

Full Flex^{Plus}[®]

Osteoarthritis is the most common form of arthritis, affecting millions of people worldwide. Staying active, maintaining a healthy weight and other treatments may slow progression of the disease and help reduce pain and improve joint function. The non-steroidal, anti-inflammatory drugs (NSAIDs) are the most frequently used medicines to treat osteoarthritis and mild to moderate pain. They all increase the risk of serious side effects, including stomach ulcers, gastrointestinal bleeding, kidney failure, heart attacks and strokes. Full Flex Plus can help to reduce doses of non-steroidal, anti- inflammatory agents.

FULL FLEX PLUS

- Reduces osteoarthritis-related pain¹
- Decreases analgesic consumption²
- Retards the progression of osteoarthritis³
- Protects joints against erosive evolution⁴
- Reduces the cartilage volume loss in knee osteoarthritis⁵

Precautions: In pregnancy, breast feeding, allergy to shellfish and salicylates or patients taking prescription and non-prescription medications.

Dosage: Three caplets daily

Packaging: Bottles containing 60 caplets

Glucosamine

Glucosamine is an amino-monosaccharide that is naturally produced in humans. It is one of the principal substrates used in the biosynthesis of macromolecules that form articular cartilage such as glycosaminoglycans, proteoglycans and hyaluronic acid⁶. Studies found that glucosamine reduces osteoarthritis-related pain⁴ and improves function in patients with knee osteoarthritis.⁷

Chondroitin

Chondroitin is a natural substance found in the body. It is believed to help draw water and nutrients into the cartilage keeping it spongy and healthy. Clinical trials using chondroitin in the management of osteoarthritis show moderate-to-large statistical effects vs. placebo using a number of different outcome measures.^{8,9}

MSM

MSM (methylsulfonylmethane) is an organic sulfur compound. Sulfur is needed in formation of connective tissue. MSM also seems to act as an analgesic by lessening nerve impulses that transmit pain. In clinical trials, MSM has been associated with improvements in osteoarthritis¹⁰ antioxidant status¹¹, exercise performance¹² and healing of soft tissue injuries¹³.

Black pepper extract

Piperine (black pepper extract) has anti-inflammatory, antinociceptive and anti-arthritic effects.¹⁴

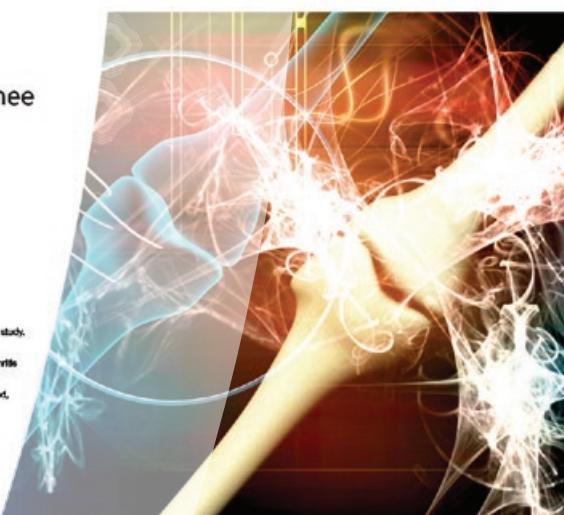
Vitamin C

Vitamin C is essential for the formation of collagen and proteoglycan.¹⁵ A moderate intake of vitamin C results in a three-fold lower risk of osteoarthritis progression.¹⁶

Turmeric extract

Curcumin (turmeric extract) has been reviewed as a possible treatment for several conditions including cancer¹⁷, diabetes¹⁸, irritable bowel disease¹⁹ and osteoarthritis²⁰ due to numerous anti-inflammatory and epigenetic effects.

