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Abstract

This paper reexamines the role of IST shocks in macroeconomic fluctuations

by accounting for movements in oil and food prices. Using a structural VAR

and a DSGE model with a commodity sector, I show that standard IST shock

estimates embed information from food and oil price fluctuations, distorting their

macroeconomic impact. After adjusting for these effects, IST shocks lead to

declining price levels, immediate increases in GDP and investment, and a lagged

rise in consumption. Additionally, their contribution to GDP and consumption

variance decreases. These findings highlight the importance of refining IST shock

identification to avoid overstating their role in business cycle dynamics.

Keywords— Relative Price of Equipment, Investment shocks, Oil prices.

1 Introduction

The RPE has been a central topic in economic research since the foundational work of Green-

wood et al. (2000). It is defined as the price of equipment and durable consumption goods

relative to non-durable consumption goods (Ben Zeev & Khan, 2015). Since the mid-1950s,

the RPE has followed a persistent downward trend (Figure 1). A widely accepted expla-

nation for this trend attributes it to IST, a technological factor that enhances productivity

specifically in the investment goods sector. An IST shock represents an exogenous innova-

tion affecting this technology. While empirical studies highlight the role of IST in driving

macroeconomic fluctuations at business cycle frequencies, I demonstrate that part of its esti-

mated impact stems from fluctuations in oil and food prices, which are factors often omitted
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in estimating IST shocks. Once these influences are accounted for, the measured importance

of IST shocks, as inferred from the RPE, diminishes.

Figure 1: log of the relative price of equipment and share of equipment on GDP.

The role of IST in business cycle fluctuations has been explored through both empirical

analysis and structural modeling. Empirical studies consistently highlight the significance

of IST shocks, often relying on a VAR framework to extract these shocks and using fore-

cast error variance decomposition (FEVD) to assess their macroeconomic impact (Ramey,

2016). For example, Fisher (2006), Gaĺı and Gambetti (2009), and Chen and Wemy (2015)

employ long-run and medium-run restrictions to identify IST shocks, providing evidence

of their substantial influence on macroeconomic dynamics. Moreover, Ben Zeev and Khan

(2015) examines news shocks to IST (anticipated exogenous changes in the technology vari-

able), showing that they explain a considerable share of the forecast error variance (FEV)

in consumption, hours worked, investment, and GDP.

Structural models calibrated to the U.S. economy also suggest that IST plays a major

role in macroeconomic fluctuations. Studies by Greenwood et al. (2000), Christensen and

Dib (2008), Jaimovich and Rebelo (2009), and Justiniano et al. (2010) indicate that IST

accounts for a significant share of the variance in consumption, investment, and GDP at

business cycle frequencies. Furthermore, research by Jaimovich and Rebelo (2009), Choi

(2020), and Liao and Chen (2023) examines the role of news shocks to IST and finds that

these shocks substantially contribute to the variance of key macroeconomic indicators.

Despite substantial evidence supporting the role of IST shocks, another strand of the

literature challenges their significance in explaining macroeconomic behavior. This research

employs a DSGE framework with a rich stochastic structure, following the methodology of
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Smets and Wouters (2007). These studies estimate the model using Bayesian techniques and

incorporate the RPE as a key disciplining variable. Notable contributions include Justiniano

et al. (2011), which examines non-news shocks, as well as Schmitt-Grohé and Uribe (2012)

and Ben Zeev and Khan (2015), which focus on news shocks. Understanding the factors

driving these contrasting perspectives is essential for accurately assessing the macroeconomic

impact of IST.

This paper seeks to reconcile part of this discrepancy by examining the role of oil and

food prices in the estimation of IST shocks through the RPE. I demonstrate that standard

empirical estimates of IST shocks exhibit a strong correlation with oil shocks identified

in previous studies. The underlying intuition is straightforward: an increase in oil prices

raises the cost of non-durable consumption goods (the denominator of the relative price of

investment) causing the RPE to decline. After adjusting IST shocks for oil price fluctuations,

I find that the share of FEV attributed to IST shocks decreases, particularly for GDP,

investment, and consumption at business cycle frequencies. This suggests that the empirical

significance often ascribed to IST shocks may, in part, reflect the influence of oil and food

price fluctuations.

Moreover, IST shocks adjusted for oil price movements generate IRFs that align more

closely with standard macroeconomic theory. When oil price fluctuations are ignored, IST

shocks produce a counterintuitive decline in real wages and an increase in consumer price

indexes. However, after accounting for oil price movements, I find that real wages rise

following the shock, while consumer prices decline, resolving these anomalies.

Next, I estimate a structural DSGE model that incorporates both IST shocks and oil and

food price shocks. The model includes a commodity-producing sector whose output serves

as an input for intermediate goods producers, which in turn supply both consumption and

investment goods producers, as well as the final consumption goods sector. This structure

allows commodity prices to directly affect final goods production costs and influence the

dynamics of the relative price of investment. While the modification does not fully reconcile

the gap between the empirical and structural literature, it provides meaningful evidence that

accounting for oil and food prices improves the model’s ability to capture the role of IST

shocks. In particular, the variance decomposition indicates that IST shocks play a significant

role in explaining investment dynamics when commodity price shocks are taken into account.

The model is estimated using Bayesian methods, with the RPE included as an observable

to discipline its behavior over time.

The estimated model produces three key findings: (i) IST plays a limited role in explain-

ing the variance of GDP and consumption, but explains the behavior of investment; (ii) the

theoretical IRFs of macroeconomic variables in response to IST shocks closely align with

those observed in the empirical analysis; and (iii) applying the empirical strategy from Sec-

tion 2 to the simulated data yields similar results, highlighting that using a flawed measure

of the RPE can lead to divergent conclusions in the IRFs.
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The paper is structured as follows: Section 2 presents the empirical methodology, explores

the relationship between IST and oil price shocks, and analyzes the responses of real and

price variables after adjusting for oil and food prices. Section 3 conducts robustness checks

to validate the main findings. Section 4 introduces a medium-scale DSGE model to provide

a theoretical foundation for the empirical results, and Section 5 concludes.

2 RPE, IST shocks and oil-food prices

In this section, I follow the empirical literature by using the RPE to identify IST shocks.

I then apply local projections, following Jordà (2005), to examine the impulse responses

of several macroeconomic variables to these shocks. The results indicate that IST shocks

lead to increases in consumer prices, which can explain the observed decline in real wages.

Additionally, I show that the estimated IST shocks exhibit a significant correlation with oil

price shocks documented in the literature. However, once oil and food prices are incorporated

into the analysis, both the correlation with oil shocks and the rise in consumer prices after

an IST shock diminish. Moreover, the share of FEV attributed to IST shocks for GDP,

consumption, and investment declines after this adjustment.

2.1 Identification of IST shocks

IST shocks are typically estimated by identifying structural innovations that explain the

medium- or long-term variance of the RPE (Ramey, 2016). This approach involves estimating

a VAR model and deriving orthogonal shocks from its reduced-form residuals to maximize

the FEV of the RPE over h periods ahead (Barsky & Sims, 2011).

Following the estimation approach of Chen and Wemy (2015), consider the following

VAR process, which is assumed to provide a sufficiently accurate approximation of the true

data-generating process:

Yt = β(L)Yt + ut (1)

Where Yt is an (n × 1) vector of macroeconomic variables at time t that includes the

total factor productivity and RPE.1 Notice that in the empirical literature, macroeconomic

variables typically exclude both oil prices and food prices from the system of equations. All

variables are in levels, following Sims et al. (1990).

