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Abstract

In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship
between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as
phonemes is a crucial step. This is typically achieved by first extracting acoustic features from the speech signal based on
prior knowledge such as, speech perception or/and speech production knowledge, and, then training a classifier such as
artificial neural networks (ANN), Gaussian mixture model that estimates the emission probabilities of the HMM states.
This paper investigates an end-to-end acoustic modeling approach using convolutional neural networks (CNNs), where
the CNN takes as input raw speech signal and estimates the HMM states class conditional probabilities at the output.
Alternately, as opposed to a divide and conquer strategy (i.e., separating feature extraction and statistical modeling
steps), in the proposed acoustic modeling approach the relevant features and the classifier are jointly learned from the
raw speech signal. Through ASR studies and analyses on multiple languages and multiple tasks, we show that: (a)
the proposed approach yields consistently a better system with fewer parameters when compared to the conventional
approach of cepstral feature extraction followed by ANN training, (b) unlike conventional method of speech processing,
in the proposed approach the relevant feature representations are learned by first processing the input raw speech at
the sub-segmental level (= 2 ms). Specifically, through an analysis we show that the filters in the first convolution layer
automatically learn “in-parts” formant-like information present in the sub-segmental speech, and (c) the intermediate
feature representations obtained by subsequent filtering of the first convolution layer output are more discriminative
compared to standard cepstral features and could be transferred across languages and domains.

Keywords: Automatic speech recognition, Hidden Markov models, Deep learning, Feature learning, Artificial neural
networks, Convolution neural networks, hybrid HMM/ANN

model that captures the relationship between the features
and the subword units in either generative or discrimi-
native manner. Finally, given the likelihood estimates of
the subword units, the best matching word hypothesis is
searched by integrating lexical and syntactical constraints.

Recent advances in machine learning have shown that
systems can be trained in an end-to-end manner, i.e. sys-
tems where every step is learned simultaneously, taking
into account all the other steps and the final task of the
whole system. It is typically referred to as deep learn-
ing [3} @], mainly because such architectures are usually
composed of many layers (supposed to provide an increas-
ing level of abstraction), compared to classical “shallow”
systems. As opposed to “divide and conquer” approaches
presented previously where each step is independently op-

1. Introduction

State-of-the-art automatic speech recognition (ASR)
systems typically divide the task of recognizing speech into
several sub-tasks, which are optimized in an independent
manner [T}, 2]. Specifically, as a first step, acoustic feature
observations, such as Mel frequency cepstral coefficients
(MFCCs) or perceptual linear prediction cepstral features
(PLPs), are extracted from the short-term speech signal
based on speech production and speech perception knowl-
edge. Next, likelihood of subword units, which are typi-
cally based on phonemes, are estimated using a statistical
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timized, deep learning approaches are often claimed to lead
to more optimal systems. As they alleviate the need of
finding the right features by instead training a stack of
features in an end-to-end manner, for a given task of in-
terest.
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While there is a good success record of such approaches
in the computer vision [B, [6, [7] or text processing fields [g],
deep learning approaches for speech recognition has largely
focused on the classifier step, where a neural network with
many hidden layers is typically trained to classify subword
units [9]. These systems still rely on standard short-term
spectral-based feature extraction. The training optionally
can involve pre-training schemes. In such a case, it is re-
ferred to as deep belief neural networks (DBNs) otherwise
deep neural networks (DNNs).

More recently, there has been efforts toward modeling
raw speech signal with little or no pre-processing [10] [1T],
12 [13] [14]. Towards that, as one of the first efforts, we
proposed a novel approach based on convolution neural
networks [I1]. In this approach, the input to the CNN is
raw speech signal. The neural network architecture con-
sists of two stages: a feature learning stage consisting of
several convolution layers followed by a classifier stage con-
sisting of multilayer perceptron, which are jointly learned
by minimizing a cost function based on relative entropy.
Phoneme recognition studies on the TIMIT corpus showed
that the proposed approach is capable of achieving per-
formance comparable to or better than the standard ap-
proach of extraction of cepstral features followed by ANN
training. Subsequent works in the ASR community have
explored different architectures. For instance, in [12] use
of DNNs was investigated. It was found that such an
acoustic model yields inferior system when compared to
standard acoustic modeling. In a subsequent follow up
work [13], it was found that addition of convolution layers
at the input helps in improving the system performance
and reducing the performance gap w.r.t standard acous-
tic modeling technique. In [I4], a composite architecture
referred to as CLDNN was investigated, where the raw
speech signal is fed as input to CNNs, the CNN stage out-
put is subsequently processed by a bidirectional long-short
term memory (BLSTM) stage and fed into a DNN stage to
classify phones. All these stages are jointly learned. This
approach was found to yield performance comparable to
the case where the input to CLDNN is log filter bank en-
ergies.

An aspect that differentiates our approach from the
subsequent works [12,[13] [I4] is the manner in which the in-
put speech signal is processed by the ANN. More precisely,
in [I4] the first CNN layer consisted of 40 filters following
the standard practise in MFCC or PLP cepstral feature
extraction for 8 kHz bandwidth speech signal; the filter
lengths were set to 25 ms (400 samples) following stan-
dard short-term processing practise; and were initialized
with Gammatone impulse response, i.e. based on auditory
knowledge. In [12] the input to DNN was non-overlapping
10 ms speech signal. They also investigated initialization
of the first layer of the DNN with Gammatone impulse
response. In [13], the input convolution layer consisted of
128 filters and the filter lengths were set to 16 ms (256 ms).
In our approach, however, the filter length and the num-
ber of filters in the first convolution layer is not set a pri-

ori, rather they are determined during the training process
through cross validation. In other words, the ANN learns
how the speech signal should be blocked or windowed as
short segments and spectrally processed for phone classi-
fication. As a consequence of this flexibility, as we will see
later in the present paper, the processing of speech at the
input of ANN in the proposed approach considerably de-
parts from the current understanding of short-term speech
processing.

The present paper builds on our previous works [IT,
151 [16] along two directions,

1. From phoneme recognition to automatic speech
recognition: a first set of fundamental question that
arises is: does the findings on phoneme recognition
task scale well across speech recognition task across
different languages and domains? In that respect,
the contributions of the present paper are: (1) we
first benchmark the proposed approach on TIMIT
corpus by extending our previous study [II] to the
standardized protocol of classifying 183 phones out-
put (61 phones x 3 states) and using phone bigram
for decoding; (2) We then present investigations on
large vocabulary continuous speech recognition task
on a variety of corpora that differ in terms of lan-
guages. Specifically, we extend our previous investi-
gations on WSJ English [15] to Swiss French and
Swiss German on Mediaparl corpus that contains
spontaneous speech. Our studies show that the ar-
chitecture of three convolution layers followed by a
multilayer layer perceptron originally developed in
the context of phoneme sequence recognition task
scales well for continuous speech recognition tasks
and consistently yields a better system than conven-
tional cepstral feature-based system for all the inves-
tigated corpora.

2. Understanding the learned features: As it would be
seen in the ASR studies the proposed approach yields
a system that performs better than the system based
on conventional approach with considerably less pa-
rameters. Thus, a second set of questions that arise
are: what information is the neural network learn-
ing and how it is learning? Since the features are
learned along with the classifier automatically from
the data, yet another question that arises is: are
these features domain or language dependent? To
understand these aspects, we first analyze the first
convolution layer. We present a novel signal theo-
retic approach to understand the information that
is collectively modeled by the first convolution layer.
This analysis shows that: (i) the proposed approach
transforms the speech signal at sub-segmental level
(about 2 ms) as opposed to conventional approach
of transforming the signal at segmental level (20-30
ms), (ii) unlike auditory motivated filter banks, the
learned set of filters are not of constant ) nature,
and (iii) as opposed to an adhoc approach presented



in our earlier work [I6], through the novel signal the-
oretic interpretation, we show that the first convolu-
tion layer learns a spectral dictionary that models in-
parts formant-like information in the envelop of mag-
nitude spectrum of sub-segmental speech. We then
focus the analysis on the classifier stage, where we
show that the learned features are more discrimina-
tive than the conventional cepstral features and can
be classified well with a simple classifier such as a sin-
gle layer perceptron. Finally, through cross-domain
and cross-lingual studies we show that the learned
features could be transferred across languages and
domains.

The remainder of the paper is organized as follows.
Section ] presents a background on hybrid HMM/ANN
ASR, feature extraction and use of deep neural networks,
and motivates the present work. Section [3] presents the
architecture of the CNN-based system. Section [4] presents
the recognition studies and Section 5] presents the analyses.
Section [6] presents a discussion and concludes the paper.

2. Background

This section briefly introduces standard hybrid
HMM/ANN ASR system. It then presents a concise sur-
vey on two aspects of acoustic modeling: features and
ANN-based classifier upon which the present paper focuses
on.

