PERC

-~

~—

~ -

E

B —
g+
»
)
»
P\

THE DADDY OF NEU

-

—

FELIPE Bu
g

Nucleus Axon terminal
Soma

(cell body)

Dendrite

Myelin
sheath

Full response
o F--——------ e
Ul
=
=
L
|
al
o Mo response
et
-
-
o oA
-
i
=
e
i
ul
= Lo a1 | Threshold
-
E ‘ [
w
L

ALL-OR-
NOTHING LAW
OF NEURONAL
ACTIVATION

(WHY IS IT, THEN, THAT WE SOMETIMES FEEL
MORE PAIN OR LESS PAIN?)

ALL-OR-
NOTHING LAW
OF NEURONAL
ACTIVATION

(WHY IS IT, THEN, THAT WE SOMETIMES FEEL
MORE PAIN OR LESS PAIN?)

THE
PERCEPTRON

Constant &1)\
W

inputs —

P2 N

Weights

0

Step Function

SIMPLE EXAMPLE (2 INPUTS)

SIMPLE EXAMPLE (2 INPUTS)

1-(-1)+05-2+0.25:8

SIMPLE EXAMPLE (2 INPUTS)

x, = 0.25 If 2 > 0, return +1

Else return —1

SIMPLE EXAMPLE (2 INPUTS)

)

+1

OUR PERCEPTRON’S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

$ = sign(wTx)

OUR PERCEPTRON’S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

$ = sign(wTx)

9 =sign((-1)-1+2-05+8-0.25)

= sign(2)
= +1

PERCEPTRON’S CAN HAVE DIFFERENT ACTIVATION FUNCTIONS

y — Sign (WTX) Heaviside (step) function

y — O'(WTX) Sigmoid function

y — tanh(wa) Hyperbolic tangent function

y — ReLU(WTX) Rectified Linear Unit

Activation Functlons
Sigmoid

o(x) = 1+é—m

tanh
tanh(x)

RelLU
max (0, x)

Leaky RelLU
max(0.1x, x)

Maxout

| /
1 10

max(w{ x + by, w x + by)

ELU

T x>0
ae® —1) =<0

10
Jﬂ
-2

WEIG TS TO USE”

CHOOSE WEIGHTS TO MINIMIZE SOME LOSS FUNCTION -

————— e e ————————— - ——— e ot ——————

PERCEPTRON'’S (ORIGINAL) LEARNING RULE

W, = Wy 1 +YX

I Use only when prediction is wrong

PERCEPTRON'’S (ORIGINAL) LEARNING RULE

WL = Wy 1 T 7YX

I Use only when prediction is wrong

We can get some valuable insights about this rule
if we write it a little bit differently...

PERCEPTRON'’S (ORIGINAL) LEARNING RULE

W, =Wy, 1t 7’1(}’ — }7)X

What happens to the weights (w) if the perceptron
overestimates/underestimates the true value of y?

IT GETS EASIER TO INTERPRET IF YOU WRITE IT LIKE THIS:

W, =Wy, 1t 7’1(}’ — }7)X

Perceptron Convergence Theorem:
If the data is linearly separable, then a perceptron is
guaranteed to converge in a finite number of steps

-

S~

Perceptron Convergence Theorem:
If the data is linearly separable, then a perceptron is
guaranteed to converge in a finite number of steps

Y Y4 Ever heard of SVM?)
There might be Some solutions It's equivalent to a
multiple solutions! might not be good perceptron that gives
) JASG the optimal solution!)

\/

\/

LOSS FUNCTION

L(w)

Q)?

