
PERCEPTRON
THE DADDY OF NEURAL NETWORKS

FELIPE BUCHBINDER

ALL-OR-

NOTHING LAW

OF NEURONAL

ACTIVATION
(WHY IS IT, THEN, THAT WE SOMETIMES FEEL

MORE PAIN OR LESS PAIN?)

ALL-OR-

NOTHING LAW

OF NEURONAL

ACTIVATION
(WHY IS IT, THEN, THAT WE SOMETIMES FEEL

MORE PAIN OR LESS PAIN?)

THE

PERCEPTRON

SIMPLE EXAMPLE (2 INPUTS)

?

1

𝑥2 = 0.25

𝑥1 = 0.5

−1

2

8

?

SIMPLE EXAMPLE (2 INPUTS)

2

1

𝑥2 = 0.25

𝑥1 = 0.5

−1

2

8

?

1 ⋅ −1 + 0.5 ⋅ 2 + 0.25 ⋅ 8

SIMPLE EXAMPLE (2 INPUTS)

2

1

𝑥2 = 0.25

𝑥1 = 0.5

−1

2

8

+1

If 2 > 0, return +1
Else return −1

ො𝑦 = +1

SIMPLE EXAMPLE (2 INPUTS)

2

1

𝑥2 = 0.25

𝑥1 = 0.5

−1

2

8

+1 ො𝑦 = +1

OUR PERCEPTRON’S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

ො𝑦 = sign 𝐰𝐓𝐱

OUR PERCEPTRON’S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

ො𝑦 = sign 𝐰𝐓𝐱

ො𝑦 = sign −1 ⋅ 1 + 2 ⋅ 0.5 + 8 ⋅ 0.25

= sign 2
= +1

PERCEPTRON’S CAN HAVE DIFFERENT ACTIVATION FUNCTIONS

ො𝑦 = sign 𝐰𝐓𝐱

ො𝑦 = 𝜎 𝐰𝐓𝐱

ො𝑦 = tanh 𝐰𝐓𝐱

ො𝑦 = ReLU 𝐰𝐓𝐱

Heaviside (step) function

Sigmoid function

Hyperbolic tangent function

Rectified Linear Unit

HOW CAN THE PERCEPTRON LEARN WHICH

WEIGHTS TO USE?
CHOOSE WEIGHTS TO MINIMIZE SOME LOSS FUNCTION

PERCEPTRON’S (ORIGINAL) LEARNING RULE

𝐰𝐧 = 𝐰𝐧−𝟏 + 𝜂𝑦𝐱

! Use only when prediction is wrong

PERCEPTRON’S (ORIGINAL) LEARNING RULE

𝐰𝐧 = 𝐰𝐧−𝟏 + 𝜂𝑦𝐱

! Use only when prediction is wrong

We can get some valuable insights about this rule

if we write it a little bit differently…

PERCEPTRON’S (ORIGINAL) LEARNING RULE

𝐰𝐧 = 𝐰𝐧−𝟏 + 𝜂 y − ො𝑦 𝐱

What happens to the weights (𝐰) if the perceptron

overestimates/underestimates the true value of 𝑦?

IT GETS EASIER TO INTERPRET IF YOU WRITE IT LIKE THIS:

𝐰𝐧 = 𝐰𝐧−𝟏 + 𝜂 y − ො𝑦 𝐱

What happens to the weights (𝐰) if the perceptron

overestimates/underestimates the true value of 𝑦?

Perceptron Convergence Theorem:

If the data is linearly separable, then a perceptron is

guaranteed to converge in a finite number of steps

PERCEPTRON’S (ORIGINAL) LEARNING RULE

𝐰𝐧 = 𝐰𝐧−𝟏 + 𝜂 y − ො𝑦 𝐱

What happens to the weights (𝐰) if the perceptron

overestimates/underestimates the true value of 𝑦?

Perceptron Convergence Theorem:

If the data is linearly separable, then a perceptron is

guaranteed to converge in a finite number of steps

There might be

multiple solutions!

Some solutions

might not be good

Ever heard of SVM?

It’s equivalent to a

perceptron that gives

the optimal solution!

LOSS FUNCTION

𝑤1

𝑤2

𝐰

𝔏(𝐰)

GRADIENT VECTOR

𝑤1

𝑤2

𝐰

𝛁𝒘𝔏

𝔏(𝐰)

GRADIENT DESCENT
(WITH 1 POINT)

𝑤1

𝑤2

𝐰

𝛁𝒘𝔏

𝔏(𝐰)

𝐰𝐧+𝟏 ← 𝐰𝐧 − 𝜂𝛁𝐰𝔏

GRADIENT DESCENT

𝐰𝐧+𝟏 ← 𝐰𝐧 − 𝜂σ𝑖𝛁𝐰𝔏

EFFECT OF THE LEARNING RATE (𝜂)

