

Choosing a test

Biological Basis

- Is there a justifiable link between the metric of interest and athletic performance?
- Does a theoretical cause and effect relationship exist?

Feasibility

- Logistics surrounding its implementation including: cost, time and staffing.
- How long does it take to produce a report for coaches?
- Is the right culture in place?

Sensitivity

- To what accuracy can it detect true changes?
- Realistically, can you actually inform practice off the back of this measure?

Original Research

Journal of Strength and Conditioning Research

Intra- and Interday Reliability of Weightlifting Variables and Correlation to Performance During Cleans

Angela M. Sorensen,¹ Shyam Chavda,¹ Paul Comfort,² Jason Lake,³ and Anthony N. Turner¹ ¹ London Sports Institute, Middlesex University, London, United Kingdom, ³Human Performance Laboratory, University of Salifor Stafed, United Kingdom, and ³Ogenaminent of Sport and Exercise Sciences, University of Chickers, Chicketer, United Kingdo

Level one: Which variables are reliable?

Level 2: Which variables are highly correlated (multicollinearity)?

Level 3. Of the correlated variables which one statistically or logically best explains the performance outcome

Results

Sixteen of the 70 variables analyzed were found to have good to excellent intra- and interday ICC (0.779–0.994 and 0.969–0.996, respectively) and CV (0.64–6.42 and 1.14–6.37, respectively) values (30,36). Using the Pearson's correlation coefficients (r = 0.5-1.0 at p < 0.005), these 16 variables were also shown to have strong correlations (r = 0.880-0.988) to cleans performed at 90% 1RM. From these 16 variables, bar work variables that were used to calculate bar power variables were then excluded because they are derived from the same force and displacement data and represented duplicate data. The resulting variables were further assessed for multicollinearity, which can be seen in Table 3. This system of filtering resulted in a total of 11 variables exhibiting "good to excellent" ICC with a CV of $\leq 10\%$ for both intraday and interday reliability measures and with correlations to clean performance as reported in Table 2.

Explain this to your athlete

You bench press 3 times in a week

- In session 1 you bench 70 kg
- In session 2 you bench 72 kg
- In session 3 you bench 69 kg

What about this...

You weigh yourself everyday for 5 days

- On day 1 you weigh 70 kg
- On day 2 you weigh 70.5 kg
- On day 3 you weigh 69.9 kg
- On day 4 you weigh 70.1
- On day 5 you weigh 70.3

Right Left Ocombined	5401 2800 1800 1500 1500 400 2.896 3.15 3.228 3.546 3.466 3.568 3.76 3.828 3.946 4.069	5567 4140 3540 2890 2700 1720 1720 1720 289 2590 3.01s 3.1s 3.19s 3.31s 3.4s 3.4% 3.81s 3.7s 3	4993 4235 2005 2005 2015 2015 2015 2015 2015 201
Metric	"high as you can"	"fast as you can"	"Fast and high"
Height (cm)	51		
CM depth (cm)	41		
Ave Braking F (N)	1477		
Braking phase (s)	0.15		
Ave Propulsive F (N)	1512		
Propulsivo phaso (s)	0.27		
Fiopulsive pliase (s)			
TTT	0.79		

