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OUR PERCEPTRON’S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

ො𝑦 = sign 𝐰𝐓𝐱



OUR PERCEPTRON’S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

ො𝑦 = sign 𝐰𝐓𝐱

ො𝑦 = sign −1 ⋅ 1 + 2 ⋅ 0.5 + 8 ⋅ 0.25

= sign 2
= +1



PERCEPTRON’S CAN HAVE DIFFERENT ACTIVATION FUNCTIONS

ො𝑦 = sign 𝐰𝐓𝐱

ො𝑦 = 𝜎 𝐰𝐓𝐱

ො𝑦 = tanh 𝐰𝐓𝐱

ො𝑦 = ReLU 𝐰𝐓𝐱

Heaviside (step) function

Sigmoid function

Hyperbolic tangent function

Rectified Linear Unit





HOW CAN THE PERCEPTRON LEARN WHICH 

WEIGHTS TO USE?
CHOOSE WEIGHTS TO MINIMIZE SOME LOSS FUNCTION



PERCEPTRON’S (ORIGINAL) LEARNING RULE

𝐰𝐧 = 𝐰𝐧−𝟏 + 𝜂𝑦𝐱

! Use only when prediction is wrong
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We can get some valuable insights about this rule 

if we write it a little bit differently…
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If the data is linearly separable, then a perceptron is 

guaranteed to converge in a finite number of steps
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𝐰𝐧 = 𝐰𝐧−𝟏 + 𝜂 y − ො𝑦 𝐱

What happens to the weights (𝐰) if the perceptron 

overestimates/underestimates the true value of 𝑦?

Perceptron Convergence Theorem:

If the data is linearly separable, then a perceptron is 

guaranteed to converge in a finite number of steps

There might be 

multiple solutions!

Some solutions 

might not be good

Ever heard of SVM?

It’s equivalent to a 

perceptron that gives 

the optimal solution!
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GRADIENT DESCENT
(WITH 1 POINT)
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GRADIENT DESCENT

𝐰𝐧+𝟏 ← 𝐰𝐧 − 𝜂σ𝑖𝛁𝐰𝔏 





EFFECT OF THE LEARNING RATE (𝜂)



EXAMPLE: STEP ACTIVATION FUNCTION WITH HINGE LOSS

𝔏 = max 0; 1 − 𝑦ො𝑦

ො𝑦 = sign 𝐰𝐓𝐱

𝐰𝐧+𝟏 = 𝐰𝐧 − 𝜂𝛁𝐰𝕷

∇𝐰𝔏 = −𝑦𝐱

∴

𝐰𝐧+𝟏 ← 𝐰𝐧 + 𝜂𝑦𝐱
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EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS
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𝐰𝐧+𝟏 = 𝐰𝐧 − 𝜂𝛁𝐰𝕷

∇𝐰𝔏 = −𝑦𝜎 𝐰𝐓𝐱 𝟏 − 𝜎 𝐰𝐓𝐱 𝐱

∴

𝐰𝐧+𝟏 ← 𝐰𝐧 + 𝜂𝑦𝜎 𝐰𝐓𝐱 𝟏 − 𝜎 𝐰𝐓𝐱 𝐱

This tells us about the importance

of normalizing the inputs.

Why?

This also offers a nice illustration of 

the vanishing gradient  problem.

Why? – and what to do about it?



THE VANISHING GRADIENT PROBLEM

𝐰𝐧+𝟏 ← 𝐰𝐧 − 𝜂σ𝑖𝛁𝐰𝔏 

When ∇𝐰𝔏 → 0, learning stops (𝐰𝐧+𝟏 ≈ 𝐰𝐧)

What can we do about it?



SOLUTIONS TO THE VANISHING GRADIENT PROBLEM

Normalization
Changing the activation function

and other options we’ll talk about later…
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