2.1. Hybrid HMM/ANN ASR system

As presented in Figure [I} hybrid HMM/ANN based
ASR system is composed of three parts: features extrac-
tion, classification and decoding. In the first step, input
features x; at time t are extracted from the short-term
signal s;. They are then given as input to an artificial
neural network (ANN). In literature, ANNs with different
architectures have been proposed such as multilayer per-
ceptron (MLP) [2], time delay neural networks [I7] which
is also referred to as convolutional neural networks, recur-
rent neural networks (RNN) [I8, [19]. The ANN estimates
the class conditional probabilities P(i|x;) for each phone
class i € {1,...,I}. The emission probabilities p.(x;|?)
of the HMM states are scaled likelihoods which, as given
below, are obtained by dividing the ANN output by the
prior probability of the class P(7),

o pCxeli)  Pilxe)
Pe(x¢]?) x oo - PO Viel, . (1)

The prior class probability P(i) is often estimated by
counting on the training set. The phone classes {1, ... , I}
can be either context-independent phones or clustered
context-dependent HMM states, typically obtained by
decision tree based state clustering and tying. De-
pending upon that the system is referred to as either
context-independent phone-based ASR system or context-
dependent phone-based ASR system, respectively.

Raw speech St Fteau:re
—> Xtraction
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MFCC / PLP
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Figure 1: Hybrid HMM/ANN system. s; denotes the input speech
segment, x; here denotes cepstral features and 7 denotes a phoneme
class.

Given the scaled-likelihood estimates, a phonetic lexi-
con and a language model, the decoder finally infers the
best matching word hypothesis through search.

2.2. Feature and classifier

Speech signal is a non-stationary signal. Alternately,
the statistical characteristics of the signal change over time
due to various reasons such as the speech sound being pro-
duced, speaker variation, emotional state variation. In the
case of ASR, we are primarily interested in the character-
istic of the speech signal that relates to or differentiates
the speech sounds. In other words, the primary goal is
to estimate statistical evidence about speech sounds given
the speech signal. To achieve that, guided by statistical
pattern recognition techniques, originally the problem has
been split into two steps, namely, feature extraction and
modeling of the features by a statistical classifier.

Speech coding studies in telephony have shown that
speech can be processed as short segments, transformed,
transmitted and reconstructed while keeping the intelligi-
bility or message intact [20]. In particular, the studies have
shown that short-term speech signal could be considered
as output of a linear time invariant vocal tract filter ex-
cited by periodic or aperiodic vibration of vocal cords [20].
Furthermore, speech intelligibility can be preserved by pre-
serving the envelop structure of the short-term spectrum
of speech signal, which characterizes the vocal tract sys-
tem [2I]. The two most common spectral-based features
Mel frequency cepstral coefficients (MFCCs) [22] and per-
ceptual linear prediction (PLP) cepstral coefficients [23]
are built on those aspects while integrating the knowledge
about speech and sound perception.

As illustrated in Figure the extraction of MFCC
or PLP feature involves: (1) transformation of short-term
speech signal to frequency domain; (2) filtering the spec-
trum based on critical bands analysis, which is derived
from speech perception knowledge; (3) applying a non-
linear operation; and (4) applying a transformation to
get reduced dimension decorrelated features. This pro-
cess only models the local spectral level information on a
short time window typically of 20-30 ms. The informa-
tion about speech sound is spread over time. To model
the temporal information intrinsic in the speech signal dy-
namic features are computed by taking approximate first
and second derivative of the static features [24].
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(b) Typical CNN based pipeline using Mel filter bank [25] 26]

Figure 2: Illustration of several feature extraction pipelines. |DFT| denotes the magnitude of the discrete Fourier transform, DCT denotes
the magnitude of the discrete cosine transform, AR modeling stands for auto-regressive modeling, A and AA denote the first and second
order derivatives across time, respectively. P(i|x:) denotes the conditional probabilities for each input frame x;, for each label 4. It is worth
noting that typically, in addition to x¢, the input to the ANN also consists of features from preceding and following frames.

To estimate statistical evidence of speech sounds given
the speech signal, the cepstral features are modeled by
classifiers such as k-means (or vector quantization), Gaus-
sian mixture models, ANNSs, k-nearest neighbor. In the be-
ginning of the hybrid HMM/ANN theory, the ANNs typ-
ically had single hidden layer. There were two particular
reasons for that. First, it has been shown theoretically that
ANN with single hidden layer is an universal approxima-
tor [27]. Second, both acoustic and computing resources
were then limited. In recent years, with the advance-
ments in computing and availability of increased amount
of acoustic resources, it has been shown that ANNs with
deep architecture, i.e. with multiple hidden layers, can
yield better systems [3], 28] 29] [9].

2.8. Motivation

The standard acoustic modeling mechanism can be
seen as a process of applying transformations guided by
prior knowledge about speech production and perception
on the speech signal, and subsequent modeling of the re-
sulting features by a statistical classifier. More recently,
inspired by the success of deep learning approaches in the
fields of text processing and vision [8| [6] [7] towards build-
ing end-to-end systems as well as by the success of DNNs
in ASR, researchers have started questioning the interme-
diate step of feature extraction. In that direction, several
studies have been carried where filter bank or critical band
energies estimated from the short-term signal instead of
cepstral features are used as input of convolutional neural
networks based systems [30, 25| 26] or short-term magni-
tude spectrum is used as input to the DNN [31] [32]. Fig-
ure [2(b)| illustrates a case where, instead of transforming
the critical band energies into cepstral features, the crit-
ical band energies and its derivatives are fed as input to

the ANN.

In this article, as opposed to the idea of applying
spectral transform and then learning feature and classi-
fier, we go one step further where the neural network also
learns short-term windowing and spectral processing along
with the features and the classifier for phone classification.
More precisely, in this approach the raw speech signal is in-
put to an ANN that classifies speech sounds. During train-
ing the neural network learns the appropriate window size
and filtering process that operates on the signal to model
the relevant features and the classifier for phone classifi-
cation. The output of the trained neural network is then
used as emission probabilities of HMM states as done in
hybrid HMM/ANN approach. Such an approach can not
only be motivated by recent advances in machine learn-
ing [8, [6] but also from previous works in the speech liter-
ature, which have investigated methods to directly model
raw speech signal for speech recognition, as presented be-
low.

The first initiative towards directly modeling the raw
speech signal was inspired by speech production model, i.e.
an observed speech signal can be seen as an output of a
time varying filter excited by a time varying source. Specif-
ically, one of the first theoretical work in that direction
by [33] was inspired by linear prediction techniques, which
can deconvolve the excitation source and the vocal tract
system through time domain processing. Poritz’s work
was later revisited as switching autoregressive HMM [34],
and more recently in the framework of switching linear dy-
namical systems [35]. These techniques were investigated
in an isolated word recognition setup where word-based
models are trained. It was found that in comparison to
HMM-based ASR system using cepstral features these ap-
proaches yield performance comparable under clean con-



ditions and significantly better performance under noisy
conditions [35]. In [36], an approach to model raw speech
signal was proposed using auto-regressive HMM. In this
approach, each sample of the speech signal is an observa-
tion, as opposed to a vector of speech samples in the ap-
proach proposed in [33]. Each state models the observed
speech sample as a linear combination of past samples plus
a "driving sequence” (assumed to be a Gaussian i.i.d pro-
cess). The potential of the approach was demonstrated
on classification of speaker-dependent discrete utterances
consisting of 18 highly confusable stop consonant-vowel
syllables. However, their gain compared to conventional
cepstral-based features is not clear, and they were never
studied on continuous speech recognition task.

More recently, use of raw speech signal as input to
discriminative systems has been investigated. In that di-
rection, combination of raw speech and cepstral features
in the framework of support vector machine has been in-
vestigated for noisy phoneme classification [37]. Feature
learning from raw speech using neural networks-based sys-
tems has been investigated in [I0]. In this approach, the
learned features are post-processed by adding their tem-
poral derivatives and used as input for another neural net-
work. Thus, this approach still follows the “divide and
conquer” approach. In comparison to these approaches, as
presented in the following section, in our approach the fea-
tures and the classifier are learned in an end-to-end manner
to estimate the phone class conditional probability P(i|x;)
in Eqn. (1.

3. Proposed CNN-based Approach

Joint Training

Word
sequence

Raw speech
segment S§

. Language

Figure 3: Overview of the proposed CNN-based approach.

We present a novel acoustic modeling approach based
on convolutional neural networks (CNN), where the input
speech signal s§ = {s;—¢ ... St ... Styc} IS a segment of
the raw speech signal taken in context of 2¢ frames span-
ning w;, milliseconds. The input signal is processed by
several convolution layers and the resulting intermediate
representations are classified to estimate P(i|s{), Vi, as
illustrated in Figure P(i|s§) is subsequently used to
estimate emission scaled-likelihood p.(sf|i). As presented
in Figure [4] the network architecture is composed of sev-
eral filter stages, followed by a classification stage. A filter
stage involves a convolutional layer, followed by a tempo-
ral pooling layer and a non-linearity, HardTanh(-). The
number of filter stages is determined during training. The

feature stage and the classifier stage are jointly trained
using the backpropagation algorithm.

The proposed approach employs the following under-
standings:

1. Speech is a non-stationary signal. Thus, it needs to
be processed in a short-term manner. Traditionally,
in the literature guided by Fourier spectral theory
and speech analysis-synthesis studies the short-term
window size is set as 20-40 ms. The proposed ap-
proach follows the general idea of short-term process-
ing. However, the size of the short-term window is a
hyper-parameter which is determined during train-
ing.

2. Feature extraction is a filtering operation. This can
be simply observed from the fact that generic op-
erations such as Fourier transform, discrete cosine
transform etc. are filtering operations. In conven-
tional speech processing, the filtering takes place in
both frequency (e.g. filter-bank operation) and time
(e.g. temporal derivative estimation). The convolu-
tion layers in the proposed approach build on these
understandings. However, aspects such as the num-
ber of filtering layers and their parameters are deter-
mined and learned during training, respectively.

