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Review 

The choroid plexus in inflammatory and degenerative 
diseases of the central nervous system☆

Joshua A Reynolds1 and Chaim Putterman2,3,*

Supporting the health and function of the central nervous 
system (CNS), the choroid plexus (CP) not only produces 
cerebrospinal fluid, but it also facilitates brain–immune 
interfacing, removes waste, and secretes proneuronal 
signals. Despite these key physiological contributions, a 
pathogenic role for the CP in promoting neurologic disease 
has been relatively underappreciated. Resident CNS cells, 
including microglia, and peripheral immune cells, such as 
lymphocytes and macrophages, can interact to promote 
inflammatory changes within the brain. Such an 
environment, rich in cytokines and antibodies, can be 
neurotoxic and produce the symptoms of neuroinflammatory 
diseases. In other conditions, poorly understood metabolic 
and cellular disturbances damage neurons and their support 
cells, such as oligodendrocytes. The progressive loss of 
functionally intact neuronal networks is responsible for the 
sequelae of neurodegenerative diseases. Originally 
described as separate entities, neuroinflammatory and 
neurodegenerative conditions nevertheless actually share 
several remarkable similarities. Research indicates that 
these diverse neurologic pathologies are linked by core CP 
aberrations, including infiltration by peripheral immune cells, 
enhanced leukocyte transmigration, paracellular barrier 
breakdown, synthesis of inflammatory signals, impaired 
clearance of cerebrospinal fluid neurotoxins, and diminished 
neurotrophic factor release. This review article highlights 
recent advances in understanding CP deficits in several 
prominent inflammatory and degenerative conditions of the 
CNS. Importantly, the evident intersection between these 
two categories emphasizes the need to study them in 
parallel. In doing so, much-needed advances can be made in 
understanding and managing both neuroinflammation and 
neurodegeneration.
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Introduction
The brain choroid plexus (CP) is a tubular monolayer of 
polarized epithelial cells, which surround capillaries 
formed by fenestrated endothelia. Stromal cells, such as 
fibroblasts, provide additional structure. Also present are 
resident immune cells, including macrophages and 
dendritic cells, as well as central nervous system (CNS) 
surveilling lymphocytes [1]. The CP primarily functions 
to filter the blood to produce cerebrospinal fluid (CSF) 
and to remove harmful molecules from the CNS [2]. 
These secretory and clearance roles are facilitated by the 
CP’s location within the brain’s ventricular system [3].

In healthy individuals, the CSF is comprised of water, 
electrolytes, macronutrients, proteins, and low levels of im-
mune mediators and cells. The cuboidal epithelial cells of 
the CP carry out water and solute transport between the 
serum and the CSF, thus forming the blood–CSF barrier (B- 
CSFB) and determining the composition of this vital fluid 
through paracellular, transcellular, and secretory regulation 
[1]. CP epithelia have a clear polarity that is maintained by 
adherens and tight junctions anchored to the cellular cy-
toskeleton [4]. With these junctional complexes, the free 
paracellular diffusion between the serum and CSF of solutes 
larger than a few hundred Daltons is prohibited [5]. For 
reference, interleukins (ILs) tend to be tens of thousands of     
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Daltons, and immunoglobulins are hundreds of thousands of 
Daltons [6]. Even the smallest bacterium is over 200 times 
too large to pass between CP epithelial cells under normal 
conditions [7]. Therefore, a healthy CP should allow negli-
gible free paracellular diffusion of harmful products into 
the CSF.

Regarding transcellular transport, key proteins act at the 
apical and basal membranes to facilitate the movement 
of molecules through CP epithelial cells. These include 
membrane-spanning channels or transporters and vesi-
cular machinery. Activity of membrane channels and 
transporters, such as organic anion or cation transporters 
and solute carrier transporters, move moderately sized 
molecules into the CSF, such as small peptides and 
saccharides [8]. Larger molecules, such as polypeptides, 
and those without transporter flux, can be moved across 
the epithelia through vesicular transcytosis [9]. The ve-
sicular trafficking pathway has been shown to mediate 
the blood-to-CSF movement of specific peptides, in-
cluding several hormones and macronutrients [1,8]. 
While this mechanism enables other epithelial tissues to 
transport blood born immunoglobulins into luminal 
fluids [10], similar activity of this pathway has thus far 
proven difficult to assess in CP epithelia.

