EXERCISE 4

1. Solve the inequation, 3x - 11 < 3 where $x \in \{1, 2, 3, ..., 10\}$. Also, represent its solution on a number line. Solution:

Given inequation, 3x - 11 < 3 3x < 3 + 11 3x < 14 $\Rightarrow x < 14/3$ But, $x \in \{1, 2, 3, \dots, 10\}$ Hence, the solution set is $\{1, 2, 3, 4\}$. Representing the solution on a number line:

2. Solve 2(x - 3) < 1, $x \in \{1, 2, 3, ..., 10\}$ Solution:

Given inequation, 2(x - 3) < 1 2x - 6 < 1 2x < 7 $\Rightarrow x < 7/2$ But, $x \in \{1, 2, 3, ..., 10\}$ Hence, the solution set is $\{1, 2, 3\}$

3. Solve $5 - 4x \ge 2 - 3x$, $x \in W$. Also represent its solution on the number line. Solution:

Given inequation, 5 - 4x > 2 - 3x - 4x + 3x > 2 - 5 -x > -3On multiplying both sides by -1, the inequality reverses $\Rightarrow x < 3$ Since, $x \in W$ The solution set is {0, 1, 2} Representing the solution on a number line: x'

4. List the solution set of 30 - 4(2x - 1) < 30, given that x is a positive integer. Solution:

Given inequation, 30 - 4(2x - 1) < 3030 - 8x + 4 < 30

 $\begin{array}{l} 34-8x < 30\\ -8x < 30-34\\ -8x < -4 \qquad [On multiplying both sides by -1, the inequality reverses]\\ 8x > 4\\ x > 4/8\\ \Rightarrow x > 1/2\\ As x \text{ is a positive integer}\\ The solution set is \{1, 2, 3, ...\} \end{array}$

5. Solve: 2(x-2) < 3x - 2, $x \in \{-3, -2, -1, 0, 1, 2, 3\}$. Solution:

Given inequation, 2(x-2) < 3x - 2 2x - 4 < 3x - 2 2x - 3x < -2 + 4 -x < 2 $\Rightarrow x > -2$ But, $x \in \{-3, -2, -1, 0, 1, 2, 3\}$ Hence, the solution set is $\{-1, 0, 1, 2, 3\}$.

6. If x is a negative integer, find the solution set of 2/3 + 1/3 (x + 1) > 0. Solution:

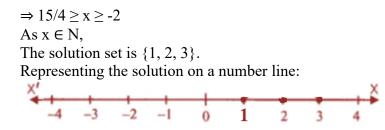
Given inequation, 2/3 + 1/3 (x + 1) > 0. 2/3 + x/3 + 1/3 > 0 x/3 + 1 > 0 x/3 > -1 $\Rightarrow x > -3$ As x is a negative integer The solution set is $\{-1, -2\}$.

7. Solve x - 3 (2 + x) > 2 (3x - 1), $x \in \{-3, -2, -1, 0, 1, 2, 3\}$. Also represent its solution on the number line. Solution:

Given inequation, x - 3 (2 + x) > 2 (3x - 1) x - 6 - 3x > 6x - 2 -2x - 6 > 6x - 2 -6x - 2x > -2 + 6 -8x > 4 x < -4/8 $\Rightarrow x < -1/2$ But, $x \in \{-3, -2, -1, 0, 1, 2, 3\}$ Hence, the solution set is $\{-3, -2, -1\}$ 8. Given $x \in \{1, 2, 3, 4, 5, 6, 7, 9\}$ solve x - 3 < 2x - 1. Solution:

Given inequation, x - 3 < 2x - 1 x - 2x < -1 + 3 -x < 2 $\Rightarrow x > -2$ But, $x \in \{1, 2, 3, 4, 5, 6, 7, 9\}$ Hence, the solution set is $\{1, 2, 3, 4, 5, 6, 7, 9\}$.