GRADIENT VECTOR

L(w)

C:D);

GRADIENT DESCENT

(WITH 1 POINT) Q (W)

Wpi1 < Wy — NV, &

GRADIENT DESCENT

Wh+1 €< Wp — 7] Zi VW'8

EFFECT OF THE LEARNING RATE (n)

J(w)

Large Learning Rate

J(w)

Small Learning Rate

EXAMPLE: STEP ACTIVATION FUNCTION WITH HINGE LOSS

£ = max(0; 1 — yy)
9 = sign(wTx)
Wpi1 = Wy — V8

V& = —yx

Whi1 € Wy + nyx

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

£ = max(0; 1 — yy)
9 = a(wTx)
Wpi1 = Wy — 1V 8

Vu® = —yo(wTx)[1 — o(wTx)]x

Wni1 « Wy +yo(wTx)[1 — o(wTx)[x

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

£ = max(0; 1 — yy)

This tells us about the importance
of normalizing the inputs.

Why? Vw8 = —yo(wTx) o(wTx)|x

Wni1 <« Wy +ya(wTx)[1 — o(wTx)]x

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

£ = max(0; 1 — yy)
}7 = :‘:‘(WTX)
Wpi1 = Wy — 1V, 8 This also offers a nice illustration of

the vanishing gradient problem.

Why? - and what to do about it?
Vw8 = —yo(wTx)11 - o(wTx)]|x g

Wni1 <« Wy +ya(wTx)[1 — o(wTx)]x

THE VANISHING GRADIENT PROBLEM

Wh+1 €< Wp — 7] Zi VW'8

When V,,& = 0, learning stops (Wp4+1 = Wy)

What can we do about it?

0.5 a 0.5

SOLUTIONS TO THE VANISHING GRADIENT PROBLEM

Rectifield linear a;tivation function

1.2r

/ 0.8
5 - mll’l()

0.6

0.4}

X = maX(X) g

D|2

2.
=
o
Qutput of neuron

~10 05 0.0 05 1.0
Input to neuron

Normalization Changing the activation function

and other options we’ll talk about later...

THE FIRST
PERCEPTRON
(IBM, 1958)

- T -nl.. Y
eGEs - ST S R
Bt R g e
B . ==
[38 Ee N
= —— -~

lewl FER L L TTD e WU mEu oEm W e vl e e e o N r.

COMING UP
NEXT:

NEURAL

NETWORKS

	Slide 1: Perceptron The daddy of neural networks
	Slide 2
	Slide 3: All-or-nothing law of neuronal activation (why is it, then, that we sometimes feel more pain or less pain?)
	Slide 4: All-or-nothing law of neuronal activation (why is it, then, that we sometimes feel more pain or less pain?)
	Slide 5: The perceptron
	Slide 6: Simple example (2 inputs)
	Slide 7: Simple example (2 inputs)
	Slide 8: Simple example (2 inputs)
	Slide 9: Simple example (2 inputs)
	Slide 10: Our perceptron’s prediction can be written in a single line
	Slide 11: Our perceptron’s prediction can be written in a single line
	Slide 12: Perceptron’s can have different activation functions
	Slide 13
	Slide 14: How can the perceptron learn which weights to use?
	Slide 15: Perceptron’s (original) Learning rule
	Slide 16: Perceptron’s (original) Learning rule
	Slide 17: Perceptron’s (original) Learning rule
	Slide 18: It gets easier to interpret if you write it like this:
	Slide 19: Perceptron’s (original) Learning rule
	Slide 20: Loss function
	Slide 21: Gradient vector
	Slide 22: Gradient Descent (with 1 point)
	Slide 23: Gradient descent
	Slide 24
	Slide 25: Effect of the learning rate (eta)
	Slide 26: exAMPLE: Step activation function with hinge loss
	Slide 27: exAMPLE: Logistic activation function with hinge loss
	Slide 28: exAMPLE: Logistic activation function with hinge loss
	Slide 29: exAMPLE: Logistic activation function with hinge loss
	Slide 30: The vanishing Gradient problem
	Slide 31: Solutions to the vanishing gradient problem
	Slide 32: The first perceptron (IBM, 1958)
	Slide 33: Coming up next: neural networks