EXAMPLE: STEP ACTIVATION FUNCTION WITH HINGE LOSS

𝔏 = max 0; 1 − 𝑦ො𝑦

ො𝑦 = sign 𝐰𝐓𝐱

𝐰𝐧+𝟏 = 𝐰𝐧 − 𝜂𝛁𝐰𝕷

∇𝐰𝔏 = −𝑦𝐱

∴

𝐰𝐧+𝟏 ← 𝐰𝐧 + 𝜂𝑦𝐱

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

𝔏 = max 0; 1 − 𝑦ො𝑦

ො𝑦 = 𝜎 𝐰𝐓𝐱

𝐰𝐧+𝟏 = 𝐰𝐧 − 𝜂𝛁𝐰𝕷

∇𝐰𝔏 = −𝑦𝜎 𝐰𝐓𝐱 𝟏 − 𝜎 𝐰𝐓𝐱 𝐱

∴

𝐰𝐧+𝟏 ← 𝐰𝐧 + 𝜂𝑦𝜎 𝐰𝐓𝐱 𝟏 − 𝜎 𝐰𝐓𝐱 𝐱

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

𝔏 = max 0; 1 − 𝑦ො𝑦

ො𝑦 = 𝜎 𝐰𝐓𝐱

𝐰𝐧+𝟏 = 𝐰𝐧 − 𝜂𝛁𝐰𝕷

∇𝐰𝔏 = −𝑦𝜎 𝐰𝐓𝐱 𝟏 − 𝜎 𝐰𝐓𝐱 𝐱

∴

𝐰𝐧+𝟏 ← 𝐰𝐧 + 𝜂𝑦𝜎 𝐰𝐓𝐱 𝟏 − 𝜎 𝐰𝐓𝐱 𝐱

This tells us about the importance

of normalizing the inputs.

Why?

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

𝔏 = max 0; 1 − 𝑦ො𝑦

ො𝑦 = 𝜎 𝐰𝐓𝐱

𝐰𝐧+𝟏 = 𝐰𝐧 − 𝜂𝛁𝐰𝕷

∇𝐰𝔏 = −𝑦𝜎 𝐰𝐓𝐱 𝟏 − 𝜎 𝐰𝐓𝐱 𝐱

∴

𝐰𝐧+𝟏 ← 𝐰𝐧 + 𝜂𝑦𝜎 𝐰𝐓𝐱 𝟏 − 𝜎 𝐰𝐓𝐱 𝐱

This tells us about the importance

of normalizing the inputs.

Why?

This also offers a nice illustration of

the vanishing gradient problem.

Why? – and what to do about it?

THE VANISHING GRADIENT PROBLEM

𝐰𝐧+𝟏 ← 𝐰𝐧 − 𝜂σ𝑖𝛁𝐰𝔏

When ∇𝐰𝔏 → 0, learning stops (𝐰𝐧+𝟏 ≈ 𝐰𝐧)

What can we do about it?

SOLUTIONS TO THE VANISHING GRADIENT PROBLEM

Normalization
Changing the activation function

and other options we’ll talk about later…

THE FIRST

PERCEPTRON

(IBM, 1958)

COMING UP

NEXT:

NEURAL

NETWORKS

	Slide 1: Perceptron The daddy of neural networks
	Slide 2
	Slide 3: All-or-nothing law of neuronal activation (why is it, then, that we sometimes feel more pain or less pain?)
	Slide 4: All-or-nothing law of neuronal activation (why is it, then, that we sometimes feel more pain or less pain?)
	Slide 5: The perceptron
	Slide 6: Simple example (2 inputs)
	Slide 7: Simple example (2 inputs)
	Slide 8: Simple example (2 inputs)
	Slide 9: Simple example (2 inputs)
	Slide 10: Our perceptron’s prediction can be written in a single line
	Slide 11: Our perceptron’s prediction can be written in a single line
	Slide 12: Perceptron’s can have different activation functions
	Slide 13
	Slide 14: How can the perceptron learn which weights to use?
	Slide 15: Perceptron’s (original) Learning rule
	Slide 16: Perceptron’s (original) Learning rule
	Slide 17: Perceptron’s (original) Learning rule
	Slide 18: It gets easier to interpret if you write it like this:
	Slide 19: Perceptron’s (original) Learning rule
	Slide 20: Loss function
	Slide 21: Gradient vector
	Slide 22: Gradient Descent (with 1 point)
	Slide 23: Gradient descent
	Slide 24
	Slide 25: Effect of the learning rate (eta)
	Slide 26: exAMPLE: Step activation function with hinge loss
	Slide 27: exAMPLE: Logistic activation function with hinge loss
	Slide 28: exAMPLE: Logistic activation function with hinge loss
	Slide 29: exAMPLE: Logistic activation function with hinge loss
	Slide 30: The vanishing Gradient problem
	Slide 31: Solutions to the vanishing gradient problem
	Slide 32: The first perceptron (IBM, 1958)
	Slide 33: Coming up next: neural networks