9. List the solution set of the inequation $\frac{1}{2} + 8x > 5x - \frac{3}{2}$, $x \in \mathbb{Z}$ Solution:


Given inequation, $\frac{1}{2} + 8x > 5x - \frac{3}{2}$ $8x - 5x > \frac{3}{2} - \frac{1}{2}$ $3x > -\frac{4}{2}$ $\Rightarrow x > -\frac{2}{3}$ As $x \in \mathbb{Z}$ The solution set is $\{0, 1, 2, 3, 4, 5, ...\}$

10. List the solution set of $(11 - 2x)/5 \ge (9 - 3x)/8 + 3/4$, $x \in N$ Solution:

Given inequation, $(11 - 2x)/5 \ge (9 - 3x)/8 + \frac{3}{4}$ $(11 - 2x)/5 \ge (9 - 3x + 6)/8$ $8 (11 - 2x) \ge 5 (15 - 3x)$ $88 - 16x \ge 75 - 15x$ $15x - 16x \ge 75 - 88$ $-x \ge -13$ $\Rightarrow x \le 13$ As $x \in N$ Hence, the solution set is $\{1, 2, 3, 4, ..., 13\}$.

11. Find the values of x, which satisfy the inequation : $-2 \le \frac{1}{2} - \frac{2x}{3} \le 1\frac{5}{6}$, $x \in N$. Graph the solution set on the number line. Solution:

 $-2 \le \frac{1}{2} - \frac{2x}{3} \le 1\frac{5}{6}$ Given inequation, $-2 \le (3 - 4x)/6 \le 11/6$ $-12 \le 3 - 4x \le 11$ $-12 - 3 \le -4x \le 11 - 3$ $-15 \le -4x \le 8$ $-15/4 \le -x \le 8/4$

12. If $x \in W$, find the solution set of 3/5 x - (2x - 1)/3 > 1. Also graph the solution set on the number line, if possible. Solution:

Given inequation, $3/5 \times -(2 \times -1)/3 > 1$ $9/15 \times -5(2 \times -1)/15 > 1$ [Taking L.C.M] $9 \times -5(2 \times -1) > 15$ [Multiplying by 15 on both sides] $9 \times -10 \times +5 > 15$ -x > 15 - 5 -x > 10 $\Rightarrow x < -10$ But, $x \in W$ Hence, the solution set is a null set. Thus, it can't be represented on number line.

13. Solve: (i) $x/2 + 5 \le x/3 + 6$, where x is a positive odd integer. (ii) $(2x + 3)/3 \ge (3x - 1)/4$, where x is positive even integer. Solution:

(i) Given inequation, $x/2 + 5 \le x/3 + 6$ $(x + 10)/2 \le (x + 18)/3$ [Taking L.C.M on both sides] $3 (x + 10) \le 2 (x + 18)$ [On cross-multiplying] $3x + 30 \le 2x + 36$ $3x - 2x \le 36 - 30$ $\Rightarrow x \le 6$ As x is a positive odd integer. Hence, the solution set is $\{1, 3, 5\}$.

(ii) Given inequation, $(2x + 3)/3 \ge (3x - 1)/4$ 4 $(2x + 3) \ge 3 (3x - 1)$ [On cross-multiplying] $8x + 12 \ge 9x - 3$ $-9x + 8x \ge -12 - 3$ $-x \ge -15$ $\Rightarrow x \le 15$ As x is positive even integer. Hence, the solution set is $\{2, 4, 6, 8, 10, 12, 14\}$.

14. Given that $x \in I$, solve the inequation and graph the solution on the number line: $3 \ge (x - 4)/2 + x/3 \ge 2$ Solution:

Given inequation, $3 \ge (x - 4)/2 + x/3 \ge 2$ Now, let's take $3 \ge (x - 4)/2 + x/3$, we have $3 \ge (3x - 12 + 2x)/6$ [Taking L.C.M] $18 \ge 5x - 12$ $30 \ge 5x$ \Rightarrow x \leq 6 (i) Next, $(x - 4)/2 + x/3 \ge 2$ $(3x - 12 + 2x)/6 \ge 2$ $5x-12 \ge 12$ $5x \ge 24$ $x \ge 24/5 \Rightarrow x \ge 4.8 \dots$ (ii) Hence, from (i) and (ii) we have Solution of $x = \{5, 6\}$ Representing the solution on a number line:

15. Solve: $1 \ge 15 - 7x > 2x - 27$, $x \in N$ Solution:

Given inequation, $1 \ge 15 - 7x > 2x - 27$, So, we have $1 \ge 15 - 7x$ and 15 - 7x > 2x - 277x > 15 - 1-2x - 7x > -27 - 15and -9x > -42 $7x \ge 14$ and x > 2and -x > -42/9x < 14/3x > 2and $\Rightarrow 2 < x < 14/3$ But as $x \in N$ The solution set is $\{2, 3, 4\}$.