β(L) = B1(L) +B2(L
2) + · · ·+BP (L

P )

is a lag polynomial, and ut is an (n× 1) vector of reduced-form innovations. The latter

is assumed to be a linear combination of structural shocks (εt):

1I include the variables used in the baseline estimation of Chen and Wemy (2015): TFP,
log of RPE, log of GDP per capita, log of investment per capita, log of consumption per
capita, and log of total hours worked.
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ut = Aεt (2)

Where the variance-covariance matrix of the reduced-form innovations is:

Σu = E[utu
′
t] = E[Aεtε

′
tA

′] = AA′ (3)

However, it is well known that A cannot be uniquely identified. To see why, consider

A = ÃQ where Q is an orthonormal matrix. Note that Ã satisfies (3) and therefore is also

a matrix that can be used to obtain the structural shocks:

Σu = E[AA′] = E[ÃQQ′Ã
′
] = E[ÃÃ

′
] (4)

Hence, identifying the IST shocks is equivalent to finding a column q̃1 inQ that maximizes

the FEV of the RPE at the horizon h:

q̃1 = argmax q′1S
hq1 (5)

subject to

q′1q1 = 1, (6)

where Sh is the variance of the forecast error of the variable of interest h steps ahead,

using the Cholesky decomposition on Σ to obtain Ã. Equation (6) guarantees that q1 is a

unit-length column vector that belongs to an orthonormal matrix. Then, the IST shock is

obtained as the first value of the vector:

ϵt = A−1ut = (QÃ)−1ut (7)

Uhlig (2004) shows that the problem can also be written in a quadratic form where the

q1 is the eigenvector associated with the largest eigenvalue of the matrix Sh (Chen & Wemy,

2015). I estimate the VAR with standard OLS using quarterly data from 1964:I to 2019:IV.2

2.2 Local projections

Although computing the IRF within the VAR framework is relatively simple, I employ local

projections as proposed by Jordà (2005) for two primary reasons. First, as noted by Ramey

(2016), local projections are robust to non-linearities and to misspecification within the

VAR.3 Second, my approach entails estimating IST shocks using standard methods in the

literature that do not consider food and oil prices during the estimation process. I then

utilize these estimated shocks to analyze the responses of several consumer price variables,

2Results are robust to the estimation technique in the VAR.
3See, for example, Auerbach and Gorodnichenko (2013). For a survey in Local Projections

literature, see Jordà (2023).
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which were excluded from the original estimation. By examining how these variables respond

to the shocks, I can assess whether the shocks contain additional information.

Let yt be the variable of interest, ϵ̂ISTt be the estimated measure of IST shock, Xt a

vector of macroeconomic controls at time t and ut residuals. I obtain the IRFs from the

following OLS regression:

yt+h − yt−1 = αh + βhϵ̂
IST
t +

4∑
j=1

γh,jXt−j + ut, (8)

Where βh is the value of the IRF at horizon h. The confidence interval is computed by

using HAC standard errors (Jordà, 2023).

Figure 2 presents the IRFs for selected macroeconomic variables in response to the esti-

mated IST shocks. The responses of real economic activity indicators align with conventional

findings: investment, GDP, and hours worked rise immediately following a positive shock,

while consumption exhibits a delayed increase, occurring some quarters later. However, a

puzzling reaction emerges in real wages, which decline after the shock.4 This anomaly is

closely tied to the behavior of nominal variables, including the consumer price index (CPI),

core CPI, and food CPI, which display non-monotonic patterns. In particular, CPI measures

initially rise after the shock before subsequently declining.

Changes in oil and food prices offer a potential explanation for these puzzling responses.

A portion of the decline in the RPE following IST shocks is driven by shocks that raise the

prices of non-durable consumption goods (the denominator in the RPE ratio) primarily due

to increases in energy and food prices. These shocks, however, are distinct from IST shocks

and represent a separate economic phenomenon. In the following section, I focus on the

relationship between IST shocks and oil price shocks, given the extensive literature on iden-

tifying exogenous oil price movements. In contrast, the identification of food price shocks has

received comparatively little attention, and reliable estimates isolating food-specific shocks

remain scarce. Nevertheless, rising food prices likely affect IST shock estimates through

similar mechanisms as oil price fluctuations.5

4Real wages are generally expected to rise in response to IST shocks, as noted in DSGE
models by Justiniano et al. (2010) and Justiniano et al. (2011).

5Food prices also play a crucial role in understanding the US and Euro-area economies.
For recent studies, see De Winne and Peersman (2016), Peersman (2022), and Jo and Ad-
jemian (2023).
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(a) Real Variables.

(b) Price Variables

Figure 2: Impulse response of macroeconomic variables to baseline estimation of IST shocks.
The dotted lines represent the 90,0% interval.

2.3 IST shocks and oil price shocks

For IST shocks to be accurately identified, they must be uncorrelated with other exoge-

nous disturbances, as structural shocks should exhibit no correlation with any other shocks

(Ramey, 2016). This subsection examines the relationship between the identified IST shocks

and oil price shocks. The findings reveal a significant correlation, suggesting that current

identification methods for IST shocks may inadvertently capture information beyond invest-

ment technology changes.

I focus on five series of oil price shocks found in the literature:
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1. O(1). Oil price surprises from Känzig (2021): This paper uses the change in oil futures

prices around OPEC announcements. Oil futures serve as a market-based proxy for

oil price expectations, making them suitable for measuring the impact of these an-

nouncements. Although OPEC’s decisions may be influenced by political and global

economic conditions, using a tight window around the announcements helps isolate

their impact and mitigate endogeneity concerns. This approach assumes that global

economic conditions are already priced in by the market and remain stable within

the window, ensuring that the series captures changes in oil price expectations due to

OPEC’s decisions.

2. O(2). Oil Price news from Känzig (2021): To interpret OPEC announcements as news

about future oil supply, the announcements mustn’t introduce new information about

other factors like oil demand, global economic activity, or geopolitical developments.

To address this, one alternative is to see how OPEC announcements are covered in

the financial press, typically focusing on production quotas. Given the political nature

of OPEC and its less systematic response to economic developments, the information

channel problem may be less significant compared to monetary policy shocks. To fur-

ther mitigate this concern, this measure constructs an informationally robust surprise

series by removing the effects of revisions in OPEC’s global demand forecasts, similar

to the refinement used by Romer and Romer (2004) in the monetary policy context,

ensuring the robustness of the results.

3. O(3). ”Pure” oil price expectation shocks from Baumeister and Hamilton (2019): The

shocks are obtained by first identifying market-based oil price surprises, which are the

deviations between the realized price of oil (such as WTI) and what market participants

had expected the price to be a month before. To isolate the ”pure” expectation com-

ponent, the authors regress these market-based surprises on a set of fundamental oil

supply and demand shocks. By filtering out the influence of these fundamental shocks,

the residuals from this regression are interpreted as the orthogonalized, or ”pure” oil

price expectation shocks. These shocks represent changes in oil prices driven solely

by shifts in market expectations, independent of new information about underlying oil

market fundamentals.

4. Oil supply O(4), and oil demand O(5) shocks from Baumeister (2023): The authors

propose a Bayesian approach to estimate oil supply and demand shocks using structural

vector autoregressions (SVARs). Their method incorporates prior information about

the parameters in the model, including the short-run price elasticities of oil supply and

demand. They account for measurement errors, particularly in global oil inventories,

and utilize historical data to refine their estimates. By generating impulse-response

functions, they analyze the dynamic effects of these shocks on oil prices and economic

activity. Their approach also includes a historical decomposition to assess the contri-

butions of supply and demand shocks to significant oil price movements, ensuring a

robust and nuanced understanding of the underlying factors driving these fluctuations.
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Table 1 presents the correlations between oil price shocks and IST shocks, including

comparisons with IST shocks estimated in previous studies. IST(1) refers to the shock

estimated in Section 2.1, while IST(2) corresponds to the estimation by Drechsel (2023), who

follows the identification approach of Fisher (2006). Ben Zeev and Khan (2015), hereafter

BZK, estimate two series of IST shocks: IST(3), which captures unanticipated IST shocks

that immediately affect the RPE and maximize its FEV, and IST(4), which represents news

shocks that maximize the FEV of the RPE while remaining orthogonal to unanticipated IST

shocks. The latter is considered the most significant component of IST, as it accounts for

the largest share of economic activity variance.

