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Prologue

We live in an era in which physics has described the laws of the universe

with extraordinary precision, but has left out its main character: the

observer. In its attempt to reduce the world to particles, fields, and

equations, it has ended up blurring life itself, relegating consciousness

to a secondary illusion, an insubstantial epiphenomenon.

And yet, modern physics itself has not been able to avoid the intru-

sion of the observer. Quantum mechanics, in particular, has revealed

that the act of observation modifies the phenomenon, and has forced a

reconsideration of the idea of an objective, independent reality. Some

of the very founders of quantum theory were explicit on this point.

Max Planck:

“I regard consciousness as fundamental. I regard matter as

derived from consciousness.”

Despite this, the majority of the scientific community has contin-

ued to rely on an implicitly Newtonian view: the universe as a dead

system, governed by fixed laws, in which the observer appears as an

inconvenient disturbance. Consciousness is not explained, but post-

poned. The soul, expelled from scientific discourse, survives in the

intimacy of the subject, but not in the structure of the cosmos. This

book starts from a different hypothesis, radical in its simplicity:

The universe is made of souls that interact freely with one

another.

From this minimal foundation—no space, no time, no matter—we

will attempt to reconstruct everything: the flow of time, the emergence

of space, metric, curvature, mass, relativity, and quantum phenom-

ena. All with purely mathematical tools, without metaphors, without

dogma, without sweeping consciousness under the rug.
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This work is neither a mystical speculation nor a spiritual metaphor:

it is a rigorous construction that brings together graphs, spectral the-

ory, geometry, and relational physics. But it is not a cold technical

treatise either. It is an honest search for meaning, starting from the

root of existence.

Now, this book deals with only one part of what we might call the

experience of the soul: its physical manifestation. Philosophically, I

consider that each soul lives its reality in four internal dimensions or

experiences: sensations, thoughts, feelings, and actions. These

four categories are causally connected: without sensation, there is no

thought; without thought, no emotion; without emotion, no reaction.

If you don’t see the wolf running toward you (sensation),

you don’t think it’s going to eat you (thought), you don’t

feel fear (feeling), and you don’t run away (action).

Among these experiences, we distinguish two broad groups: phys-

ical experiences (sensations and actions) and psychic experiences

(thoughts and feelings). Throughout this book, we will focus exclu-

sively on the former. Not because the others are irrelevant, but be-

cause we need to take a first firm step: to show that physics can arise

from a theory of souls, even before addressing the mental realm.

This is a methodological omission, not an ontological one. The psy-

chic world—the world of thought and feeling—must be addressed later.

Here we propose only one thing: to rationally convince humanity

that the universe is made of souls.

Roots of the Principle: Ancient Resonances

Although this principle is presented here as a structural and physical

axiom, its essence has been present in many cultures and traditions

throughout history. What changes in this work is not the intuition,

but the seriousness with which it is taken: it is proposed as the literal

foundation of reality, not as a spiritual metaphor.
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In the Advaita Vedanta tradition of Hinduism, it is taught that

ultimate reality is consciousness (Brahman), manifested in the form of

souls (Atman), and that everything we perceive is illusion (maya).

In Mahayana Buddhism, the doctrine of interdependence states

that nothing exists by itself: everything arises in relation to everything

else. ”This is because that is.” A relational view of being that deeply

resonates with our hypothesis.

Taoism holds that the Tao is not a thing, but the flow between

things, that which connects them. Reality does not lie in the objects,

but in the relationships that traverse them.

Even mystical Christianity, in thinkers such as Meister Eckhart

or Teilhard de Chardin, has considered that God is relation, and that

the evolution of human consciousness is part of an expanding spiritual

network (the noosphere).

In Western philosophy, Spinoza conceived the universe as a single

substance expressed through modes, all interconnected. Whitehead

spoke of processes of experience as the basic constituents of reality.

And Heidegger held that being is always a being-in-relation.

It is also worth highlighting modern thinkers who, from physics and

philosophy, have defended views aligned with this ontological founda-

tion.

Bertrand Russell, from a different tradition, developed an ap-

proach known as neutral monism. For him, underlying reality was nei-

ther physical nor mental, but something more fundamental that could

manifest in both forms. In The Analysis of Mind (1921), he proposed

that mental and physical events are descriptions of a single neutral en-

tity. He also held that our access to reality is mediated by sense data,

reinforcing the idea that consciousness is not a later product, but a

constitutive element of knowledge itself.