3. Though the speech signal is processed in a short-term
manner, the information about the speech sounds is
spread across time. In conventional approach, the
information spread across time is modeled by esti-
mating temporal derivatives and by using contextual
information, i.e. by appending features from preced-
ing and following frames, at the classifier input. In
the proposed approach the intermediate representa-
tions feeding into the classifier stage are estimated
using long time span of input speech signal, which is
again determined during training. Alternately, w;,
is a hyper-parameter.

In essence the proposed approach with minimal assump-
tions or prior knowledge learns to process the speech signal
to estimate P(i|s{).

3.1. Convolutional layer

While “classical” linear layers in standard MLPs ac-
cept a fixed-size input vector, a convolution layer is as-
sumed to be fed with a sequence of T vectors/frames:
{y1 ...yt ... yr}. As illustrated in Figure [5| a convo-
lutional layer applies the same linear transformation over
each successive (or interspaced by dIW frames) windows of
kW frames. In this work, y; is either a segment of input
raw speech s§ (for the first convolution layer) or an inter-
mediate representation output by the previous convolution
layer. Formally, the transformation at frame ¢ is written
as:

Yt—(kw-1)/2
M s , (2)

Yit+(kWw—1)/2>
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Figure 4: Overview of the convolutional neural network architecture. Several stages of convolution/pooling/HardTanh might be considered.
Our network included three stages. The classification stage can have multiple hidden layers.

where M is a dyyt X (KW - d;;,) matrix of parameters, d;,
denotes the dimension of each input frame and d,,; de-
notes the output dimension of each frame. In other words,
dout filters (rows of the matrix M) are applied to the input
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Figure 5: Illustration of a convolutional layer. d;, and doyt are the
dimensions of the input and output frames. kW is the kernel width
(here kW = 3) and dW is the shift between two linear applications
(here, dW =2).

3.2. Max-pooling layer

This kind of layers perform local temporal max opera-
tions over an input sequence. More formally, the transfor-
mation at frame t is written as:

d
Vd 3
b (K Wony—1) /25 bt (E Wy —1) /2 F ’ 3)

with y being the input and d € {1,---d,yu+}. These layers
increase the robustness of the network to minor temporal
distortions in the input. They also bring some level of
invariance to the phase of the signal, as a phase difference
between two signals can be seen as a temporal shift.

3.2.1. Non-linearity
This kind of layer applies a non-linearity to the input.
In this work, we use the HardT anh layer, defined as:

-1 ifz< -1
HardTanh(z) =< =z if —1<z<1 (4)
1 ife>1

kW

0000000000
RS

Max-Pooling

max(+)

Figure 6: Illustration of max-pooling layer. kW is the number of
frames taken for each max operation (here, kWmp = 2 and dWpmp =

2) and d represents the dimension of input/output frames (which are
equal).

This layer is a hard version of the hyperbolic tangent.
It has the advantage of being cheaper to compute while
keeping the generalization performance of the exact tan-
gent [38]. It is worth mentioning that other types of non-
linearities such as, rectified linear unit (ReLU) [39, 0] can
also be applied (e.g., see [41 Chapter 6]).

3.3. SoftMaz layer

The Softmax [42] layer interprets network output
scores f;(s¢) as conditional probabilities, for each class la-

bel i: ‘
efi(sy)

Zefj(sf)'
J

P(ilsy) = (5)

8.4. Network training
The network parameters 6 are learned by maximizing
the log-likelihood L, given by:

L) =Y log(P(ils;,0)), (6)

for each speech segment s{ and its corresponding label 4,
over the whole training set, with respect to the param-
eters of each layer of the network. Defining the logadd
operation as:

logadd(z;) = log(z e*). (7)



The log-likelihood £; of frame ¢ can be expressed as:
Ly =log(P(it]sy)) = fi,(s7) —logadd(f;(sf)),  (8)
J

where f;,(s¢) described the network score for the frame
label i;. Maximizing this likelihood is performed using the
stochastic gradient ascent algorithm [43].

3.5. Illustration of a trained network

In the proposed approach, in addition to the number
of hidden units in each hidden layer of the classification
stage, the filter stage has number of hyper-parameters,
namely, time span of input speech signal w;,, used to esti-
mate P(i|s§), number of convolution layers, kernel or tem-
poral window width kW at input of each convolution layer,
dW shift of the temporal window at the input of each con-
volution layer, max pooling kernel width kW,,, and shift
of max pooling kernel dW,,,. In the present work, all
of these hyper-parameters are determined during training
based on frame level classification accuracy on validation
data.

Figure[7]illustrates the trained feature stage of the pro-
posed CNN approach on the TIMIT corpus. The details
of the training can be found in the following Section [
The filter stage has three convolution layers and it takes
a window of 250 ms speech signal w;, as input to esti-
mate P(i|s§) every 10 ms. The figure also illustrates the
temporal information x modeled by the output of each
convolution layer and the temporal shift . Briefly, the
first convolution layer models in a fine grain manner the
changes in the signal characteristics over time, i.e. pro-
cesses 1.8 ms of speech (kW = 30 samples) every 0.6ms
(dW = 10 samples). The subsequent convolution layers
then filter and temporally integrate the output of the first
convolution layer to yield an intermediate feature represen-
tation that is input to the classifier stage, which eventually
yields an estimate of P(i|sf).

It is worth pointing out that the dimensionality of the
intermediate representation at the feature learning stage
output depends upon the number of convolution stages
and the max-pooling kernel width. As it can be seen that
max-pooling is done without temporal overlap. So, at each
convolution stage, in addition to filtering minor temporal
distortions, max-pooling operation acts as a down sampler.

4. Recognition Studies

In this section, we present automatic speech recogni-
tion studies to show the potential of the proposed ap-
proach. We compare it against the conventional ap-
proach of spectral-based feature extraction followed by
ANN training on different tasks and languages, namely,
(a) TIMIT phoneme recognition task, (b) Swiss French
Mediaparl task and (c) Swiss German Mediaparl task. The
Wall Street Journal (WSJ) 5k task [15] is also reported for
the sake of completeness. The objective of these studies
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Figure 7: Illustration of the feature stage of CNN trained on TIMIT
to classify 183 phoneme classes. &k and § indicates the temporal
information modeled by the layer and the shift respectively. Non-
linearity layers are applied after each maz-pooling.

is to demonstrate the potential of the proposed end-to-
end acoustic modeling approach by comparing it against
the standard cepstral feature-based acoustic modeling for
estimating phoneme class posterior probability.

The reminder of the section is organized as follows.
Section [I.1] presents the different datasets and setup used
for the studies. Section presents the different systems
that are trained and evaluated. Section presents the
recognition studies.

4.1. Databases and setup

4.1.1. TIMIT

The TIMIT acoustic-phonetic corpus [44] consists of
3,696 training utterances (sampled at 16kHz) from 462
speakers, excluding the SA sentences. The validation set
consists of 400 utterances from 50 speakers. The core test
set is used to report the results. It contains 192 utterances
from 24 speakers, excluding the validation set. Experi-
ments are performed using 61 phoneme labels, with three
states, for a total of 183 targets as in [45]. After decoding,
the 61 hand labeled phonetic symbols are mapped to 39
phonemes, as presented in [46].

4.1.2. Wall Street Journal
The Wall Street Journal (WSJ) corpus is an English
corpus cousisting of read microphone speech [47]. The

SI-284 set of the corpus is formed by combining data
from WSJO and WSJ1 databases [48]. The set contains



36416 sequences sampled at 16 kHz, representing around
80 hours of speech. 10% of the set is taken as the vali-
dation set. The Nov’92 set is selected as test set. It con-
tains 330 sequences from 10 speakers. The dictionary is
based on the CMU phoneme set, 40 context-independent
phonemes. We obtain 2776 clustered context-dependent
(cCD) units, i.e. tied-states, by training a context-
dependent HMM/GMM system with decision tree-based
state tying using HTK [49]. We use the bigram language
model provided with the corpus. The test vocabulary con-
tains 5000 words.

4.1.8. Mediaparl

MediaParl is a bilingual corpus [50] containing data
(debates) in both Swiss German and Swiss French which
were recorded at the Valais parliament in Switzerland.
Valais is a state which has both French and German speak-
ers with high variability in local accents specially among
German speakers. Therefore, MediaParl provides a real-
speech corpus that is suitable for ASR studies. In our
experiments, audio recordings with 16 kHz sampling rate
are used.

The Swiss German part of the database, referred to as
MP-DE, is partitioned into 5955 sequences from 73 speak-
ers for training (14 hours), 876 sequences from 8 speakers
for validation (2 hours) and 1692 sequences from 7 speak-
ers (4 hours) for test. 1101 tied-states are used in the
experiments, following the best system available on this
corpus [51]. The vocabulary size is 16,755 words. The dic-
tionary is provided in the SAMPA format with a phone
set of size 57 (including sil) and contains all the words in
the training, validation and test set. A bigram language
model is used.

The Swiss French part of the database, referred to as
MP-FR, is partitioned into 5471 sequences from 107 speak-
ers for training (14 hours) , 646 sequences from 9 speak-
ers for validation (2 hours) and and 925 sequences from 7
speakers (4 hours) for test. 1084 tied-states are used in the
experiments, as presented in [52]. The vocabulary size is
12,035 words. The dictionary is provided in the SAMPA
format with a phone set of size 38 (including sil) and con-
tains all the words in the training, validation and test sets.
A bigram language model is used.

