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(WHY IS IT, THEN, THAT WE SOMETIMES FEEL
MORE PAIN OR LESS PAIN?)
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SIMPLE EXAMPLE (2 INPUTS)




SIMPLE EXAMPLE (2 INPUTS)

1-(-1)+05-2+0.25:8




SIMPLE EXAMPLE (2 INPUTS)

x, = 0.25 If 2 > 0, return +1

Else return —1




SIMPLE EXAMPLE (2 INPUTS)

)

+1



OUR PERCEPTRON’S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

$ = sign(wTx)




OUR PERCEPTRON’S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

$ = sign(wTx)

9 =sign((-1)-1+2-05+8-0.25)

= sign(2)
= +1




PERCEPTRON’S CAN HAVE DIFFERENT ACTIVATION FUNCTIONS

y — Sign (WTX) Heaviside (step) function

y — O'(WTX) Sigmoid function

y — tanh(wa) Hyperbolic tangent function

y — ReLU(WTX) Rectified Linear Unit




Activation Functlons
Sigmoid

o(x) = 1+é—m

tanh
tanh(x)

RelLU
max (0, x)

Leaky RelLU
max(0.1x, x)

Maxout

| /
1 10

max(w{ x + by, w x + by)

ELU

T x>0
ae® —1) =<0

10
Jﬂ
-2




WEIG TS TO USE”

CHOOSE WEIGHTS TO MINIMIZE SOME LOSS FUNCTION -

————— e e ————————— - ——— e ot ——————



PERCEPTRON'’S (ORIGINAL) LEARNING RULE

W, = Wy 1 +YX

I Use only when prediction is wrong



PERCEPTRON'’S (ORIGINAL) LEARNING RULE

WL = Wy 1 T 7YX

I Use only when prediction is wrong

We can get some valuable insights about this rule
if we write it a little bit differently...



PERCEPTRON'’S (ORIGINAL) LEARNING RULE

W, =Wy, 1t 7’1(}’ — }7)X

What happens to the weights (w) if the perceptron
overestimates/underestimates the true value of y?



IT GETS EASIER TO INTERPRET IF YOU WRITE IT LIKE THIS:

W, =Wy, 1t 7’1(}’ — }7)X

Perceptron Convergence Theorem:
If the data is linearly separable, then a perceptron is
guaranteed to converge in a finite number of steps
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Perceptron Convergence Theorem:
If the data is linearly separable, then a perceptron is
guaranteed to converge in a finite number of steps

Y Y4 Ever heard of SVM? )
There might be Some solutions It's equivalent to a
multiple solutions! might not be good perceptron that gives
) JASG the optimal solution! )
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LOSS FUNCTION

L(w)

Q)?




GRADIENT VECTOR

L(w)

C:D);




GRADIENT DESCENT

(WITH 1 POINT) Q (W)

Wpi1 < Wy — NV, &




GRADIENT DESCENT

Wh+1 €< Wp — 7] Zi VW'8







EFFECT OF THE LEARNING RATE (n)

J(w)

Large Learning Rate

J(w)

Small Learning Rate



EXAMPLE: STEP ACTIVATION FUNCTION WITH HINGE LOSS

£ = max(0; 1 — yy)
9 = sign(wTx)
Wpi1 = Wy — V8

V& = —yx

Whi1 € Wy + nyx




EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

£ = max(0; 1 — yy)
9 = a(wTx)
Wpi1 = Wy — 1V 8

Vu® = —yo(wTx)[1 — o(wTx)]x

Wni1 « Wy +yo(wTx)[1 — o(wTx)[x




EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

£ = max(0; 1 — yy)

This tells us about the importance
of normalizing the inputs.

Why? Vw8 = —yo(wTx) o(wTx)|x

Wni1 <« Wy +ya(wTx)[1 — o(wTx)]x




EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

£ = max(0; 1 — yy)
}7 = :‘:‘(WTX)
Wpi1 = Wy — 1V, 8 This also offers a nice illustration of

the vanishing gradient problem.

Why? - and what to do about it?
Vw8 = —yo(wTx)11 - o(wTx)]|x g

Wni1 <« Wy +ya(wTx)[1 — o(wTx)]x




THE VANISHING GRADIENT PROBLEM

Wh+1 €< Wp — 7] Zi VW'8

When V,,& = 0, learning stops (Wp4+1 = Wy)

What can we do about it?

0.5 a 0.5




SOLUTIONS TO THE VANISHING GRADIENT PROBLEM

Rectifield linear a;tivation function

1.2r

/ 0.8
5 - mll’l( )

0.6

0.4}

X = maX(X) g

_D|2_

2.
=
o
Qutput of neuron

~10 05 0.0 05 1.0
Input to neuron

Normalization Changing the activation function

and other options we’ll talk about later...



THE FIRST
PERCEPTRON
(IBM, 1958)
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COMING UP
NEXT:

NEURAL

NETWORKS
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