

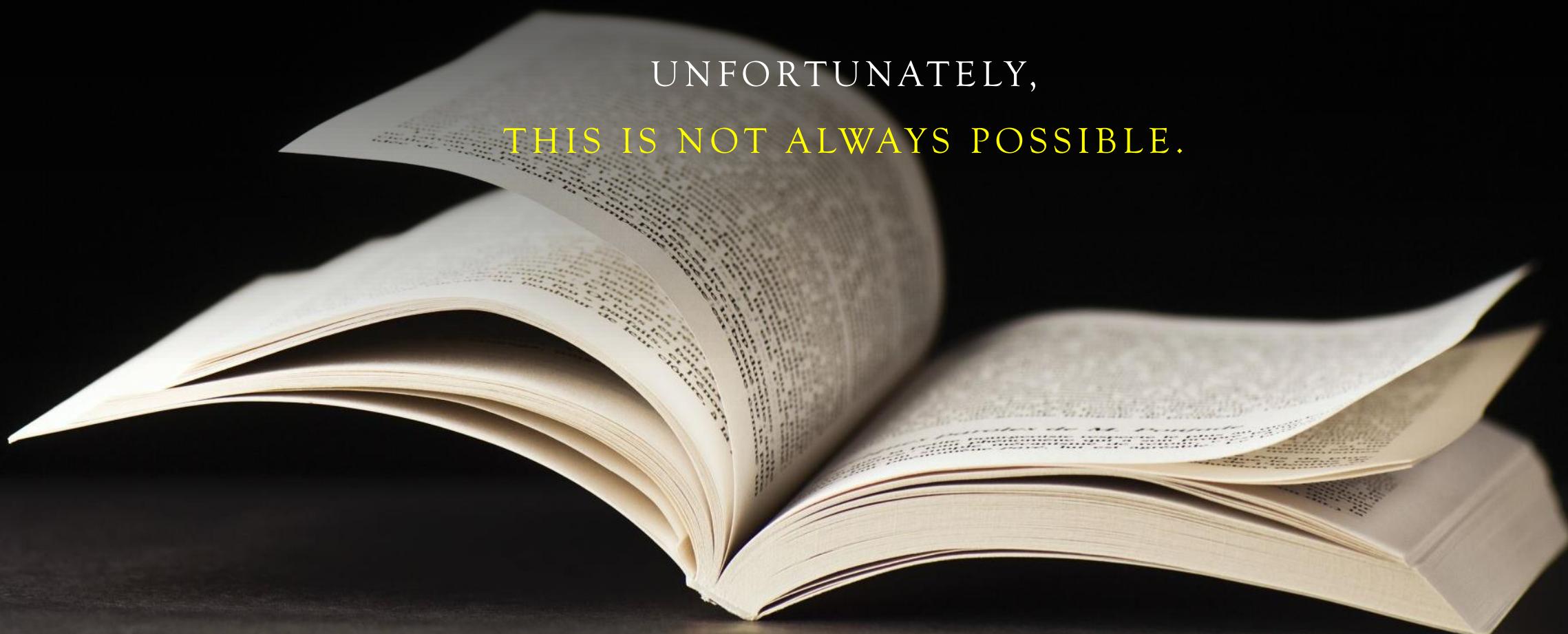
The plot of our course

FELIPE BUCHBINDER

WHEN WE BUILD A REGRESSION MODEL,
WE WOULD LIKE IT TO CONTAIN ALL X'S
THAT ARE IMPORTANT TO EXPLAIN OUR Y...

UNFORTUNATELY,

THIS IS NOT ALWAYS POSSIBLE.



A baby is sitting at a wooden desk, looking towards the camera. The baby is wearing a white and black striped long-sleeved shirt and grey pants. A laptop is open on the desk in front of the baby. The background is a chalkboard covered in numerous white question marks. The text "Why not?" is overlaid in the upper left area of the image.

Why not?

We might not have all the variables

Some variables may not be observable

Car insurance

$$\text{Expected cost} = \beta_0 + \beta_1 \cdot X + \epsilon$$

Observable variables:

- Age
- Gender
- Lives in a metropolitan area?
- (any other ideas?)

Car insurance

$$\text{Expected cost} = \beta_0 + \beta_1 \cdot X + \epsilon$$

Unobservable variables:

- Driving recklessly
- Goes to party often?
- Health issues (e.g. likelihood of syncope due to heart arrhythmia)
- (any other ideas?)

Another example:

Impact of democracy on child mortality

Ross, M. (2006). Is democracy good for the poor?. *American Journal of Political Science*, 50(4), 860-874.

$$\text{Child Mortality} = \beta_0 + \beta_1 \cdot \text{Democracy} + \beta_2 \cdot \textcolor{blue}{X} + \epsilon$$

Observable variables

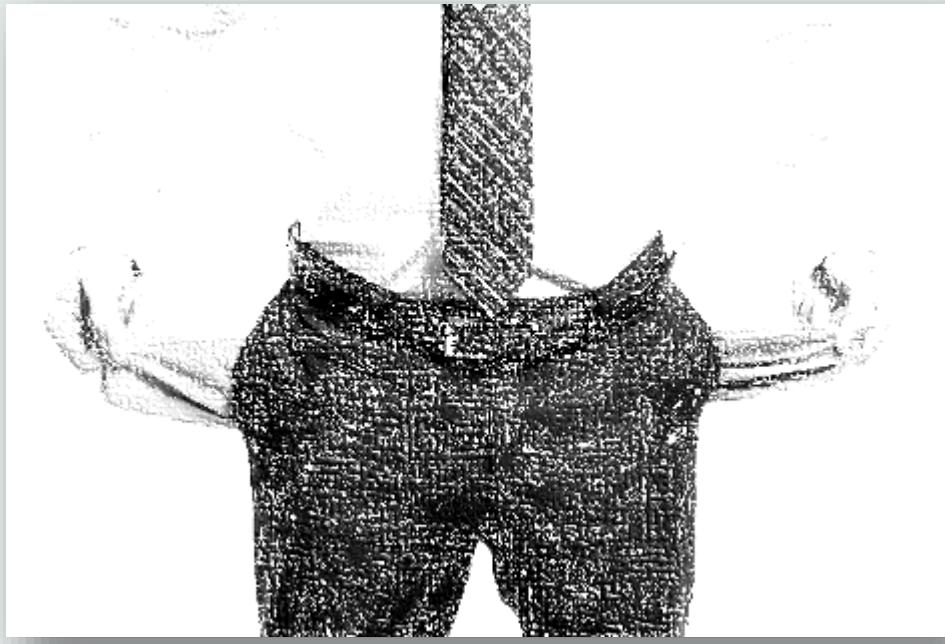
- GDP per capita
- Investment in health per capita
- Number of hospitals per capita
- (any other ideas?)

$$\text{Child Mortality} = \beta_0 + \beta_1 \cdot \text{Democracy} + \beta_2 \cdot \textcolor{blue}{X} + \epsilon$$

Unobservable variables

- Health habits
- Dietary habits
- Cultural aspects regarding the caring and nourishing of children
- Existence of conflicts zones
- Etc.

Variables that differ between entities but are not observable are called **unobserved heterogeneities**.