Eugene Wigner Nobel Prize laureate; co-founder of modern quan-

tum theory

“It was not possible to formulate the laws of quantum mechan-
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ics in a fully consistent way without reference to consciousness.” —

“Remarks on the Mind–Body Question”, 1961

Wigner proposed that consciousness causes the collapse of the wave-

function, famously illustrated in the thought experiment known as

Wigner’s friend.

Max Planck, father of quantum theory, clearly stated that con-

sciousness is not a product of matter, but its origin. In an interview

for The Observer in 1931, he affirmed:

“I regard consciousness as fundamental. I regard matter as derived

from consciousness. We cannot go beyond consciousness. Everything

we talk about, everything we regard as existing, postulates conscious-

ness.”

In a 1944 speech in Florence, he was even clearer:

“As a man who has devoted his whole life to the most clear-headed sci-

ence, to the study of matter, I can tell you as a result of my research

about atoms this much: There is no matter as such. All matter origi-

nates and exists only by virtue of a force. . . We must assume behind

this force the existence of a conscious and intelligent Mind. This Mind

is the matrix of all matter.”

A new idea. Maybe

What distinguishes this work from those is the execution. Here that

idea — that being is made of relation, that souls exist only in in-

teraction—is developed as a rigorous physical theory, with operators,

metrics, structures, and consequences. Thus, we can trace a long tra-

dition of intuitions—spiritual, philosophical, and scientific—that point

in the same direction: that the universe is not made of things, but of

relationships; not of objects, but of experience; not of matter, but of

consciousness.

This work places itself in that lineage, but goes a step further: it

proposes it as the literal and structural starting point of physics.

It is proposed as the only possible foundation from which to

5



reconstruct time, space, mass, and geometry. Not as a spiritual alter-

native, but as the logical root of existence. Here that idea is developed

as a rigorous physical theory, with operators, metrics, structures, and

consequences.

This text presents a physical model in which the universe is not

made of matter, nor of space, nor of time, but of conscious entities that

interact with each other. We will call these entities, for convenience,

observers.

The goal of this work is to show that, starting solely from a set of

observers and the fact that they interact with each other freely, one

can rigorously and naturally derive:

• a notion of time, emerging from the causal sequence of actions

and abstracted as a particle moving in a random walk, which we

will call light;

• a notion of distance between observers, understood as the time

it takes for light to travel from one to the other—the resistance

distance—which will allow us to define a geometric space with a

negative-type metric;

• an auxiliary Euclidean structure, derived from the spectrum

of the Laplacian operator, allowing us to represent these ob-

servers in a Hilbert space with positive metric;

• a conceptual connection to relativity, by identifying the con-

stancy of the speed of light as a fundamental principle of the

system;

• a structural connection to quantum mechanics, by mod-

eling the evolution of the system as a linear (reversible or irre-

versible) transformation in a Hilbert space;

• a study of existential stability, which will lead us to the con-

clusion that the universe can have at most 3 spatial dimensions;
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• a connection to quantum gravity, by defining mass as an

emergent property of the interaction that slows down the speed

of light;

The approach begins with the study of systems of interaction rep-

resented by transition matrices between observers, and uses classical

tools from spectral graph theory: Laplacian operators, pseudoinverses,

resistance metrics, and functional embeddings.

Although the framework is entirely discrete, it is still possible to con-

sider its continuum limit, and even its application to real physical

systems, from particles to fields. However, in this text we focus on

the finite case, where everything can be expressed explicitly and un-

ambiguously — not merely as a simplification, but because we regard

the discrete formulation as fundamental. The continuum appears, in

this view, as a particular limit of the discrete, not the other way around.

This model assumes no geometry, no space, no speed, and no loca-

tion. All of that emerges, strictly, from the relational structure among

observers. In that sense, it can be seen as an attempt to construct a

minimal physical ontology: a universe without objects, composed

only of free actions between conscious beings.

The development of this idea will be progressive: we will first for-

mally define the system of observers, their dynamics, and their equi-

librium. Then we will build the emergent metric that gives meaning

to distance and with it, geometric space. Next, we will show how this

metric can be represented in a Euclidean space through a functional

embedding, and discuss the physical meaning of this space, seeing that

it is in fact a Hilbert space.

Finally, some reflections will be offered on the broader implications

of the model, including its relationship with the two great current theo-

ries of fundamental physics: general relativity and quantum mechanics.