Another key function of transcytosis pathways, the CP 
clears many waste and neurotoxic molecules from the CSF. 
Oxidative products, cellular debris, excess neuro-
transmitters, and pathogens are regularly removed from the 
CSF by the CP epithelia. Membrane channels and trans-
porters, including the ABC transporter family, facilitate 
many of these housekeeping processes [8,11,12]. Disrup-
tion of the normal clearance activity of the CP, therefore, 
can lead to the accumulation of substrates which promote 
inflammation and loss of neurons within the CNS.

In addition to transporting blood products, the CP epi-
thelia also synthesize and release vital proteins into the 
CSF [13]. Importantly, these CP-derived molecules in-
clude neurotrophic factors, such as such as brain-derived 
neurotrophic factor (BDNF), which support the survival 
of neurons [14]. Additionally, CP epithelial cells can 
secrete cytokines, such as such as fibroblast growth 
factor-21 (FGF-21), transforming growth factor (TGF) 
beta, lipocalin-2 (LCN2), and IL-6 [15]. Based upon its 
permissive vascular anatomy, the CP is readily exposed 
to large amounts of systemic blood products; its syn-
thetic functions appear to be responsive to systemic in-
flammation in vitro and in vivo [16,17].

Under systemic inflammatory conditions, increased re-
cruitment of immune cells, including lymphocytes, can 
lead to significant expansion of the resident immune cell 
population and increased rates of immune invasion into 
the CNS [18,19]. Immune surveillance entails the mi-
gration of peripheral macrophages, dendritic cells, and T 

cells to the CSF side of the CP to sample for CNS an-
tigens and interact with microglia [20]. While beneficial 
at low levels, dysregulated surveillance can precipitate a 
CNS-targeted immune response [21–23].

The other major barrier system of the brain, the blood- 
brain barrier (BBB), can similarly be impacted by in-
flammation; however, key physiologic differences in-
dicate that the B-CSFB may be more susceptible to its 
effects. The BBB is formed by capillary endothelial cells 
with no fenestrations [24]. The permeability of this en-
dothelial barrier depends more on direct regulation by 
other cell types, including pericytes and astrocytes [25]. 
Additionally, the CP epithelia are more metabolically 
active, having significantly higher secretory activity [8]. 
Therefore, the CP is more readily exposed to systemic 
mediators, lacks compensatory regulation, and can di-
rectly propagate inflammatory signaling.

Taken together, dysfunction of the CP’s physiology can 
perturb the normal CNS environment and disrupt neuro-
logic health [20]. Mounting evidence indicates that dis-
ruption of vital functions, including the CP’s maintenance 
of CSF homeostasis, role as a brain–immune interface, and 
secretion of neurotrophic factors [8,13], occurs in numerous 
neurologic diseases [8] (Figure 1). By enhancing cytokine 
signaling and the translocation of peripheral immune cells, 
the perturbed CP appears to promote neuroinflammatory 
conditions [26,27]. On the other hand, poor removal of 
harmful CSF substances and reduced secretion of neuro-
trophic factors by the CP may contribute to the progression 
of neurodegenerative diseases [14,28].

As the studies substantiating these detrimental roles of 
the CP in disease pathogenesis have become more nu-
merous, a significant overlap between seemingly dis-
parate diseases has become apparent (Table 1). 
Neuroinflammatory conditions (e.g. multiple sclerosis 
[MS], systemic lupus erythematosus [SLE; lupus]) and 
neurodegenerative diseases (e.g. Alzheimer’s disease 
[AD], Parkinson’s disease [PD]), while damaging neu-
rons through unique pathways, may share common 
perturbations of normal CP function, which promote 
those mechanisms. This review summarizes recent in-
sights into these and other diseases to highlight the 
concept that the disruption of the CP may be a funda-
mental pathogenic step toward fulminant neuroin-
flammatory and neurodegenerative disease alike.

