision-Recall: High precision but low recall for class 1, indicating it's missing many 
actual positives. 

• Overfitting Level: Moderate, Significant difference between train and test accuracy but 
less compared to all SVM models. 

5. KNN Medium 

• Test vs Train: Consistent but not excellent, with training accuracy at 99.43% and test 
accuracy at 63.15%. 

• Classification Report: Similar to KNN Fine but slightly worse. 

• Precision-Recall: High precision but low recall for class 1. 

• Overfitting Level: Moderate, Significant difference between train and test accuracy but 
less compared to all SVM models. 

6. KNN Cubic 

• Test vs Train: Similar to KNN Medium in terms of overfitting. 

• Classification Report: Almost identical to KNN Medium. 

• Precision-Recall: Similar issues with precision and recall as KNN Medium. 

• Overfitting Level: Moderate, Significant difference between train and test accuracy but 
less compared to all SVM models. 

7. TREE Fine 

• Test vs Train: Minimal overfitting with training accuracy at 99.78% and test accuracy at 
74.74%. 

• Classification Report: Excellent performance on class 0 and 2, poor on class 4. 

• Precision-Recall: High precision and recall for class 0 and 2, indicating a balanced model 
for these classes. 

• Overfitting Level: Low, It is overfitting but compared to above SVM and KNN models it 
somewhat generalizes the data level. 

8. TREE Medium 

• Test vs Train: Good generalization with training accuracy at 98.88% and test accuracy at 
70.04%. 

• Classification Report: Good performance on class 0 and 2, poor on class 4. 

• Precision-Recall: Similar to TREE Fine but slightly worse. 

• Overfitting Level: Low, It is overfitting but compared to above SVM and KNN models it 
somewhat generalizes the data level but less compared to Tree Fine. 

Important Observations 

• Overfitting: SVM models are highly overfitting. Tree and KNN models are somewhat better 
but can be improved. 

• Class Imbalance: All models struggle with class 4, which might be due to class imbalance. 
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• Precision-Recall Tradeoff: Most models have a high precision but low recall for class 1, 
indicating a need for better class balancing. 

Proposed method:   
 
Our Approach 
 
To address the challenges of overfitting and model assumptions, we propose the following 
approach: 
 
Data Preparation 
 
Utilizing the Entire Dataset (147885, 42) 
 
Inference: Leveraging the full dataset will improve the model's ability to generalize, reducing the 
risk of overfitting. 
 
Data Splitting 
 
Ratio: 80% Training & 20% Testing 
Inference: This ratio ensures that we have enough data for training while also having separate sets 
for validation and testing. 
 
Data Transformation 
 
Methods: Standard Scaler for numerical features and One-Hot Encoding for categorical features. 
Inference: This will make the data compatible for machine learning algorithms that are sensitive to 
feature scales. 
 
Feature Engineering 
Feature Selection 
 
Methods: Ensemble feature selection combining Information Gain, Chi-Square, Random Forest. 
Inference: This hybrid approach aims to capture the most informative features, thereby improving 
model performance. 
 
Dimensionality Reduction 
 
Methods: Using PCA 
Inference: Principal Component Analysis (PCA) is a dimensionality reduction technique that is 
commonly used in machine learning to analyze and visualize high-dimensional data. PCA projects 
the data onto a lower-dimensional subspace, while preserving as much of the data's variance as 
possible 
 
Data Balancing 
 
Methods: Using SMOTE for upsampling the minority classes (U2R, R2L, and Probe). 
Inference: This will address the class imbalance issue, making the model less biased towards the 
majority class. 

 
Model Training and Evaluation 
Model Selection 
 
Methods: Using Recurrent Neural Networks (RNNs), DNN, KNN & Decision Tree. 
 
Inference: These advanced models are known for high performance in classification tasks. 
 
Hyperparameter Tuning 
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Methods: Using Random Search 
Inference: This will help us find the optimal set of hyperparameters for our model. 
 
Model Training 
 
Inference: The model will be trained on the training set to learn the underlying patterns in the 
data. 
 
Model Evaluation 
 
Metrics: Accuracy, Precision, Recall, F1-Score, Geometric Mean 
Inference: These metrics will give us a comprehensive view of the model's performance on the 
validation set. 
 
