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Abstract

Speech Emotion Recognition (SER) is an important and chal-
lenging task for human-computer interaction. In the literature
deep learning architectures have been shown to yield state-of-
the-art performance on this task when the model is trained and
evaluated on the same corpus. However, prior work has indi-
cated that such systems often yield poor performance on un-
seen data. To improve the generalisation capabilities of emo-
tion recognition systems one possible approach is cross-corpus
training, which consists of training the model on an aggregation
of different corpora. In this paper we present an analysis of the
generalisation capability of deep learning models using cross-
corpus training with six different speech emotion corpora. We
evaluate the models on an unseen corpus and analyse the learned
representations using the t-SNE algorithm, showing that archi-
tectures based on recurrent neural networks are prone to overfit
the corpora present in the training set, while architectures based
on convolutional neural networks (CNNs) show better generali-
sation capabilities. These findings indicate that (1) cross-corpus
training is a promising approach for improving generalisation
and (2) CNNs should be the architecture of choice for this ap-
proach.

Index Terms: speech emotion recognition, neural networks

1. Introduction
Speech Emotion Recognition (SER) has seen a growing num-
ber of applications in recent years. An important application is
human-computer interaction, typically in the context of conver-
sational agents. Users of agents such as Siri or Google Assistant
will attest that these systems lack relatability and fail to elicit
empathy from the user. One way to improve the relatability of
such systems is to give them the capacity to detect emotion from
speech, allowing the system to respond in a more appropriate
manner.

Deep learning architectures, such as Convolutional Neural
Networks (CNNs) [1] and highway networks [2], have been
shown to yield state-of-the-art performance on this task. How-
ever, being able to use these models “in the wild” (i.e. on un-
seen data with varying characteristics) is still an open ques-
tion because these models seem to generalise poorly [3]. Re-
cently, several approaches have been investigated to improve
generalisation. One promising approach is cross-corpus train-
ing, which consists of aggregating several corpora to create the
training set. This approach is appealing because (1) the diver-
sity and varying contextual factors contained in the training set
should help the models learn a robust representation of emo-
tion and thus improve performance, and (2) it allows models
to be trained on more data, which should improve generalisa-
tion, as has been shown for several pattern recognition tasks,

such as image recognition [4] and speech recognition [5]. The
main drawback of this approach is that these models still tend
to overfit the corpora in the training set and also display poor
generalisation capabilities to out-of-domain data [6].

In this paper, we present an analysis of cross-corpus train-
ing for speech emotion recognition. We select three common
deep learning models based on CNNs and Long Short-Term
Memory (LSTM) [7]. We first evaluate the performance of
these models trained on a single corpus on the in-domain test
set (i.e. on the same corpus) for comparison with the litera-
ture, before testing on out-of-domain corpora (i.e. corpora not
part of the training set). We then evaluate the performance of
the models trained on cross-corpus data. A comparison with
single-corpus training shows that the cross-corpus approach im-
proves generalisation on out-of-domain corpora for all model
architectures. Then, in order to discern which of the architec-
tures displays the best generalisation capabilities, we present
two studies. In the first study, we use an unseen corpus as out-
of-domain test set and we show that the LSTM model yields
inferior performance compared with CNN models consisting
of several convolution and max-pooling layers. In the second
study, we apply the t-SNE [8] visualisation technique on the
learned representations of each model and show that the LSTM
model seems to cluster the data according to corpus rather than
emotion.

The main contribution of this paper is to show that deep
learning architectures composed of several convolution and
max-pooling layers improve the generalisation capabilities of
the model, alleviating the issue of corpus overfitting for cross-
corpus training.

The remainder of the paper is organised as follows: a liter-
ature review is first presented in Section 2; the methodology is
then presented in Section 3, including the models and the exper-
imental setup; Section 4 presents the results of the studies, and
Section 5 concludes the paper.