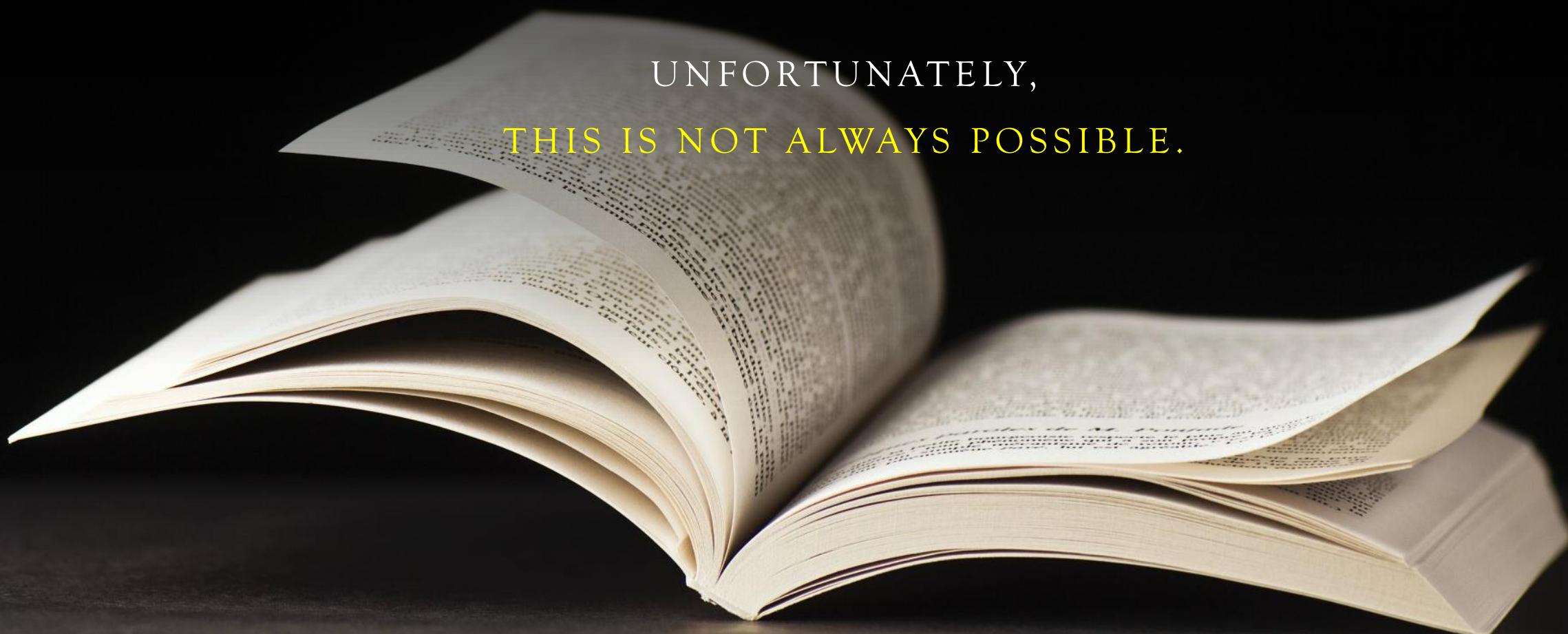
We might not have all the variables

Some variables may not be observable

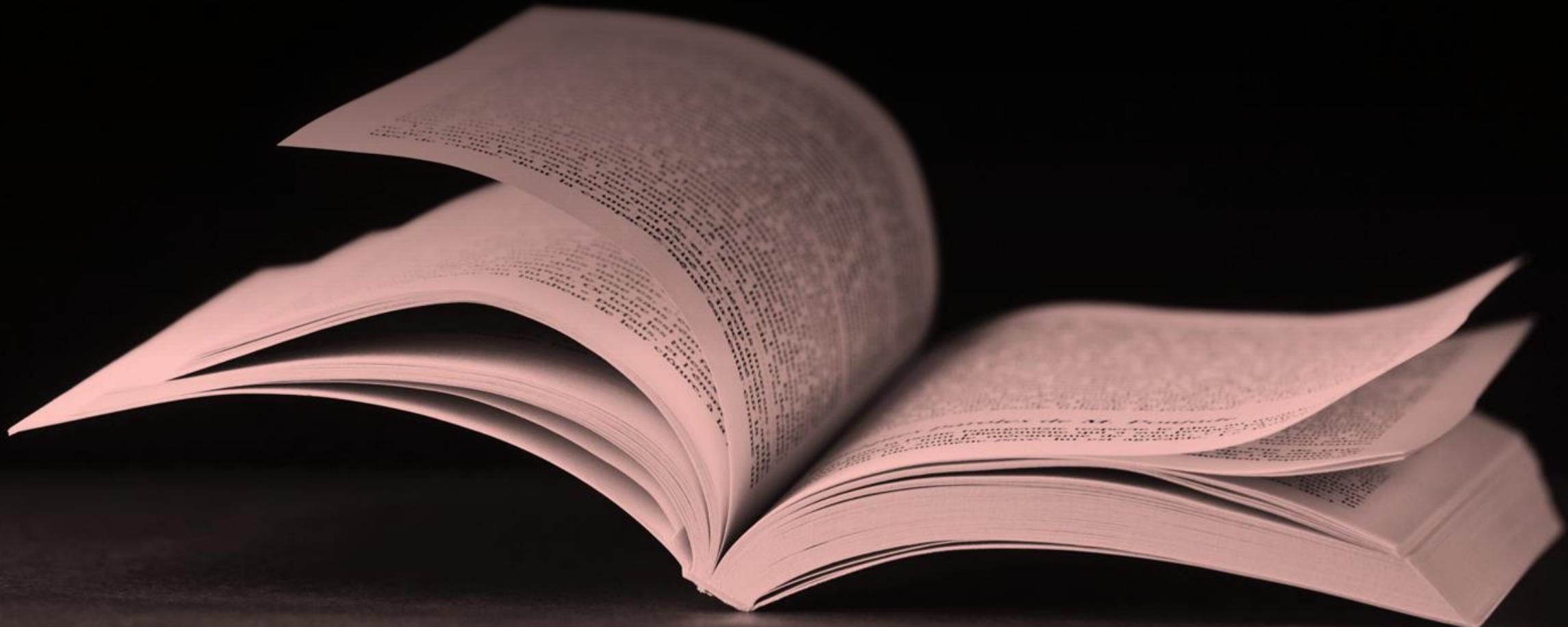
WHEN WE BUILD A REGRESSION MODEL,
WE WOULD LIKE IT TO CONTAIN ALL X'S
THAT ARE IMPORTANT TO EXPLAIN OUR Y...

UNFORTUNATELY,

THIS IS NOT ALWAYS POSSIBLE.



WHEN AN IMPORTANT X IS MISSING IN OUR
MODEL, BAD THINGS CAN HAPPEN.



For example...?

Biased
regression
coefficients

Linear Regression refresher

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
$$\boldsymbol{\epsilon} \sim N(\mathbf{0}; \sigma^2 \mathbf{I})$$

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

\mathbf{b} is unbiased, meaning $\mathbb{E}(\mathbf{b}) = \boldsymbol{\beta}$

Now suppose there's a variable, \mathbf{U} , that affects \mathbf{Y} but we fail to put it in our model. We simply calculate \mathbf{b} without it!

$$\begin{aligned}\mathbf{Y} &= \mathbf{X}\boldsymbol{\beta} + \mathbf{U} + \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon} &\sim \mathcal{N}(\mathbf{0}; \sigma^2 \mathbf{I})\end{aligned}$$

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Now suppose there's a variable, \mathbf{U} , that affects \mathbf{Y} but we fail to put it in our model. We simply calculate \mathbf{b} without it!

$$\begin{aligned}\mathbf{Y} &= \mathbf{X}\boldsymbol{\beta} + \mathbf{U} + \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon} &\sim \mathcal{N}(\mathbf{0}; \sigma^2 \mathbf{I})\end{aligned}$$

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

In this case, \mathbf{b} is no longer an unbiased estimate of $\boldsymbol{\beta}$!

$$\begin{aligned}
\mathbf{b} &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \\
&= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \boldsymbol{\beta} + \mathbf{U} + \boldsymbol{\epsilon}) \\
&= \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X}}_{\mathbf{I}} \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{U} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{\epsilon} \\
&= \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{U} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{\epsilon}
\end{aligned}$$

Taking the expected value...

$$\begin{aligned}
\mathbb{E}(\mathbf{b}) &= \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{U} + (\mathbf{X}^T \mathbf{X})^{-1} \underbrace{\mathbb{E}(\mathbf{X}^T \boldsymbol{\epsilon})}_{0} \\
&\therefore \\
\mathbb{E}(\mathbf{b}) &= \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{U}
\end{aligned}$$

Thus, in general, $\mathbb{E}(\mathbf{b}) \neq \boldsymbol{\beta}$:

Red text: \mathbf{b} is a biased estimate of $\boldsymbol{\beta}$

I propose a name for this Theorem...

$$\begin{aligned}\mathbf{b} &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \\ &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \boldsymbol{\beta} + \mathbf{U} + \boldsymbol{\epsilon}) \\ &= \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X}}_I \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{U} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{\epsilon} \\ &= \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{U} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{\epsilon}\end{aligned}$$

Taking the expected value...

$$\mathbb{E}(\mathbf{b}) = \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{U} + (\mathbf{X}^T \mathbf{X})^{-1} \underbrace{\mathbb{E}(\mathbf{X}^T \boldsymbol{\epsilon})}_0$$

$$\therefore \mathbb{E}(\mathbf{b}) = \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{U}$$

Thus, in general, $\mathbb{E}(\mathbf{b}) \neq \boldsymbol{\beta}$:

mathbf{b} is a biased estimate of $\boldsymbol{\beta}$

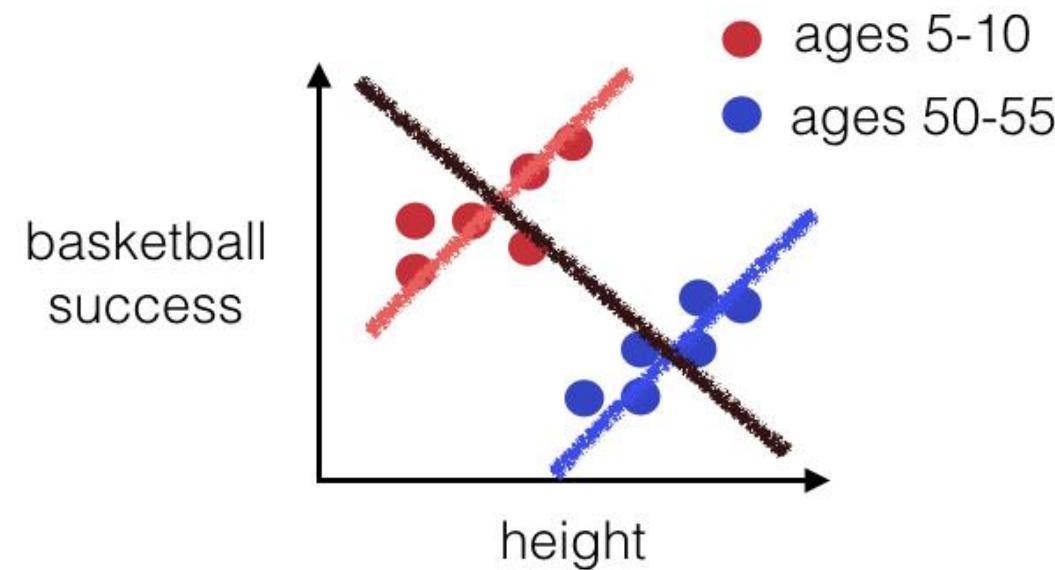
A close-up portrait of Maleficent from Disney's Sleeping Beauty. She has dark blue skin, white hair in a high, dark blue-tinged bun, and a white collar. She is looking directly at the viewer with a serious, slightly malevolent expression. The background is a misty, greenish-blue landscape with distant mountains.