Neuroinflammation: multiple sclerosis
A prototypical CNS autoimmune condition, MS most 
commonly presents with motor and sensory disturbances 
of variable chronicity and severity [29]. Although its in-
itial trigger remains to be discovered, most symptoms of 
MS occur concurrently with autoreactive lymphocyte 
infiltration into the CNS and subsequent demyelination 
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[29]. Emerging research into MS assigns pathogenic 
significance to disruption of the CP [30]. In the experi-
mental autoimmune encephalitis murine model of MS, 
CD4+ T cells, particularly the autoimmune Th17 sub-
type, were found to accumulate within the CP be-
fore disease manifestations [31]. Similarly, B cells are 
known to redistribute within the CSF and brain tissue 
during active MS flares [32]. Ex vivo trans-well studies 
recently demonstrated that MS patient–derived memory 
B cells readily follow chemokine gradients to cross the 
CP epithelial barrier [33]. Therefore, the CP seems to 
serve as a gate of entry for adaptive immune cells that 
are primed to react to host neuronal epitopes.

Apart from permitting peripheral immune entry, disruption 
of CSF homeostatic functions appears to occur through CP 
dysfunction in MS. Enlargement of the CP volume, a pur-
ported biomarker of inflammatory dysfunction, can be found 
in MS [34]. In a cross-sectional In a cross-sectional magnetic 
resonance imaging (MRI) study of over 100 MS patients, CP 

enlargement correlated with both the number of demyeli-
nating lesions and overall white matter atrophy, in-
dependent of ventricle volume [35]. Failure of 
remyelination in MS may be predictive of disease outcomes. 
A recent imaging study found that failure of remyelination 
occurred most frequently in the periventricular white 
matter, and failure rates declined as distance from the 
ventricles increased [36]. Intriguingly, CP enlargement was 
also found to correlate with lower rates of successful re-
myelination [36]. T and B cells readily infiltrate and cross 
the CP barrier in MS. Additionally, a primary disruption of 
the CP appears to be linked to white matter pathology in 
MS. Thus, the CP likely plays an important role in the in-
itiation, through lymphocyte infiltration, and progression, 
through perturbed remyelination, of MS.

Neuroinflammation: systemic lupus 
erythematosus
Often presenting in women of reproductive age, the 
multisystem autoimmune condition SLE occurs through 

Figure 1  

Current Opinion in Immunology

Mechanisms of CP dysfunction in neuroinflammatory and neurodegenerative diseases. Schematic depicting the architecture of the CP, including 
fenestrated capillaries (red vessel), extracellular matrix (yellow helices), and epithelial cells (orange cell monolayer). Additionally, the diagram depicts 
the exposures (left; blue boxes) and perturbed functions (right; red boxes) of the CP in the inflammatory and degenerative conditions of the brain 
described in the article. Image generatedusing Biorender.  
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a breakdown of immune tolerance to self-antigens and 
subsequent expansion of autoreactive T cells and B 
cells, resulting in high circulating autoantibody levels to 
nuclear and other cellular antigens [37]. While cardio-
vascular and renal involvement represent the most 
common causes of mortality in lupus, significant mor-
bidity is associated with neuropsychiatric involvement 
[24]. Many SLE patients, estimated as to read 20–40% or 
more, experience concurrent disturbances in cognition, 
memory, and/or mood regulation, collectively termed 
neuropsychiatric lupus (NPSLE). Loss of neurons and 
white matter irregularities in the brain are known to 
accompany these symptoms [38,39]. While the cause of 
this pathology is only beginning to be uncovered, recent 
evidence substantiates a prominent role of the CP si-
milar to that seen in MS.

Enlargement of the CP was found in SLE patients 
versus healthy controls, and the most prominent en-
largement was detected in those with NPSLE [40]. 
Immune cells are known to infiltrate the CP in NPSLE 
[24]. As described in this article, several inflammatory 
and degenerative neurologic diseases have abnormal 
immune cell infiltration into the CP. However, those 
occurring in lupus stand apart due to their complex 
composition and functional organization. In our studies 
of NPSLE, we prioritized the investigation of the 
etiology and pathologic impact of this CP infiltrate in the 
most robust murine model of this particular disease 
manifestation, the MRL-lpr/lpr (MRL/lpr) mouse.