2. Related Work
Automatic speech emotion recognition has been an active area
of research for decades [16, 17]. Considerable effort was put
into designing a relevant set of features, which was used with
simple classifiers, like linear classifiers or kNN [18]. This led
to “standard” sets of features, like the GeMAPS feature set [19].
Recently, the deep learning approach, which is based on com-
plex classifiers that can learn features from raw data, has been
shown to drastically improve performance on several pattern
recognition tasks [4, 5]. Deep learning models have been shown
to yield state-of-the-art performance on the SER task. For in-
stance, learning features from the raw speech using CNNs has
been proposed in [20]. A CNN-LSTM model taking spectro-
grams as input was also proposed in [1]. CNNs with an atten-
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Table 1: Corpus information

Corpus Language # utterances Duration
(hh:mm) # speakers Label index

(corresponding emotion in Table 4)

EMOVO [9] Italian 588 00:31 6 1,6,7,11,16,19,23

Emo-DB [10] German 535 00:25 10 1,6,7,11,15,20,23

IEMOCAP [11] English 7529 09:32 10 1,6,7,8,11,14,15,19,23

EPST [12] English 2409 01:00 13 2,3,4,5,6,9,10,11,12,13,15,18,20,22,23

RAVDESS [13] English 2542 02:47 24 1,6,7,11,15,19,21,23

SAVEE [14] English 476 00:30 4 1,6,7,11,15,19,23

TESS [15] English 2800 01:36 2 1,6,7,11,15,17,23

tion mechanism were investigated in [21] and [2] proposed an
architecture composed of convolutional highway networks and
LSTMs.

SER models trained on a single corpus tend to overfit, lead-
ing to poor performance on out-of-domain data, as presented
in [3]. To address this issue, several techniques have been pro-
posed: (1) the data augmentation approach, which consists of
generating additional training samples by duplicating and often
modifying the original training set, using techniques such as vo-
cal tract length perturbation [22] or variation of tempo, loudness
and background noise [23]; (2) multi-task learning, in which the
models are trained on additional tasks, such as gender or do-
main identification [24, 25]; (3) the transfer learning approach,
in which the models are first trained on a given domain and then
adapted to the task at hand [26, 27]; and (4) cross-modal trans-
fer, in which an image-based emotion recognition model is used
to improve SER [28].

Finally, cross-corpus SER has been studied to improve gen-
eralisation. It was shown in [3] that training models on aggre-
gated corpora improves the performance, but leads to overfitting
the training set. This approach has been investigated in conjunc-
tion with multi-task learning using Extreme Learning Machine
(ELM) [25]. In [29], a data augmentation technique based on
mixing up samples using an LSTM model was proposed for
valence-arousal prediction, showing only a limited gain in ad-
dressing the overfit issue. Feature normalisation strategies are
presented in [30], where low level descriptors undergo a cascade
of normalisation, including speaker-level and feature vector-
level, and are used as input to ELM models. This approach
seems to improve generalisation using low-level features, how-
ever it is unclear if neural network models using high-level fea-
tures such as filterbank could benefit from these techniques.

3. Methodology
3.1. Models

The models used for the experiments and their respective hyper-
parameters are described in Figures 1b, 1c and 1d as a sequence
of modules, which are described in Figure 1a.

These architectures were chosen due to their prevalence in
the literature and proven effectiveness at the task at hand. All
three models are capable of taking arbitrarily long sequences as
input. The process of classifying an utterance is similar for each
model: the initial layers are designed to extract important local
features of the input; the mean layer combines this information
to produce a dense, global representation of the sequence; the
final module uses this dense representation to classify the se-
quence.
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Figure 1: Model architectures. kw denotes the kernel width,
dw denotes the stride and hu the number of hidden units. All
max-pooling layers have kw = 3 and dw = 2.

3.2. Cross-corpus training

The corpora used in this paper are summarised in Table 1, show-
ing relevant information for each corpus. More details can be
found in their respective papers. Each corpus is split between
training (80%), validation (10%) and test sets (10%). For all
corpora, the speakers in the validation and test sets do not ap-
pear in the training set.

For the cross-corpus approach, all corpora excluding TESS
were aggregated together, yielding 11hrs 45min for training, 1hr
30min each for validation and testing. The TESS corpus was
reserved as a out-of-domain test set. Each corpus has its own
distinct set of emotion labels. In order to avoid discarding data,
we elected to train on three classes: negative, positive and neu-
tral. We thus mapped the labels provided with each corpus to
this set, described in Table 4.