Maleficent's (incomplete) Theorem

A variable that wasn't invited
to a regression will curse the
coefficients of those that
were, making them biased

An extreme scenario:
Simpson's Paradox

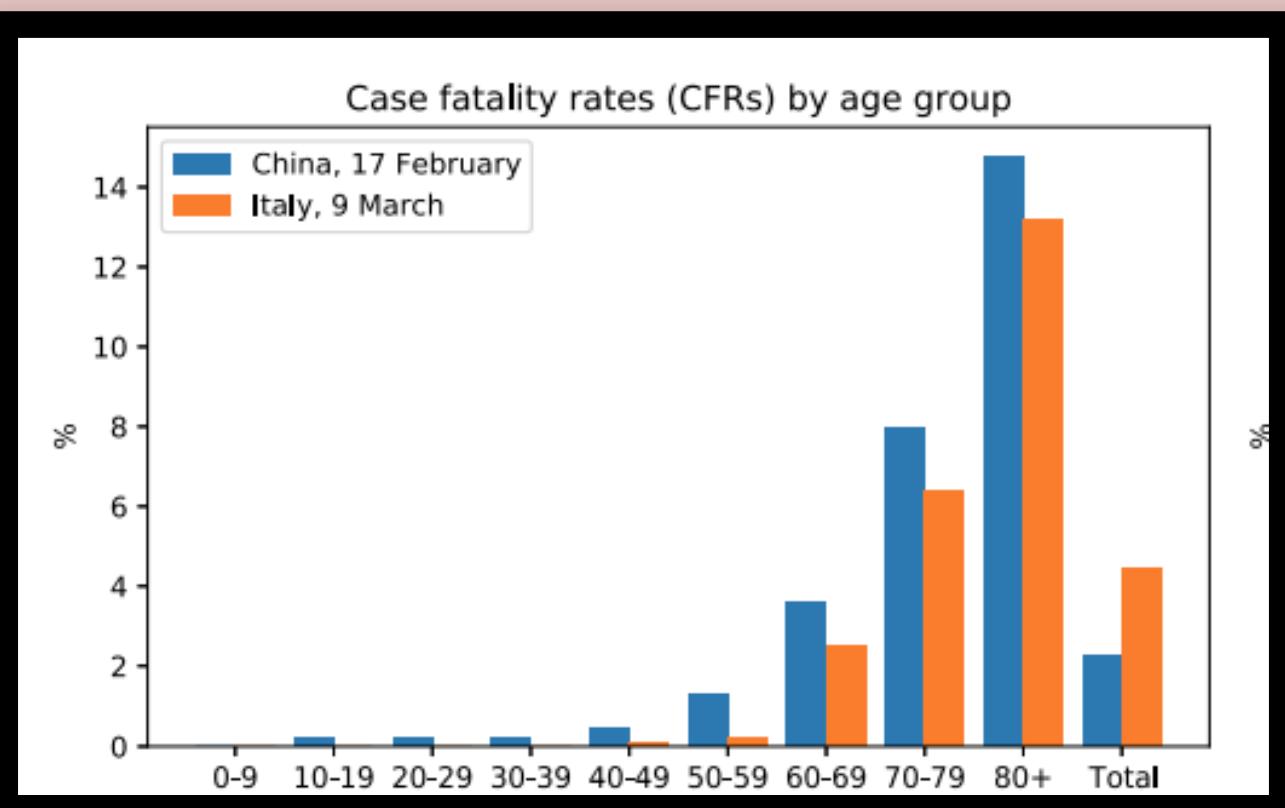
Wanna be good at Basketball? Be short!



Simpson's Paradox in COVID-19 Case Fatality Rates: A Mediation Analysis of Age-Related Causal Effects

Julius von Kügelgen , Luigi Gresele , and Bernhard Schölkopf

Abstract—We point out an instantiation of Simpson's paradox in COVID-19 case fatality rates (CFRs): comparing a large-scale study from China (February 17) with early reports from Italy (March 9), we find that CFRs are lower in Italy for every age group, but higher overall. This phenomenon is explained by a stark difference in case demographic between the two countries. Using this as a motivating example, we introduce basic concepts from mediation analysis and show how these can be used to quantify different direct and indirect effects when assuming a coarse-grained causal graph involving country, age, and case fatality. We curate an age-stratified CFR dataset with >750 k cases and conduct a case study, investigating total, direct, and indirect (age-mediated) causal effects between different countries and at different points in time. This allows us to separate age-related effects from others unrelated to age and facilitates a more transparent comparison of CFRs across countries at different stages of the COVID-19 pandemic. Using longitudinal data from Italy, we discover a sign reversal of the direct causal effect in mid-March, which temporally aligns with the reported collapse of the healthcare system in parts of the country. Moreover, we find that direct and indirect effects across 132 pairs of countries are only weakly correlated, suggesting that a country's policy and case



being reported across multiple countries all over the world, ultimately leading to the World Health Organization declaring it a pandemic on March 11, 2020 [1]. As of September 28, 2020, the pandemic led to more than 33 million confirmed cases and

A detailed illustration of Maleficent, the Queen of Hearts from Disney's Alice in Wonderland. She is shown from the waist up, wearing her signature black hooded cloak with a green lining and a large, ornate green horned headdress. Her dark hair is styled in a voluminous, flowing manner. She has a serious, slightly smug expression with dark eyes and red lips. She is holding a wooden staff with a glowing, blue, crystalline orb at the top in her right hand, and a small, dark, feathered bird (likely a raven) perched on her left shoulder. The background is a dark, starry night sky with swirling, ethereal green and blue energy fields. The artist's signature "SOFFIONE-SAN" is visible in the bottom left corner.

Omitting a variable does
more than just biasing
coefficients...

A promotional image of Angelina Jolie as Maleficent. She is standing in the center, wearing her iconic black horned headpiece and dark, flowing black gown. Her arms are outstretched wide, revealing massive, dark blue and black feathered wings that span the width of the frame. The background is a solid, light grey.

It also leads residuals
to be serially correlated

Proof

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{U} + \boldsymbol{\epsilon}$$

If we ignore \mathbf{U} , our model's residual becomes

$$\mathbf{e} = \mathbf{U} + \boldsymbol{\epsilon}$$

Its covariance matrix is given by the expected value of

$$\begin{aligned}\mathbf{e}\mathbf{e}^T &= (\mathbf{U} + \boldsymbol{\epsilon})(\mathbf{U} + \boldsymbol{\epsilon})^T \\ &= (\mathbf{U} + \boldsymbol{\epsilon})(\mathbf{U}^T + \boldsymbol{\epsilon}^T) \\ &= \mathbf{U}\mathbf{U}^T + \underbrace{\mathbf{U}\boldsymbol{\epsilon}^T}_{\mathbf{0}} + \underbrace{\boldsymbol{\epsilon}\mathbf{U}^T}_{\mathbf{0}} + \underbrace{\boldsymbol{\epsilon}\boldsymbol{\epsilon}^T}_{\sigma^2\mathbf{I}} \\ &= \mathbf{U}\mathbf{U}^T + \sigma^2\mathbf{I}\end{aligned}$$

No longer diagonal!

A close-up portrait of Maleficent from Disney's "Sleeping Beauty". She has dark blue skin, white hair styled in a horned headdress, and red lips. She is looking directly at the viewer with a stern expression. The background is a misty, forested landscape.