To characterize the composition of the CP infiltrate over 
time, single-cell transcriptomes were generated from the 
CP infiltrate in both young and old MRL/lpr lupus mice. 
A multitude of immune and stromal cell clusters were 
identified. One prominent feature was the diversity of T 
cell phenotypes seen, including a subset possessing T 
cell receptors specific for myelin basic protein [41]. 
Thus, there is an autoreactive pool of lymphocytes that 
are local to the CP and which form a brain-specific re-
sponse. Additional flow cytometry studies detected the 
presence of follicular-type helper T cells and a dimin-
ished content of regulatory T cells within the CP in-
filtrate [42]. Dysregulated balance of these T cell 
subtypes further indicates a shift toward a pathologic 
adaptive immune response.

Adoptive transfer of CP-infiltrating T cells intrathecally 
to immunodepleted MRL/lpr lupus mice worsened 
cognitive deficits associated with murine lupus, com-
pared to transfer of splenic T cells or sham injections 
[43]. A similar study found that T cell neurotoxicity may 
depend on interferon-γ activation of microglia [44]. 
These T lymphocytes readily cross from the periphery 
into the CP, having been detected on the CSF-facing 
side of the barrier [44]. Thus, T cells exhibit pathogenic 
potential in the development and severity of NPSLE, 

although certainly additional immune cell types besides 
T cells may help mediate these effects.

The immune infiltrate of the CP contains more than just 
T cells. Dendritic cells, macrophages, and B cells also 
appear in these aggregates [45]. Since follicular T cells 
were also present, we wondered if these CP infiltrates 
might organize into germinal center–like structures. In-
deed, the CP of murine MRL/lpr mice contained tertiary 
lymphoid structures (TLS), wherein antigen presenta-
tion and cytokine signaling could accomplish B cell 
education, priming the production of brain-specific au-
toantibodies [45].

Several key molecules appear to regulate the lymphoid 
organization in the CP in NPSLE mice. Blockade of 
Bruton’s tyrosine kinase using a small molecule inhibitor 
reduced the accumulation of T cells, B cells, and mac-
rophages within the CP [46] and improved cognitive 
function. Similarly, the lymphocyte-recruiting chemo-
kine CXCL13 was also found to mediate features of 
NSPLE [47], with intraperitoneal or intrathecal injection 
of anti-CXCL13 antibodies significantly ameliorating 
cognitive and affective behavioral features in lupus mice. 
Interestingly, though, the lymphocytic infiltrate within 
the CP was not disrupted in anti-CXCL13 treated mice 
despite blocking this potent chemoattractant.

Inhibiting TNF-like weak inducer of apoptosis (TWEAK) 
signaling, an inflammatory cytokine with effects on the in-
nate and adaptive immune system, diminished NPSLE-like 
symptoms in lupus mice [48]. With roles in T cell recruit-
ment and B cell maturation, knocking out the TWEAK 
receptor Fn14 in MRL/lpr mice reduced the CP infiltrate. 
Notably, this effect was also accompanied by a reduction in 
neuron degeneration and hippocampal gliosis [49]. Thus, 
several signaling molecules and pathways play a role in the 
pathogenesis of NPSLE, with variable effects on the CP 
infiltrate. To further elucidate the origin of this infiltrate, we 
also performed bone marrow transplants from nonlupus 
mice to immunodepleted MRL/lpr lupus mice [50]. Inter-
estingly, both CP infiltration and abnormal neurobehavioral 
features persisted in these mice, indicating that systemic 
inflammation may not be required for the emergence of 
either manifestation. Perhaps, the CP infiltrate is driven 
more by an intrinsic perturbation in the CP or CNS, rather 
than arising from systemic inflammation. But whatever the 
trigger of immune infiltration into the CP, CP TLSs possess 
the ability to promote brain-specific immune responses and 
are closely related to the debilitating manifestations of 
NPSLE.

Beyond acting as a brain–immune interface, disruption of 
the CP epithelia themselves may further worsen NPSLE- 
associated neuroinflammation. We identified a perturbed 
CSF composition as a key factor that can promote an in-
flammatory CNS environment. Quantification of over 1000 
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unique proteins in the CSF of NPSLE patients identified 
numerous potential biomarkers (i.e. M-CSF) of the disease, 
of which a subset was found to be also overexpressed in the 
CP [51]. Therefore, inflammatory molecules permeate the 
CSF in NPSLE, and the dysregulated CP may be produ-
cing mediators that promote brain pathology.