Ginger extract


Ginger extract has anti-inflammatory and anti-arthritic effects especially on knee osteoarthritis.²¹

White willow extract

According to experts, salicin-containing willow species possess the same pharmacological effects and reactions as aspirin.²²

References:

- 1 Drovandi, A., Bignamini, A. A., and Rovati, A. L. Therapeutic activity of oral glucosamine sulfate in osteoarthritis: a placebo-controlled double-blind investigation. *Clin. Ther.* 1980;3(4):260-272.
- 2 Giordano, A. The efficacy and tolerability of glucosamine sulfate in the treatment of knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. *Curr. Ther. Res.* 2009;70(3):185-196.
- 3 Kellie, K. Chondroitin sulphate. In: Mancuso, S., Giacovelli, G., and Rovati, L. C. Glucosamine sulfate use and rate of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. *Arch. Intern. Med.* 10-14-2002;162(19):2123-2123.
- 4 Wild, L. M., Raynauld, J. P., Martel-Pelletier, J., Boileau, A., Bergeron, F., Dooley, M., and Pelletier, J. P. Glucosamine sulphate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis. *Arthritis Rheum.* 2003;49(10):3131-3139.
- 5 McCarty, M. F. The neglect of glucosamine as a treatment for osteoarthritis—a personal perspective. *Med. Hypotheses* 1994;42(5):323-327.
- 6 Regisni, J. Y., Derouy, R., Rovati, L. C., Lee, R. L., Lejeune, E., Bruyere, O., Giacovelli, G., Henrotin, Y., Daure, J. E., and Gossell, C. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomized, placebo-controlled clinical trial. *Lancet* 2001;357(9255):25-29.
- 7 Debi, E. M., Agar, G., Fidman, G., Ziv, Y., Kardosh, R., Halperin, N., Elbaz, A., Beer, Y., and Debi, R. Biolographical investigation of complementary alternative medicines for osteoarthritis and rheumatoid arthritis. *Geriatr. Gerontol. Int.* 2009;9(1):29-21.
- 8 Debi, E. M., Agar, G., Fidman, G., Ziv, Y., Kardosh, R., Halperin, N., Elbaz, A., Beer, Y., and Debi, R. Efficacy of methylsulfonylmethane supplementation on osteoarthritis of the knee: a randomized controlled study. *BMC Complement Alternat Med.* 2011;11(1):11.
- 9 Montag, K., Montag, B., and Nakhshabkhahesh, F., and Bohlooli, S. Effect of chronic supplementation with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men. *J Pharm. Pharmacol.* 2011;63(10):1290-1294.
- 10 Kalman, D. S., Feldman, S., Scheinberg, A. R., Krieger, D. R., and Bloomer, R. J. Influence of methylsulfonylmethane on markers of exercise recovery and performance in healthy men: a pilot study. *J Int Soc Sports Nutr.* 2012;9(1):45.
- 11 Montag, K., Montag, B., and Nakhshabkhahesh, F., and Bohlooli, S. Effect of methylsulfonylmethane supplementation on exercise - Induced muscle damage and total antioxidant capacity. *J Sports Med Phys. Fitness* 2012;52(2):170-174.
- 12 Jun Soo Bang, Da Hee Oh, Hyun Mi Cho, Bong-Jun Sur, Sung-Jig Lim, Jun-Yang Myung, In Yang, Myung, Chul Yoo, Dae-Hyun Hahn, and Kyoung Soo Kim. Anti-inflammatory and antiarthritic effects of piperine, a major component of black pepper, on osteoarthritis in mice or rats during treatment. A randomized, placebo-controlled cross-over trial in general practice. *Ugeskr. Laeger* 6-16;2003;165(25):2563-2566.
- 13 Wang Y, Prentice LF, Vitekova AE, Ciciclić LF. The effect of chondroitin sulphate on osteoarthritis. *Altern. Med. Rev.* 2004 Sep;9(3):275-286.
- 14 Hardy, T. M., and Tollefson, T. O. Epigenetic effects of the epigenome and cancer. *Epigenetics* 2011;6(3):509-516.
- 15 Rahimi, R., and Abdollahi, A. anti-arthral. H. Physicochemicals and their impact on adjuvant lesions, inflammation and fibrosis. *Vascul. Pharmacol.* 2013;55(1-2):3-20.
- 16 Shem, C. L., Smith, B. J., Lo, D. F., Chyu, M. C., Dunn, D. M., Chen, C. H., and Kwon, I. S. Dietary polyphenols and mechanisms of osteoarthritis. *J Nutr. Biochem.* 2012;23(11):1367-1377.
- 17 Altman RD, Marcussen KC. Effects of a ginger extract on knee pain in patients with osteoarthritis. *Arthritis Rheum.* 2001 Nov;44(11):A698.
- 18 Meier B, Shao Y, Jukunen-Hiltula R, and et al. Achemotaxonomic survey of phenolic compounds in Swiss willow species. *Planta Medica* 1992;58(suppl 1):A698.