Cross-Validation 
 
Methods: Using Stratified K-Fold 
Inference: This is crucial for imbalanced data to ensure that each fold is a good representative of 
the whole. 
 
Model Testing 
 
Inference: The final step is to evaluate the model on the test set to confirm its performance and 
generalization ability. 

 
By following this comprehensive approach aim to build a robust and high-performing model for our 
classification task. 

 
Pre-processing Summary 
 
In the interest of avoiding redundancy, I won't reiterate the pre-processing steps that have already 
been executed to align with the literature. Instead, I'll provide key highlights of what has been 
accomplished in terms of data pre-processing. 
 
 
Key Highlights 
Attack Class Mapping: 
 
Utilized the FieldNames.pdf to map the attack classes correctly. 
 
Handling Missing Values: 
 
Referred to the work of Azam Rashid to fill in the gaps in the Attack Class, as suggested by other 
literature cited in the assignment. 
 
Data Type Conversion: 
 
Although certain columns were binary and numerical, they were indicated as symbolic 
in FieldNames.pdf. Consequently, I've converted their data types to Object to treat them as 
categorical features. 
 
Duplicates: 
 
629 duplicates after mapping attack class has been removed. 
 
By summarizing these steps, we ensure a clear understanding of the pre-processing actions taken, 
which sets the stage for subsequent modeling and analysis. 
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Motivation behind the proposed solution.:   

 
After training multiple models based on the directions in the literature and finding gaps and 
limitations, particularly with overfitting and lack of testing data evaluation, an improved 
approach is proposed. This involves using a combination of neural network models (DNN and RNN) 
along with KNN and Decision Tree models from the author's literature. The aim is to show that 
better use of hyperparameters and data will help in achieving higher performance and 
generalization of the models. 
 
Limitations in Literature models: 
 
Overfitting: SVM models are highly overfitting. Tree and KNN models are somewhat better but can 
be improved. Class Imbalance: All models struggle with class 4, which might be due to class 
imbalance. Precision-Recall Tradeoff: Most models have a high precision but low recall for class 1, 
indicating a need for better class balancing. 
 
Challenges and Important Notes Challenges 
 
Conversion from MATLAB to SKLearn - Ensuring consistent model parameters across both 
platforms. 
 
Ambiguity in Training Data Selection - Assuming 22,561 rows for the training set. 
Category Encoding Methods - Opting for label encoding (MATLAB default) to maintain consistency. 
 
Feature Elimination - Using Information Gain and pre-processing steps to make educated 
assumptions for dropping columns. 
Incomplete Attack Class References - Using other literature to fill gaps in attack class labels. 
 
Computational Complexity - High computational burden due to requirement of 100 iterations, 10 
splits, and 10 K-fold validations for eight different models. 
 
Performance Variability - Models show varying performance, potentially due to limitations and 
assumptions made regarding data selection, encoding, and feature selection. 
 
Important Notes Evaluation on Test Data: Addressing the gap in the literature by evaluating 
models on unseen test data to ensure real-world applicability. Risk of Overfitting: Training models 
that generalize well to new, unseen data is crucial in the context of Intrusion Detection Systems. 
 
Improvement Over Author's Metrics All models in the code-generated table outperformed the 
corresponding models in the author's table in terms of mean metrics. 
 
Proposed method is based on: 
 
Using the entire dataset for model generalization 
 
An 80% Training & 20% Testing data split 
 
Data transformation with Standard Scaler for numerical features and One-Hot Encoding for 
categorical features 
 
Ensemble feature selection combining Information Gain, Chi-Square, Random Forest 
 
Dimensionality reduction using PCA 
 
Data balancing with SMOTE for upsampling minority classes 
 
Model training and evaluation with RNNs, DNN, KNN, and Decision Tree 
 
Hyperparameter tuning using Random Search 
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Cross-validation using Stratified K-Fold 
 
By following this comprehensive approach, the aim is to build a robust and high-performing model 
for the classification task. 
 

How the proposed solution is different from existing ones:   

 
Comparison Between Literature and Proposed Method 
 
The proposed solution differs from the existing literature in several aspects, including *data 
preparation, **feature engineering, **model training, and *evaluation. A detailed comparison is 
provided below: 

 
Data Preparation 
Data Utilization 
 
Literature: Utilized only 22,561 rows and 40 columns. 
Proposed Method: Utilized the entire NSL-KDD dataset. 
 