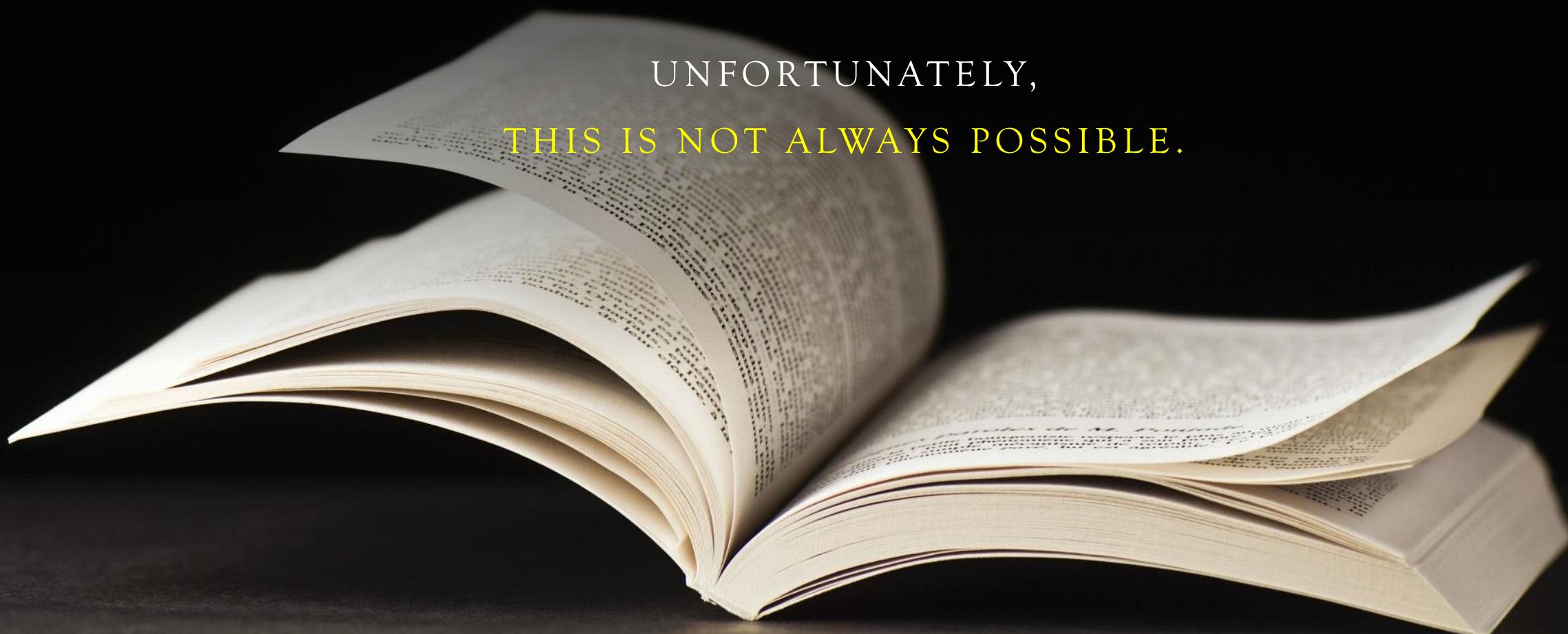
Maleficent's (complete) Theorem

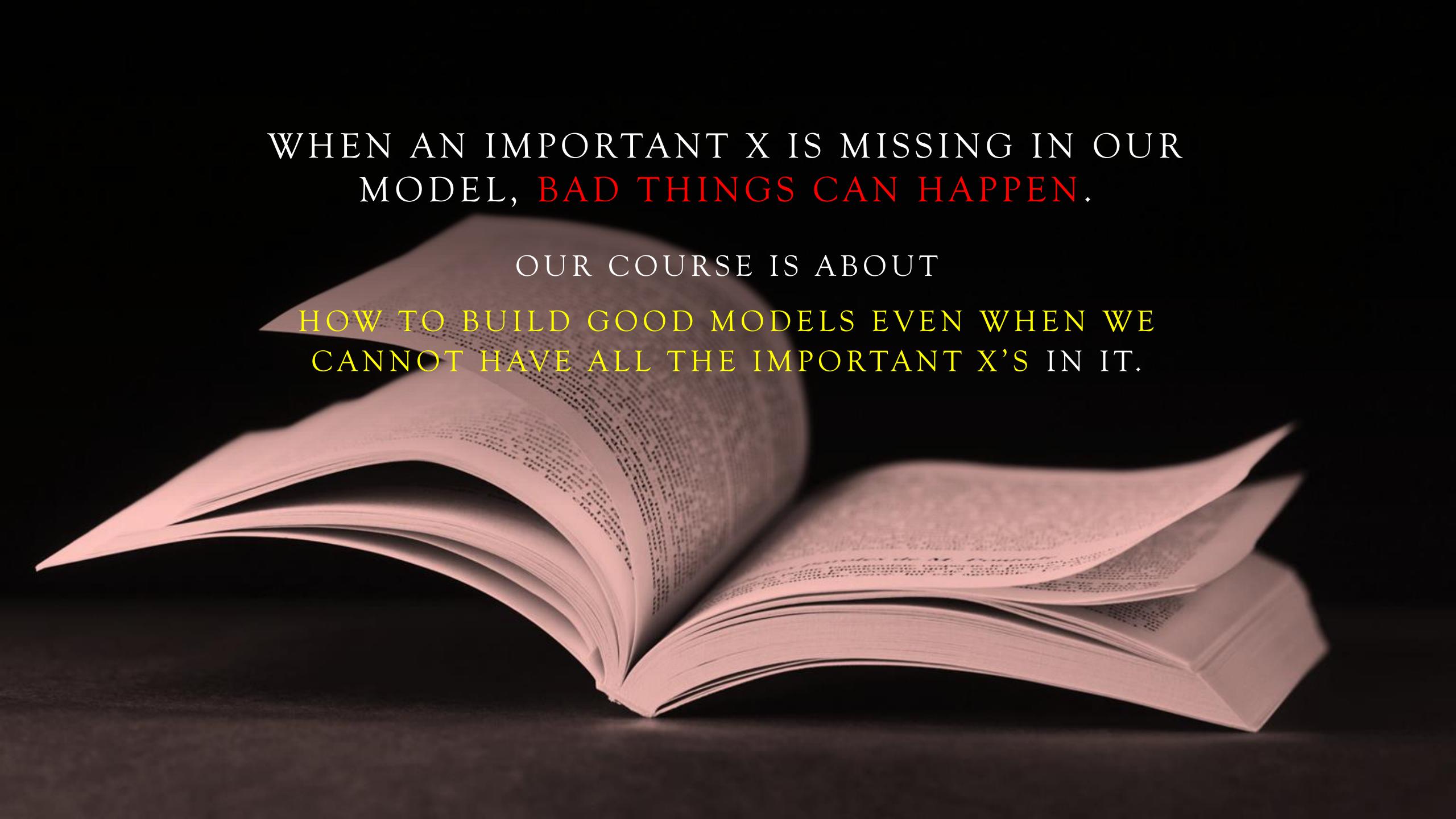
A variable that wasn't invited to a regression will curse it, making its **coefficients biased** and its **residuals serially correlated**

WHEN WE BUILD A REGRESSION MODEL,
WE WOULD LIKE IT TO CONTAIN ALL X'S
THAT ARE IMPORTANT TO EXPLAIN OUR Y...

UNFORTUNATELY,

THIS IS NOT ALWAYS POSSIBLE.



A stack of open books is shown against a dark background. The books are slightly curved, with the top book's pages visible, showing text. The lighting highlights the edges of the books and the texture of the paper.

WHEN AN IMPORTANT X IS MISSING IN OUR
MODEL, BAD THINGS CAN HAPPEN.

OUR COURSE IS ABOUT
HOW TO BUILD GOOD MODELS EVEN WHEN WE
CANNOT HAVE ALL THE IMPORTANT X'S IN IT.

Our strategy will be to analyze things over time, so we can have a feeling of how things usually are.

If an X matters, its effect should be made visible by observing something over time and comparing it with others.

A photograph of a young couple in a romantic embrace. The man, with dark hair and a beard, is wearing a blue and orange plaid shirt and a watch on his left wrist. The woman, with long blonde hair, is wearing a yellow top and a patterned scarf. They are smiling and looking down at each other. The background is a blurred sunset or sunrise over a landscape with trees and hills.

Why do we date before we get engaged?

$$\begin{pmatrix} \text{Will} \\ \text{I be happy?} \end{pmatrix} = \beta_0 + \beta_1 \begin{pmatrix} \text{Is s/he} \\ \text{fun?} \end{pmatrix} + \beta_2 \begin{pmatrix} \text{Do we} \\ \text{have chemistry?} \end{pmatrix} + \beta_3 (\text{Does s/he love me?}) + \epsilon$$

$$\begin{pmatrix} \text{Will} \\ \text{I be happy?} \end{pmatrix} = \beta_0 + \beta_1 \begin{pmatrix} \text{Is s/he} \\ \text{fun?} \end{pmatrix} + \beta_2 \begin{pmatrix} \text{Do we} \\ \text{have chemistry?} \end{pmatrix} + \beta_3 \text{(Does s/he love me?)} + \epsilon$$

Unobservable

$$\begin{pmatrix} \text{Will} \\ \text{I be happy?} \end{pmatrix} = \beta_0 + \beta_1 \begin{pmatrix} \text{Is s/he} \\ \text{fun?} \end{pmatrix} + \beta_2 \begin{pmatrix} \text{Do we} \\ \text{have chemistry?} \end{pmatrix} + \beta_3 \text{(Does s/he love me?)} + \epsilon$$

Unobservable

Over time, you'll see how
s/he usually acts towards you.

$$\begin{pmatrix} \text{Will} \\ \text{I be happy?} \end{pmatrix} = \beta_0 + \beta_1 \begin{pmatrix} \text{Is s/he} \\ \text{fun?} \end{pmatrix} + \beta_2 \begin{pmatrix} \text{Do we} \\ \text{have chemistry?} \end{pmatrix} + \beta_3 \begin{pmatrix} \text{Does s/he love me?} \end{pmatrix} + \epsilon$$

Unobservable

By dating other people
(not at once! ☺)

you'll be able to see how other people usually treat you
and assess if s/he is special

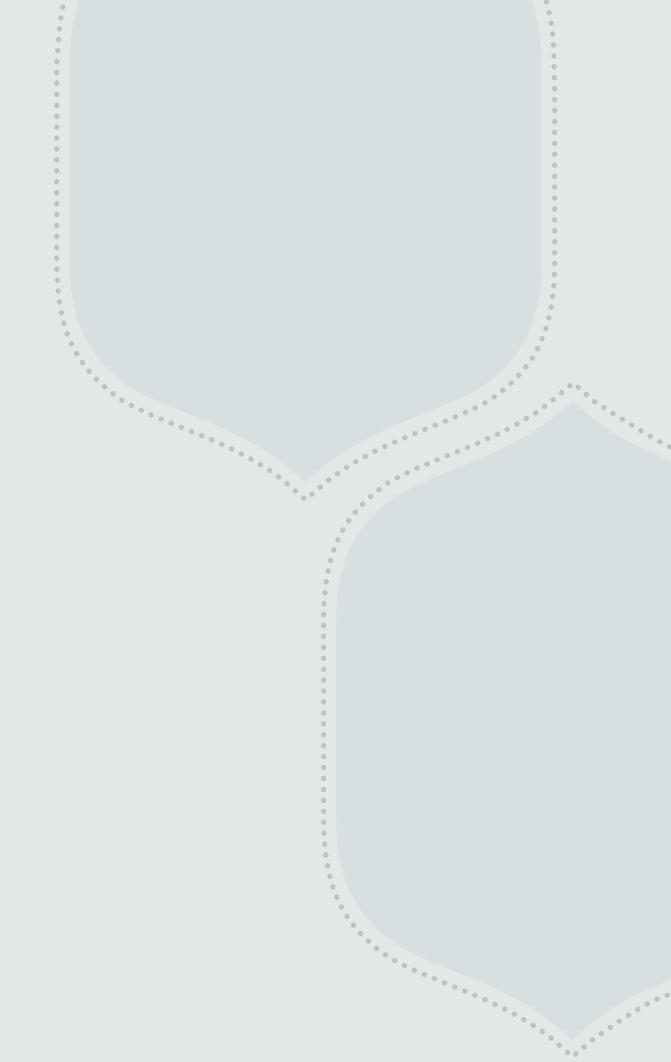
Over time, you'll see how
s/he usually acts towards you.