O(1) O(2) O(3) O(4) O(5)
IST(1) 0.04 0.10 0.25*** 0.13* 0.16**
IST(2) 0.15* 0.13* 0.18** 0.14* 0.16**
IST(3) 0.00 0.08 0.34*** 0.18** 0.07
IST(4) -0.11 -0.28*** -0.28*** -0.05 -0.28***

Table 1: Correlation between IST shocks and Oil shocks. Correlations with O(4) are multi-
plied by -1 because the nature of the shock implies a decrease in the oil price. *p-value <
0.1, ** p-value < 0.05, *** p-value < 0.01

The results reveal a significant correlation between IST shocks identified using long-run

restrictions (Drechsel, 2023) and medium-run restrictions (as in Chen and Wemy, 2015; and

BZK) with oil price shocks. Specifically, the correlation between the first two IST shock

estimates and oil price innovations (O(3) and O(5)) is positive, indicating that an exogenous

increase in oil prices is strongly associated with higher IST shocks. Conversely, the correlation

with O(4), which captures oil supply shocks (i.e., reductions in oil prices), is negative. When

analyzing the estimates from BZK, the correlation between unanticipated IST shocks and

oil supply shocks remains strong, whereas the correlation with news shocks follows a distinct

but still statistically significant pattern.

For IST(4), there is no clear theoretical expectation regarding its correlation with contem-

poraneous oil price shocks, as IST news shocks are forward-looking and relate to anticipated

future changes in the relative price of investment. However, as shown in Table 1, the results

indicate a statistically significant negative correlation between the estimated news shocks

and current oil price shocks.

Fisher (2006) also observes a significant correlation between IST shocks and oil price

movements but offers a different interpretation, suggesting that oil shocks could be regarded

as IST shocks. Specifically, Fisher (2006, p.446) argues:

The oil shock result might not be surprising. Suppose that an exogenous increase in

the price of oil induces substitution toward equipment that the United States is not good at

producing, such as high-mileage cars. If this is the case, then the real price of equipment
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rises. From this perspective, a permanent oil shock is very much like an I-shock.

The findings in this paper suggest an alternative interpretation. My analysis shows

that oil shocks affect fluctuations in the RPE mainly by directly influencing the price of

consumption goods, which form the denominator of the RPE ratio. These price movements

distort the estimated measures of IST shocks, leading to potential misidentification.

2.4 Re-estimating the IST shocks: oil and food prices.

The observed relationship between oil prices and IST shocks underscores the need to refine

the identification strategy. In this paper, I adjust the VAR framework by incorporating two

additional variables to account for the influence of oil and food prices. Specifically, I include

the logarithms of the West Texas Intermediate (WTI) oil price and the food consumer price

index (CPIF) in the VAR model used to estimate IST shocks, as described in Section 2.1.

This modification is applied to the identification strategies of Drechsel (2023) and BZK.6

After incorporating these variables, the identified IST shocks exhibit a significantly lower

correlation with oil price shocks (Table 2).7

O(1) O(2) O(3) O(4) O(5)
IST(1) -0.05 0.09 0.01 0.05 -0.03
IST(2) -0.01 0.07 -0.10 0.04 -0.08
IST(3) 0.01 0.07 0.27*** 0.17** 0.04
IST(4) -0.14 -0.04 -0.08 0.12 -0.13

Table 2: Correlation between IST shocks including food and oil prices in the estimation and
Oil shocks. Correlations with O(4) are multiplied by -1.0 because the nature of the shock
implies a decrease in the oil price. *p-value < 0.1, ** p-value < 0.05

Estimating IST shocks while controlling for oil and food prices allows for the analysis

of impulse responses using the LP strategy outlined in Section 2.2. Notably, incorporating

these price variables into the VAR system yields IST shocks that no longer generate increases

in consumer price variables or declines in real wages (Figure 3). Meanwhile, the responses

of other real economic variables remain qualitatively unchanged.

6In Appendix B, I detail how I adapt the BZK methodology to incorporate information
on oil and food prices.

7The correlation between IST(3) and both O(3) and O(4) remains statistically significant.
However, the macroeconomic impact of IST(3) is minimal, as it explains only a small fraction
of the variance in economic activity (Ben Zeev & Khan, 2015).

10



(a) Real Variables.

(b) Price Variables

Figure 3: Impulse response of macroeconomic variables to oil and food price adjusted esti-
mation of IST shocks. The dotted lines represent the 90,0% interval.

The adjustment described above reduces the relative contribution of identified IST shocks

to the dynamics of key macroeconomic variables. To illustrate this, I examine the fraction of

FEV attributed to IST shocks within a VAR framework, comparing results with and without

the inclusion of oil and food prices. As shown in Table 3, incorporating these variables

(”Clean”) lowers the estimated share of FEV explained by IST shocks, particularly over

business-cycle frequencies (one to ten quarters). For instance, at the five-quarter horizon,

the adjustment reduces the FEV of GDP attributed to IST shocks by 16.2 percentage points
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(p.p.), investment by 10.6 p.p., and consumption by 14.9 p.p. Furthermore, Appendix B

confirms this pattern for IST news shocks, as identified by BZK.

GDP GDP Inv. Inv. Cons. Cons. Hours Hours
h Base Clean Base Clean Base Clean Base Clean
1 0.192 0.053 0.181 0.073 0.237 0.063 0.061 0.058
5 0.373 0.212 0.452 0.346 0.255 0.116 0.268 0.219
10 0.318 0.214 0.368 0.280 0.224 0.140 0.176 0.167
15 0.298 0.230 0.342 0.258 0.209 0.163 0.138 0.131
20 0.277 0.246 0.332 0.261 0.191 0.182 0.110 0.117

Table 3: FEV explained by IST shocks

3 Robustness analysis

3.1 Modifying the RPE

An alternative approach to controlling for exogenous fluctuations in oil and food prices is

to compute the RPE as the ratio of the price of equipment and durable consumption to the

price of non-durable consumption, excluding energy and food (RPENE ). These excluded

components are directly linked to oil and food price dynamics. This adjustment was first

proposed by Beaudry et al. (2015) in their study of the cyclical behavior of the RPE. By

adopting this measure, it is no longer necessary to explicitly include oil and food prices in

the VAR system, as done in the previous section.

Figure A1 in Appendix A presents the IRFs to IST shocks estimated using RPENE. The

results closely resemble those in Figure 3, with consumer price variables showing no signifi-

cant increases after the shock. Similarly, Table 4 reports the FEVD under this specification,

revealing that the share of forecast error variance attributed to IST shocks at business-cycle

frequencies is lower than in the baseline scenario. This reduction is particularly pronounced

for GDP, consumption, and investment per capita.

3.2 Joint price index of food and energy

The empirical findings remain robust to the choice of variables used to capture fluctuations

in food and oil prices. To verify this, I introduce an alternative measure into the VAR

framework. Instead of using the CPIF and WTI price indices, I incorporate a combined

index of food and oil prices derived from Personal Consumption Expenditures (PCEFE )

data. This alternative variable is constructed as a weighted average of energy and food

prices within non-durable consumption, with weights based on national accounts data.

12



GDP GDP Inv. Inv. Cons. Cons. Hours Hours
h Base Clean Base Clean Base Clean Base Clean
1 0.192 0.063 0.181 0.088 0.237 0.113 0.061 0.032
5 0.373 0.265 0.452 0.387 0.255 0.183 0.268 0.243
10 0.318 0.267 0.368 0.356 0.224 0.204 0.176 0.182
15 0.298 0.280 0.342 0.354 0.209 0.212 0.138 0.148
20 0.277 0.277 0.332 0.352 0.191 0.207 0.110 0.126

Table 4: FEV explained by IST shocks (RPENE)

Figure A2 in Appendix A displays the IRFs to IST shocks identified using the PCEFE

index within the VAR system. The response patterns closely resemble those in Figure 3.

Furthermore, Table 5 shows that the share of FEV explained by IST shocks remains lower

than in the baseline scenario, particularly for GDP, consumption, and investment per capita

at business-cycle frequencies.

GDP GDP Inv. Inv. Cons. Cons. Hours Hours
h Base Clean Base Clean Base Clean Base Clean
1 0.192 0.064 0.181 0.084 0.237 0.121 0.061 0.060
5 0.373 0.261 0.452 0.367 0.255 0.173 0.268 0.247
10 0.318 0.247 0.368 0.312 0.224 0.186 0.176 0.185
15 0.298 0.256 0.342 0.298 0.209 0.200 0.138 0.152
20 0.277 0.266 0.332 0.303 0.191 0.209 0.110 0.136

Table 5: FEV explained by IST shocks (PCEFE)

4 Evidence in a DSGE model

Next, I provide evidence that incorporating oil and food price shocks into the DSGE frame-

work influences the estimation of IST shocks and their role in explaining macroeconomic

fluctuations. DSGE models have been widely used to assess the contribution of IST shocks

to business-cycle dynamics, with some influential studies suggesting that, once the RPE is

used to discipline the model, IST shocks account for only a limited portion of macroeconomic

variance. For example, Justiniano et al. (2011) estimate a medium-scale DSGE model with

both neutral and IST technology shocks, incorporating standard nominal frictions, while

Schmitt-Grohé and Uribe (2012) extend the analysis by introducing news shocks into both

types of technologies.8 In contrast, my results show that when oil and food price shocks are

8Both studies adopt a rich stochastic structure and estimate their models using Bayesian
techniques, following the methodology of Smets and Wouters (2007).
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explicitly accounted for, the variance decomposition reveals a more prominent role for IST

shocks in driving investment dynamics.

This section develops a model inspired by Justiniano et al. (2011), integrating a produc-

tion sector (referred to as the commodity sector) whose price influences the conventional

measure of the RPE. As a result, shocks to the price of this sector also affect the RPE,

introducing a potential channel through which oil and food price fluctuations distort IST

shock estimates.

4.1 The model

The model builds on the framework of Justiniano et al. (2011) but introduces an additional

commodity goods sector. Unlike standard production sectors, this sector does not rely on

capital or labor for production; instead, commodities are assumed to be produced without

cost, with their price determined exogenously. This simplification reflects the reality that

commodities are traded on global markets, where price fluctuations primarily stem from

shifts in global demand and supply. The commodity sector plays a dual role in the economy,

functioning as both a production input and a consumption good. As a result, the price of this

commodity affects both the price of investment goods—through its influence on production

costs—and the price of the consumption bundle, directly impacting consumer expenditures.

Consequently, the RPE, defined as the price of investment goods relative to the consumption

bundle, is not exclusively driven by IST shocks but also reflects fluctuations in the commodity

sector.

The economy consists of two primary components. The first block captures the inter-

actions among the government, firms, households, and labor unions (or labor assemblers).

In this block, households finance government expenditures through taxes and short-term

bond holdings while supplying firms with utilization-adjusted capital and providing labor to

labor assemblers. Firms acquire a bundled labor input from labor assemblers and combine

it with utilization-adjusted capital and a portion of the commodity good to produce both

investment and final consumption goods, which they sell to households. Additionally, firms

supply consumption goods to the government. Households receive interest payments from

the government and use final investment goods to generate and supply utilization-adjusted

capital. Figure A3, Panel A, in Appendix A illustrates the flow of resources within this first

block of the model economy.

The second block represents the production structure of the economy, which is organized

into seven tiers: wholesalers, commodity goods producers, intermediaries, non-commodity

assemblers, investment goods producers, capital producers, and final consumption goods

producers. A key feature of the model is the inclusion of a commodity goods producer. This

sector operates under the assumption that the commodity price is exogenously determined

and produces the required quantity to meet demand. The commodity goods producer sells

its output to both wholesalers and the final consumption goods producer as an input. This

setup mirrors the oil sector specification in Guerrieri and Bodenstein (2012), but based on
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the findings in Section 3, the model extends the commodity sector to include both oil and

food.

Figure A3, Panel B, in Appendix A presents a diagram illustrating this block within the

economy. The following subsections provide a detailed specification of each component of

the production structure.

4.1.1 Wholesale sector

The wholesaler is a competitive producer that uses utilization-adjusted capital, labor from

the labor assemblers, and the commodity good as inputs. These inputs are combined using

a Cobb-Douglas production function that exhibits constant returns to scale, resulting in the

production of a single aggregate good. The optimization problem faced by the wholesaler is

as follows:

max
Lt,Kt,Ot

Pω
t Yω,t −Rk

tKt −WtLt − P o
t Op,t

subject to

Yω,t = Kα
t O

βo

p,t(AtLt)
1−α−βo ,

where Yω,t is the quantity of wholesale sector, Lt is the labor, Kt is the utilization-adjusted

capital, Op.t is the quantity of commodity that is demanded for production of the wholesale

product, and Pω
t , R

k
t , Wt, and P o

t are the prices of each good. The final product of this

sector is sold to each intermediary in a competitive market that uses it as input to produce

an intermediary-specific good. The neutral technology variable (At) follows an AR(1) in

logs:

logAt = (1− ρa)logĀ+ ρalogAt−1 + ϵa,t,

with ϵa,t is i.i.d ∼ N (0, σa).

4.1.2 Non-commodity assembler

The non-commodity assembler (NCA) uses the output of all intermediary producers as in-

puts. Since each intermediary producer holds monopoly power over its respective good, I

introduce the non-commodity sector first to determine the total demand for each interme-

diary good. The NCA operates in a perfectly competitive market and faces the following

optimization problem:

max
Yt(i)

PtYt −
∫ 1

0

Pt(i)Yt(i)δi
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subject to

Yt =
[ ∫ 1

0

Yt(i)
1

1+λt

]1+λt

where Yt is the total quantity of the non-commodity assembler. Its price, Pt, is the model

equivalence of the core consumer price index. Yt(i) and Pt(i) are the output and price of

each intermediary producer. Finally, the variable that governs the substitutability degree

among the intermediary goods, λt, follows an AR(1) process:

logλt = (1− ρp)logλ̄+ ρplogλt−1 + ϵp,t

where ϵp,t is i.i.d ∼ N (0, σp).

Solving the non-commodity assembler problem allows me to know the demand for each

intermediary good i:

Yt(i) =

[
Pt(i)

Pt

]− 1+λt
λt

Yt (9)

4.1.3 Intermediaries

There is a mass-one continuum of intermediaries indexed by i ∈ [0, 1]. Each intermediary

good Yt(i) is produced by a monopolist and uses the output from the wholesaler as input.

They take the quantity of the wholesaler and sell it in a market with monopolistic power.

