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Abstract
Speech Emotion Recognition (SER) is an important and chal-
lenging task, especially when deploying systems in the wild i.e.
on unseen data, as they tend to generalise poorly. One promis-
ing approach to improve the generalisation capabilities of SER
systems is to incorporate attributes of the speech signal, such as
corpus or speaker information, which can be a source of overfit-
ting or confusion for the model. In this paper, we investigate us-
ing multi-task learning, where attribute prediction is given as an
auxiliary task to the model, and adversarial learning, where the
model is explicitly trained to incorrectly predict attributes. We
compare two adversarial learning approaches: gradient reversal
and an adversarial discriminator. We evaluate these approaches
in a cross-corpus training setting using two unseen corpora as
test sets. We use four attributes – corpus, speaker, gender and
language – and evaluate all possible combinations of these at-
tributes. We show that both multi-task learning and adversarial
learning improve SER performance in the wild, with the gradi-
ent reversal approach being the most consistent across attributes
and test sets.
Index Terms: speech emotion recognition, multi-task learning,
adversarial learning

1. Introduction
Speech Emotion Recognition (SER) has seen a growing num-
ber of applications in recent years. For such applications to be
successful, SER models must perform well in the wild, i.e. they
need to generalise well to unseen data with varying characteris-
tics. In recent years, deep learning approaches have been shown
to yield significant performance improvements compared to tra-
ditional approaches on the SER task [1], however, they still
seem to generalise poorly on unseen data when trained on one
corpus as standard [2]. To address this issue, one promising ap-
proach may be to force the model to be independent of some
often overlooked attributes of the speech signal. We define an
attribute as a characteristic of speech that has an impact on the
acoustic characteristics of the signal. These may be problem-
atic when training an SER model for one of two reasons: the
attribute could be a source of overfitting, because there is not
enough variation in the training data; or it could be a source of
confusion, as the acoustic characteristics associated with differ-
ent attributes can be similar to those associated with different
emotions. In this paper we focus on four attributes: corpus,
gender, speaker and language. The corpus attribute is a major
source of overfitting [3, 2] as recording conditions typically do
not vary within a given corpus. The gender attribute, which here
refers to the average pitch of the speaker, may also lead to over-
fitting as the model could learn frequency-specific filters. The
speaker attribute may be a source of confusion for the model as

prosody varies widely between speakers but is also an important
indicator of emotion. Finally, the language could be a further
source of overfitting as this attribute encompasses cultural and
linguistic information relevant for detecting emotions [4].

To address these issues, several approaches have been de-
veloped including cross-corpus training, multi-task learning
(MTL) and adversarial learning (AL). Cross-corpus training
consists of aggregating several corpora with the goal of cre-
ating a diverse training set comprising a variety of attributes
and thereby mitigating overfitting. This approach was initially
shown to display poor generalisation capabilities on out-of-
domain data [3], but recent works have shown more promising
results [2, 5]. The MTL approach [6] uses attributes as auxil-
iary labels and has been shown to improve SER performance
using attributes like gender [7] and corpus [8]. The AL ap-
proach, popularised by the GAN [9], also incorporates auxil-
iary labels, but unlike MTL the model is trained to incorrectly
classify these labels, with the aim of being more independent of
these tasks. This approach has been implemented for domain
transfer [10] and successfully applied to SER [11, 8]. It is how-
ever not yet clear if the attribute-based methods are helpful to
the cross-corpus training approach and which attributes are the
most useful.

In this paper, we present a study on the potential of multi-
task and adversarial learning approaches to improve the gen-
eralisation capabilities of speech emotion recognition models.
We combine seven corpora to train a widely used CNN-LSTM
model in a cross-corpus training setting, which we then evalu-
ate using two out-of-domain corpora and an in-domain test set.
We trained two different AL models, gradient reversal (GR) and
adversarial discriminator (AD), which are compared with the
MTL approach and a single-task baseline. The four attributes
– corpus, gender, speaker and language – are first studied sep-
arately, before being combined in multi-attribute models. We
show that the three approaches using these attributes can im-
prove performance on out-of-domain data compared to a single-
task model. We show that the GR approach achieves the best
performance and is the most consistent across attributes and cor-
pora, while the MTL and AD approaches can be beneficial but
are inconsistent.