Among those potential mediators, IL-6 emerges as the 
cytokine most commonly reported to be elevated in 
NPSLE serum and CSF [52]. Lupus mice show similar 
elevations of intrathecal IL-6 [53]. Inflammatory cyto-
kines, like IL-6, further have the capacity to disrupt 
epithelial cell functions [54]. For this reason, we recently 
explored the CP-altering capacity of the cytokine. Using 
CP epithelial spheroids from lupus mice, the lack of IL- 
6 signaling was found to increase the luminal content of 
exogenous fluorescent tracers. Moreover, IL-6 inhibited 
the clearance of ABC transporter substrates from the 
CSF-like fluid within the spheroid vacuole [55]. The 
high IL-6 environment in lupus and NPSLE inhibits 
these vital transporters; therefore, it could promote the 
accumulation of neurotoxic ABC substrates, such as 
leukotrienes, and worsen neuroinflammation. In sum-
mary of these studies of the CP in SLE, a robust im-
mune cell infiltrate, dysregulated synthetic activity, and 
hampered clearance are fundamental alterations to CP 
function that may underlie key features of NPSLE.

Neuroinflammation: infections and 
environmental exposures
A variety of pathogens impact the CNS, often by directly 
invading the brain and causing inflammatory dysfunc-
tion. Similar to autoimmune conditions, neurotropic in-
fections appear to disturb the CP and its typical 
functions [56]. Notably, Neisseria meningitidis, a potent 
cause of bacterial meningitis, can infect CP epithelial 
cells and induce cytoskeletal and cellular junction 
changes, which together potentially disrupt the barrier 
integrity of the B-CSFB [57]. SARS-CoV-2, the viral 
cause of COVID-19, possesses high tropism for CP 
epithelia due to their ACE2 expression. Upon infection 
of human-derived organoids, the virus also induced 
barrier-disrupting microstructural changes in CP epi-
thelia [58]. Similarly, infection with the parasite Tox-
oplasma gondii induced the loss of CP epithelial tight 
junctions and upregulation of matrix-remodeling en-
zymes, changes that occurred early in infection and 
persisted throughout the disease [59].

Beyond promoting pathogen invasion through the 
blood–CSF barrier, infections appear to also promote the 
direct activation of inflammatory pathways by the CP 
epithelia. For example, the single-cell transcriptomes of 
CP epithelia in patients infected with SARS-CoV-2 re-
vealed an inflammatory signature. Within this CP epi-
thelial signature, upregulated interferon signaling and 

upstream activators of microglia corresponded to patho-
logic signatures within the frontal cortex [60]. A common 
theme among these neuroinflammatory conditions, is 
that disruption of the CP in infections can lead to in-
creased permissiveness as well as disturbed epithelial 
signaling via the CSF. As we will see, these features also 
occur in age-related and pathologic neurodegeneration.

Researchers have begun to appreciate the emerging in-
fluence of environmental exposures, including novel 
toxins and synthetic molecules, on epithelial barriers 
throughout the body. Several neuropsychiatric condi-
tions discussed in the present article have recently been 
shown to involve dysregulation of the gut epithelial 
barrier and increased neuroinflammatory signaling [61]. 
The CP as well appears to be susceptible to pollutants. 
Specifically, the sequestration of heavy metals like cad-
mium or lead, which is an essential CNS-protecting 
function of the CP, can disrupt normal functions of the 
epithelia over time [62]. While future work is needed to 
uncover specific physiological alterations, environmental 
exposures potentially modulate B-CSFB properties, 
compromising its integrity in inflammatory conditions.

Neurodegeneration: aging and stroke
While increasingly thought to involve inflammatory 
changes, neurodegenerative diseases broadly involve the 
direct loss of viable neurons through a multitude of in-
tracellular and extracellular insults [63]. Moreover, these 
changes are not regarded as the immediate result of the 
interaction of immune cells or antibodies with neurons, 
as is fundamental to many neuroinflammatory condi-
tions. However, recent work in several conditions has 
uncovered that disruption of CP function in neurode-
generation may closely resemble that of the previously 
discussed inflammatory conditions.