They choose their optimal price given the downward sloping demand curve Equation 9 for

their good. In doing so, they take into account that, as in Calvo (1983), they can only reset

their price with probability 1−ϕp. This sticky price structure introduces a dynamic problem

for the intermediary, as any present change in price has implications for the future profit of

the firm:

max
Pt(i)

Et

∞∑
s=0

ϕspΛt,t+s

[
Pt(i)− Pω

t

]
Yt(i)

subject to

Yt(i) =

[
Pt(i)

Pt

]− 1+λt
λt

Yt

where Λt,t+s is the stochastic discount factor of the household derived below.
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4.1.4 Final consumption producing sector

The final consumption good in this economy is produced by a competitive firm that combines

a non-commodity good and a commodity good as inputs, using a constant elasticity of

substitution (CES) production function. The optimization problem faced by this producer

is as follows:

max
Y c
t ,Oc,t

P f
t Y

f
t − PtYc,t − P o

t Oc,t

subject to

Yf,t =
[
ωfY

1
1+λf

c,t + (1− ωf )O
1

1+λf

c,t

]1+λf

where Y f
t is the quantity of the final consumption good, P f

t its price, which is the model

counterpart of the consumer price index, oc,t the quantity of commodity good that is used

in the creation of the final consumption good (e.g. the gasoline that uses directly the oil),

P o
t its price, and yc,t is the quantity of the non-commodity good that is used to produce

consumption goods.

4.1.5 Commodity good

The commodity is produced without any cost and the firm sells it to the final consumption-

producing sector and to the wholesale sector at a price P o
t . The price follows an AR(1)

process:

logP o
t = (1− ρo)logP̄ o + ρologP

o
t−1 + ϵo,t,

with ϵo,t is i.i.d ∼ N (0, σo). In equilibrium, the supply of this good must be equal to

the total amount of commodity good demanded by the wholesale sector (Op,t) and the final

good producer (Oc,t) at the given price.

4.1.6 Investment good producer

This sector uses the non-commodity good as an input and transforms it into an investment

good, which is then sold in a competitive market to the capital good producer. The efficiency

of this transformation process is governed by an investment-specific technology process (γt),

which influences the productivity of converting the non-commodity good into the investment

good. The firm’s optimization problem is as follows:

max
Yi,t

P i
t It − PtYi,t
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subject to

It = γtYi,t

where It is the quantity of the investment good, P i
t its price, Yi,t is the quantity of the

non-commodity good that is used in the production of investment goods, and γt is the IST.

The latter follows an AR(1) process:

logγt = (1− ρi)logγ̄ + ρilogγt−1 + ϵi,t

with ϵi,t is i.i.d ∼ N (0, σi). In this economy, this sector is best thought of as the

equipment and machinery in real data. Notice that, solving the problem of the investment

good producer yields to:

P i
t γt = Pt

hence,

γt =
Pt

P i
t

. (10)

Equation 10 highlights that the IST process is inversely related to the relative price of

investment to the non-commodity good. This adjustment reflects the empirical findings

presented in Section 2, where fluctuations in the prices of oil and food may distort the

estimation of IST shocks by influencing the consumption price.

The usual measure of the relative price of equipment (i.e. price of equipment relative to

the price of consumption expenditure) is:

rpit =
P i
t

P f
t

4.1.7 Capital good producer

The capital good producer uses the investment good as its input and determines the level

of capital production, but is subject to investment adjustment costs.9 As a result, the firm

faces a dynamic optimization problem: changing the level of investment today affects future

adjustment costs. Therefore, the firm must decide on a sequence of investment good demands

that maximizes the present value of its future profits. The firm’s optimization problem is as

follows:

9This firm’s problem is analogous to that of a household, which uses the investment good
to produce capital for the next period, subject to adjustment costs.
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max
{It+j}∞0

Et

∞∑
j=0

Λt,t+j

[
P k
t+jIk,t+j − P i

t+jIt+j

]
subject to

Ik,t = µt

[
1− S

( It
It−1

)]
It,

where Ik,t is the quantity of capital good produced, P k
t is its price, S

(
It

It−1

)
is a function

that governs the investment adjustment cost of the firm, and µt is the marginal efficiency of

investment (MEI), which indicates the efficiency by which the investment goods are converted

into capital goods.10 The latter, follows an AR(1) process:

logµt = (1− ρm)logµ̄+ ρmlogµt−1 + ϵm,t,

where ϵm,t is i.i.d ∼ N (0, σm). For simplicity, I assume that the cost of adjustment is:

S
( It
It−1

)
=
ψs

2

[[ It
It−1

]
− 1

]2

4.1.8 Household

The household decides on the quantity of final consumption goods to demand from the final

consumption good producer, the amount of labor to supply to labor unions, and the capital

goods to demand from the capital goods producer, which it uses to build its capital stock. The

household also chooses the level of capital utilization, which is rented to the wholesaler, and

the amount of debt to borrow from the monetary authority. Since the household controls the

level of capital utilization, higher utilization levels result in higher costs, which are incurred

in units of final consumption goods. The household’s optimization problem is as follows:

max
Ct,Ls,t,It,Bt,ut,K̂t

∞∑
t=0

βtbt

[
(Ct − hCt−1)

1−σ

1− σ
− ψ

L1+χL

s,t

1 + χL

]
subject to

P f
t Ct + P k

t Ik,t +Bt + Tt = Rt−1Bt−1 + W̃tLs,t +Rk
t utK̃t−1 − P f

t a(ut)K̃t−1 +Πt

K̃t = (1− δ)K̃t−1 + Ik,t

logbt = (1− ρb)logb̄+ ρblogbt−1 + ϵb,t,

10Ramey (2016) and Justiniano et al. (2011) provide a comprehensive discussion regarding
the importance of the difference between MEI and IST.
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where Ct is the consumption of the final good, Ls,t is the labor supplied to the labor unions

which pays W̃t, Ik,t is the investment good, Tt are taxes paid to the fiscal authority, ut is

the level of utilization of capital, and a(ut) is a function that indicates the cost in final

consumption goods units that must be paid for each level of utilization. Πt is the total

quantity of profits. Bt is the amount of one-period risk-free bond held by the household,

while Rt is the interest rate that it pays. Finally, K̃t is the stock of physical capital held by

the household. Notice that according to this specification, Kt = utK̃t−1.

The cost of the utilization of capital follows:

a(ut) =
RK
ss

χu

[
1− e−χu(ut−1)

]
Finally, the measure of GDP in this economy is as follows:

gdpt = Y f
t + Ik,t − a(ut)K̂t−1

Y f
t contains both the consumption from households and fiscal authority and Ik,t is the

final amount of investment.

4.1.9 Labor market

There is a continuum of labor unions indexed by l ∈ [0, 1] that hire labor from the household

at W̃t in perfect competition and sell labor to a labor packer at price Wt(l) in monopolistic

competition. These wages are updated with sticky price frictions a la Calvo (1983) with a

probability of updating wages being (1 − ϕw). The labor packer sells the bundle of labor

to the wholesaler at a price Wt. The problem of the labor packer is analogous to the non-

commodity assembler:

max
Lt(l)

WtLt −
∫ 1

0

Wt(l)Lt(l)δl

subject to

Lt =
[ ∫ 1

0

Lt(l)
1

1+λl,t

]1+λl,t

logλl,t = (1− ρw)logλ̄l + ρwlogλl,t−1 + ϵw,t.

As in the case of non-commodity assemblers, the demand for each union’s product is:

Lt(l) =
[Wt(l)

Wt

]− 1+λl,t
λl,t

Lt.