3.3. Experimental setup

We used Mel filterbank coefficients as input features, computed
using the Kaldi toolbox [31]. These features consist of 40 coef-
ficients computed on a 25ms window with a 10ms shift and no
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Table 2: Performance on each corpus test set for models trained only on IEMOCAP. Avg. denotes the average on out-of-domain
corpora.

Model Unweighted Accuracy [%]
IEMOCAP EMOVO* Emo-DB* EPST* RAVDESS* SAVEE* TESS* Avg.*

LSTM 46.11 33.33 33.33 33.33 33.33 33.33 33.33 33.33
CNN 46.18 33.33 33.33 33.33 33.33 33.33 33.33 33.33
CNN-LSTM 51.45 33.33 41.99 30.01 33.04 33.33 36.92 34.77

*out-of-domain corpora.

Table 3: Performance on each corpus test set for cross-corpus training. Avg. denotes the average on in-domain corpora.

Model Unweighted Accuracy [%]
IEMOCAP EMOVO Emo-DB EPST RAVDESS SAVEE Avg. TESS*

LSTM 47.45 38.00 59.67 50.68 53.97 60.62 50.69 45.10
CNN 46.86 39.93 58.86 48.78 65.67 70.57 55.11 48.94
CNN-LSTM 50.31 53.24 69.72 51.81 53.08 72.66 53.35 49.48

*TESS is an out-of-domain corpus.

Table 4: Emotion label mapping

Mapping Original label

Negative

anger (1), anxiety (2), cold anger (3), contempt
(4), despair (5), disgust (6), fear (7), frustration
(8), hot anger (9), panic (10), sadness (11),
shame (12)

Positive

elation (13), excitement (14), happiness (15),
joy (16), pleasant surprise (17), pride (18),
surprise (19)

Neutral
boredom (20), calm (21), interest (22), neutral
(23)

speed or acceleration coefficients. Features were normalised to
zero-mean and unit variance by utterance.

Models were trained using stochastic gradient descent with
momentum of 0.9 and a learning rate of 0.01. The loss function
was cross entropy. Early stopping based on the validation error
rate was used to select the best model. All experiments were
implemented with PyTorch [32]. Utterances were padded to a
minimum length of 100 frames (1 second of audio). All three
models have approximately 2 million total network parameters.

In the studies we use two metrics: the Weighted Accu-
racy (WA), the overall accuracy across all classes, and the Un-
weighted Accuracy (UA), the average of the accuracy for each
of the classes.

4. Results
4.1. Single corpus training

The first study is focused on single-corpus training in order to
validate the selected architecture and serve as comparison for
cross-corpus training. We selected the IEMOCAP corpus [11]
to this aim, as it has the most data amongst the selected corpora
and it is widely used in the literature.

We first present a comparison with the literature. In or-
der to provide a fair comparison with other research, for this
single-corpus experiment only, the corpus was cut to include
four emotions (anger, happiness, neutral and sadness) and all
models were trained on this label set. The performance of the

models trained on IEMOCAP is presented in Table 5 using the
WA and UA metrics, along with a comparison with the litera-
ture. One can see that the performance of the models used in
this paper is on par with recently published work on the IEMO-
CAP corpus. Note that the models’ hyper-parameters were not
specifically optimised for this task, which probably explains the
lower accuracy of the CNN and CNN-LSTM models.

Table 5: Performance on IEMOCAP testset for models trained
on IEMOCAP using the 4 emotions label set.

Model WA [%] UA [%]

RNN mean pool [33] 56.90 55.30
DNN-ELM [34] 55.00 49.50

LSTM 56.99 53.07
CNN 55.24 49.16
CNN-LSTM 50.17 41.57

We then evaluate the generalisation capability of the models
trained only on IEMOCAP. We re-train these models to output
three emotions according to the mapping in Table 4 and report
performance on the out-of-domain corpora. The results are pre-
sented in Table 2 on the WA and UA metrics. One can see that
the unweighted accuracy for the out-of-domain corpora is very
poor, which is in line with previous works [6]. Note that in
Table 2, 33.33% UA means that the whole test set is classified
as negative. This shows that none of these architectures, when
trained on a single corpus, generalise at all to out-of-domain
data.