$$\begin{pmatrix} \text{Will} \\ \text{I be happy?} \end{pmatrix} = \beta_0 + \beta_1 \begin{pmatrix} \text{Is s/he} \\ \text{fun?} \end{pmatrix} + \beta_2 \begin{pmatrix} \text{Do we} \\ \text{have chemistry?} \end{pmatrix} + \beta_3 \begin{pmatrix} \text{Does s/he love me?} \end{pmatrix} + \epsilon$$

Unobservable

By dating other people
(not at once! ☺)
you'll be able to see how other people usually treat you
and assess if s/he is special

Over time, you'll see how
s/he usually acts towards you.



A less silly example:

Impact of democracy on child mortality

Ross, M. (2006). Is democracy good for the poor?. *American Journal of Political Science*, 50(4), 860-874.

What control variables would you use in this model?

$$\text{Child Mortality} = \beta_0 + \beta_1 \cdot \text{Democracy} + \beta_2 \cdot X + \epsilon$$

What could X be?

- GDP per capita
- Investment in health per capita
- Number of hospitals per capita
- (any other ideas?)

Some things that affect child mortality are unobserved

$$\text{Child Mortality} = \beta_0 + \beta_1 \cdot \text{Democracy} + \beta_2 X + \textcolor{blue}{U} + \epsilon$$

What could U be?

- Health habits
- Dietary habits
- Cultural aspects regarding the caring and nourishing of children
- Existence of conflicts zones
- Etc.

Some things that affect child mortality are unobserved

$$\text{Child Mortality} = \beta_0 + \beta_1 \cdot \text{Democracy} + \beta_2 X + \textcolor{blue}{U} + \epsilon$$

What could U be?

- Health habits
- Dietary habits
- Cultural aspects regarding the caring and nourishing of children
- Existence of conflicts zones
- Etc.

We can get a sense of these
by observing many countries over time

•LOTS OF THINGS ARE INVISIBLE, BUT WE DON'T
KNOW HOW MANY BECAUSE WE CAN'T SEE THEM. •

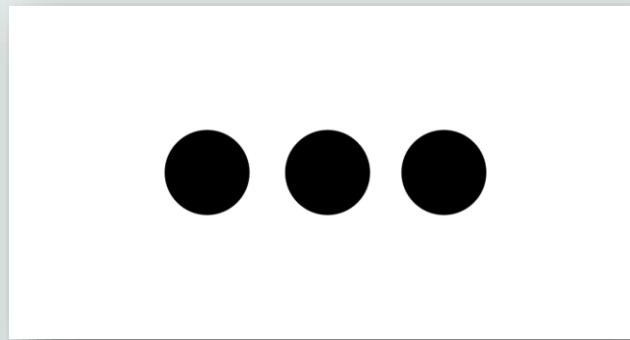
★ *L'essentiel est invisible
pour les yeux*

To deal with unobserved
heterogeneities, we'll observe
many entities over time

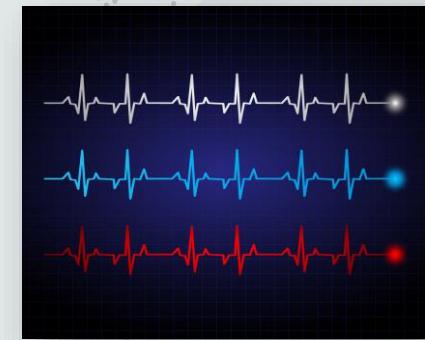
4 kinds of data

Cross-Sectional

Time Series



Pooled



Panel

The general panel data model
a.k.a. the most important equation in our course

The general panel data model

a.k.a. the most important equation in our course

$$y_{it} = \underbrace{\beta_0}_{\text{Intercept}} + \underbrace{\beta_1 X_{1it} + \cdots + \beta_p X_{pit}}_{\text{X's are called covariates and are observed}} + \underbrace{U_i}_{\text{Unobserved}} + \underbrace{\epsilon_{it}}_{\text{Idiosyncratic error}}$$

or, in matrix notation,

$$\mathbf{Y}_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \mathbf{U}_i + \boldsymbol{\epsilon}_{it}$$

The big question is how to estimate $\boldsymbol{\beta}$ well even though we do not know \mathbf{U}_i , since it is unobserved.

The general panel data model

a.k.a. the most important equation in our course

$$y_{it} = \underbrace{\beta_0}_{\text{Intercept}} + \underbrace{\beta_1 X_{1it} + \cdots + \beta_p X_{pit}}_{\text{X's are called covariates and are observed}} + \underbrace{U_i}_{\text{Unobserved}} + \underbrace{\epsilon_{it}}_{\text{Idiosyncratic error}}$$

or, in matrix notation,

$$\mathbf{Y}_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \mathbf{U}_i + \epsilon_{it}$$

The big question is how to estimate $\boldsymbol{\beta}$ well even though we do not know \mathbf{U}_i , since it is unobserved.

Data is for each entity
at each time → Panel Data

The general panel data model

a.k.a. the most important equation in our course

$$y_{it} = \underbrace{\beta_0}_{\text{Intercept}} + \underbrace{\beta_1 X_{1it} + \cdots + \beta_p X_{pit}}_{\text{X's are called covariates and are observed}} + \underbrace{U_i}_{\text{Unobserved}} + \underbrace{\epsilon_{it}}_{\text{Idiosyncratic error}}$$

or, in matrix notation,

$$\mathbf{Y}_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \mathbf{U}_i + \epsilon_{it}$$

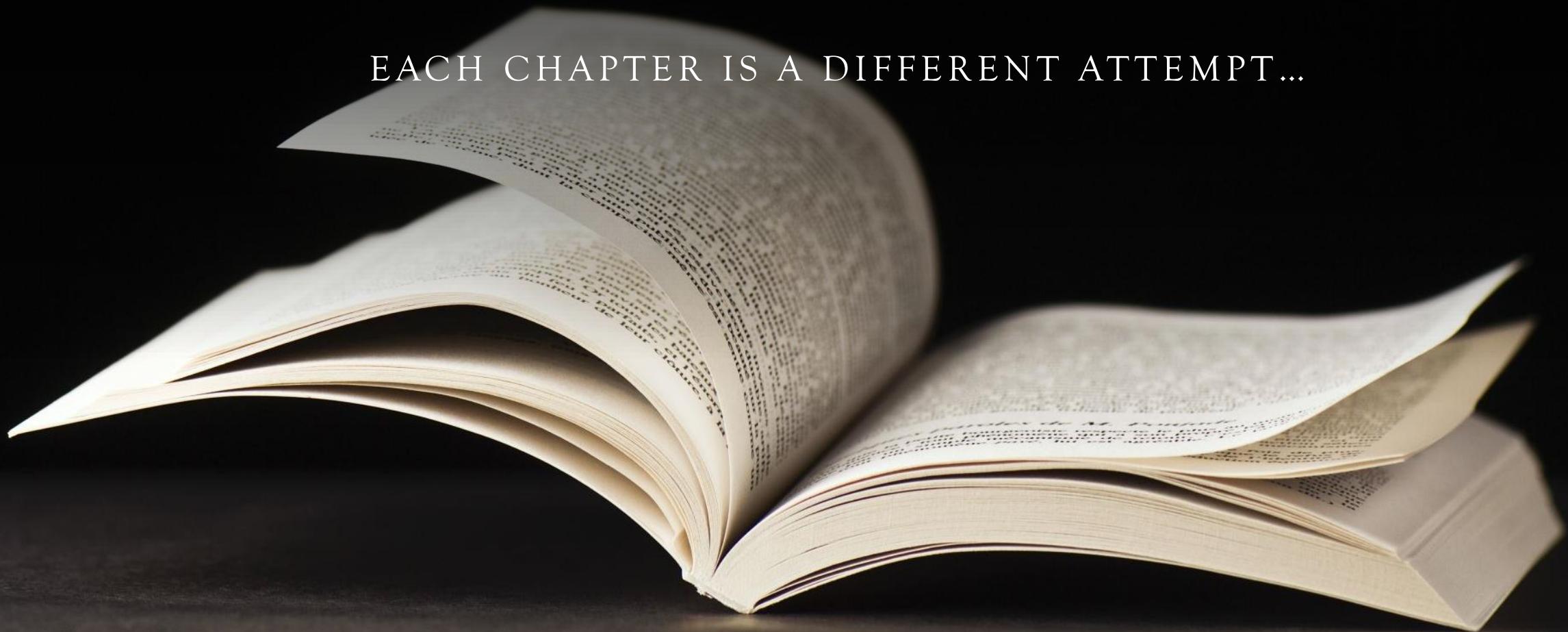
The big question is how to estimate $\boldsymbol{\beta}$ well even though we do not know \mathbf{U}_i , since it is unobserved.