Using this demand, the unions (with monopolistic competition) face the following prob-

lem:
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max
Wt(l)

Et

∞∑
s=0

ϕswΛt,t+s

[
Wt(l)− W̃t

]
Lt(l)

subject to

Lt(l) =
[Wt(l)

Wt

]− 1+λl,t
λl,t

Lt

Finally, the observed real wage is computed as:

wpt =
wt

pft

4.1.10 Government

The government consists of two distinct entities: fiscal and monetary authorities. The fiscal

authority finances its activities through a combination of debt issuance and taxes paid by

the household.11 The authority allocates its revenue to purchase a portion of the final

consumption good as government expenditure and to repay the debt from the previous

period. Government expenditure is assumed to follow a stochastic process. The following

equations characterize the behavior of the fiscal authority:

P f
t Gt +Rt−1Bt−1 = Bt + τP f

t Yt

Gt =
[
1− 1

gt

]
Y f
t

log(gt) = (1− ρg)log(ḡ) + ρglog(gt−1) + ϵg,t

where ϵg,t is i.i.d ∼ N (0, σg).

Meanwhile, the monetary authority fixes the interest rate by following a Taylor-type

monetary policy rule:

log(Rt+1) = (1− ρr)log(R̄) + ρrlog(Rt) + (1− ρr)θπ[log(πt)− log(π̄)]+

(1− ρr)θy[log(Yt)− log(Ȳ )] + ϵr,t

where ϵr,t is i.i.d ∼ N (0, σr).

4.2 Solution

I use the perturbation method of order one around the steady state as in Schmitt-Grohé

and Uribe (2004).12 I relegate the specification of the steady state and the equations that

characterize the equilibrium to Appendix C.

11I assume that taxes are a constant proportion of the household’s income derived from
the non-commodity good.

12I use the software platform Dynare to solve the model and to estimate it.
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4.3 Estimation

I employ Bayesian methods to estimate the model parameters’ posterior mean values and

distributions. This approach combines the likelihood function with prior parameter distri-

butions to perform the estimation.13 The estimation uses quarterly data from 1964 to 2019

for nine key economic variables. Since the model does not account for long-term trends,

I follow the detrending approach recommended by Liao and Chen (2023) and Born and

Pfeifer (2021). Instead of applying the one-sided Hodrick-Prescott filter, I use polynomial

detrending.14

4.3.1 Priors and fixed parameters

Following the approach of Justiniano et al. (2011), I fix a small set of parameters commonly

used in the literature. Specifically, I set the depreciation rate δ to 0.025, the intertemporal

elasticity of substitution parameter σ to 2.0, and the investment adjustment cost parameter

ψs to 1.0. Additionally, I fix the weight of the commodity sector in the consumption bundle

(1 − ωf ) to 0.177. This value aligns with the average share of food and energy in final

private expenditure in the U.S. national accounts from 1947 to 2019, ensuring consistency

with historical data.

Most of the priors for the estimated parameters follow the values proposed by Justiniano

et al. (2011). For parameters specific to the commodity sector, I set the prior for the weight

of commodities in the wholesale sector (βo) to follow a beta distribution with a mean of 0.10.

The prior for the parameter governing the elasticity of substitution in the final production

sector (λf ) follows a normal distribution with a mean of 10.0.15

4.3.2 Data

I estimate the model using the following data:

Xt = [gdpt, Ct, Ik,t, rpit, p
f
t , rt, wt, Lt, πt]

where gdpt, ct, and Ik,t are the logs of GDP, consumption and investment per càpita

used in Section 2. rpit is the log of the relative price of equipment. pft is the log of the

ratio between the price value of final private expenditure over the price value of final private

expenditure without food and energy prices. rt is the FED interest shadow rate from Wu and

13For a detailed explanation of Bayesian estimation methods, see An and Schorfheide
(2007); for a review, refer to Fernández-Villaverde and Guerrón-Quintana (2021).

14The Hodrick-Prescott filter has been criticized for its limitations in estimating cyclical
components (Hamilton, 2018). Polynomial detrending has been employed as an alternative
in studies such as Uribe and Schmitt-Grohé (2017) and Canova (2020).

15A higher value of λf implies that the elasticity of substitution in this sector approaches
1.0.
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Xia (2016). wt is the log of the ratio between the average hourly earnings of production and

the final private expenditure without food and energy prices. Lt is the total hours worked in

the economy, and πt is the quarterly change of the log of final private expenditure without

food and energy prices.

4.3.3 Estimation results

Table 6 presents the estimated parameters, along with their prior distributions and posterior

results. The posterior means are consistent with findings in the related literature, further

validating the model’s calibration.

Qualitatively, the model replicates several well-established stylized facts from the busi-

ness cycle literature: (i) GDP is positively correlated with both consumption and investment;

(ii) the standard deviation of consumption is lower than that of GDP, while the standard

deviation of investment is higher; and (iii) consumption and investment exhibit a positive

correlation. However, the quantitative values of these correlations and standard deviations

deviate from those observed in the data. Additionally, the model fails to reproduce the pos-

itive correlation between GDP and hours worked. Table 7 compares the empirical moments

with those generated by the simulated model.

4.4 Model results

I structure the results into three main analyses. First, I present the IRFs of key macroe-

conomic variables in response to both an IST shock and a commodity good supply shock.

Second, I evaluate the relative contribution of different shocks to the variance of these vari-

ables within the model. Finally, I simulate the model to assess its ability to replicate the

responses observed in the empirical data.

The findings can be summarized as follows:

1. The model’s IRFs to IST shocks are broadly consistent with those observed in the

empirical analysis of IST shocks that control for oil and food price movements. Ad-

ditionally, the IRFs to commodity good supply shocks indicate that a decrease in the

price of the commodity good leads to an increase in the RPE, confirming that IST

shocks are not the only factor driving movements in the RPE.

2. Based on the model specification, estimation, and data used in this analysis, IST shocks

explain only a small fraction of the variance in consumption and GDP, though they

account for a larger share of investment variance. Specifically, IST shocks contribute

to 13.3% of GDP variance, 1.4% of consumption variance, and 34.9% of investment

variance.

3. When computing IRFs using simulated data and applying the empirical methodology

outlined in Sections 2.2 and 3.2, the results align with those found in actual data:

relying on the RPE without adjustments leads to short-run increases in price variables
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Par. P. Dist. Prior M. Post. M. 90% Low 90% High Prior SD.

α beta 0.20 0.1974 0.1951 0.1993 0.05
βo beta 0.10 0.0703 0.0698 0.0708 0.05
λ normal 0.15 0.0861 0.0831 0.0889 0.10
ϕp beta 0.66 0.6425 0.6410 0.6440 0.10
λf normal 10.00 10.0396 10.0296 10.0466 0.50
h beta 0.50 0.4517 0.4457 0.4576 0.10
χL gamma 2.00 1.5125 1.4802 1.5416 0.75
100(β−1 − 1) gamma 0.25 0.2558 0.2546 0.2568 0.1
λl normal 0.15 0.2186 0.2128 0.2238 0.10
ϕw beta 0.76 0.9524 0.9485 0.9561 0.10
χu gamma 5.00 6.1477 6.0924 6.2026 1.00
θπ gamma 1.500 1.8039 1.7896 1.8182 0.30
θy gamma 0.500 0.4876 0.4869 0.4883 0.05
τ beta 0.200 0.1668 0.1662 0.1676 0.10
ρa beta 0.600 0.4450 0.4394 0.4502 0.20
ρi beta 0.600 0.2859 0.2813 0.2911 0.20
ρm beta 0.600 0.9619 0.9578 0.9648 0.20
ρo beta 0.600 0.6092 0.6051 0.6140 0.20
ρg beta 0.600 0.9179 0.9149 0.9206 0.20
ρr beta 0.600 0.9690 0.9646 0.9730 0.20
ρw beta 0.600 0.9698 0.9666 0.9728 0.20
ρp beta 0.600 0.8938 0.8882 0.8993 0.20
ρb beta 0.600 0.9697 0.9681 0.9712 0.20
σa invgam 0.900 0.9200 0.8559 0.9898 1.00
σi invgam 0.500 0.4763 0.4743 0.4782 1.00
σm invgam 0.500 0.0664 0.0645 0.0685 1.00
σo invgam 0.500 0.4262 0.4200 0.4326 1.00
σg invgam 0.500 0.0655 0.0645 0.0667 1.00
σr invgam 0.100 0.0266 0.0249 0.0290 1.00
σw invgam 0.100 0.1337 0.1266 0.1436 1.00
σp invgam 0.100 0.1302 0.1221 0.1405 1.00
σb invgam 0.100 0.1362 0.1252 0.1443 1.00