Data Splitting 
 
Literature: Used the predefined train and test dataset from the literature. 
*Proposed Method: Used a train-test split ratio of *80% training and 20% testing. 
 
Data Transformation 
 
Literature: Used Min-Max Scaler for numerical features and Label Encoding for categorical 
features. 
Proposed Method: Used Standard Scaler for numerical features and One-Hot Encoding for 
categorical features. 
 
*Inference: The proposed method makes better use of the **dataset, provides a more balanced 
split for **model evaluation, and addresses potential issues with *scaling and encoding. 

 
Feature Engineering 
Feature Selection 
 
Literature: No clear mention of how the 40 columns were selected. 
Proposed Method: Used ensemble feature selection combining *Information Gain, Chi-Square, and 
Random Forest. 
 
Dimensionality Reduction 
 
Literature: No dimensionality reduction technique was used. 
Proposed Method: Used *PCA, a dimensionality reduction technique. 
 
Data Balancing  
 
Literature: Did not address the issue of class imbalance. 
Proposed Method: Used *SMOTE for upsampling minority classes. 
 
Inference: The proposed method takes a more comprehensive approach to **feature selection, 
**dimensionality reduction, and **class balancing, which may contribute to improved *model 
performance. 

 
Model Training and Evaluation 
Model Selection 
 
Literature: Used only non-ensemble methods (SVM, KNN, and Decision Tree). 
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Proposed Method: Used **Neural Networks (RNNs, DNN), **Non-Ensemble (KNN and Decision Tree), 
and *Ensemble (Random Forest) models. 
 
Hyperparameter Tuning 
 
Literature: Used default MATLAB models without any mention of hyperparameters. 
Proposed Method: Used relevant *hyperparameters for each model and clearly denoted them in 
the Model section for replication purposes. 
 
Model Training 
 
Literature: Conducted extensive training with 10 K-Fold cross-validation. 
Proposed Method: Due to time constraints, only 2 stratified K-Fold cross-validation was performed. 
 
Model Evaluation 
Literature: Performed an extensive evaluation on the training data but did not perform any testing 
on the unseen data. 
Proposed Method: Conducted an extensive evaluation on *test data as well, using the same 
metrics. 
 
Model Testing 
 
Literature: Did not perform testing on test data. 
Proposed Method: Conducted extensive evaluation and testing on the *test dataset. 
 
Inference: The proposed method provides a broader range of **models, clearly stated 
**hyperparameters, and a more thorough **evaluation and testing process, which may lead to 
improved *performance and generalization of the models. 
 

Proposed Models and its Parameters Used:   

 
KNN (K-Nearest Neighbors): 

 
A non-parametric classification model that works by finding the k-nearest neighbors of an 

instance and assigning it the most common class label of its neighbors. 
 
Hyperparameters: 
 

• n_neighbors: Number of nearest neighbors considered [3, 5] 

• weights: Weight function used in prediction; 'uniform' is used 

• algorithm: Algorithm used to compute the nearest neighbors; 'auto' is used to let sklearn 
choose the best method 

 
Best Hyperparameters: 
  
{'weights': 'uniform', 'n_neighbors': 3, 'algorithm': 'auto'} 
 
Decision Tree: 
 

A tree-based classification model that splits the input features based on feature 
importance. 
 
Hyperparameters: 
 

• criterion: The function to measure the quality of a split ['gini', 'entropy'] 

• splitter: The strategy used to choose the split at each node ['best', 'random'] 

• max_depth: The maximum depth of the tree [None, 10, 20] 

• min_samples_split: The minimum number of samples required to split an internal node [2, 
5, 10] 
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Best Hyperparameters:  
 
Best parameters: {'splitter': 'best', 'min_samples_split': 5, 'max_depth': 20, 'criterion': 'entropy'} 
 
 
DNN (Deep Neural Network): 
 

A multi-layer feedforward artificial neural network that uses multiple layers of nodes to 
learn hierarchical representations of the input data. 
 