16. If $x \in Z$, solve $2 + 4x < 2x - 5 \le 3x$. Also represent its solution on the number line. Solution

Given inequation, $2 + 4x < 2x - 5 \le 3x$ So, we have2 + 4x < 2x - 5and $2x - 5 \le 3x$ 4x - 2x < -5 - 2and $2x - 3x \le 5$ 2x < -7and $-x \le 5$ x < -7/2and $x \ge -5$

 $\Rightarrow -5 \le x < -7/2$ As $x \in Z$ The solution set is $\{-5, -4\}$. Representing the solution on a number line: $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$

17. Solve: $(4x - 10)/3 \le (5x - 7)/2$, $x \in \mathbb{R}$ and represent the solution set on the number line. Solution:

Given inequation, $(4x - 10)/3 \le (5x - 7)/2$ 2 $(4x - 10) \le 3 (5x - 7)$ [On cross-multiplying] $8x - 20 \le 15x - 21$ $8x - 15x \le -21 + 20$ $-7x \le -1$ $-x \le -1/7$ $x \ge 1/7$ As $x \in \mathbb{R}$ Hence, the solution set is $\{x: x \in \mathbb{R}, x \ge 1/7\}$ Representing the solution on a number line:

18. Solve 3x/5 - (2x - 1)/3 > 1, $x \in \mathbb{R}$ and represent the solution set on the number line. Solution:

Given inequation, 3x/5 - (2x - 1)/3 > 1 (9x - 10x + 5)/15 > 1 [Taking L.C.M] -x + 5 > 15 -x > 15 - 5 -x > 10 x < -10As $x \in \mathbb{R}$ Hence, the solution set is $\{x: x \in \mathbb{R}, x < -10\}$ Representing the solution on a number line:

19. Given that $x \in R$, solve the following inequation and graph the solution on the number line: -1 $\leq 3 + 4x < 23$. Solution:

Given inequation, $-1 \le 3 + 4x < 23$ $-1 - 3 \le 4x < 23 - 3$ -4 < 4x < 20 $-4/4 \le x < 20/4$ $-1 \le x < 5$ Hence, the solution set is $\{-1 \le x < 5; x \in R\}$ Representing the solution on a number line: -2 -1 0 1 2 3 4 5 6

20. Solve the following inequation and graph the solution on the number line.

$$-2\frac{2}{3} \le x + \frac{1}{3} < 3 + \frac{1}{3}, x \in \mathbb{R}$$

Solution:

Given inequation, $-2\frac{2}{3} \le x + \frac{1}{3} < 3 + \frac{1}{3}$ $-8/3 \le (3x+1)/3 < 10/3$ $-8 \le 3x + 1 < 10$ [Multiplying by 3] $-8 - 1 \le 3x \le 10 - 1$ $-9 \le 3x < 9$ $-3 \le x < 3$ [Dividing by 5] Thus, the solution set is $\{x: x \in \mathbb{R}, -3 \le x < 3\}$ Representing the solution on a number line: -2 -1 0 3

21. Solve the following inequation and represent the solution set on the number line: $-3 < -\frac{1}{2} - \frac{2x}{3} \le \frac{5}{6}, x \in \mathbb{R}$ Solution:

Given in equation, $-3<-\tfrac{1}{2}-\tfrac{2x}{3}\leq \tfrac{5}{6}, x\in R$ $-3 < -(3 + 4x)/6 \le 5/6$ [Taking L.C.M] $-18 < -3 - 4x \le 5$ [Multiplying by 6] $-18 + 3 < -4x \le 5 + 3$ $-15 < -4x \le 8$ $-15/4 < -x \le 8/4$ -2 < x < 15/4Hence, the solution set is $\{x : x \in \mathbb{R}, -2 \le x < 15/4\}$ Representing the solution on a number line:

22. Solving the following inequation, write the solution set and represent it on the number line

 $-3(x-7) \ge 15 - 7x > \frac{x+1}{3}, x \in \mathbb{R}$ Solution: Given inequation, $-3(x-7) \ge 15 - 7x > \frac{x+1}{3}$ -3x + 21 > 15 - 7 $-3x + 21 \ge 15 - 7x > (x + 1)/3$ So, $-3x+21 \geq 15-7x$ 7x - 3x > 15 - 21 $4x \ge -6$ $x \ge -6/4$ x > -3/2And, 15 - 7x > (x + 1)/33(15-7x) > x+145 - 21x > x + 1-21x - x > 1 - 45-22x > -44-x > -44/22x < 2Hence, the solution set is $\{x : x \in \mathbb{R}, -3/2 \le x < 2\}$ Representing the solution on a number line: < + + • • • 2 -3 -2 -1 0 1 3

23. Solve the following inequation, write down the solution set and represent it on the real number line:

 $-2 + 10x \le 13x + 10 \le 24 + 10x, x \in \mathbb{Z}$ Solution:

Given inequation, $-2 + 10x \le 13x + 10 \le 24 + 10x$ So, we have $-2 + 10x \le 13x + 10$ and $13x + 10 \le 24 + 10x$ $10x - 13x \le 10 + 2$ $13x - 10x \le 24 - 10$ and $-3x \le 12$ $3x \le 14$ and $x \ge -12/3$ $x \le 14/3$ and $x \ge -4$ and $x \le 14/3$ So, $-4 \le x \le 14/3$ As $x \in Z$ Thus, the solution set is $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ Representing the solution on a number line: -5 -4 -3 -2 -1 0 1 2 3 4 5

24. Solve the inequation $2x - 5 \le 5x + 4 < 11$, where $x \in I$. Also represent the solution set on the number line.

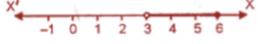
Solution:

Given inequation, $2x - 5 \le 5x + 4 < 11$ So, we have $2x - 5 \le 5x + 4$ 5x + 4 < 11and 5x < 11 - 4 $2x - 5x \le 4 + 5$ and -3x < 95x < 7and x < 7/5 $-x \le 9/3$ and x > -3x < 7/5and $-3 \le x < 7/5$ As $x \in I$ Thus, the solutions set is $\{-3, -2, -1, 0, 1\}$ Representing the solution on a number line: X' 4

25. If $x \in I$, A is the solution set of 2 (x - 1) < 3x - 1 and B is the solution set of $4x - 3 \le 8 + x$, find A \cap B. Solution:

Given inequations, 2(x-1) < 3x-1 $4x - 3 \le 8 + x$ for $x \in I$ and Solving for both, we have 2x - 3x < 2 - 1 $4x - x \le 8 + 3$ and -x < 1 and $3x \le 11$ x > -1x < 11/3and Hence, Solution set $A = \{0, 1, 2, 3, ...\}$ Solution set $B = \{3, 2, 1, 0, -1, ...\}$ Thus, $A \cap B = \{0, 1, 2, 3\}$

26. If P is the solution set of -3x + 4 < 2x - 3, x ∈ N and Q is the solution set of 4x - 5 < 12, x ∈ W, find
(i) P ∩ Q
(ii) Q - P.
Solution:


Given inequations, -3x + 4 < 2x - 3 where $x \in N$ and 4x - 5 < 12 where $x \in W$ So, solving -3x + 4 < 2x - 3 where $x \in N$ -3x - 2x < -3 - 4 -5x < -7 x > 7/5Hence, the solution set P is $\{2, 3, 4, 5, ...\}$ And, solving 4x - 5 < 12 where $x \in W$ 4x < 12 + 5 4x < 17 x < 17/4Hence, the solution set Q is $\{0, 1, 2, 3, 4\}$ Therefore, (i) $P \cap Q = \{2, 3, 4\}$ (ii) $Q - P = \{0, 1\}$

27. $A = \{x : 11x - 5 > 7x + 3, x \in R\}$ and $B = \{x : 18x - 9 \ge 15 + 12x, x \in R\}$ Find the range of set $A \cap B$ and represent it on a number line Solution:

Given, $A = \{x : 11x - 5 > 7x + 3, x \in R\}$ and $B = \{x : 18x - 9 \ge 15 + 12x, x \in R\}$ Solving for A, 11x - 5 > 7x + 311x - 7x > 3 + 54x > 8x > 2Hence, $A = \{x : x > 2, x \in R\}$ Next, solving for B $18x - 9 \ge 15 + 12x$ $18x - 12x \ge 15 + 9$ $6x \ge 24$ $x \ge 4$ Hence, $B = \{x : x \ge 4, x \in R\}$ Thus, $A \cap B = x \ge 4$ Representing the solution on a number line: X' ← -3 -2 -1 0 1 2 3 4 5 6

28. Given: P {x : $5 < 2x - 1 \le 11$, $x \in R$ } Q {x : $-1 \le 3 + 4x < 23$, $x \in I$ } where R = (real numbers), I = (integers) Represent P and Q on number line. Write down the elements of P \cap Q. Solution:

Given, P $\{x : 5 < 2x - 1 \le 11, x \in R\}$ and Q $\{x : -1 \le 3 + 4x < 23, x \in I\}$ Solving for P, $5 < 2x - 1 \le 11$ $5 + 1 < 2x \le 11 + 1$ $6 < 2x \le 12$ $3 < x \le 6$ Hence, $P = P \{x : 3 \le x \le 6, x \in R\}$ Representing the solution on a number line:

Next, solving for Q $-1 \le 3 + 4x < 23$ $-1 - 3 \le 4x < 23 - 3$ $-4 \le 4x < 20$ $-1 \le x < 5$ Hence, solution Q = {-1, 0, 1, 2, 3, 4} Representing the solution on a number line:

Therefore, $P \cap Q = \{4\}$

29. If $\mathbf{x} \in \mathbf{I}$, find the smallest value of \mathbf{x} which satisfies the inequation $2x + \frac{5}{2} > \frac{5x}{3} + 2$ Solution:

Given inequation, $2x + \frac{5}{2} > \frac{5x}{3} + 2$ (4x + 5)/2 > (5x + 6)/3 [Taking L.C.M] 3 (4x + 5) > 2 (5x + 6) [On cross-multiplication] 12x + 15 > 10x + 12 12x - 10x > 12 - 15 2x > -3 x > -3/2Hence, for $x \in I$ the smallest value of x is -1.

30. Given $20 - 5 \le 5 \le x \le 5 \le x \le 3$, find the smallest value of x, when (i) $\le I$ (ii) $\le W$ (iii) $\le W$ (iii) $\le N$. Solution: Given inequation, $20 - 5 \le 5 \le x \le 3$

20 - 5x < 5x + 40 -5x - 5x < 40 - 20 -10x < 20 -x < 20/10 x > -2Thus, (i) For $x \in I$, the smallest value = -1 (ii) For $x \in N$, the smallest value = 0 (iii) For $x \in N$, the smallest value = 1

31. Solve the following inequation and represent the solution set on the number line:

 $4x - 19 < \frac{3x}{5} - 2 \le -\frac{2}{5} + x, x \in \mathbb{R}$ Solution:

Given inequation, $4x-19 < \tfrac{3x}{5}-2 \leq -\tfrac{2}{5}+x, x \in R$ So, we have and $3x/5 - 2 \le -2/5 + x$ 4x - 19 < 3x/5 - 24x - 3x/5 < 19 - 2 $3x/5 - x \le 2 - 2/5$ and (20x - 3x)/5 < 17and $(3x - 5x)/5 \le (10 - 2)/5$ 17x < 35-2x < 8[Multiplying by 5] and x < 5 -x ≤ 4 and x < 5 x > 4and $-4 \le x < 5, x \in \mathbb{R}$ Hence, the solution set is $\{x : -4 \le x \le 5, x \in R\}$ Representing the solution on a number line:

32. Solve the given inequation and graph the solution on the number line: $2y - 3 < y + 1 \le 4y + 7; y \in R.$ Solution:

Given inequation, $2y - 3 < y + 1 \le 4y + 7$ So, we have 2y - 3 < y + 12y - y < 1 + 3y < 4and $y+1 \le 4y+7$ and $y - 4y \le 7 - 1$ and $-3y \le 6$ y < 4and $-y \le 2 \Rightarrow y \ge -2$ Thus, $-2 \le y < 4$ The solution set is $\{y : -2 \le y \le 4, y \in R\}$ Representing the solution on a number line: **← I → I ↓ I ↓ I ↓ ↓ ↓** -5 -4 -3 -2 -1 O 1 2 3 4 5