4.2. Systems

In this section, for each task studied, we present the
details of the conventional spectral feature based baseline
systems (Section and the proposed CNN-based sys-
tem using raw speech signal as input (Section . All
neural networks were initialized randomly and trained us-
ing the Torch7 toolbox [53]. The HTK toolbox [49] was
used for the HMMs and the cepstral features extraction.

4.2.1. Conventional cepstral feature based system
On each task, we have two baseline hybrid HMM/ANN
systems which differ in terms of ANN architecture. More

precisely, 1 hidden layer MLP (denoted as ANN-1H) based
system and 3 hidden layers MLP (denoted as ANN-3H)
based system. These ANNs estimate P(i|x;), where x; is
a cepstral feature vector at time frame t. The details of
the baseline systems for the different tasks are as follows,

o TIMIT: We treat the one hidden layer MLP based
system and the three hidden layers MLP based sys-
tem without pre-training i.e. random initialization
reported in [31, Figure 6] as the baseline systems.
Our motivation in doing so is that they are one of the
best cepstral feature-based systems without use of
adaptation methods reported in the literature on this
task. In these systems, the inputs to the MLPs were
39 dimensional MFCC features (co — c12 + A+ AA)
with five frames preceding and five frames following
context (i.e. input dimension 39 x 11). ANN-1H
has 2048 nodes in the hidden layer and ANN-3H has
1024 nodes in each of the three hidden layers.

e WSJ: We trained an ANN-1H and an ANN-3H to
classify 2776 tied-states. The inputs to the MLP are
39 dimensional MFCC features (co — c12 + A + AA)
with four frames preceding and four frames following
context (i.e. input dimension 39 x 9). The MFCC
features are computed with a frame size of 25ms and
a frame shift of 10 ms. ANN-1H has 1000 nodes in
the hidden layer and ANN-3H has 1000 nodes in each
hidden layer.

e MediaParl: We use the setup of the best perform-
ing hybrid HMM/ANN system using a three hid-
den layers MLP, classifying 1101 and 1084 clustered
context-dependent units for Swiss German and Swiss
French respectively, reported in [51] and in [52] as
the baseline ANN-3H system. The ANN-1H has
1000 nodes in each hidden layer. The ANN-3H
has 1800 nodes in the first hidden layer and 1500
nodes in the second and third hidden layer. The
inputs to the ANNs were 39 PLP cepstral features
(co — c12+ A+ AA) with four frames preceding and
four frames following context. The frame size and
frame shift are 25 ms and 10ms, respectively.

4.2.2. Proposed CNN-based system

We train the proposed CNN-based P(i|s{) estimator
using raw speech signal. The inputs are simply composed
of a window of the speech signal (hence d;;, = 1, for the
first convolutional layer). The utterances are normalized
such that they have zero mean and unit variance, which is
in line with the literature [36]. No further pre-processing
is performed. The hyper-parameters of the network are:
the time span of the input signal (w;,), the kernel width
kW and shift dW of the convolutions, the number of filters
dout, maxpooling kernel width kW,,,, maxpooling kernel
shift dW,,, and the number of nodes in the hidden layer(s).
Note that the input d;,, for the first convolution layer is
one (i.e. a sample of the speech signal). For the remaining



layers, the d;, is the product of d,,; of the previous layer
and kW of that layer. These hyper parameters are deter-
mined by early stopping on the validation set, based on
frame classification accuracy. The ranges which are con-
sidered for a coarse grid search are reported in Table[I} We
use the TIMIT task to narrow down the hyper-parameters
search space, as it provided fast turnaround experiments.

Table 1: Ranges of hyper parameters for the grid search.

Parameters [ Units [ Range
Input window size (w;n) ms 100-700
Kernel width of the first conv. (kW7) samples 10-90
Kernel width of the nt® conv. (kW) frames 1-11
Number of filters per kernel (dout) filters 20-100
Max-pooling kernel width (kWp) frames 2-6
Number of hidden units in the classifier units 200-1500

For each of the tasks, we train CNNs with one hid-
den layer (denoted as CNN-1H) and three hidden layers
(denoted as CNN-3H) similar to the different MLP archi-
tectures in the baseline systems. We found that three con-
volution layers consistently yield the best cross validation
accuracy across all the tasks. The CNN architecture found
for each of the task is presented in Table [3] The shift of
max-pooling kernel dW,,,, = 3 is found for all the layers
on all the tasks. As we will observe later, the complexity
of the CNN-based approach in terms of number of param-
eters lies at the classifier stage. So, for fair comparison
with the baseline systems, we restricted the search for the
number of hidden nodes in the hidden layer(s) such that
the number of parameters is comparable to the respective
baseline systems. The output classes are the same as the
case of cepstral feature-based system, i.e. for the TIMIT
task 183 phone classes, for the WSJ task 2776 ¢CD units,
for the MP-DE task 1101 ¢CD units and for the MP-FR
task 1084 cCD units.

The computation cost of the proposed architecture
would be higher than the ANN baseline, as the raw speech
signal has to be processed, whereas for the baseline sys-
tems the features are already computed. Table [2| presents
the number of frames processed per second for the base-
line, the CNN-1H and the CNN-3H systems during the
training and evaluation phases. One can see that while
training the baseline with one hidden layer (ANN-1H) is
much faster than training the CNN-1H (5.7x speed factor),
the gap reduces drastically when training the three layers
systems (1.5x speed factor).

4.8. Results

In this section we present the results of the studies
on different tasks. For the sake of completeness, for the
speech recognition studies we also report performance on
HMM/GMM system. For MP-DE and MP-FR, the best
performing HMM/GMM systems reported in [51] and [52],
respectively are presented. These systems have a greater

number of tied states than the hybrid HMM/ANN and the
CNN-based system presented here.

4.8.1. TIMIT

Table [4] presents the results on TIMIT phone recogni-
tion task in terms of phoneme error rate (PER). It can
be observed that the proposed CNN based approach out-
performs the conventional cepstral feature-based system.
In [3T), Figure 6], ANNs with different hidden layers were
investigated with cepstral feature as input. The best per-
formance of 23.0% PER for the case of random initializa-
tion is achieved with 7 hidden layers, 3072 hidden nodes
per layer and 17 frames temporal context (8 preceding and
8 following). With pre-training, the best performance of
22.3% PER is achieved with 6 hidden layers, 3072 hid-
den nodes per layer and 17 frames temporal context. The
CNN-3H system performs better than those systems as
well.

Table contrasts our results with a few promi-
nent results on TIMIT using ANNs. Inputs of these
systems are either MFCCs (computed as presented in
Section , Mel filterbanks energies (abbreviated as
FBANKs) or “improved” MFCC features (denoted as
MFCC+LDA+MLLT+fMLLR), which are obtained by
applying decorrelation processes (linear discriminant anal-
ysis and maximum likelihood linear transform) and
speaker normalization (feature-space maximum likelihood
linear regression) [54] to the original MFCC coefficient.
One can see that the proposed approach outperforms most
of the systems using MFCCs features. Systems using im-
proved MFCCs features yields better results than the pro-
posed approach, mainly due to the speaker normalization
technique, which could be developed for the proposed ap-
proach. For instance, speaker adaptation in our approach
could be achieved in an unsupervised manner by using
learning hidden unit contributions (LHUC) method at the
classifier/MLP stage [55]. At the filter stage, one could
possibly adopt an approach similar to the approach pro-
posed in [56]. Finally, one can see that RNN-based systems
(the three last entries of Table [5)) clearly yield the best
performance. It is worth noting that the proposed CNN-
based approach could be used in a RNN-based architec-
ture, where the MLP-based classifier stage is replaced by
a RNN. This approach raises the issue of the high dimen-
sionality of the filter stage output. It could be addressed
by adding more convolution and max-pooling layers, which
will effectively reduce the output dimensionality. Such an
approach we have explored successfully in the context of
extension of our approach where the MLP is replaced by
single layer perceptron to reduce the overall complexity
of the system in terms of parameters while retaining the
performance [57].

4.3.2. WSJ

The results for the LVCSR study [15] on the WSJ cor-
pus is presented in Table [f] For the baseline systems and
the proposed system. As can be observed, the CNN-1H



Table 2: Number of samples processed per second for the baselines and the proposed approach, during the training and evaluation phases.

The measurements were done on a single CPU Intel i7 2600K 3.4 GHz.

Training Evaluation
System | [sample/sec] | [sample/sec]
ANN-1H 1371 3330
ANN-3H 177 2199
CNN-1H 240 1164
CNN-3H 113 741

Table 3: Architecture of CNN-based system for different tasks. HL=1 denotes CNN-1H and HL=3 denotes CNN-3H. w;,, is expressed in
terms of milliseconds. The hyper-parameters kW, dW, dout and kW for each convolution layer is comma separated. HU denotes the
number of hidden units. 2 x 1500 means 1500 hidden units per hidden layer.

| HL | win | kW | dW | dour | KWy | HU
TIMIT [ 1 [250 [ 30,7,7 [ 10,1,1 [ 80,60,60 [ 3,3,3 1000
3 | 250 | 30,7,7 | 10,1,1 | 80,60,60 | 3,3,3 3x1000
WSJ 1 ]210 [ 30,7,7 [ 10,1,1 | 80,60,60 | 3,3,3 1000
3 | 310 | 30,7,7 | 10,1,1 | 80,60,60 | 3,3,3 3x1000
MP-DE | 1 [ 210 | 30,77 | 10,1,1 [ 80,60,60 | 33,3 1000
3 | 310 | 30,7,7 | 10,1,1 | 80,60,60 | 3,3,3 | 1800,2x1500
MP-FR | 1 [ 190 | 30,7,7 | 10,1,1 | 80,60,60 | 3,3,3 1000
3 | 310 | 30,7,7 | 10,1,1 | 80,60,60 | 3,3,3 | 1800,2x1500

Table 4: Phoneme error rate of different systems on the core test set
of the TIMIT corpus. The ANN-1H and ANN-3H performances are
reported in [3I]. #Conv. Params. denotes the number of parameters
in the convolution layers, #Class. Params. denotes the number of
parameters in the classifier stage. M stands for million.

#Conv. | #Class. | PER

Input System | params. | params. | (in %)
MFCC | ANN-1H | na 12M | 245
MFCC | ANN-3H na 2.6M 22.6
RAW | CNN-1H 63k 0.92M 22.8
RAW | CNN-3H 52k 2.9M 21.9

based system outperforms the ANN-1H based baseline sys-
tem, and the CNN-3H based system also outperforms the
ANN-3H based system with as many parameters.

4.8.8. MP-DE

The results on the Mediaparl German corpus are pre-
sented in Table[7] The CNN-1H based system outperforms
the GMM-based system, the ANN-1H based system and
the ANN-3H system with four times less parameters. The
CNN-3H system also outperforms the baseline.

4.3.4. MP-FR

The results on the Mediaparl French corpus are pre-
sented in Table[8] Again, a similar trend can be observed,
i.e. the CNN-1H based system outperforms the ANN-1H
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baseline and the CNN-3H outperforms the ANN-3H based
system.

In summary, these studies show that with minimal as-
sumptions the proposed approach is able to learn to pro-
cess the speech signal to estimate phone class conditional
probabilities P(i]s{) and yield a system that outperforms
conventional cepstral feature based system using DNNs.
Furthermore, we consistently observe that the CNN-1H
system yields performance comparable to ANN-3H system
with considerably fewer parameters.

5. Analysis

The aim of this section is to gain insight into the pro-
posed approach. Towards that this section focuses on anal-
ysis at two levels: (a) analysis of the first convolution layer
(Section which operates on the speech signal directly.
Thus, can be related to and can be contrasted with tradi-
tional speech processing; and (b) analysis of the interme-
diate feature representations obtained at the output of the
feature stage (Section .

5.1. First convolution layer

In this section, we present an analysis of the first convo-
lution layer. We first provide an input level analysis, where
the hyper-parameters of the layer (found experimentally)
are compared against the conventional speech processing
approach. We then show that the convolution layer can
be interpreted as a bank of matching filters. Finally, we



Table 5: Phoneme error rate of different systems reported in literature on the core test set of the TIMIT corpus.

Method (input) ‘ PER (in %)
Augmented CRFs (MFCC) [5§] 26.6
HMM/DNNs 6 layers (MFCC) [31] 22.3
Deep segmental NN (MFCC) [59] 21.9
Proposed approach 21.9
HMM /DNNs 6 layers (MFCC+LDA+MLLT+MLLR) [60] 18.5
CTC transducers (FBANKSs) [19] 17.7
Attention-based RNN (FBANKSs) [61] 17.6
Segmental RNN (MFCC+LDA+MLLT-+MLLR) [60] 17.3

Table 6: Word Error Rate on the Nov’92 testset of the WSJ corpus.
#Conv. Params. denotes the number of parameters in the convolu-
tion layers, #Class. Params. denotes the number of parameters in
the classifier stage. M stands for million.

#Conv. | #Class. | WER

Input | System | params. | params. | (in %)
MFCC GMM na 4M 5.1
MFCC | ANN-1H na 3.1M 7.0
MFCC | ANN-3H na 5.6M 6.4
RAW | CNN-1H 46k 3.1M 6.7
RAW | CNN-3H 61k 5.6M 5.6

Table 7: Word Error Rate on the testset of the MP-DE corpus.
The GMM and ANN-3H baseline performances are reported in [51].
#Conv. Params. denotes the number of parameters in the convolu-
tion layers, #Class. Params. denotes the number of parameters in
the classifier stage. M stands for million.

#Conv. | #Class. | WER
Input | System | params. | params. | (in %)
PLP GMM na 3.8M 26.6
PLP | ANN-1H na 2.2M 26.7
PLP | ANN-3H na 8.8M 25.5
RAW | CNN-1H 61k 1.6M 24.4
RAW | CNN-3H 92k 8. 7™M 23.5

analyze how these filters respond to various inputs and
present a method to understand the filtering process.

5.1.1. Input level analysis

To learn to process raw speech signal and estimate
P(i|s§) the proposed approach employs many hyper-
parameters which are decided based on validation data.
We can get insight into the approach by relating or con-
trasting a few of the hyper-parameters to the traditional
speech processing. First among that is time span of the
signal w;, used to estimate P(i|s§). From Table [3] we can
observe that wj;, varies from 190 ms - 310 ms. This is
consistent with the literature which supports the idea of
processing syllable length speech signal (around 200 ms)
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Table 8: Word Error Rate on the testset of the MP-FR corpus.
The GMM and ANN-3H performances are reported in [52]. #Conv.
Params. denotes the number of parameters in the convolution layers,
#Class. Params. denotes the number of parameters in the classifier
stage. M stands for million.

#Conv. | #Class. | WER
Input | System | params. | params. | (in %)
PLP GMM na 3.8M 26.8
PLP | ANN-1H na 2.2M 27.0
PLP | ANN-3H na 8.8M 25.5
RAW | CNN-1H 61k 1.56M 25.9
RAW | CNN-3H 92k 8.7TM 23.9

for classification of phones [62]. This aspect can be also
observed in another way. Usually, in hybrid HMM/ANN
system the input is the cepstral features (static + A +
AA) at the current time frame and features of four pre-
ceding frames and four following frames. If the frame shift
is 10 ms and the temporal derivatives are computed using
two frames preceding and two frames following context
then the 9 frame feature input models 170 ms of speech
signal.

Next, we can understand how the speech signal of time
span of 190 ms - 310 ms is processed at the input of the
network through the kernel width (kW) and kernel shift
(dW) of the first convolution stage. We can see from Ta-
ble 3] that for all tasks kW is 30 speech samples and dW is
10 speech samples. Given that the sampling frequency is
16 kHz, this translates into a window of 1.8 ms and shift of
about 0.6 ms. This is contrary to the conventional speech
processing where typically the window size is about 25 ms,
the shift is about 10 ms and the resulting features are con-
catenated at the classifier input. Note that in our case w;,
is shifted by 10ms, however within the window of 190 ms -
310 ms the speech is processed at the sub-segmental level
at the first convolution layer and subsequently processed
by later convolution layers to estimate P(i|sf).

Such a sub-segmental processing at the first convolu-
tion layer could possibly be reasoned through signal sta-
tionarity assumptions. More precisely, the convolution fil-
ters at the first stage are learned by discriminating the



phone classes at the output of the CNN. So, for the out-
put of the convolution filter to be informative (for phone
classification), the filter has to operate on stationary seg-
ments of the speech signal spanned by w;,. It can be
argued that such a stationary assumption would clearly
hold for one glottal cycle or pitch period of the speech
signal. In such a case suppose if the limit of the observed
pitch frequency is assumed to be 500 Hz, i.e. beyond adult
speakers’ pitch frequency range, then a window size of 2
ms or less would ensure that the filters operate on sta-
tionary segments, i.e. within a glottal cycle, which mainly
contains vocal tract response related information. This
is consistent with traditional feature extraction methods
(see [Il, 22 23] for example), where the main emphasis is
towards modeling vocal tract response information.

5.1.2. Learned filters

The first convolution layer learns a set of filters that
operates on the speech signal in a similar way to filter bank
analysis during MFCC or PLP cepstral feature extraction.
In the case of MFCC or PLP cepstral feature extraction
the number of filter banks and their characteristics are de-
termined a priori using speech perception knowledge. For
instance, the filters are placed either on Mel scale or on
Bark scale. Further, each of the filters covers only a part
of the bandwidth, out of which the response is strictly
zero. The number of filters is chosen based on bandwidth
information. For instance, in the case of Mel scale around
24 filters for 4 kHz bandwidth (narrow band speech) and
40 filters for 8 kHz bandwidth (wide band speech) are typ-
ically used. While in the case of Bark scale, there are 15
filters for 4 kHz bandwidth and 19 filters for 8 kHz band-
width [63].

In contrast, in the proposed approach the number fil-
ters and their responses are learned in data-driven manner,
i.e. while learning to estimate P(i|s§). It can be observed
from Table [Bl that the number of filters for all the tasks is
80. This is well above the range typically used in speech
processing. In order to understand the learned filter char-
acteristics, we analyzed the filters learned on WSJ, MP-DE
and MP-FR task in the following manner:

(i) The complex Fourier transform F of the filters
learned on the WSJ, MP-DE and MP-FR tasks for
CNN-1H case are computed using 1024 point FFT.
The 512 point magnitude spectrum |F,,| of each fil-
ter m is then normalized, i.e. converted into a prob-
ability mass function. F), denotes the normalized
magnitude spectrum of filter m.

(ii) For each filter m = 1, ... ,80 learned on WSJ, we

find the closest filter n = 1, ... ,80 learned on MP-

DE and MP-FR using symmetric Kullback-Leibler
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divergence,

d(Fvan) =35 [DKL(FmHFn) + DKL(FnHFm)L

512

: : 77L

(9)

N |

Dy (Fpl|Fy) Fu,

(10)

where F% is the normalized magnitude at u!* point
of FFT of filter m of WSJ CNN-1H and F} is the
normalized magnitude at u!* point of FFT of filter
n of MP-DE CNN-1H or MP-FR CNN-1H.

Figure |8] presents the magnitude of the Fourier trans-
form of a few filters learned on WSJ (on the left column)
and the closest filters learned on the MP-DE task (on the
middle column) and on the MP-FR task (on the right col-
umn). We can make two observations. First, the filters
are focusing on different parts of the spectrum. However,
unlike the filter banks in the MFCC or PLP cepstral fea-
ture extraction, the frequency response of the filters cov-
ers the whole bandwidth. Second, it can be observed that
similar filters can be found across domains and languages,
although there is a difference in the spectral balance, es-
pecially as observed in the case of Figure (b)

To further visualize the learned filters, we ordered the
filters according to the frequency at which the response is
maximum. We treat these frequencies as the center fre-
quencies of the learned filters. Figure [9] plots the cen-
ter frequencies of the learned filters along with the cen-
ter frequencies of 80 critical bands mel-scale filter bank
and Gammatone filter bank. It can be observed that the
learned filter placements to a certain extent tend to match
the auditory motivated filter banks, in particular mel scale
filter bank, in the lower half of the bandwidth, i.e. 0 Hz
and 4 kHz but differ considerably in the upper half of the
bandwidth. In contrast, in the works of Sainath et al. [14]
and Tiske et al. [I2] the filter placements were found to be
close to Gammatone filter bank. A potential reason for this
difference could be that in these works the filter lengths
and the number of filters were set based on prior knowl-
edge. When comparing across WSJ, MP-DE and MP-FR,
the learned filter placements for MP-FR and MP-DE are
similar to each other but differ from that of WSJ. Having
said that it is worth pointing out that the learned filters
can have more than one pass band, as can be seen in Fig-
ure[8] So generalizing these observations in comparison to
auditory motivated filter banks is not trivial.

To further understand the characteristics of the learned
filters, we estimated the cumulative frequency response of
all the learned filters:

('um 7ZF

Figure |10 presents the gain normalized cumulative fre-
quency responses for CNN-1H WSJ, CNN-1H MP-DE and
CNN-1H MP-FR. We can make three key observations,

(11)
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Emphasis is given to frequency regions below 3500
Hz (telephone bandwidth) and high frequency region
in the range of 6000 Hz - 8000 Hz.

Though the filters are learned on different languages
and corpora, we can see that below 4000 Hz and
above 6500 Hz the frequency response for WSJ, MP-
DE and MP-FR are similar. As the filters are oper-
ating on sub-segmental speech, we speculate that the
peaks (high energy regions) are more related to the
resonances in the vocal tract or phoneme discrimi-
native invariant information. Between 4000 Hz and
6500 Hz, we can see that MP-DE and MP-FR have
responses that closely match but are different than
WSJ. Overall, we observe that the spectral balance
for WSJ is different than for MP-DE and MP-FR.
We attribute this balance mismatch mainly to the

Frequency [kHz]

(c)

Figure 8: Examples of three close pairs of filters learned. The left column is from CNN-1H WSJ, the center one is from CNN-1H MP-DE,
the right one is from CNN-1H MP-FR.
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(iii)

Frequency [kHz]

fact that the WSJ and the Mediaparl corpora are
different domains in terms of type of speech (read
vs. spontaneous) and recording environment (con-
trolled vs real world). In the following sub-section
and Section we touch upon this aspect again.

Auditory filter banks such as Mel scale filter banks or
Bark scale filter banks are usually designed to have a
cumulative frequency response that is flat. In other
words, constant Q bandpass filter bank. In contrast
to that, it can be seen that the cumulative frequency
response of the learned filters is not constant @ band-
pass. The main reason for that is standard filter
banks emerged from human sound perception studies
considering the complete auditory frequency range
or the bandwidth, so as to aid analysis and synthesis
(reconstruction) of the audio signal. However, in our
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Figure 9:  Plot of learned filters for WSJ, MP-DE and MP-FR
ordered according to the frequency of maximum response along with
the center frequencies of 80 critical band Mel-scale and Gammatone
filter banks.
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Figure 10: Cumulative frequency responses of the learned filters on
WSJ, MP-DE and MP-FR.

case these filters are learned for the purpose of dis-
criminating phones, and the speech signal contains
information other than just phones. The figure sug-
gests that, for discriminating only phones, constant
Q bandpass filter bank is not a necessary condition.

5.1.3. Response of filters to input speech signal

In Section we observed that the speech signal of
time span 190 ms - 310 ms is processed in sub-segmental
manner. In the previous section, we observed that the
filters that operate on sub-segment of speech signal are
tuned to different parts of the spectrum during training.
In other words, matched to different parts of the spectrum
relevant for phone discrimination. In this section, we as-
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certain that by analyzing the response of the filters to the
input speech signal in relationship with phones.

The CNNs in the WSJ, MP-DE and MP-FR studies
are trained to classify ¢cCD units, which can be quite dis-
tinctive across languages. So, in order to facilitate the
analysis across languages, we train CNNs with single hid-
den layer on WSJ, MP-DE and MP-FR data to classify
context-independent phones with the same hyper param-
eters. We denote these CNNs as CNN-1H-mono WSJ,
CNN-1H-mono MP-DE and CNN-mono MP-FR, respec-
tively.

As a first step, we analyze the energy output of the
filters to the input speech signal. Formally, for a given
input s; = {s¢—(xw—1)/2 - St+(kw—1)/2}, the output y; of
the first convolution layer is given by:

I=+(kW—1)/2

fm[” * St Vm = ]., ~'adout
l=—(kW-=-1)/2

yi[m] = (12)

where f,, denotes the m" filter in first convolution layer
and y:[m] denotes the output of the filter at time frame
t. Figure|11]| presents the output of the filters of CNN-1H-
mono WSJ given a segment of speech signal corresponding
to phoneme /I/ as input. It can be seen that at each time
frame only a few filters out of the 80 filters have high en-
ergy output. An informal analysis across different phones
showed similar trends, except that the filters with high en-
ergy output were different for different phones. Together
with the findings of the previous section, this suggests that
the learned filters could be a dictionary that models the in-
formation in the frequency domain in-parts for each phone.
With that assumption, we extended the analysis where,

1. the magnitude spectrum S; of the input signal s;
based on the dictionary is estimated as:

M
S = ‘ ZYt[m] ']'—m|,

m=1

(13)

where y;[m] is the output of filter m as in Equa-
tion and JF,, is the complex Fourier transform
of filter fy,.

It is worth noting that if the dictionary was to cor-
respond to a bank of kW Fourier sine and cosine
bases then S; is nothing but the Fourier magnitude
spectrum of the input signal s;. As y;[m] would be
a projection on to the Fourier basis corresponding
to discrete frequency m, and F,, would ideally be a
Dirac delta distribution centred at the discrete fre-
quency m.

2. A frame level magnitude spectrum S; for phone i
is estimated by averaging the magnitude spectrum
S; obtained over speech signal of length equal to
frameshift, which in our case is 10 ms. More pre-
cisely, with in 10ms speech, &; is estimated every 10
samples as per Eqn. and averaged by the num-
ber of sub-segmental frames in 10ms or 160 samples
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Figure 11:
corresponding to phoneme /I/.

speech, i.e. 16. S; can be seen as the average spectral
information that is modeled every 10 ms.

We performed a qualitative analysis on American En-
glish vowels dataset, which contains 12 vowels produced by
45 men, 48 women, and 46 in h-V-d syllables (e.g., had,
hid, hood) [64]. The analysis was carried out using the fil-
ters in the first convolution layer of WSJ CNN-1H-mono.
We used 256 points for DFT. Figure [I2] presents the S;
estimated for a frame of /ah/, /eh/, /er/, /oa/, /uw/ and
/iy/ produced by male speaker m01, female speaker w01,
boy speaker b01 and girl speaker gO1. In the plots, the ob-
served first and second spectral peaks have been marked
and contrasted with the F1-F2 (first format-second for-
mant) range obtained in the coarse sampling part of the
original study by Hillenbrandt et a1E| It can be observed
that the spectrum estimates are different for different vow-
els. Furthermore, except for few cases, the marked spec-
tral peaks correspond to F1-F2 range. In the case of /ah/,
only one peak is discernible due to merger of the first two
formants. Similarly, in the case of /oa/ for speaker b01,
only one peak is discernible due to merger of the first two
formants. Merging of formants appears to happen in the
case for the second spectral peak of /iy/ of speaker g01,
due to merger of F2 and F3. The magnitude spectrum
also has ripples. The ripples and the merger of close by
formants could potentially be a consequence of the short
kernel width i.e. 30 samples, i.e. sub-segmental speech
processing. We performed similar analysis on a few other
speakers in the American vowel dataset and found that
the detected peaks tend to correspond to F1-F2 formant

*https://homepages.wmich.edu/~hillenbr/voweldata/
vowdata.dat

Normalized energy output of each filter in the first convolution layer of CNN-1H-mono WSJ for an input speech segment

ranges obtained in the original acoustic analysis study. It
is interesting to note that the analysis holds well for chil-
dren speech, despite the net being trained on adult speech.