4.2. Cross-corpus training

In this study we present the results of cross-corpus training as
described in Section 3.2. The performance of the three different
models on each of the test sets is presented in Table 3 using
the UA metric. On the in-domain corpora, one can see that the
cross-corpus training greatly improves the performance for all
models. Additionally, the performance on IEMOCAP is similar
to single-corpus training (see Table 2).

On the in-domain corpora, The CNN and CNN-LSTM
models achieve higher performance than the LSTM model, sug-
gesting that CNN layers are beneficial for the task. On the out-
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(a) LSTM model, corpus-based colouring (b) CNN model, corpus-based colouring (c) CNN-LSTM model, corpus-based colouring

(d) LSTM model, emotion-based colouring (e) CNN model, emotion-based colouring (f) CNN-LSTM model, emotion-based colouring

Figure 2: t-SNE visualisation of trained models.

of-domain corpus (TESS), the CNN and CNN-LSTM models
are very close in performance and both yield higher UA than the
LSTM model by around 4% in absolute terms. This suggests
that the generalisation capabilities of the CNN-based models
are superior compared to the LSTM model.

4.2.1. Visualisation study

In an attempt to understand why the CNN and CNN-LSTM
models performed better than the LSTM model on the out-of-
domain test set, we present a visualisation of the learned rep-
resentation of each model. For this we use the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [8] technique, allow-
ing us to visualise high-dimensional data in a two dimensional
space. We apply the t-SNE to the hidden representation of the
last hidden layer of the FC modules, after mean-over-time ag-
gregation. Intuitively, at this stage of the network, some clus-
tering based on the emotion labels should be seen. Figure 2
presents the t-SNE plots computed on the aggregated testset.
For each model, we present two plots: above, the points are
coloured based on the corpus; below, the points are coloured
according to the emotion.

On the corpus-coloured plots, the LSTM has formed clus-
ters of data that belong to the same corpus, clearly indicating
that the model is overfitting the training corpora. The dense
representations taken from the CNN and CNN-LSTM model
appear to display more corpus invariance, as points belonging
to same corpus are more spread. This analysis shows that CNN
and CNN-LSTM models display more generalisation capabili-
ties and could explain why they are better able to generalise to
the out-of-domain test data.

This approach can be a useful tool to gain insight into neu-
ral networks and potentially identify their weaknesses. For in-
stance, one could easily colour the data points according to
speaker, gender or any other variable, to check for overfitting.

4.3. Discussion

The cross-corpus experiments found that the generalisation ca-
pabilities of the LSTM model were well below that of the CNN
model, as shown by the performance on the out-of-domain test
set and the t-SNE visualisation. A possible explanation is the
phenomenon of memory loss due to vanishing gradients in the
LSTM. This renders the model unable to capture the global fea-
tures of the utterance, which may be critical to accurate emo-
tion recognition. It appears that the LSTM model is sensitive
to variations in the channel conditions and other features spe-
cific to the different corpora, perhaps using this information to
infer the emotion based on the distribution in the corpus. The
combination of convolution and max-pooling layers may allow
for unimportant local information to be discarded, leaving fea-
tures that are more relevant for predicting emotion “in the wild”.
Therefore, the main limitation of cross-corpus training, which
is overfitting on the training corpora, is mitigated to some extent
using deep learning architectures composed of several convolu-
tion and max-pooling layers.

5. Conclusions
In this paper, we presented an analysis of three deep architec-
tures used for cross-corpus speech emotion recognition. We
showed that cross-corpus training improves the generalisation
capability of these models. We also showed that LSTM-based
models are prone to overfitting on the in-domain corpora and
that CNN-based models alleviate this issue. Thus CNNs are
the architecture of choice for cross-corpus training, leading to-
wards deployable speech emotion recognition that can be used
“in the wild”. Our future work will investigate the selection
of the training data for the cross-corpus set to further improve
generalisation, for instance by considering the length of the ut-
terances as well as corpus-based normalisation strategies.
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