Hyperparameters: 
 

• optimizer: Optimization algorithm used for weight updates ['SGD', 'Adam'] 

• dropout_rate: Dropout rate for regularizing the model [0.0, 0.2, 0.5] 

• batch_size: Number of samples per gradient update [64] 

• epochs: Number of times the entire training dataset is passed through the model [10] 
 
Best Parameters: 

 
{'optimizer': 'Adam', 'epochs': 10, 'dropout_rate': 0.2, 'batch_size': 64} 
 
 
RNN (Recurrent Neural Network): 
 
A type of neural network that can process sequences of input data by maintaining a hidden state 
that can remember information from previous time steps. 
 
Hyperparameters: 
 

• optimizer: Optimization algorithm used for weight updates [‘SGD’, ‘Adam’] 

• dropout_rate: Dropout rate for regularizing the model [0.0, 0.2, 0.5] 

• batch_size: Number of samples per gradient update [64] 

• epochs: Number of times the entire training dataset is passed through the model [10] 
 
Best Hyperparameters:  
 
{Best parameters: {'optimizer': 'Adam', 'epochs': 10, 'dropout_rate': 0.2, 'batch_size': 64} 
 

 
Random Forest: 
 

An ensemble learning method that constructs multiple decision trees and combines their 
predictions for improved accuracy and reduced overfitting. 
 
Hyperparameters: 
 

• n_estimators: The number of trees in the forest [50, 100] 

• criterion: The function to measure the quality of a split [‘gini’, ‘entropy’] 

• max_depth: The maximum depth of the tree [None, 10, 20] 

• min_samples_split: The minimum number of samples required to split an internal node [2, 
5, 10] 

• class_weight: Weights associated with classes to address the class imbalance [‘balanced’, 
‘balanced_subsample’] 

 
Best Hyperparameters:  
 
{'n_estimators': 100, 'min_samples_split': 2, 'max_depth': 20, 'criterion': 'entropy', 'class_weight': 'bal
anced'} 
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These models are trained and evaluated using the train_evaluate_model function, which takes the 
model, its *hyperparameters, data (X, y), and the *cross-validation method as input. The function 
performs a randomized search with cross-validation to find the best set of hyperparameters and 
returns the evaluation metrics such as *accuracy, **precision, **recall, **F1 score, and *geometric 
mean. 
 

Description of experimental protocol:  
 

• Description of experimental protocol. 
 

1. Data Preparation: 
 

Utilizing the Entire Dataset (147885, 42) 
Inference: Leveraging the full dataset will improve the model's ability to generalize, 
reducing the risk of overfitting. 
 

2. Data Splitting 
 

Ratio: 80% Training & 20% Testing 
Inference: This ratio ensures that we have enough data for training while also having 
separate sets for validation and testing. 
 

3. Data Transformation 
 

Methods: Standard Scaler for numerical features and One-Hot Encoding for categorical 
features. 
Inference: This will make the data compatible for machine learning algorithms that are 
sensitive to feature scales. 

 
• Feature Engineering 

 
1. Feature Selection 

 
Methods: Ensemble feature selection combining Information Gain, Chi-Square, Random 
Forest. 
Inference: This hybrid approach aims to capture the most informative features, 
thereby improving model performance. 

 
2. Dimensionality Reduction 

 
Methods: Using PCA 
Inference: Principal Component Analysis (PCA) is a dimensionality reduction technique 
that is commonly used in machine learning to analyze and visualize high-dimensional 
data. PCA projects the data onto a lower-dimensional subspace, while preserving as 
much of the data's variance as possible 

 
3. Data Balancing 

 
Methods: Using SMOTE for upsampling the minority classes (U2R, R2L, and Probe). 
Inference: This will address the class imbalance issue, making the model less biased 
towards the majority class. 

 
• Model Training and Evaluation 

 
1. Model Selection 

 
Methods: Using Recurrent Neural Networks (RNNs), DNN, KNN and Decision Tree. 
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Inference: These advanced models are known for high performance in classification 
tasks. 

 
2. Hyperparameter Tuning 

 
Methods: Using Random Search 
Inference: This will help us find the optimal set of hyperparameters for our model. 

 
3. Model Training 

 
Inference: The model will be trained on the training set to learn the underlying 

patterns in the data. 
4. Model Evaluation 

 
Metrics: Accuracy, Precision, Recall, F1-Score, Geometric Mean 
Inference: These metrics will give us a comprehensive view of the model's performance 
on the validation set. 
 

5. Cross-Validation 
 

Methods: Using Stratified K-Fold 
Inference: This is crucial for imbalanced data to ensure that each fold is a good 
representative of the whole. 

 
6. Model Testing 

 
Inference: The final step is to evaluate the model on the test set to confirm its 
performance and generalization ability. 

 
By following this comprehensive approach aim to build a robust and high-performing model for our 
classification task. 
 
 

Pre-Processing Summary:   
 

In the interest of avoiding redundancy, I won't reiterate the pre-processing steps that have 
already been executed to align with the literature. Instead, I'll provide key highlights of what has 
been accomplished in terms of data pre-processing. 

 
Key Highlights 
Attack Class Mapping: 
 
Utilized the FieldNames.pdf to map the attack classes correctly. 
 
Handling Missing Values: 
 
Referred to the work of Azam Rashid to fill in the gaps in the Attack Class, as suggested by other 
literature cited in the assignment. 
 
Data Type Conversion: 
 
Although certain columns were binary and numerical, they were indicated as symbolic 
in FieldNames.pdf. Consequently, I've converted their data types to Object to treat them as 
categorical features. 
 
Duplicates: 
 
629 duplicates after mapping attack class has been removed. 
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By summarizing these steps, we ensure a clear understanding of the pre-processing actions taken, 
which sets the stage for subsequent modeling and analysis. 
 

Partitioning Numerical and Categorical Features:   
 
Inference on Feature Types 
Numerical Features 
 
The dataset contains 34 numerical features, which include various types of data such 
as duration, src_bytes, dst_bytes, etc. 
 
These features are likely to be directly measurable and would be scaling using Standard Scaler. 
Categorical Features 
 
There are 8 categorical features in the dataset, including the target variable attackclass. 
 
These features like protocol_type, service, flag are non-numeric and would be performing one-hot 
encoding. 
 
Target Variable 
 
The target variable is attackclass, which we have separated from the list of categorical features for 
model training. 
 
Key Takeaways 
 
Data Preprocessing: Both numerical and categorical features will require different preprocessing 
steps. Numerical features may need scaling, while categorical features will require encoding. 
 

Split the NSL Data:   
 
Inference on Data Splitting into Features and Target Variable 

 
Features Matrix (X) 
 
The features matrix X has been created by dropping the target variable attackclass from the 
original dataframe. 
 
The shape of X indicates that it has 147,885 rows and 41 columns. 
 
Target Variable (y) 
 
The target variable y contains the attackclass labels. 
 
The shape of y shows that it has 147,885 entries, which matches the number of rows in X. 
 

Split the features matrix X and the target variable y into training and test datasets:   

 
Inference on Data Splitting for Training and Testing 

 
Training Data 
 
The training feature matrix X_train has 118,308 rows and 41 columns. 
 
The training target variable y_train has 118,308 entries. 
 
Testing Data 
 
The testing feature matrix X_test has 29,577 rows and 41 columns. 
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The testing target variable y_test has 29,577 entries. 
 
Data Split Ratio: The data has been split into an 80-20 ratio for training and testing, respectively. 
 
Random State: A random_state of 42 ensures that the split is reproducible. 
 

Scaling:   

 
Inference on Data Scaling 

 
Standard Scaling 
 
The StandardScaler from scikit-learn is used to standardize the numerical features. 
 
The scaling is fit on the training data and applied to both the training and testing data. 
 
Avoid Data Leakage: The scaler is fit only on the training data to avoid data leakage from the test 
set. 
 
Data Dimensions 
 
The shape of the scaled training feature matrix X_train_scaled is 118,308 rows and 34 numerical 
columns. 
 
The shape of the scaled testing feature matrix X_test_scaled is 29,577 rows and 34 numerical 
columns. 
 

One Hot Coding:   
 
Inference on One-Hot Encoding and Final Data Preparation 

 
One-Hot Encoding 
 
The OneHotEncoder from scikit-learn is used to encode the categorical features. 
The encoder is fit on the scaled training data and applied to both the scaled training and testing 
data. 
 
Data Dimensions 
 
The shape of the one-hot encoded training feature matrix X_train_encoded is 118,308 rows and 91 
columns. 
 