The key contributions of this paper are: (1) we present a
comprehensive study of attributes as auxiliary tasks in a cross-
corpus setting for out-of-domain generalisation of which 9 out
of 15 combinations are novel to the best of our knowledge; (2)
we compare three attribute-based training approaches and show
that they can be beneficial for SER in the wild, with the GR
approach being the most promising; and (3) we provide insight
into the differences between representations learned by MTL
and AL models.
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Table 1: Summary of MTL and AL approaches using the
(C)orpus, (G)ender, (S)peaker and (L)anguage attributes. ID
refers to in-domain and OOD to out-of-domain. The last two
rows of the table correspond to the scope of this paper.

Attribute
Training setup C G S L

Single corpus N/A [21, 18, 28, 7] [21] –

Cross-corpus↱
ID eval. [8] [26] [26, 22] [23]↱
OOD eval. (this paper)↱

MTL [25] [19, 25, 26, 20] [26] [20]↱
AL [11] – – –

2. Related Work
In this section, we present the related work for cross-corpus
SER, and MTL and AL approaches. For more details on other
approaches in SER see [1, 12].

2.1. Cross-corpus Speech Emotion Recognition

The cross-corpus problem in SER refers to the performance
mismatch between corpora, as models trained on a single cor-
pus tend to overfit [13]. Alongside cross-corpus training [2, 5],
other approaches have been proposed to combat this problem
such as speaker-based z-normalisation [3]. Data augmentation
approaches have also been used, for example using a Cycle-
GAN [14]. Furthermore, [15] explored unsupervised domain
adaptation. Adversarial approaches using cross-corpus training
have also been proposed for domain shift adaptation [16] and
learning common representations between corpora [17].

2.2. Attribute-based Multi-task and Adversarial Learning

MTL has been applied to SER with a variety of attributes as
auxiliary tasks. Adding the auxiliary task of gender recognition
has been shown to improve models trained and evaluated on
a single corpus [7, 18] and on out-of-domain data using cross-
corpus training [19, 20]. Speaker recognition has also been used
on single corpus [21] and cross-corpus training [22]. Language
recognition has also been explored in a cross-corpus training
setting [23, 20], where this attribute has not been proven to
be beneficial. Discrimination between acted and spontaneous
speech has been shown to improve SER [24]. [25] studied the
influence of corpus and mode (speech or singing) in addition
to gender using cross-corpus training. The adversarial auto-
encoder approach was also incorporated into an MTL frame-
work using gender and speaker as attributes to help learn dis-
criminative features [26].

Attribute-based AL was originally developed for the cor-
pus attribute by Ganin et al. [10]. This approach was applied
to SER using cross-corpus training in the context of domain
adaptation [11] and corpus-independent emotion encoding [8].
It was also investigated in the context of mitigating biases in
machine learning models [27] and applied to SER for gender
de-biasing [28], where it was shown that gender bias can be
mitigated at the cost of lower performance on the task at hand.

Compared to this paper, most of these works focus on in-
domain evaluation and do not provide an evaluation on out-of-
domain data. Table 1 provides a summary of the above related
works with regards to the attributes used, the training and eval-
uation setup and the type of approach.

3. Methodology
3.1. Multi-task Learning

The MTL model consists of three parts: the shared layers θf , the
emotion classifier layers θemo and the attribute classifier layers
θai , for attributes ai, i ∈ 0, ..., N where N denotes the number
of attributes. The emotion classifier C and attribute classifier
Ai parameters are (θf , θemo) and (θf , θai) respectively. The
model is trained by minimising the loss LMTL:

LMTL = (1− α)Lemo + α

(
1

N

N∑

i=1

Lai

)
(1)

where Lemo is the cross-entropy classification loss between the
predicted emotion ŷ and the emotion label y and Lai is the
classification loss between the predicted attribute ẑi and the at-
tribute label zi for attribute i. The α term determines the weight
of the different losses.