Data is for each entity
at each time → Panel Data

Unobserved heterogeneity
is assumed to be a characteristic of the entity
that does not vary through time
(entity-fixed effect)

OUR COURSE IS THE STORY OF HOW
HUMANITY TACKLED THE CHALLENGE OF
MAKING A REGRESSION MODEL WITHOUT
KNOWING ALL THE X'S...

EACH CHAPTER IS A DIFFERENT ATTEMPT...

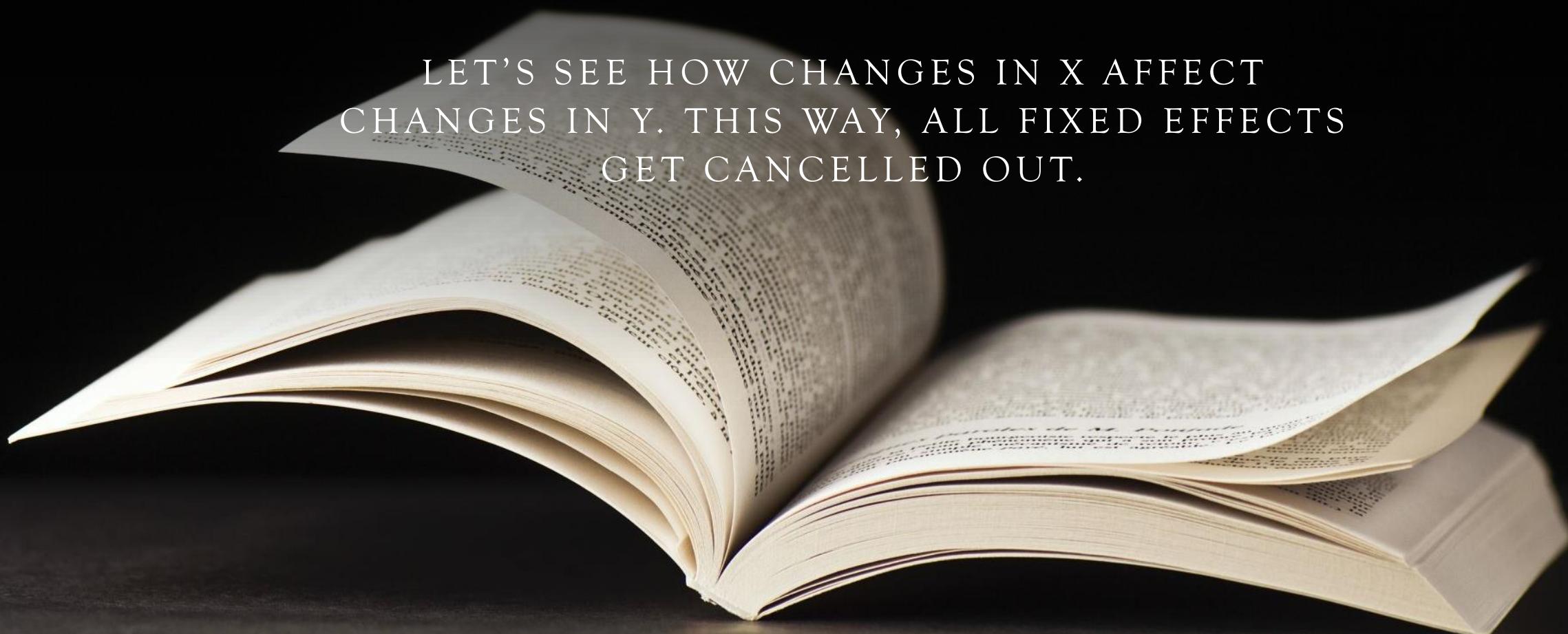


CHAPTER 1: POOLED REGRESSION

WHEN I FORGOT I HAD PANEL DATA AND
SIMPLY RAN A TRADITIONAL REGRESSION ON
EVERYTHING!

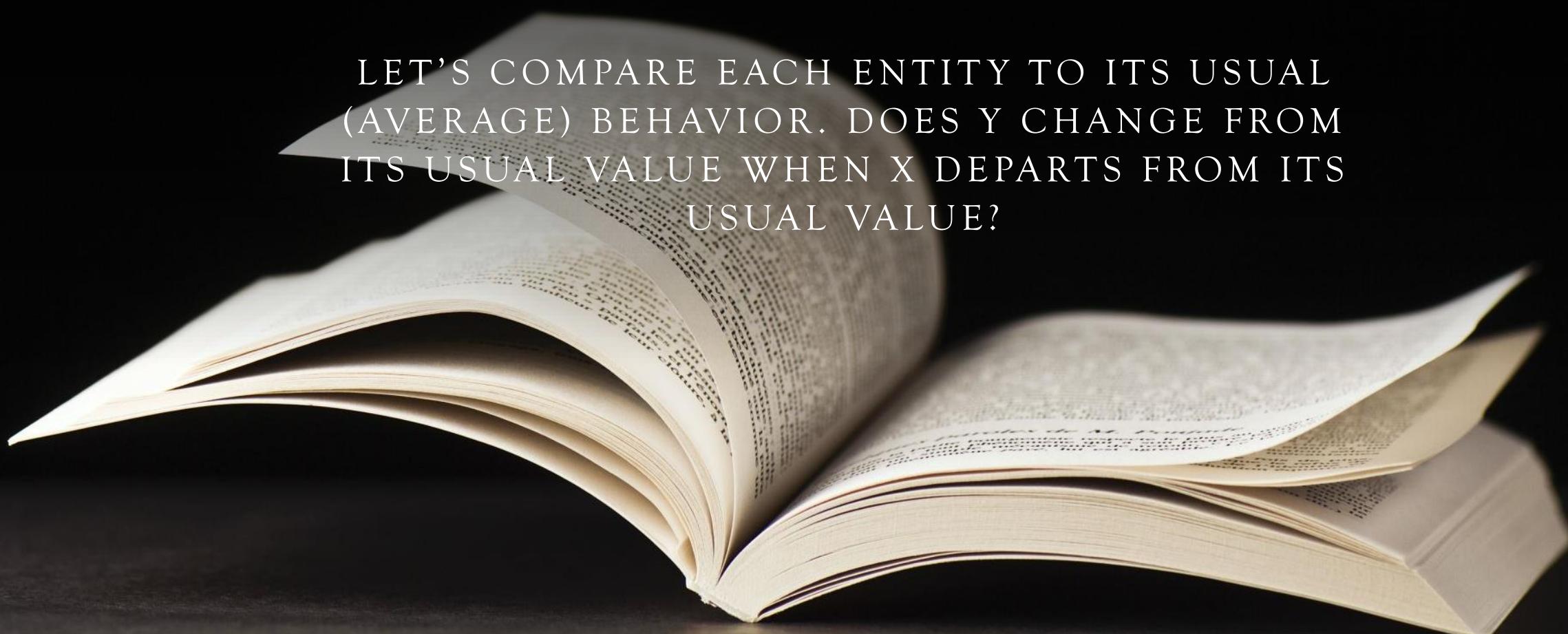
CHAPTER 2: FIRST DIFFERENCES

LET'S SEE HOW CHANGES IN X AFFECT
CHANGES IN Y. THIS WAY, ALL FIXED EFFECTS
GET CANCELLED OUT.