The shape of the one-hot encoded testing feature matrix X_test_encoded is 29,577 rows and 91 
columns. 
 
Final Data Preparation 
 
The one-hot encoded features are concatenated with the scaled numerical features. 
 
The shape of the final training feature matrix X_train_final is 118,308 rows and 125 columns. 
 
The shape of the final testing feature matrix X_test_final is 29,577 rows and 125 columns. 
Dimensionality Increase: One-hot encoding has increased the number of features from 41 to 125. 
 
 
 

Feature Importance:   
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Inference on Feature Importance and Elimination (Hybrid Model) 

 
Methodologies 
 
A Hybrid Model for feature selection is implemented by combining Random Forest, Information 
Gain, and Chi-Square methods. 
 
Each feature is ranked based on its importance from each of these methods. 
 
 
Feature Rankings 
 
The Hybrid Rank is calculated as the mean of the ranks obtained from the three methods. 
 
Features like src_bytes, dst_bytes, and count have the Best Hybrid Ranks, making them highly 
important. 
 
Top 100 Features 
 
The top 100 features are selected based on their Hybrid Rank. 
 
The shape of the training set (X_train_top) with these features is 118,308 rows and 100 columns. 
 
The shape of the test set (X_test_top) with these features is 29,577 rows and 100 columns. 
 
Notes 
 
Efficient Feature Selection: The Hybrid Model provides a robust way to select the most important 
features, potentially improving model performance. 
 
 

Dimension Reduction:   
 
 

 
 
 
 
Inference on Principal Component Analysis (PCA) 

 
Objective 
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The goal is to reduce the dimensionality of the dataset while retaining as much information as 
possible. 
 
Explained Variance 
 
A plot of Explained Variance vs. Number of Components is generated to understand how many 
principal components are needed to capture significant variance in the data. 
 
The cumulative explained variance reaches 0.9 (or 90%) at the 19th principal component. 
PCA Application 
 
Initially, PCA is applied with 80 components to explore the explained variance. 
 
Finally, PCA is applied with enough components to capture 90% of the variance, which turns out to 
be 19 components. 
 
Data Shape After PCA 
 
The shape of X_train_pca is 118,308 rows and 19 columns, significantly reduced from the original 
feature set. 
 
The shape of X_test_pca is 29,577 rows and 19 columns, significantly reduced from the original 
feature set. 
 
Notes 
 
Efficient Dimensionality Reduction: PCA has effectively reduced the feature space to 18 principal 
components while retaining 90% of the original variance. 
 
Computational Efficiency: The reduced dataset is expected to be computationally less expensive 
for model training. 
 

SMOTE:   
 
Inference on Data Upsampling Using SMOTE 

 
Objective 
 
The goal is to balance the class distribution in the training dataset using SMOTE (Synthetic Minority  
Over-sampling Technique). 
 
Initial Class Distribution 
 
The initial class distribution is as follows: 
 

• Label 0: 42,455 occurrences 

• Label 1: 61,546 occurrences 

• Label 2: 11,113 occurrences 

• Label 3: 3,097 occurrences 

• Label 4: 97 occurrences 
 
Identifying Minority and Majority Classes 
 
Minority classes (u2r and r2l) are identified as labels 3 and 4. 
 
Majority class (probe) is identified as label 2. 
Classes 0 and 1 are also considered. 
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SMOTE Application 
 
SMOTE is applied to the minority classes to upsample them to the same number of samples as the 
majority class (probe). 
 
The upsampled minority class samples are then combined with the majority class samples and the 
samples from classes 0 and 1. 
 
Data Shuffling 
 
The combined dataset is shuffled to ensure that the samples are randomly distributed. 
Data Shape After SMOTE 
 
The shape of X_train_upsampled and y_train_upsampled is 137,340 rows and 21 columns. 
Final Class Distribution 
 
The final class distribution after SMOTE is balanced for the minority classes: 
 

• Label 0: 42,455 occurrences 

• Label 1: 61,546 occurrences 

• Label 2: 11,113 occurrences 

• Label 3: 11,113 occurrences 

• Label 4: 11,113 occurrences 
 
Key Takeaways 
Class Balance: SMOTE has effectively balanced the class distribution, making the dataset more 
suitable for training classifiers. 
 