American English vowel dataset is a controlled dataset,
where the phonetic context is restricted. In order to as-
certain that the observations made above holds true ir-
respective of the phonetic context or speakers, we per-
formed an analysis on the validation data of WSJ, MP-DE
and MP-FR using the filters in the first convolution layer
of respective CNN-1H-mono, where given the segmenta-
tion the frame level spectrum estimates S; are averaged
across all the speakers for each phone i. We denote the
speaker averaged spectrum as S;. Figure [13]displays S; of
a few prominent vowels (notated in the SAMPA format)
for WSJ, MP-DE and MP-FR. It can be observed that the
frame level magnitude spectrum averaged across speakers
is different for each vowel. This difference is particularly
observable in the frequency regions below 4000 Hz and in
the frequency regions between 6000 Hz and 8000 Hz. We
had earlier observed in Section that these are fre-
quency regions that the learned filters give emphasis to.
The prominent spectral peaks could be related to the for-
mants. However, a detailed formant analysis similar to the
frame level analysis on American English vowels dataset
is practically infeasible for two main reasons:

(a) First, the formant frequencies and their bandwidths
for males and females are different. The frequency
responses here are result of averaging over several
male and female speakers in the respective validation
data set; and

(b) Second, the analysis here has been carried on vali-
dation data, not on actual training data. So there
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Figure 12: Magnitude spectrum S; for a 10ms frame of American English vowels (a) /ah/, (b) /eh/, (¢) /er/, (d) /oa/, (e) /uw/ and (f) /iy/
of speakers m01, w01, bO1 and g01. As mentioned earlier, the F1-F2 ranges were obtained from the coarse sampling part of the original study.

can be spurious information present due to unseen
condition or variation.

For instance, in the case of /A/, see Figure [13(e), we
observe a prominent peak at around 1000 Hz, which could
be seen as merger of first formant and second formant as a
consequence of window effect and averaging over male and
female speakers. Taking these aspects into account, we ex-
amined the frequency responses in the case of WSJ (Fig-
ure|13[(a)). We found that the prominent spectral peak lo-
cations tend to relate well to the first formant, second for-
mant and third formant information provided for English
vowels in [65, p. 233]. It is worth mentioning that a sim-
ilar observation that filters capture formant information
has been made when learning jointly feature and classifier
from short-term magnitude spectrum [66]. When compar-
ing across the languages (Figure [13[d) and Figure [L3{e))
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we observe a trend similar to the cumulative response of
the filters (Figure . Specifically, the spectral peak lo-
cations and spectral balance match well for MP-DE and
MP-FR. However, in the case of WSJ the spectral peak lo-
cations tend to match but the spectral balance is different
than MP-DE and MP-FR.

The analysis on American English vowels dataset,
WSJ, MP-DE and MP-FR together indicates that the first
convolution layer is learning formants related information.

5.2. Intermediate feature level analysis

In this section, we focus on the analysis of interme-
diate feature representations that are being learned at
the output of the feature learning stage. In that regard,
Section focuses on the discriminative aspects of the
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Figure 13: Magnitude spectrum averaged across speakers S; (a) for phonemes /E/, /A/, /O/, /I/ and /U/ estimated by CNN-1H-mono
WSJ; (b) for phonemes /E/, /A/, /O/, /I/ and /U/ estimated by CNN-1H-mono MP-DE; (c) for phonemes /E/, /A/, /O/, /I/ and /U/
estimated by CNN-1H-mono MP-FR; (d) for phoneme /I/ in WSJ, MP-DE and MP-FR; and (e) for phoneme /A/ in WSJ, MP-DE and
MP-FR. The phonemes are notated in the SAMPA format.
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learned feature representations. Section [5.2.2] then focuses
on the cross-domain and cross-lingual aspects.

5.2.1. Discriminative features

In the recognition studies presented earlier in Section[d]
it was observed that CNN-1H system with much fewer pa-
rameters outperforms ANN-3H system on all the tasks.
Furthermore, we also observed that the complexity of the
proposed CNN-based system lies more at the classifier
stage. Given that the intermediate feature representations
are learned in the process of training P(i|s¢) estimator, it
can be presumed that these features are more discrimina-
tive compared to cepstral-based feature representations,
and thus needs less parameters at the classifier stage. To
fully ascertain that aspect, we conduct an experiment to
compare the cepstral features and the intermediate feature
representations learned by the CNN. Specifically, we train
and test three single layer perceptron (SLP) based systems
on WSJ task. One with the MFCCs with temporal con-
text (39 x 9) as input and the others with intermediate
features learned by CNN-1H and CNN-3H. In the case of
CNN-3H, w;,, is kept same as CNN-1H i.e. 210 ms. Ta-
ble [0] presents the performances of the three systems. We
can observe that the learned features lead to a better sys-
tem than the cepstral features. Thus, indicating that the
learned features are indeed more discriminative than the
cepstral feature representation. Furthermore, it is inter-
esting to note that the features learned by CNN-1H and
CNN-3H yield similar systems. It suggests that the gain
in ASR performance for the WSJ task using CNN-3H over
CNN-1H is largely due to more hidden layers

Table 9: Single layer perceptron-based system results on the Nov’92
test set of the WSJ task.

Features | Dimension | WER
(in %)
MFCC 351 10.6
CNN-1H 540 7.9
CNN-3H 540 7.9

5.2.2. Cross-domain and cross-lingual studies

Conventional cepstral-based features, like MFCC, are
known to be independent of the language or the domain,
which is one of the main reasons they become “standard”
features. In the proposed system, the features are learned
in a data-driven manner, thus they may have some level
of dependencies on the data. In order to ascertain, to
what extent the learned features are domain or language
independent, we conducted cross-domain and cross-lingual
experiments. More precisely, as illustrated in Figure in
these experiments the filter stage was first trained on one
domain or language. It was then used as feature extractor
to train the classifier stage of another domain or language.

We use the TIMIT task and WSJ task for cross-domain
experiments. We investigate
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Figure 14: TIllustration of the cross-domain experiment. The fil-
ter stage is trained on domain 1, then used as feature extractor on
domain 2.

1. the use of feature stage of CNN-1H of WSJ task as
feature extractor for the TIMIT task. The classifier
stage with single hidden layer is trained on TIMIT
to classify 183 phone classes.

2. the use of feature stage of CNN-1H of TIMIT task
as feature extractor for the WSJ task. The classifier
stage with single hidden layer is trained to classify
2776 clustered context-dependent units.

In both of the studies, we set the number of hidden nodes
to 1000, similar to the systems reported in Section[d] The
results of the two studies are presented in Table In the
case of TIMIT task the results are presented in terms of
PER, and in the case of WSJ task in terms of WER. In the
TIMIT task, we can observe that, despite the feature stage
being trained to classify clustered context dependent units
on a much larger corpus, the PER is inferior to the case
where the feature stage is learned on TIMIT. In the case
of WSJ task, we observe that with feature stage trained
on TIMIT the WER is slightly worse (6.7% vs 7.8%).

Table 10: Cross-domain results on English. The TIMIT results are
in terms of PER. The WSJ task results are in terms of WER.

Classifier stage Feature stage Error Rate
(Domain 2) (Domain 1) (in %)
TIMIT Learned on TIMIT 22.8

Learned on WSJ 23.3
WSJ Learned on WSJ 6.7
Learned on TIMIT 7.8

In addition to the fact that TIMIT and WSJ are two
different corpora, there are two other differences which
could have had influence. First, WSJ is a much larger
corpus than TIMIT in terms of data. Second, in TIMIT
CNN-1H the feature stage is learned by classifying context-
independent phones, while in WSJ CNN-1H the feature
stage is learned by classifying clustered context-dependent
units. So, we conducted a study on WSJ task to under-



stand the influence of the type of units at the output of
the CNN on the feature stage learning, while negating the
data effect. More precisely, we use the feature stage of
WSJ CNN-1H-mono (presented earlier in Section
as feature extractor and train the classifier stage to clas-
sify 2776 clustered context-dependent units. This system
leads to a performance of 7.3% WER, which is inferior to
6.7% WER. This shows that indeed the type of units in
the output of CNN has an influence on the feature learning
stage. When compared to the case where the feature stage
is learned on TIMIT, this result indicates that the perfor-
mance gap is combined effect of the difference between the
WSJ and TIMIT data sets and the units used at the out-
put of the CNN learn the features. Finally, it is worth
observing that TIMIT is a very small corpus compared to
WSJ (3 hours vs 88 hours). However, the performance
difference is not drastic, which suggests that the relevant
features can be learned on relatively small amount of data.

We investigate the cross-lingual aspects on WSJ, MP-
DE and MP-FR tasks. We conduct studies where the fea-
ture stage is learned on one language and the classifier
stage is learned on the other language. For these studies,
we use the feature stages of WSJ CNN-1H, MP-DE CNN-
1H and MP-FR CNN-1H systems presented in Section
The classifier stage in all the studies consisted of a single
hidden layer with 1000 nodes. The classes at the output
of classifier stage remained same as before, i.e. 2776 cCD
units for the WSJ task, 1101 ¢CD units for the MP-DE
task and 1084 ¢CD units for the MP-FR task. Table [L1]
presents the results of the study.