		Trial 1 Mean \pm SD	Trial 2 Mean \pm SD	%CV (LCI, UCI)		
	CON Duration (ms)	2.80 ± 0.50	2.86 ± 0.58	4.67 (3.84, 5.49)		
Lacks detail	CON Impulse (Ns)	158.46 ± 45.23	158.77 ± 45.82	1.62 (1.03, 2.20)		
\sim	CON Mean Force (N)	1273 ± 319	1265 ± 321	2.15 (1.81, 2.48)		
Pick one	CON Mean Power (W)	1633 ± 544	1630.7 ± 553	3.20 (2.55, 3.86)		
A second s	CON Peak Force (N)	1605 ± 407	1612 ± 418	2.91 (2.44, 3.37)		
jump momentum?	CON Peak Velocity (m·s ⁻¹)	2.38 ± 0.26	2.38 ± 0.28	1.44 (0.89, 1.99)		
	SON PER	720 ± 1138	759 ± 1244	76.45 (66.86, 86.03))	
st because you can pesn't mean you should!	$\begin{array}{c} \text{CON RPD} \\ (W \cdot s^{-1}) \end{array}$	$14{,}673\pm6521$	14,308 ± 6599	7.15 (6.08, 8.21)		
	Jump Height (Flight) (cm)	$\textbf{27.30} \pm \textbf{6.41}$	27.46 ± 6.36	2.92 (2.49, 3.35)		
Same thing —	Jump Height (Imp-Dis) (cm)	26.01 ± 6.40	26.17 ± 7.09	3.21 (2.09, 4.33)		
	Jump Height (Imp-Mom) (cm)	25.96 ± 6.39	26.13 ± 7.09	3.20 (2.08, 4.33)		
	Stiffe as (2 m ⁻¹)	4971 ± 3081	6181 ± 10,643	10.21 (7.59, 12.82)	a marte	
	Peak Power (W)	2979 ± 972	2955 ± 982	2.48 (1.88, 3.08)	Ania Jonia	in
	RSI-modified (m·s ⁻¹)	0.37 ± 0.11	0.37 ± 0.12	5.81 (4.87, 6.75)	Athletes—Considerations for the Isometric Mid-Thigh I and Countermovement Jump	ull

	<u></u>				
		Trial 1 Mean \pm SD	Trial 2 Mean \pm SD	%CV (LCI, UCI)	
If this changes, so	Dip Depth (cm)	-30.57 ± 8.48	-31.23 ± 9.82	7.66 (5.00, 10, 32)	
	ECS Backing Lapulse (Ms)	60.84 ± 72.54	60.11 ± 67.76	14.53 (11.36-17.70)	$\mathbf{\Sigma}$
	ECC cooling RFD	4780 ± 2060	4924 ± 2446	10.86 (9.26, 12.45)	$\mathbf{\Sigma}$
Lacks detail	ECC Decel. Impulse (Ns)	95.56 ± 50.31	95.26 ± 51.46	6.34 (4.13, 8.55)	
	ECC Decel AFD	5661 ± 2890	5841 ± 3256	10.38 (8.56, 12.20)	$\overline{\mathbf{b}}$
	ECC Duration (ms)	479.3 ± 76.0	479.2 ± 93.7	6.41 (4.50, 8.31)	
	ECC Mean Braking Force (N)	843.8 ± 193.2	846.6 ± 199.2	3.38 (2.71, 4.05)	
	ECC Mean Decel. Force (N)	1222 ± 309	1224 ± 329	3.43 (2.71, 4.15)	
Same thing?	ECC Mean Force (N)	689.9 ± 149.7	689.8 ± 149.6	0.06 (0.05, 0.08)	Good case to choose this one!
	ECC Mean Power (W)	438.0 ± 142.1	442.5 ± 151.1	6.83 (4.74, 8.92)	
~	ECC Peak Force (N)	1573 ± 406	1584 ± 429	3.34 (2.70, 3.97)	
	ECC Peak Power (W)	1223 ± 525	1239 ± 602	9.24 (6.74, 11.74)	sports
	ECC Peak Velocity (m·s ⁻¹)	-1.23 ± 0.30	-1.23 ± 0.33	6.26 (4.04, 8.47)	 Identifying Reliable and Relatable Force-Time Metrics in Athletes—Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump

								Athlete	B	r	Ath	lete	3	x	Date	55	
Date -	Athlet -	CMJ_	CMJ_2	CMJ Be	CMJ S 🔻	ш 💌	UL 💌	Row Labels	Max of CMJ Bes	Max of CMJ SD	A			^	Aug-24	Aug-24	
Aug-24	А	43.7	42.8	43.7	0.5	43.3	44.2	Aug-24	36.	0.6	B				Dec 2	1	_
Aug-24	В	34.8	36.0	36.0	0.6	35.4	36.6	Mar-25	41.	6 1.0	-				Dec-24	•	_
Aug-24	C	42.8	40.2	42.8	1.3	41.5	44.1				C				Mar-2	5	
Aug-24	D	46.2	45.8	46.2	0.2	46.0	46.4	45.0			D						
Aug-24	E	37.0	36.2	37.0	0.4	36.6	37.4	10.0		I							
Aug-24	F	45.1	44.0	45.1	0.6	44.6	45.7	40.0			E						
Aug-24	G	36.0	41.2	41.2	2.6	38.6	43.8	35.0	-		E						
Aug-24	н	38.5	39.6	39.6	0.6	39.1	40.2	30.0			F			1			
Aug-24	1	41.9	44.9	44.9	1.5	43.4	46.4	0010			G						
Aug-24	J	37.5	40.1	40.1	1.3	38.8	41.4	25.0						í			
Aug-24	K	42.7	45.3	45.3	1.3	44.0	46.6	20.0			n n			~			
Aug-24	L	47.7	45.8	47.7	1.0	46.8	48.7										
Aug-24	М	31.5	30.1	31.5	0.7	30.8	32.2	15.0									
lug-24	N	33.8	36.7	36.7	1.5	35.3	38.2	10.0				Performa	nce over ti	me			
Aug-24	0	46.7	45.1	46.7	0.8	45.9	47.5	5.0				Better					
lug-24	P	43.7	42.7	43.7	0.5	43.2	44.2	5.0									
Aug-24	Q	40.4	41.2	41.2	0.4	40.8	41.6	0.0				Team /	Average	SD	z score	Rank %	
)ec-24	A	45.6	44.6	45.6	0.5	45.1	46.1	A	ug-24	Mar-25		Aug-24	41.7	4.3	-1.3	9.2	
)ec-24	В	39.2	41.2	41.2	1.0	40.2	42.2					Mar-25	43.9	3.3	-0.7	24.0	
)ec-24	С	43.2	42.1	43.2	0.6	42.7	43.8										
Dec-24	D	47.4	48.3	48.3	0.4	47.9	48.8										
Dec-24	E	37.9	38.8	38.8	0.4	38.4	39.3										
)ec-24	F	46.2	45.6	46.2	0.3	45.9	46.5		=AVERAGEIFS(TBL_CMJ[CMJ_Best], TBL_CMJ[Date], "specific date")				e")				
)ec-24	G	40.4	42.4	42.4	1.0	41.4	43.4			1							
)ec-24	н	40.1	43.3	43.3	1.6	41.7	44.9		=STDEV.P	IF(TBL_CMJ[Date]	="specif	fic date", 1	BL_CMJ[C	MJ_Bes	:]))		
)ec-24	1	45.6	46.4	46.4	0.4	46.0	46.8			A 104 10800 108 1080	o - 11283		2005 - 2004				
)ec-24	J	42.3	43.8	43.8	0.8	43.1	44.6			=NOPM C	DIST/-	COTO TO	IE)				
)ec-24	K	45.0	45.9	45.9	0.4	45.5	46.4			-NORM.5.	0131(2-	score, IKC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Dec-24	L	46.2	48.1	48.1	0.9	47.2	49.1		-								
Dec-24	М	36.4	38.3	38.3	0.9	37.4	39.3										
)ec-24	N	37.8	40.1	40.1	1.2	39.0	41.3										
ec-24	0	43.9	47.0	47.0	1.6	45.5	48.6										
ec-24	Р	42.6	44.2	44.2	0.8	43.4	45.0										
)ec-24	Q	38.4	37.8	38.4	0.3	38.1	38.7		V	ideo availat			ahoo				
Aar-25	A	46.1	45.0	46.1	0.5	45.6	46.6		V	ueo avallar	JIG V		LUUE				

Type I or Type II error? That is the question

- A Type I error is a false-positive you claim a difference when there is none
- Type II error is a false-negative you claim no difference when there was one

But did my athlete improve?

Assessing performance changes when N = 1

Club philosophy: Risk vs. Reward

- Do you prefer to play it safe or be sensitive to smaller changes? Perhaps a philosophical question.
- There is no right or wrong answer. Sometimes you'll be right, sometimes you'll be wrong.
- Therefore, need to focus on the consequences of each scenario to help you choose.

0

• •

Total Score of Athleticism

Profiling Strength and Power Characteristics in Professional Soccer Players After Anterior Cruciate Ligament Reconstruction to Assess Readiness to Return to Sport

Luca Maestroni,*¹¹ MSc, Anthony Turner,¹ PhD, Konstantinos Papadopoulos,[§] PhD, Vasileios Sideris,[®] PhD, and Paul Read,^{\$*+11} PhD Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar