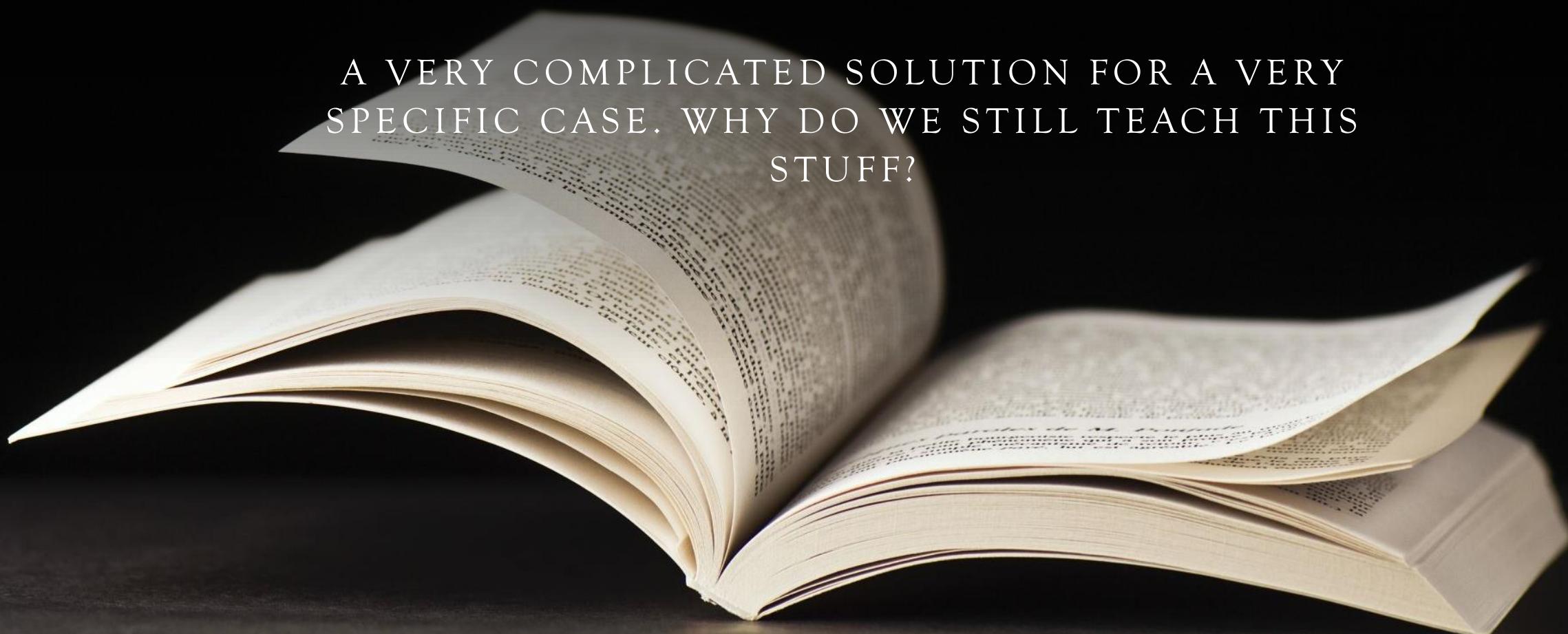
CHAPTER 3: FIXED EFFECTS

LET'S COMPARE EACH ENTITY TO ITS USUAL (AVERAGE) BEHAVIOR. DOES Y CHANGE FROM ITS USUAL VALUE WHEN X DEPARTS FROM ITS USUAL VALUE?



CHAPTER 4: RANDOM EFFECTS

A VERY COMPLICATED SOLUTION FOR A VERY
SPECIFIC CASE. WHY DO WE STILL TEACH THIS
STUFF?



CHAPTER 5: MODELS FOR RESIDUALS CORRELATED AS AN AR(1)

WHEN THINGS THAT HAPPEN IN VEGAS DON'T
JUST STAY IN VEGAS...

CHAPTER 5: MODELS FOR RESIDUALS CORRELATED AS AN AR(1)

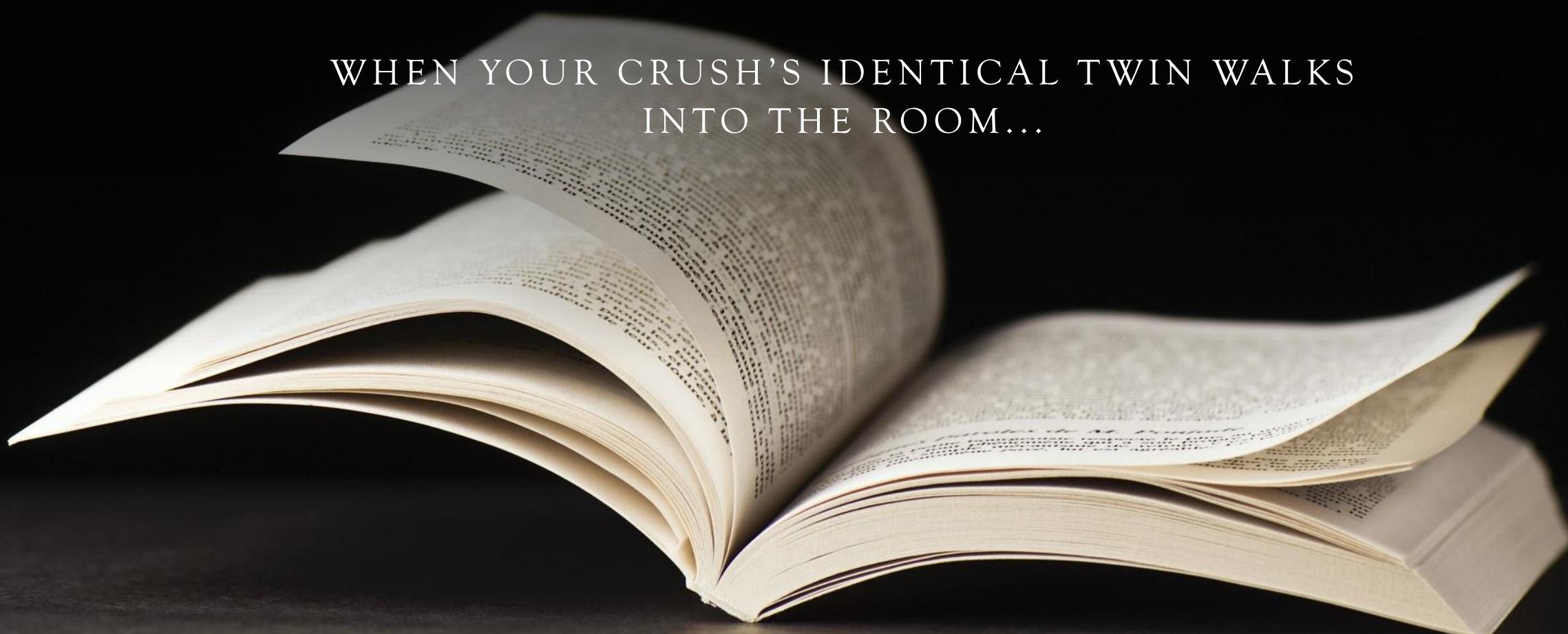
WHEN THINGS THAT HAPPEN IN VEGAS DON'T
JUST STAY IN VEGAS...

CHAPTER 6: CHOOSING THE BEST MODEL

WHEN ALL THE CHARACTERS COME TOGETHER
AND YOU GET TO PICK YOUR FAVORITE

CHAPTER 7: INSTRUMENTAL VARIABLES

WHEN YOUR CRUSH'S IDENTICAL TWIN WALKS
INTO THE ROOM...



CHAPTER 8: DYNAMIC PANELS

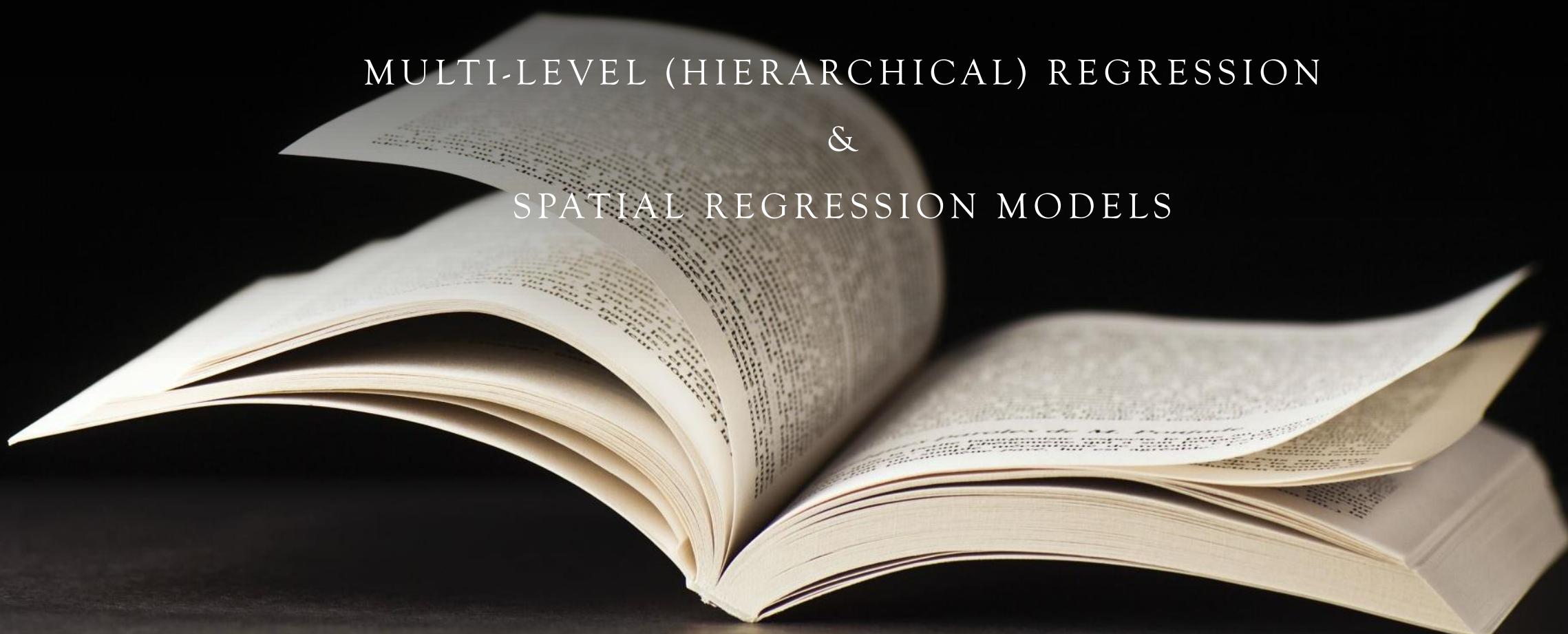
WHEN TOMORROW'S Y DEPENDS NOT ONLY ON
TODAY'S X, BUT ALSO ON TODAY'S Y.

CHAPTER 9: GENERALIZED TIME MODELS

MULTI-LEVEL (HIERARCHICAL) REGRESSION

&

SPATIAL REGRESSION MODELS

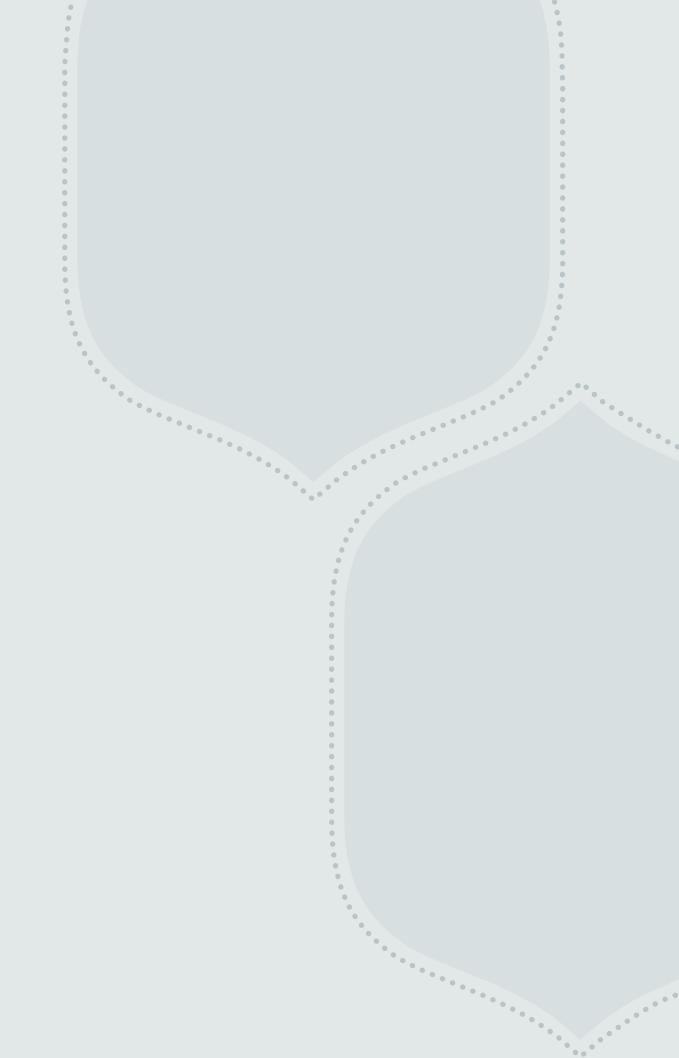


Housekeeping

Course materials

- Presentations
- Labs
- Discussed code examples
- Lecture notes
- Readings

Course materials



Course materials

	felbuch Merge branch 'main' of https://github.com/felbuch/Panel_Data into main	6882fc5 2 days ago	18 commits
10-Presentations	Add trailer (short visual description of course)	7 days ago	
20-Labs	add question on weak instruments	8 days ago	
30-Dicussed code examples	Number folders	9 days ago	
40-Lecture notes	Number folders	9 days ago	
50-Readings	More readings	2 days ago	
Project Template.docx	initial commit	9 days ago	
README.md	correct typo	2 days ago	
Syllabus.doc	Add GitHub repo address to syllabus	2 days ago	

Picture as of 5th of September, 2022

Grading

- Labs: 20%
- Discussion of research papers: 20%
- Final Project (paper): 40%
- Final Project (presentation): 20%

Schedule (Labs)

Class	Topics	Discussed code examples	Labs due
1	Introduction to Panel Data Pooled Regression	Visualizing Unobserved Heterogeneities	
2	First Differences Regression		
3	Fixed Effects	Fixed Effects vs. First Differences + Fixed Effects vs. Regression with dummies	Introduction to Panel Data
4	Random Effects	Panel Data - Main Models	Pooled Regression and First Differences
5	Time Series Analysis	Time Series Analysis	
6	Models w/ serially correlated residuals Model selection criteria		Fixed Effects and Random Effects
7	Instrumental variables Dynamic panel models		Time Series
8	Multi-level & Spatial models		
9	Conclusion		Instrumental Variables
10	Final project presentations		

Schedule (Requires readings. Check syllabus for complete references & optional readings)

Class	Topics	Labs due
1	Introduction to Panel Data Pooled Regression	R. Leite, R. Cardoso, A. Jelihovschi and J. Civitarese (2020)
2	First Differences Regression	Card, D., & Krueger, A. B. (1994)
3	Fixed Effects	Ross, M. (2006)
4	Random Effects	DesJardine, M. R., Marti, E., & Durand, R. (2021)
5	Time Series Analysis	-
6	Models w/ serially correlated residuals Model selection criteria	-
7	Instrumental variables Dynamic panel models	Branikas, I., & Buchbinder, G. (2021) Branikas, I., Buchbinder, G., Ding, Y., & Li, N. (2020)
8	Multi-level & Spatial models	-
9	Conclusion	-
10	Final project presentations	-

Research paper discussions

- One student presents the paper, going over the following questions:

What's the **research question**?

What are the **variables of interest** and what **relationship** do we expect to exist between them?

What sources of **unobserved heterogeneities** might exist that require the use of Panel Data?

How do the authors **test** their research hypothesis?

Are you **convinced** or do you see any **caveats** in this approach? Which (if any)?

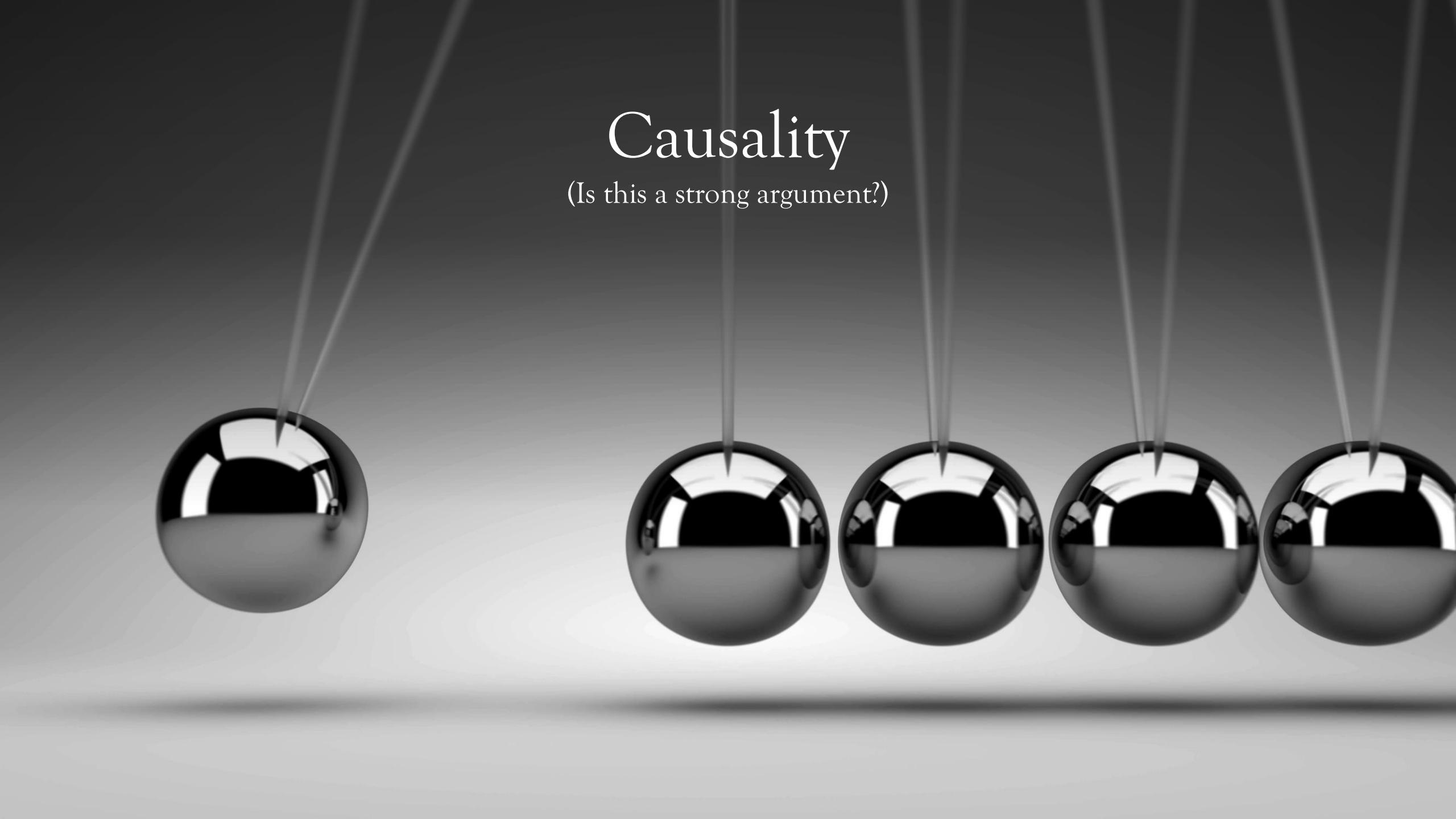
What are the **key results** of the paper?

Do you agree with their **interpretations** of the results, or do you see any caveats here as well?

- Other students are welcome to add their own comments to the paper being discussed

Some final comments
before you go...

There's another reason to use Panel Data...



Causality

(Is this a strong argument?)

Scattered comments about panel data

N entities overed over T time periods

- Typically $N \gg T$ (why?)
- Balanced vs. Imbalanced panel data
- Entities have characteristics that do not change through time (entity-fixed effects)
- Time periods may have characteristics that affect all entities equally (time-fixed effects)

Could you give examples of entity–fixed and time–fixed effects?

How would this change the “general” Panel Data model?

- Entity-fixed effects are much more common, and time-fixed effects are often neglected. Indeed, we often speak of “fixed effects” (with no qualification) to refer to “entity-fixed effects”.