Table 11: Cross-lingual studies result on English, German and
French. The feature stage is learned on Domain 1 and the classi-
fier stage is learned on Domain 2.

Classifier stage Feature stage WER
(Domain 2) (Domain 1) (in %)
WSJ Learned on WSJ 6.7
Learned on MP-DE 12.1
Learned on MP-FR 12.8
MP-DE Learned on MP-DE 24.4
Learned on MP-FR 26.1
Learned on WSJ 30.9
MP-FR Learned on MP-FR 25.9
Learned on MP-DE 26.8
Learned on WSJ 31.7

Before we analyze the results in detail, we can con-
sider broader aspects. Specifically, in terms of family of
languages, English and German belong to Germanic lan-
guage family while French belongs to Romance language
family. Given that, it can be expected that the feature
stage learned on MP-DE to suit well for the WSJ task
when compared to feature stage learned on MP-FR and
vice versa. In the case of WSJ task this trend is observed
(12.1% vs. 12.8%). However, it is not observed in the
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case of MP-DE task (30.9% vs. 26.1%). In general, we
observe that feature stage learned on another language
leads to inferior system. The performance gap is drastic
when the feature stage is learned on WSJ and the clas-
sifier stage is learned on Medialparl (MP-DE or MP-FR)
and vice versa. In addition to language differences, this
can be attributed to the other differences in WSJ corpus
and Medialparl corpus. More precisely, WSJ corpus con-
tains read speech collected in controlled environment while
Mediaparl contains spontaneous speech collected in real
world conditions. This is also supported by the findings of
the analysis presented in Section Since MP-DE and
MP-FR are similar kind of data except for the language,
the drop in the performance is small (24.4% to 26.1% in
the case of MP-DE task and 25.9% to 26.8% in the case
of MP-FR task). Languages typically have different phone
sets and this difference gets further enhanced when mod-
eling context-dependent phones. As we saw earlier in the
cross-domain studies the choice of output units influences
the feature stage. So, the small drop in performance in
this case can be more attributed to the phonetic level dif-
ferences between German language and French language.

6. Discussion and Conclusions

Motivated from recent advances in deep learning, the
present paper investigated a novel CNN-based acoustic
modeling approach that in a data- and task-driven manner
determines the appropriate short-term processing, which
consists of determining the window size and the number
of filters for spectral processing, and learns the relevant
representations from the speech signal to estimate phone
class conditional probabilities for ASR. In this approach,
the acoustic model consists of a feature stage and a classi-
fier stage which are jointly learned during training. Specif-
ically, the input to the acoustic model is raw speech signal,
which is processed by several convolution layers (feature
stage) and classified by an MLP (classifier stage) to esti-
mate phone class conditional probabilities. We evaluated
the approach against the conventional acoustic modeling
approach, which consists of independent steps: short-term
spectral based feature extraction and classifier training.
Phone recognition studies on English and ASR studies on
multiple languages (English, French, German) showed that
the proposed acoustic modeling approach can yield better
recognition systems.

To gain further insight, we performed analysis that
largely focused on the filter stage of the approach. The
key findings of the analysis are the following:

1. Both the conventional acoustic modeling approach
and the proposed approach tend to model spectral
information present in time span of about 200 ms
for phone classification. However, they differ in the
manner analysis is performed over that time span
and feature representations are obtained. Indeed, in
the proposed approach, contrary to the conventional



wisdom of short-term processing, the signal is pro-
cessed at the sub-segmental level (speech signal of
about 2 ms) by the first convolution layer. The sub-
sequent convolution layers temporally filter and inte-
grate the output of first convolution layer to yield an
intermediate representation. In other words, as illus-
trated in Figure[7] the intermediate representation is
obtained by processing the information at multiple
temporal resolutions.

. The filters in the first convolution layer learn from
the sub-segmental speech a spectral dictionary that
discriminate phones. Specifically, this dictionary was
found to model formant related information. These
findings are particularly interesting for different rea-
sons. First, it validates the notion of formants and
phone discrimination in a data-driven manner, i.e.
without making an explicit assumption about speech
production model. Secondly, sub-segmental spectral
processing means high time resolution and low fre-
quency resolution. Conventional method of short-
term processing (i.e. determination of the window
size) has been developed considering the trade-off be-
tween time resolution and frequency resolution and
keeping analysis-synthesis in mind. Our investiga-
tions show that loss of frequency resolution due to
sub-segmental speech processing is not affecting the
ASR performance.

Having said that, in [67], it has been shown that
formant information can be effectively extracted
through sub-segmental speech analysis. The method
proposed in the above cited article considers de-
tails like closed and open glottal phases, position-
ing of the analysis window, choice of window size
based on the gender information, choice of appro-
priate all-pole or pole-zero model to extract the for-
mant information. The proposed approach does not
make any such prior considerations while process-
ing sub-segmental speech but still is found to model
formant-like information. This could be indeed pos-
sible in our case without any such explicit consider-
ations because, as pointed out in Section the
sub-segmental speech processed in the proposed ap-
proach is well below one pitch cycle of an adult male
or female speaker (under normal speech conditions)
and max pooling can provide shift invariance.

. The intermediate feature representations learned at
the output of the convolution stage are more discrim-
inative than standard cepstral-based features. This
reaffirms the point that learning the features and the
classifiers jointly leads to more optimal systems when
compared to conventional ”divide and conquer” ap-
proach.

. The intermediate feature representations learned
have some level of invariance across domains and
languages. More specifically, in our analysis we
observed that the variation of the learned features
seems to come more from the domain characteris-
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. rapid adaptation of acoustic model:

. Sequence discriminative training:

tics as opposed to the set of subword units from the
languages. This suggests that learning features in
data-driven manner, as done using the proposed ap-
proach, could lead to language-independent features.
This needs to be further investigated.

The proposed approach paves path for further research
and development. We enumerate and discuss them briefly
below.

1. noise robustness: as relevant features and classifier

are automatically learned, a question that arises is:
whether such an approach is robust in noisy con-
ditions? In the analysis part, we have seen that
the first convolution layer models envelop of sub-
segmental speech signal spectrum. In particular
formant-like information, which can be considered
as high signal-to-noise ratio regions in the spectrum.
Furthermore, subsequent processing through max
pooling could be seen as filtering of spurious tempo-
ral information present in each filter output, while
the second convolution layer filters could be inter-
preted along the lines of modeling envelop modu-
lations in piecewise manner and combining them.
Thus, the proposed approach could be expected to be
robust. A preliminary investigation reported in [16]
and the investigations on Aurora2 and Aurora4 tasks
reported in [4I, Chapter 5] indeed indicates that.
we have ob-
served that the feature stage has considerably fewer
parameters than the classifier stage. This provides
new means to adapt the acoustic model. Specifically,
one of the main challenges often faced in adapting
the acoustic model to new domains is the amount of
adaptation data available. The data may not be suf-
ficient to effectively adapt all the parameters in the
acoustic model. In the proposed approach, this chal-
lenge could be addressed by only adapting the fea-
ture stage. Such an approach would be analogous to
maximum likelihood linear regression (MLLR) [6§]
adaptation approach where MLLR is used to trans-
form the features as opposed to the models (i.e.
means and variances of the Gaussians). However,
in comparison to that, adaptation in the proposed
framework would present two distinctive advantages.
First, the adaptation would by default be discrimi-
native, i.e. learned by improving discrimination be-
tween the phone classes. Second, upon availability
of more adaptation data both the feature stage and
classifier stage can be adapted in a straightforward
manner.

In the present
work, the CNNs and MLPs were trained with frame
level cross entropy criteria. It has been observed
that sequence discriminative training such as max-
imum mutual information (MMI) or the state-level
minimum Bayes risk (sMBR) criterion applied af-
ter cross entropy criteria-based training boosts ASR



system performance, for example see [69]. Further
investigations are needed to ascertain the benefit of
such sequence discriminative training applied in the
proposed CNN-based framework. Along this direc-
tion we would like to also point to CRF-based end-
to-end phone sequence recognition work reported
in [70] [41, Chapter 7], where the proposed CNN-
based approach has been found to yield better sys-
tem than conventional cepstral feature based ap-
proach.

. End-to-end sequence prediction: in this article, we
focused on an acoustic modeling approach where
time local information P(i|s{) is estimated in an
end-to-end manner. In our recent works, we have
shown that the proposed approach can be extended
using conditional random fields to perform end-to-
end phoneme sequence recognition [70] [41, Chapter
7). However, performing full-fledged speech recogni-
tion through end-to-end sequence prediction is not
trivial. One of the main reasons being that to search
effectively and efficiently the word hypothesis the
relationship between words need to be learned or
modeled. As evident from the present state-of-the-
art HMM-based approach, the textual data that is
needed to learn the relationship between words is
very different than the textual data contained in the
acoustic model training data. So, joint optimization
of the acoustic model and the decoder in end-to-end
manner from scratch using a common data set is a
highly challenging problem, and is an up-and-coming
research direction [71] [72] 60].

. Going beyond conventional short-term speech sig-
nal processing: in the proposed approach one of
the novelties in comparison to similar existing ap-
proaches is that short-term windowing and spectral
processing mechanism is determined during training
in a data- and task-dependent manner. As a conse-
quence of that, we found results that while challeng-
ing our understanding about short-term speech sig-
nal processing based on Fourier transform provide a
link to alternate sparse coding and dictionary learn-
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