Normal aging is associated with the gradual loss of cerebral 
neurons, whereas vascular insults, such as ischemic strokes, 
cause a more sudden loss of gray matter [63,64]. Adult 
neurogenesis, or the generation of new neurons from neu-
roblasts located within specific niches, is thought to con-
tribute to the slowing of age-related decline and recovery 
from injury. In a mouse model with an inducible ablation of 
the CP, loss of CP function reduced the number of neuro-
blasts and their migration to ischemic stroke sites [65]. 
Thus, the CP appears to exert neurotrophic effects, likely 
through the release of factors promoting neuron health and 
recovery. Under aging conditions, the CP undergoes struc-
tural and metabolic changes, which likely hinder its typical 
secretory functions [66]. As such, the release of neurotrophic 
factors, including FGF-17, BDNF, IGF, and Klotho, may 
decline with age [67].

Even under normal conditions, aging is also associated 
with increased CP volume in humans [68]. Additional 
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experiments found that the infusion of young mouse 
CSF into the ventricles of aged mice improved memory 
functions. Specifically, hippocampal oligodendrocytes, 
the myelinating cells of the CNS, became more nu-
merous in the aged mice once exposed to young CSF 
[69]. A similar inability to maintain myelination was seen 
with CP changes in MS. Thus, the loss of the normal 
beneficial effects of the CP on the brain links age-related 
decline with neuroinflammatory conditions.

Neurodegeneration: amyotrophic lateral 
sclerosis
Occurring through an unknown mechanism, amyo-
trophic lateral sclerosis (ALS) rapidly progresses to pa-
ralysis of multiple muscle groups due to the loss of motor 
neurons. ALS patients, who tend to be a few decades 
younger than those with other neurodegenerative dis-
eases, often experience bulbar symptoms (i.e. dysarthria 
and dysphagia), declining fine and gross motor strength, 
and the eventual loss of respiratory function [70]. In a 
cross-sectional examination of 155 ALS patients and 105 
healthy controls, CP enlargement was found among the 
ALS patients. Moreover, larger CP volumes corre-
sponded to higher CSF/serum albumin quotients, a 
proxy of brain barrier dysfunction, and worse clinical 
symptoms of the disease [71]. Postmortem analysis of 
human CP in ALS individuals found a loss of tight- 
junction integrity, potentially explaining the increased 
entry of serum solutes into the CSF [72].

Interaction of the peripheral immune system with the 
CP also appears to be a prominent feature of ALS. 
Invasion of macrophages into the tissue has been found 
on postmortem analysis [72]. Furthermore, serum in-
flammatory protein levels correlated with CP changes. 
Specifically, ALS patients had elevated serum cytokine 
and chemokine levels, of which CRP, IL-6, and 
CXCL10 predicted increased CP volumes [73]. Not ty-
pically regarded as an inflammatory condition, ALS de-
monstrates how the loss of CP barrier integrity and 
dysfunction in the brain–immune interface can un-
expectedly blur the distinction between a neurodegen-
erative and neuroinflammatory condition.

Neurodegeneration: Alzheimer’s disease
During the progressive course of AD, neurons are thought to 
be lost through a combination of protein misfolding, glial 
reactivity, and decline in neurotrophic health [74,75]. Oc-
curring most frequently in elderly patients, the cumulative 
effect of this pathology is an early decline in memory and 
cognition with personality and perceptive changes appearing 
late in the disease course [74]. As in nearly all the previously 
discussed conditions, AD patients demonstrate enlargement 
of the CP. Using MRI and positron emission tomography to 
detect amyloid protein plaques, this CP enlargement was 
found to correlate with overall plaque burden and worse 

cognitive function [76]. A recent study revealed that loss of 
microstructural integrity correlated with serologic signs of 
AD pathology (i.e. elevated neuronal protein levels) [77]. In 
fact, these changes existed in this longitudinal aging cohort 
before clinical AD manifestations. Among the identified 
serum biomarkers, elevated Among the identified serum 
biomarkers, elevated glial fibrillary acidic protein, an in-
dicator of glial reactivity, positively correlated with CP vo-
lume [77].