3.2. Adversarial Learning

3.2.1. Gradient Reversal

Gradient reversal refers to the technique of reversing the sign
of the gradient at a specific point in the model. The GR model
consists of the same three parts as the MTL model, but differs
in that the sign of the gradients calculated from classifiers Ai

is reversed for the shared layers. Based on [10], the gradient
reversal layer is defined as R(x) = x with dR/dx = −I ,
where I is the identity matrix. This can then be incorporated
into the final loss:

LGR = (1− α)Lemo + αR

(
1

N

N∑

i=1

Lai

)
. (2)

3.2.2. Adversarial Discriminator

The adversarial discriminator approach separates the classifier
models so that there are no shared layers. In addition to the
classifier C from the above, a separate attribute classifier model
Di is also used, with parameters θdi . To train this model, at
each time step we first pass the input x through C to return the
emotion prediction ŷ. We then pass ŷ1 through Di to return the
attribute prediction ẑi. Di is trained by minimising the cross-
entropy loss Ldi between ẑi and the attribute label zi. C is
trained by minimising the loss LAD:

LAD = (1− α)Lemo − α

(
1

N

N∑

i=1

Ldi

)
. (3)

As with the other models, Lemo is the classification loss be-
tween ŷ and y, and α is the task weighting. This approach is
based on [27], however, we omit the projection term of the loss
as we are not attempting to de-bias the models, merely improve
SER performance. We also found that training without this term
produced more stable models, less prone to exploding gradients.

3.3. Models

All models use the CNN-LSTM architecture described in [2]
and shown in Figure 1, with varying output layers depending
on the training approach. The baseline is a single-task model
trained only on emotion. The MTL model returns one output for
emotion and one output for the relevant attribute(s) as shown in

1In line with [27], the input to D is the softmax output vector.
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Figure 1(d). The GR model is similar, with a gradient reversal
layer used between the shared layers and the output layers of the
relevant attribute(s). For the AD approach, two models are used:
the first model is identical to the single-task model as shown in
Figure 1(c) and the discriminator model D is composed of fully-
connected layers as shown in Figure 1(f). For each of the three
approaches we train a model for every possible combination of
attributes using one to four attributes, resulting in fifteen models
for each approach.

4. Experimental setup

The input to all models is Mel filterbank coefficients. We com-
pute 40 coefficients over a 25ms window with a 10ms shift and
do not add any delta features. We normalise utterances to have
zero-mean and unit variance. We apply SpecAugment [29] to
the features with a time mask width of 30 frames and a fre-
quency mask width of 3. We use stochastic gradient descent
with 0.9 momentum with a learning rate of 0.002 for all mod-
els including the discriminator. We use dropout at a rate of
0.5 before the FC layer. All models are trained for 150 epochs
with early stopping. The shared layers as described in Figure 1
for all models have approximately 1.8 million parameters and
each discriminator model totals about 1 million parameters. We
evaluate model performance using Unweighted Accuracy (UA),
which is the average of each individual class accuracy. For the
MTL and AL models we set α to 0.1 and 0.5 respectively for
the entire duration of training. For the gradient reversal model
we set α = 0 at the beginning of training and then increment
it linearly with each epoch, ending at 0.5, similar to [11]. For
fair comparison, we keep hyper-parameters the same for each
model. We use PyTorch [30] to run experiments.

CNN-MP
1D Convolution

ReLU
Max-Pooling

CNN 1D Convolution
ReLU

BLSTM LSTM→
← LSTM

MoT Mean over Time

FC
Fully-connected

ReLU
Fully-connected

O
ReLU

Fully-connected

GR GradReverse

(a) Network modules

CNN-MP hu=96, kw=15

CNN-MP hu=256, kw=5

CNN hu=256, kw=3

BLSTM (x2) hu=64

MoT

FC hu=1024

(b) Shared layers

x
SHARED
LAYERS

O ŷ

(c) Single task model

x
SHARED
LAYERS

O

..
.

O

O

ẑN

ẑi

ŷ

(d) Multi-task model

x
SHARED
LAYERS

O ŷ

GR

O

..
.

O ẑN

ẑi

(e) Gradient reversal model

ŷ FC hu=1024 O ẑi

(f) Discriminator model

Figure 1: Model architectures. kw refers to kernel width and hu
is the number of hidden units. Max-pooling layers have kw = 3
and stride = 2.

Table 2: Results on the TESS and CREMA-D corpora using
the UA metric [%] for single-attribute experiments. The TESS
baseline is from [2].