Table 6: Estimation Results of parameters in the DSGE model.
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Metric Data Model
S.D. Inv./S.D. GDP 3.280 5.048
S.D. Con/S.D. GDP 0.734 0.624
corr GDP-Inv 0.817 0.731
Corr GDP-Con 0.925 0.517
Corr Con-INV 0.661 0.087
Corr GDP-Labor 0.773 -0.124
Corr GDP-RPI 0.011 -0.247

Table 7: Comparison of moments between Data and Model

and a decline in real wages. This highlights the challenges associated with estimating

IST shocks using the RPE.

Figure A4 in Appendix A presents the model’s IRFs in response to a positive IST shock

(ϵi,t). Following the shock, real wages increase, while both non-commodity inflation and the

final consumption good inflation rate decline. Simultaneously, GDP and investment initially

rise before the effect dissipates after several periods. Consumption decreases in the initial

quarters as the economy reallocates resources toward investment but starts to recover over

time. Additionally, labor demand from wholesalers (ld) initially rises before declining after

a few quarters. These responses closely align with those analyzed in Section 2.4, once IST

shocks are adjusted for food and oil price fluctuations.

In contrast, Figure A5 in Appendix A illustrates the macroeconomic responses to a

commodity price shock. A key insight is that an increase in commodity prices leads to a

decline in the RPE, reinforcing the idea that RPE movements reflect fluctuations in the

commodity sector. Notably, inflation measures rise, while real wages decline in response to

the shock.

Table 8 presents the variance decomposition from the DSGE model. The columns rep-

resent the shocks incorporated into the model, while the rows display the macroeconomic

variables under analysis. The results indicate that the neutral technology shock accounts

for a significant portion of the variance in price-related variables, as well as a share of the

variance in investment, consumption, and GDP. The IST shock plays a major role in explain-

ing investment variance but contributes much less to GDP and consumption, accounting for

13.3% of GDP variance, 1.4% of consumption variance, and 34.9% of investment variance.16

Finally, the commodity price shock emerges as a key driver of inflation dynamics, ex-

plaining 25.8% of CPI variance.

16These results exhibit a similar pattern to the empirical FEVD results in Table 3: IST
explains a larger share of investment’s FEV and a smaller share of GDP and consumption
variance at longer horizons, though the magnitudes differ.
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Finally, I simulate time series for the same macroeconomic variables used in Section 2,

generating 10,000 draws of GDP, consumption, investment, labor demand from wholesalers,

interest rates, wages, CPI, core CPI inflation, commodity prices, the relative price of invest-

ment (RPI), and the RPI relative to core prices.17 Using the same identification strategy as

in Section 2, where the RPI measure still captures information from commodity price shocks,

the real variables exhibit behavior qualitatively similar to the empirical findings: GDP and

investment rise immediately after the shock, while consumption initially declines before in-

creasing after a few periods. Meanwhile, the price variables respond with an immediate

increase in CPI and commodity prices (Figure A6 in Appendix A).

In contrast, when using the RPI relative to core prices (as in Section 3.2 with the empirical

data), the IRFs of real variables remain qualitatively similar, but the responses of price

variables differ. In this case, CPI and core CPI inflation decline following the shock, aligning

with the empirical results. This distinction highlights the importance of properly accounting

for commodity price influences when interpreting the RPI and its relationship to IST shocks

(Figure A7 in Appendix A).

ϵa,t ϵi,t ϵm,t ϵo,t ϵg,t ϵr,t ϵw,t ϵp,t ϵb,t
rpi 0.0 95.8 0.0 4.2 0.0 0.0 0.0 0.0 0.0
gdp 43.1 13.3 4.4 2.8 21.8 2.2 6.8 0.1 5.6
cons. 17.8 1.4 18.5 5.5 3.8 1.5 3.3 0.0 48.1
inv. 44.2 34.9 5.5 0.5 1.8 1.8 6.7 0.2 4.4
labor 90.0 1.2 1.2 1.8 3.0 0.3 1.1 0.0 1.3
wages 78.5 1.1 2.2 13.3 0.5 0.1 0.5 0.4 3.2
Inflation 72.9 0.1 0.5 25.8 0.2 0.0 0.2 0.1 0.1
c. Inflation 97.9 0.2 0.7 0.5 0.2 0.0 0.3 0.1 0.2
Com. Price. 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0

Table 8: Variance Decomposition in the DSGE model (%)

5 Conclusions

The RPE has been a central topic in macroeconomic research, primarily due to its rela-

tionship with IST. Empirical studies suggest that IST shocks, identified through the RPE,

play a key role in explaining the behavior of macroeconomic variables during business cycle

fluctuations. This paper demonstrates that the estimated IST shocks remain influenced by

exogenous movements in oil and food prices. These price fluctuations disproportionately

17Note that the RPI relative to core prices is the inverse of the IST variable, defined as
1
γt

=
P i
t

Pt
.
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affect the cost of non-durable consumption goods relative to equipment prices, introducing

potential biases in the estimation of IST shocks.

After controlling for these price effects, IRFs indicate that IST shocks lead to a decline in

price levels, while GDP and investment rise immediately, and consumption responds with a

lag. Moreover, the share of FEV attributed to IST shocks is significantly reduced for GDP,

consumption, and investment compared to estimates that do not account for oil and food

price fluctuations.

A medium-scale DSGE model with a rich stochastic structure helps explain these empiri-

cal findings. The model incorporates a commodity goods sector, where prices are determined

exogenously, and its output serves as an input for final consumption goods production. As a

result, the RPE reflects information about commodity sector price fluctuations. Simulations

from the DSGE model qualitatively reproduce the IRFs observed in the empirical data, rein-

forcing the importance of properly accounting for commodity price movements in IST shock

identification.
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Appendices

A Figures

(a) Real Variables.

(b) Price Variables

Figure A1: Impulse response of macroeconomic variables to IST shocks estimated using
RPENE. Dotted lines represent the 90,0% interval.
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(a) Real Variables.

(b) Price Variables

Figure A2: Impulse response of macroeconomic variables to IST shocks estimated using
PCEFE. Dotted lines represent the 90,0% interval.
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(a) First block.

(b) Second block

Figure A3: Diagram of the flows in the model economy.
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Figure A4: Impulse Response Function of main macro variables after an IST shock in the
DSGE model.

Figure A5: Impulse Response Function of main macro variables after a commodity supply
shock in the DSGE model.
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(a) Real Variables.

(b) Price Variables

Figure A6: Impulse response of macroeconomic variables to IST shocks estimated with the
RPI using the simulated data from the DSGE model. The dotted lines represent the 90,0%
interval.
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(a) Real Variables.