Data Augmentation: The minority classes have been augmented to match the majority class, 
potentially improving model performance on these classes. 
 
Ready for Model Training: The dataset is now prepared for training machine learning models with a 
balanced class distribution. 
 

Model Training:   
 

• Ensemble Method: Random Forest 

• Non-Ensemble Methods: K-Nearest Neighbors (KNN) & Decision Tree 

• Neural Networks: Deep Neural Networks and Recurrent Neural Networks 
 
 
Inference on Model Training and Evaluation 

 
Model Types and Techniques 
Diversity in Models: 
 

In this project, I've employed a mix of ensemble methods (Random Forest), non-ensemble 
methods (K-Nearest Neighbors, Decision Tree), and neural networks (Deep Neural Networks, 
Recurrent Neural Networks). This diverse set of models is designed to capture different aspects of 
the data. 
 
Upsampling: 
 

I've used upsampled data to handle class imbalance, aiming for a more balanced and fair 
model. 
 
Cross-Validation: 
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I've implemented Stratified K-Fold cross-validation, a robust method for estimating the 
performance of a model on an independent dataset and for checking for overfitting. 

 
Hyperparameter Tuning and Evaluation 
Randomized Search: 
 

I've chosen RandomizedSearchCV for hyperparameter tuning, which is computationally more 
efficient than GridSearch, especially when the hyperparameter space is large. 
 
Scoring Metric: 
 

The F1 macro score is used as the scoring metric in RandomizedSearchCV, a good choice for 
dealing with imbalanced classes. 
 
Custom Metrics: 
 

I've defined a custom F1 score metric for neural networks to ensure that the evaluation is 
consistent across different types of models. 

 
Model Performance 
 
High Accuracy and F1 Score: 
 
Both the Decision Tree and Random Forest models have shown exceptionally high accuracy and F1 
scores, indicating their suitability for this particular task. 
 
Neural Networks: 
 
The DNN and RNN models, while having slightly lower accuracy and F1 scores compared to Decision 
Tree and Random Forest, still perform quite well. 
 
Consistency in Metrics: 
 
The metrics like accuracy, precision, recall, and F1 score are consistently high across different 
models, adding confidence to the robustness of the models. 
 
Execution Time: 
 
RNN model takes more time for training compared to other models, which could be a consideration 
for real-time applications. 
 
Metrics DataFrame: 
 
I've used a DataFrame to store the evaluation metrics, making it easier to compare and analyze the 
performance of different models. 
 

Evaluation Metrics:   
 
Training Metrics: 
 
Training Model Performance Summary and Inference 

 
KNN (K-Nearest Neighbors) 
 
Best Parameters: {'weights': 'uniform', 'n_neighbors': 3} 
Best Score: 97.86% 
Mean Score: 97.71% 
Std Dev: 0.0029% 
Accuracy: 99.39% 
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Precision: 99.39% 
Recall: 99.39% 
GMean: 99.59% 
F1 Score: 99.39% 
 
Inference: 

     The KNN model shows excellent performance, especially in accuracy, precision, and recall. The 

high GMean and F1 Score indicate robust classification capabilities. 
 
Decision Tree 

  
Best Parameters: {'splitter': 'best', 'min_samples_split': 2} 
Best Score: 97.32% 
Mean Score: 93.80% 
Std Dev: 0.1705% 
Accuracy: 100% 
Precision: 100% 
Recall: 100% 
GMean: 100% 
F1 Score: 100% 
 
Inference: 

         The Decision Tree model shows perfect performance across all metrics. However, the 

perfect scores may indicate a risk of overfitting. 
 
DNN (Deep Neural Network) 

  
Best Parameters: {'optimizer': 'Adam', 'epochs': 10, 'dropout_rate': 0.2} 
Best Score: 93.56% 
Mean Score: 90.79% 
Std Dev: 0.2067% 
Accuracy: 97.08% 
Precision: 97.09% 
Recall: 97.08% 
GMean: 98.03% 
F1 Score: 97.08% 
 
Inference: 

     The DNN model shows good performance, but it's slightly lower than KNN and Decision Tree. 

The high GMean suggests that the model handles minority classes well. 