Corpus Gender Speaker Language

TESS - baseline: 49.48

MTL 48.90 35.13 52.25 54.73
GR 54.71 45.04 55.17 50.10
AD 40.73 39.35 36.98 33.29

CREMA-D - baseline: 52.21

MTL 49.64 50.13 49.50 50.39
GR 51.82 53.99 47.60 53.92
AD 51.92 53.33 53.23 50.89

4.1. Corpora

For this cross-corpus study, the following corpora were used:
CREMA-D [31]; EMOVO [32]; Emo-DB [33]; IEMO-
CAP [34]; EPST [35]; RAVDESS [36]; SAVEE [37]; and
TESS [38]. All corpora apart from CREMA-D were also in-
cluded in our work in 2019 [2]. For more information about
these corpora, see Table 1 in that paper. All corpora exclud-
ing TESS and CREMA-D are aggregated, where each corpus
is split between training (80%), validation (10%) and test sets
(10%), yielding 11 hours 45 minutes for training and 1 hour 30
minutes each for validation and testing. Speakers in the vali-
dation and test sets do not appear in the training set. TESS (2
speakers, 1 hour 36 minutes) and CREMA-D (91 speakers, 5
hours 15 minutes) are used for out-of-domain (OOD) testing.

To avoid discarding data, the emotion labels for each cor-
pus are mapped to three classes: positive, negative and neutral.
For more information about this mapping, see Table 4 in [2].
The label set for CREMA-D consists of happiness, mapped to
positive; sadness, anger, fear and disgust, mapped to negative;
and neutral, mapped to neutral.

5. Results
We present the results of the single-attribute experiments in
Table 2 along with the single-task baseline. When evaluating
TESS, MTL and GR models trained with corpus, speaker or lan-
guage yield similar or better performance compared to the base-
line, up to 6% UA improvement. However, training with gen-
der as an attribute is noticeably worse. This discrepancy might
be explained by the demographics of the corpora: TESS con-
tains only two female speakers, while the training set is gender-
balanced. Evaluating CREMA-D yields an improvement when
training with gender using the AL approach, but overall does
not improve much beyond the baseline, the MTL approach be-
ing consistently the worst.

A subset of the multi-attribute experiments is shown in Ta-
ble 3 and the full set of results can be found in the Supple-
mentary Materials. On TESS, most of the configurations yield
higher performance than the baseline, with the GR and AL ap-
proaches broadly outperforming MTL. Interestingly, when eval-
uating CREMA-D most multi-attribute experiments yield lower
performance than the baseline and the single attribute models,
which is consistent with the literature [8]. Only the GR ap-
proach shows improvements on this corpus, the AD being con-
sistently the worst.

When comparing the OOD performance across the two cor-
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Figure 2: t-SNE plots coloured by corpus.

pora, the three approaches are inconsistent: for the MTL and
AD approaches, none of the configurations yield consistent per-
formance on both corpora. The GR approach is more promis-
ing, having one single attribute model (L) and 5 multi-attribute
models (C+L,S+L,G+L,C+S+G,C+S+L) of out 15 which are
consistently better than the baseline across the two corpora.

On the in-domain corpora, the single-task baseline per-
formance is 59.32% UA. As in OOD experiments, single-
attribute AL approaches consistently outperform MTL, but only
two models actually surpass the baseline: GR with speaker
(59.98%) and MTL with gender and language (60.34%). The
highest performing model when combining all four attributes is
the GR model with 56.53% UA. Ultimately, training with at-
tributes appears to have a negative effect on in-domain perfor-
mance, clearly showing the importance of OOD evaluation of
SER models.

6. Analysis
When comparing attributes, most of the combinations are ben-
eficial to some extent. The best-performing attribute combina-
tions across the two OOD corpora are G+L, S+L and C+S+L.
This indicates that language is a useful attribute for cross-corpus
training with multiple languages. This is a novel insight, as
previous work indicated that language was not useful as auxil-
iary task [23]. The gender attribute yields the most inconsistent
performance, as it yields the lowest performance on TESS and
the highest on CREMA-D. This indicates that this attribute can
be useful as reported in the literature (see Table 1) but should
be used with careful consideration. Finally, one could expect
that using all four attributes would lead to the best performing
model, but it is not the case. This suggests that using more
attributes does not necessarily lead to better generalisation ca-
pabilities.

When comparing approaches, all three approaches outper-
forms the baseline in some settings, the GR approach outper-
forms the MTL and AD approaches in most settings and is
also more consistently across corpora. The AD and MTL ap-
proaches perform inconsistently across the two datasets for var-
ious attributes. Overall, it seems that all three approaches re-
quire careful hyper-parameter tuning, which will be part of our
future work.