(b) Price Variables

Figure A7: Impulse response of macroeconomic variables to IST shocks estimated with the
RPI with respect to core price (analog to RPENE in the data), using the simulated data
from the DSGE model. The dotted lines represent the 90,0% interval.

B Importance of BZK’s IST news shocks

I compute the percentage of the forecast error variance explained by BZK’s news shocks, both

with and without the inclusion of oil and food price indexes. It is important to note that,

according to the original document, the estimation already incorporates inflation (measured

as the annual change in the CPI) into the system of equations, yet there is still a correlation

with oil price shocks. To better account for the effects of food prices and WTI (West Texas
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Intermediate crude oil prices), I remove inflation from the estimation and instead introduce

three components that are part of the CPI: Core CPI, Food CPI, and WTI.

Since Core CPI data is only available after 1957, the forecast error variance decomposition

(FEVD) is calculated using data from that period onward for both the adjusted system (the

clean one) and the baseline model. This adjustment allows for a more accurate assessment of

how food and oil prices contribute to the variance explained by BZK’s news shocks, ensuring

that the results account for key components of the CPI while isolating their effects.

Table 4 shows the estimation with (Clean) and without (Base) the variables in the system.

Notice that there is decrease in the forecast error variance of GDP, consumption and hours

worked explained by the IST news shocks once I introduce both variables in the system.

GDP GDP Inv. Inv. Cons. Cons. Hours Hours
h Base Clean Base Clean Base Clean Base Clean
1 0.115 0.056 0.125 0.233 0.403 0.086 0.94 0.119
5 0.543 0.225 0.506 0.492 0.602 0.258 0.605 0.296
10 0.573 0.244 0.488 0.440 0.635 0.290 0.678 0.348
15 0.562 0.226 0.444 0.389 0.629 0.270 0.621 0.281
20 0.593 0.221 0.475 0.391 0.644 0.256 0.609 0.258

Table 9: FEV explained by IST news shock as in BZK

C Equilibrium Equations

To solve the model, I obtain the equations that characterize the equilibrium and redefine

the nominal prices using the price of the non-commodity assembler as a numeraire. Nominal

variables in lower case are the ratio of each price over the numeraire. The system of equations

that characterize the equilibrium is as follows:

• Equations from the Wholesaler

pwt [1− α− βo]A
1−α−βo

t Kα
t O

βo

p,tL
−α−βo

t = wt (11)

pwt [α]A
1−α−βo

t Kα−1
t Oβo

p,tL
1−α−βo

t = rkt (12)

pwt [βo]A
1−α−βo

t Kα
t O

βo−1
p,t L1−α−βo

t = pot (13)

• Three Equations Phillips curve:
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p̃t = (1 + λt)
x2,t
x1,t

(14)

x1,t = Yt + Et

[
ϕpΛt,t+1π

1+λt
λt x1,t+1

]
(15)

x2,t = pwt Yt + Et

[
ϕpΛt,t+1π

1+λt
λt

+1x2,t+1

]
(16)

• Equations from the final good producer

1 = pft Y

λf
1+λf

f,t ωfY

−λf
1+λf

c,t (17)

pot = pft Y

λf
1+λf

f,t [1− ωf ]O

−λf
1+λf

c,t (18)

Y f
t =

[
ωfY

1
1+λf

c,t + (1− ωf )O
1

1+λf

c,t

]1+λf

(19)

• Equations from the investment producer

pitγt = 1 (20)

It = γtYi,t (21)

• Equations from the capital producer

pkt µt[1− st − sp,t
It
It−1

] + Et

[
Λt,t+1[p

k
t+1µt+1sp,t+1[

It
It−1

]2πt+1]
]
= pit (22)

Ik,t = µt[1− st]It (23)

• Equations from the household
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λct = ψ
Lχl

s,t

w̃t
(24)

pft λ
c
t = bt[Ct − hCt−1]

σ − Et

[
βchbt+1[Ct+1 − hCt]

σ
]

(25)

Λt,t+1 = Et

[
βc
λct+1

λct

]
(26)

1 = Et

[
Rt+1Λt,t+1Π

−1
t+1

]
(27)

rkt = pft aup,t (28)

λc2t = λctp
f
t (29)

λc2t = Et

[
βcλ

c
t+1[r

k
t+1ut+1 − pft+1au,t+1] + βcλ

c2
t+1[1− δ]

]
(30)

Kt = utK̃t (31)

K̃t = [1− δ]K̃t−1 + Ik,t (32)

• Fiscal Authority Equations

P f
t Gt +Rt−1Bt−1 = Bt + τP f

t Yt (33)

Gt =
[
1− 1

gt

]
Y f
t (34)

• Wages Three Equations

w̃t = [1 + λl,t]
f1,t
f2,t

(35)

f1,t = w̃t[w

1+λl,t
λl,t

t ]Lt + Et
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ϕwΛt,t+1π
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[
ϕwΛt,t+1π
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t+1 f2,t+1
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(37)

• Aggregate price and dispersion

1 = [1− ϕp]p̃
− 1

λt

t + ϕpπ
1
λt

t (38)

vp,t = [1− ϕp]p̃
− 1+λt

λt

t + ϕpπ
1+λt
λt

t vp,t−1 (39)

Yw,t = vp,tYt (40)

• Aggregate wage and dispersion
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w
− 1

λw,t

t = [1− ϕw]w̃
− 1

λw,t

t + ϕww
− 1

λw,t

t−1 π
1

λw,t

t (41)

vw,t = [1− ϕw][
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wt
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− 1+λw,t

λw,t + ϕw[
wt

wt−1
]
1+λw,t
λw,t π

1+λw,t
λw,t

t vw,t−1 (42)

Ls,t = vw,tLt (43)

• Other Market Clearing Conditions

Yt = Yc,t + Yi,t (44)

eo,t = Op,t +Oc,t (45)

Yf,t = Ct +Gt + au,tK̂t (46)

• Function Definitions

st =
ψs

2

[ It
It−1

− 1
]2

(47)

sp,t = ψs

[ It
It−1

− 1
]

(48)

au,t =
1

γssµss

Rss − (1− δ)

χu

[
1− e−χu(ut−1)

]
(49)

aup,t =
1

γssµss
[Rss − (1− δ)]e−χu(ut−1) (50)

• Law of motion of exogenous processes

logAt = (1− ρa)logĀ+ ρalogAt−1 + ϵa,t (51)

logλt = (1− ρp)logλ̄+ ρplogλt−1 + ϵp,t (52)

logP o
t = (1− ρo)logP̄ o + ρologP

o
t−1 + ϵo,t (53)

logγt = (1− ρi)logγ̄ + ρilogγt−1 + ϵi,t (54)

logµt = (1− ρm)logµ̄+ ρmlogµt−1 + ϵm,t (55)

logbt = (1− ρb)logb̄+ ρblogbt−1 + ϵb,t (56)

logλl,t = (1− ρw)logλ̄l + ρwlogλl,t−1 + ϵw,t (57)

log(gt) = (1− ρg)log(ḡ) + ρglog(gt−1) + ϵg,t (58)

log(Rt+1) = (1− ρr) log(R̄) + ρr log(Rt) + (1− ρr)θπ[log(πt)− log(π̄)]

+ (1− ρr)θy[log(Yt)− log(Ȳ )] + ϵr,t (59)
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C.1 Steady State

To compute the Steady State (SS) I need to assume the SS values of some of the endogenous

variables in the model. In particular, the SS of the technology variables (Ā, µ̄, γ), the core

inflation (π̄), the government expenditure exogenous variable (ḡ) and the labor demanded

by the wholesaler (L̄) are set to be 1. Using these restrictions I find the SS of all the other

variables by finding their time-invariant values that satisfy the equilibrium equations, and

the SS defined above.
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