Using an amyloid precursor protein knock-in mouse 
model of AD, the proteome of CP epithelial cells and the 
whole CSF proteome were found to significantly differ 
from control mice, and follow-up analyses found re-
markable overlap with the human AD CSF proteome 
[78]. These proteomic changes are largely related to 
dysregulation of the extracellular matrix and immune 
system: two pathways readily altered in neuroin-
flammatory conditions with CP pathology. Another pro-
teomic profiling study sought to subcategorize AD 
patients by the contents of their CSF [79]. Among the 
five diagnostic clusters, one was defined by markers of CP 
dysfunction, microglia activation, and immune cell func-
tions. Similarly, this cluster of patients had the largest CP 
volumes and most severe cerebral atrophy. This latter 
effect was potentially related to the downregulation of 
neurotrophic factors, including BDNF, which also char-
acterized this CP cluster [79]. While it remains to be seen 
if CP dysfunction is universal in AD, those patients with 
CP dysfunction appear to exhibit some of the most ex-
aggerated pathological changes associated with AD.

Neurodegeneration: Parkinson’s disease
Another classic example of progressive neurodegeneration, 
PD owes its progressive, debilitating motor symptoms to the 
loss of dopaminergic neurons in the basal ganglia due to 
misfolded protein (i.e. tau) accumulation [80]. This dys-
function produces the stereotypical presentation of resting 
tremor, bradykinesia, and rigidity, a highly morbid con-
stellation of symptoms [81]. However, Parkinson’s patients 
often develop neurocognitive symptoms as well. Once 
again, the CP appears to modulate the severity of this 
neurodegenerative condition. In a longitudinal study of over 
200 newly diagnosed PD patients, larger CP volumes cor-
responded to a higher rate of developing Parkinsonian de-
mentia and negatively correlated with executive function 
[82]. Similarly, a diminished level of dopaminergic activity 
in the nigrostriatal pathway of the basal ganglia was found to 
correlate with CP enlargement, motor dysfunction, and 
clinical severity [81].

Recent insights offered a potential explanation to this 
link between CP dysfunction and PD pathology. Using 
diffusion-weighted MRI in 27 PD patients and 32 
healthy controls, the level of CSF flow was found to be 
decreased in PD patients. Further analysis found that 
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diminished perfusion of the CP corresponded to these 
poor CSF dynamics [83]. This group further proposes 
that stasis within the brain ventricles could reduce the 
clearance of protein plaques in PD. Additional studies 
are needed to assess this hypothesis, but perturbation of 
the CP and CSF homeostasis is evident in the disease. 
Moreover, the clearance functions of this system in 
maintaining brain health appear deficient in PD, as was 
seen in the neuroinflammatory condition NPSLE.

Concluding remarks
Multiple pathways of CP-mediated changes appear to occur 
with striking similarity in neuroinflammation and neurode-
generation alike. The CP enlarges, immune cells infiltrate, 
synthetic functions shift, and clearance activity declines. 
Taken together, dysfunction within the CP epithelia leads 
to reduced barrier integrity, enhanced brain–immune in-
terfacing, deficient CSF homeostasis, and diminished neu-
rotrophic signaling. Whether a primary cause or secondary to 
the separate disease processes, the altered CP appears to 
worsen the pathophysiologic progression of multiple debil-
itating neurologic diseases.

As this theory of shared CP disruption represents an 
emerging concept, much of the early data here pre-
sented involves correlational evidence. While this is a 
vital first step in establishing a potentially novel unified 
understanding of CP pathology, mechanistic studies are 
still needed to truly assess its validity. Following such 
investigations, the emergence of CP-targeted therapies, 
including the blockade of systemic or intrathecal factors 
to limit inflammatory changes, could represent a much- 
needed advance in the treatment of multiple diseases. 
Moreover, the similarities observed between neuroin-
flammation and neurodegeneration, two classically dis-
tinct categories of disease, emphasize the need to study 
inflammatory and degenerative processes in the brain as 
a continuum, or perhaps two sides of the same coin.
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