In both the MTL and GR approaches, the goal is to gain
more independence with respect to an attribute, but through a
completely different implementation. In the MTL approach,
independence to an attribute is implicit, as the hidden repre-
sentations learn to represent the attribute, but they are decou-
pled from the emotion representation to some extent to allow
the model to perform well on both tasks. In the GR approach,
independence is explicit, as the hidden representations learn to

Table 3: Results on the TESS and CREMA-D corpora using the
UA metric [%] for select multi-attribute experiments. The TESS
baseline is from [2].

S+G S+L G+L C+G+L C+S+L C+S+G+L

TESS - baseline: 49.48

MTL 34.77 47.42 51.85 52.90 48.69 49.17
GR 51.58 55.46 52.79 49.40 54.75 51.71
AD 49.19 50.40 52.40 51.92 50.08 52.48

CREMA-D - baseline: 52.21

MTL 52.85 50.26 52.26 51.53 48.95 51.54
GR 50.36 53.19 52.92 50.57 53.71 50.12
AD 50.11 46.47 49.80 45.07 46.32 47.15

be as independent as possible through the loss function. These
two approaches hence make the model learn very different hid-
den representations. To validate these differences, we apply the
t-SNE algorithm [39] to the output of the shared layers for the
baseline as well as the MTL and GR models trained using cor-
pus as auxiliary task. Figure 2 presents the learned represen-
tation, coloured by corpus. We can clearly see that the repre-
sentation learned by the MTL model are heavily clustered by
corpus, where the representation learned by the GR and base-
line models do not form any apparent clusters. This cannot be
explained solely by performance, as the baseline and the MTL
model yield similar performance (49.5% and 48.9% UA), and
the GR outperforms both (54.7% UA). This analysis shows that
the MTL and GR models have taken a different route to gain in-
dependence from the attribute. Understanding these differences
further is an encouraging avenue of research for OOD generali-
sation and will be part of our future work.

7. Conclusion
In this paper, we presented an analysis of multi-task and adver-
sarial learning approaches on four different attributes for SER
in the wild. We trained these models in a cross-corpus setting
and evaluated them on an in-domain test set as well as on two
out-of-domain corpora. We showed that both approaches can
improve performance compared to the baseline, the gradient
reversal technique being the most consistent across attributes
and test sets. While there is no obvious best combination of at-
tributes, we showed that training on attributes is generally bene-
ficial. For future work, we will focus on studying the MTL and
AL approaches in more detail, such as studying different model
architectures and exploring label mapping across multiple cor-
pora.
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A. Wendemuth, and G. Rigoll, “Cross-Corpus Acoustic Emotion
Recognition: Variances and Strategies,” IEEE Transactions on Af-
fective Computing, vol. 1, no. 2, pp. 119–131, 2010.

[4] M. D. Pell, L. Monetta, S. Paulmann, and S. A. Kotz, “Recog-
nizing Emotions in a Foreign Language,” Journal of Nonverbal
Behavior, vol. 33, no. 2, pp. 107–120, Jun. 2009.

[5] V. Dissanayake, H. Zhang, M. Billinghurst, and S. Nanayakkara,
“Speech Emotion Recognition ‘in the Wild’ Using an Autoen-
coder,” in Proc. of Interspeech, 2020, pp. 526–530.

[6] R. Caruana, “Multitask Learning,” Machine Learning, vol. 28,
no. 1, pp. 41–75, 1997.

[7] A. Nediyanchath, P. Paramasivam, and P. Yenigalla, “Multi-Head
Attention for Speech Emotion Recognition with Auxiliary Learn-
ing of Gender Recognition,” in Proc. of ICASSP, 2020, pp. 7179–
7183.

[8] Z. Zhu and Y. Sato, “Reconciliation of Multiple Corpora for
Speech Emotion Recognition by Multiple Classifiers with an Ad-
versarial Corpus Discriminator,” in Proc. of Interspeech, 2020, pp.
2342–2346.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adver-
sarial Nets,” Proc. of NeurIPS, vol. 27, 2014.

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-
Adversarial Training of Neural Networks,” Journal of Machine
Learning Research, vol. 17, no. 1, pp. 2096–2030, 2016.

[11] M. Abdelwahab and C. Busso, “Domain Adversarial for Acous-
tic Emotion Recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 26, no. 12, pp. 2423–
2435, 2018.
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