33. Solve the inequation and represent the solution set on the number line. $-3 + x \leq \frac{8x}{3} + 2 \leq \frac{14}{3} + 2x$, Where $x \in I$ Solution:

Given inequation, $-3 + x \leq \frac{8x}{3} + 2 \leq \frac{14}{3} + 2x$, Where $x \in I$ So, we have

$-3 + x \le 8x/3 + 2$	and	$8x/3 + 2 \le 14/3 + 2x$	
$x - 8x/3 \le 2 + 3$	and	$8x/3 - 2x \le 14/3 - 2$	
$(3x - 8x)/3 \le 5$	and	$(8x - 6x)/3 \le (14 - 6)/3$	[Taking L.C.M]
$-5x/3 \le 5$	and	$2x \le 8$	
-5x ≤ 15	and	$x \le 8/2$	
-x ≤ 3	and	$x \leq 4$	
$x \ge -3$	and	$x \leq 4$	
\Rightarrow -3 \leq x \leq 4			
Thus, the solution set is {-3, -2, -1, 0, 1, 2, 3, 4}			
Representing the solution on a number line:			
< _ _ _ _ _ _ _ _ _ _			
-4 -3 -2 -1 0 1 2 3 4 5			

34. Find the greatest integer which is such that if 7 is added to its double, the resulting number becomes greater than three times the integer. Solution:

Let's consider the greatest integer to be x

Then according to the given condition, we have

2x + 7 > 3x 2x - 3x > -7 -x > -7 x < 7, $x \in \mathbb{R}$ Hence, the greatest integer value is 6.

35. One-third of a bamboo pole is buried in mud, one-sixth of it is in water and the part above the water is greater than or equal to 3 metres. Find the length of the shortest pole. Solution:

Let's assume the length of the shortest pole = x metre Now,

Length of the pole which is buried in mud = x/3Length of the pole which is in the water = x/6Then according to the given condition, we have $x - [x/3 + x/6] \ge 3$ $x - [(2x + x)/6] \ge 3$ $x - 3x/6 \ge 3$ $x - x/2 \ge 3$ $x/2 \ge 3$ $x \ge 6$ [Multiplying by 6] Therefore, the length of the shortest pole is 6 metres.

CHAPTER TEST

1. Solve the inequation: $5x - 2 \le 3 (3 - x)$ where $x \in \{-2, -1, 0, 1, 2, 3, 4\}$. Also represent its solution on the number line. Solution:

Given inequation, $5x - 2 \le 3 (3 - x)$ $5x - 2 \le 9 - 3x$ $5x + 3x \le 9 + 2$ $8x \le 11$ $x \le 11/8$ As $x \in \{-2, -1, 0, 1, 2, 3, 4\}$ The solution set is $\{-2, -1, 0, 1\}$ Representing the solution on a number line:

2. Solve the inequation: 6x - 5 < 3x + 4, $x \in I$ Solution:

Given inequation, 6x - 5 < 3x + 4 6x - 3x < 4 + 5 3x < 9 x < 9/3 x < 3As $x \in I$ The solution set is $\{2, 1, 0, -1, -2, ...\}$

3. Find the solution set of the inequation $x + 5 \le 2x + 3$; $x \in \mathbb{R}$ Graph the solution set on the number line. Solution:

Given inequation, $x + 5 \le 2x + 3$ $x - 2x \le 3 - 5$ $-x \le -2$ $x \ge 2$ As $x \in \mathbb{R}$ Thus, the solution set is $\{2, 3, 4, 5, ...\}$ Representing the solution on a number line:

4. If $x \in R$ (real numbers) and $-1 < 3 - 2x \le 7$, find solution set and present it on a number line. Solution:

Given inequation, $-1 < 3 - 2x \le 7$ $-1 - 3 < -2x \le 7 - 3$ $-4 < -2x \le 4$ $-4/2 < -x \le 4/2$ $-2 < -x \le 2$ Thus, $-2 \le x < 2$ The solution set is $\{x : x \in \mathbb{R}, -2 \le x < 2\}$ Representing the solution on a number line:

5. Solve the inequation: $\frac{5x+1}{7} - 4\left(\frac{x}{7} + \frac{2}{5}\right) \le 1\frac{3}{5} + \frac{3x-1}{7}, x \in R$ Solution:

Given inequation,

 $\frac{5x+1}{7} - 4\left(\frac{x}{7} + \frac{2}{5}\right) \le 1\frac{3}{5} + \frac{3x-1}{7}, x \in R$ $(5x+1)/7 - 4(5x+14)/35 \le 8/5 + (3x-1)/7$ $[5(5x+1) - 4(5x+14)]/35 \le [56+5(3x-1)]/35 \qquad \text{[Taking L.C.M]}$ $(25x+5-20x-56) \le 56+15x-5$ $5x-51 \le 51+15x$ $5x-15x \le 51+51$ $-10x \le 102$ $-x \le 102/10$ $x \ge -51/5$ Hence, the solution set is $\{x : x \in \mathbb{R}, x \ge -51/5\}$

6. Find the range of values of a, which satisfy $7 \le -4x + 2 < 12$, $x \in \mathbb{R}$. Graph these values of a on the real number line. Solution:

7 < -4x + 2 < 127 < -4x + 2 and -4x + 2 < 127. If $x \in R$, solve $2x - 3 \ge x + (1 - x)/3 > 2x/5$ Solution: Given inequation, $2x - 3 \ge x + (1 - x)/3 > 2x/5$ So, we have $2x - 3 \ge x + (1 - x)/3$ x + (1 - x)/3 > 2x/5and $2x - 3 \ge (3x + 1 - x)/3$ (3x + 1 - x)/3 > 2x/5[On taking L.C.M] and $(2x+1) \times 5 > 2x \times 3$ [Upon cross multiplication] $3(2x - 3) \ge 2x + 1$ and $6x - 9 \ge 2x + 1$ and 10x + 5 > 6x

 $6x - 2x \ge 1 + 9$ and 10x - 6x > -5 $4x \ge 10$ and 4x > -5 $x \ge 10/4$ and x > -5/4 $x \ge 5/2$ As $x \in \mathbb{R}$ Thus, the solution set is $\{x: x \in \mathbb{R}, x \ge 5/2\}$ Representing the solution on a number line:

7. If $x \in R$, solve $2x - 3 \ge x + (1 - x)/3 \ge 2x/5$. Also represent the solution on the number line. Solution:

Given inequation, $2x - 3 \ge x + (1 - x)/3 > 2x/5$ So, we have $2x - 3 \ge x + (1 - x)/3$ and x + (1 - x)/3 > 2x/5 $2x - 3 \ge (3x + 1 - x)/3$ (3x + 1 - x)/3 > 2x/5[On taking L.C.M] and $3(2x-3) \ge 2x+1$ $5 \times (2x+1) > 3 \times 2x$ and $6x - 9 \ge 2x + 1$ 10x + 5 > 6xand $6x - 2x \ge 1 + 9$ 10x - 6x > -5and $4x \ge 10$ 4x > -5and $x \ge 10/4$ x > -5/4and x > 5/2As $x \in R$ The solution set = { $x: x \in \mathbb{R}, x \ge 5/2$ } Representing the solution on a number line: 5/2 ×' -2 -1 0 1

8. Find positive integers which are such that if 6 is subtracted from five times the integer then the resulting number cannot be greater than four times the integer. Solution:

Let's consider the positive integer be x Then according to the problem, we have 5a - 6 < 4x 5a - 4x < 6 $\Rightarrow x < 6$ Hence, the solution set = $\{x : x < 6\}$ $= \{1, 2, 3, 4, 5, 6\}$

9. Find three smallest consecutive natural numbers such that the difference between one-third of the largest and one-fifth of the smallest is at least 3. Solution:

Let's consider the first least natural number as x Then, second number = x + 1And third number = x + 2So, according the conditions given in the problem, we have $1/3 \times (x+2) - x/5 \ge 3$ $5x + 10 - 3x \ge 3 \times 15$ [Multiplying by 15 the L.C.M of 3 and 5] $2x \geq 45-10$ $2x \ge 35$ $x \ge 35/2$ $x \ge 17.5$ As x is a natural least number Thus, first least natural number = 18Second number = 18 + 1 = 19And, third number = 18 + 2 = 20Hence, the least natural numbers are 18, 19 and 20