 
RNN (Recurrent Neural Network) 
 
Best Parameters: {'optimizer': 'Adam', 'epochs': 10, 'dropout_rate': 0.2} 
Best Score: 93.99% 
Mean Score: 91.17% 
Std Dev: 1.7528% 
Accuracy: 96.31% 
Precision: 96.41% 
Recall: 96.31% 
GMean: 97.62% 
F1 Score: 96.34% 
 
Inference: 

     The RNN model shows comparable performance to the DNN model, with good metrics across the 

board. The GMean value suggests effective handling of minority classes. 

 
Random Forest 
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Best Parameters: {'n_estimators': 100, 'min_samples_split': 5} 
Best Score: 98.60% 
Mean Score: 96.60% 
Std Dev: 0.0945% 
Accuracy: 99.96% 
Precision: 99.96% 
Recall: 99.96% 
GMean: 99.98% 
F1 Score: 99.96% 
 
Inference: 

             The Random Forest model shows exceptional performance, almost reaching perfect 

scores. The high GMean indicates excellent classification capabilities. 

 
Conclusion 

      All models show good to excellent performance on the training data, with the Random Forest 

model standing out. 

      It's crucial to evaluate these models on a test dataset to confirm their generalization 

capabilities. 

      Overfitting could be a concern, especially for the Decision Tree model that shows perfect 

scores. Further will test the performance against Test set. 
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Test Evaluation Metrics: 
 
Model Performance Summary and Inference on Test Data 
 

   
 
 
 

 
KNN (K-Nearest Neighbors) 
 
Training Metrics: 



S223919051 High Distinction Report 
 

SIG720 – Machine Learning High Distinction Task 39 

Accuracy: 99.39% 
Precision: 99.39% 
Recall: 99.39% 
GMean: 99.59% 
F1 Score: 99.39% 
 
Test Metrics: 
Accuracy: 98.71% 
Precision: 98.84% 
Recall: 98.71% 
GMean: 99.10% 
F1 Score: 98.76% 
 
Inference: 
 

     The KNN model maintains high performance from training to testing, suggesting good 

generalization. 

 
Decision Tree 
 
Training Metrics: 
Accuracy: 100% 
Precision: 100% 
Recall: 100% 
GMean: 100% 
F1 Score: 100% 
 
Test Metrics: 
Accuracy: 98.48% 
Precision: 98.53% 
Recall: 98.48% 
GMean: 98.84% 
F1 Score: 98.50% 
 
Inference: 

         The Decision Tree model shows a slight drop in performance from training to testing, which 

may indicate overfitting. 
 
DNN (Deep Neural Network) 

  
Training Metrics: 
Accuracy: 97.08% 
Precision: 97.09% 
Recall: 97.08% 
GMean: 98.03% 
F1 Score: 97.08% 
 
Test Metrics: 
Accuracy: 97.13% 
Precision: 97.69% 
Recall: 97.13% 
GMean: 98.12% 
F1 Score: 97.35% 
 
Inference: 

     The DNN model shows consistent performance from training to testing, indicating good 

generalization. 

 
RNN (Recurrent Neural Network) 
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Training Metrics: 
Accuracy: 96.31% 
Precision: 96.41% 
Recall: 96.31% 
GMean: 97.62% 
F1 Score: 96.34% 
 
Test Metrics: 
Accuracy: 96.49% 
Precision: 97.31% 
Recall: 96.49% 
GMean: 97.69% 
F1 Score: 96.81% 
 
Inference: 

     The RNN model also shows consistent performance from training to testing, suggesting it 

generalizes well. 

 
Random Forest 
 
Training Metrics: 
Accuracy: 99.96% 
Precision: 99.96% 
Recall: 99.96% 
GMean: 99.98% 
F1 Score: 99.96% 
 
Test Metrics: 
Accuracy: 99.07% 
Precision: 99.11% 
Recall: 99.07% 
GMean: 99.31% 
F1 Score: 99.09% 
 
Inference: 

             The Random Forest model shows excellent performance in both training and testing, 

making it the best-performing model. 

 
Overall Conclusion 

      All models show good to excellent performance on both training and test data. 

      Random Forest stands out as the best-performing model. 

      It's crucial to consider overfitting, especially for the Decision Tree model. 

      Further validation and hyperparameter tuning may improve the models further. 
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