By the relation that exists between the world singe function and the

pseudoinverse of the laplacian, and interpreting the observers as fields
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into the Hilbert space.
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Note on Terminology

In this theory, the fundamental entity of the universe is not matter,

nor space, nor time, but what has historically been called a soul : a

conscious, simple, and indivisible being, capable of acting upon other

souls.

I acknowledge that this word may provoke resistance, especially in

scientific contexts. For this reason, throughout this article I will use

the term observer as a technical synonym, with the sole purpose of

avoiding unnecessary biases in the reader. However, I feel compelled

to clarify —explicitly— that:

• I do not regard these entities as metaphors, nor as abstract func-

tions, nor as complex physical systems.

• This is not an analogy: in this theory, the universe is literally

made of souls.

• And the entire mathematical structure developed below is con-

structed from that premise.

The reader may internally replace the term “observer” with “soul”

in every instance of the text, if they so wish. I, personally, will do so.

Mathematical Notation

Throughout this work, we will use Dirac notation to represent vectors

in vector spaces. In particular, the canonical basis vectors will be

denoted as

|n⟩, |m⟩, . . .

where |n⟩ represents the vector whose only non-zero component is

the n-th one, equal to 1.
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Any vector |v⟩ ∈ CN can be written as a linear combination of

these vectors:

|v⟩ =
N∑

n=1

vn |n⟩

We will also use the dual notation for its transpose (or associated

row vector), so that:

⟨v| = (v1 v2 . . . vN ) |v⟩ =


v∗1
v∗2
...

v∗N


In addition, we introduce two diagonal operators associated with a

vector |v⟩ ∈ CN :

• The diagonal matrix generated from v, denoted v̂, defined by:

v̂ =


v1

v2
. . .

vN


• The matrix ̂v, defined as the pseudoinverse of v̂, with the con-

vention:

̂v :=


1

vn
, if vn ̸= 0

0, if vn = 0

̂v =


v−1
1

v−1
2

. . .

v−1
N


This definition is consistent with the Moore–Penrose pseudoin-

verse for diagonal matrices.

• We introduce the following special objects:

⟨∅| := (0 0 . . . 0)

⟨I | := (1 1 . . . 1)
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• To operate with vectors in Dirac notation, we adopt the following

convention for pointwise sums and products:

|v1 + v2⟩ := |v1⟩+ |v2⟩

|v1v2⟩ := v̂1|v2⟩ = v̂2 |v1⟩ = v̂1v̂2|I ⟩ = v̂1v2|I ⟩ = v̂2v1|I ⟩
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Fundamental Axiom

The Universe is composed of observers

who interact freely with one another.

This single principle contains everything necessary to reconstruct

reality. It presupposes no space, no time, no matter. It invokes no

external laws or underlying fields. The observers are not embedded

in coordinates, nor floating in a void: they simply exist, act, and are

acted upon by other observers.

Nothing else is assumed. Everything else—the flow of time, the

structure of space, geometry, curvature, mass, and even identity—emerges

from this single postulate. What we call ”reality” is nothing more than

the result of a network of elementary actions between observers.

We will call this collection of interactions the history. It will be

the fundamental object from which we will try to derive, in the coming

chapters, the entirety of physics. Because if this axiom is true, then

everything that exists, everything we feel and measure, everything we

call the universe. . . is nothing but a network of observers acting upon

one another.
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Observers and Actions

Observers

An observer is an elementary, indivisible entity that can act upon other

observers. It possesses no internal parts, nor intrinsic properties. Here

we consider only its capacity to produce effects on other observers.

We will call the physical universe the pair U = (O,A), where O is

the set of all observers, and A is the set of all actions among them.

That is, the universe is composed of the observers and of the actions

they perform on one another.

Actions: History as a chain

In the previous section we defined the universe as a set of observers

capable of acting freely upon one another. We now postulate that

the complete set of actions (the so-called History of the universe) is a

unique chain that describes, step by step, all the actions that take

place in the universe. The key idea is that this succession is not im-

posed by any predefined time, but rather that the causal relationship

between actions itself generates what we will call emergent time.

In other words, we can enumerate each action according to its causal

order (without assuming an external time a priori), thus obtaining a

sequence that, precisely, defines the notion of time in this model. In

this sense, the theory is causal : the dynamics of actions determines a

sequential structure we call “History,” and not the other way around.

This approach differs from traditional physics, where an external and

independent time is usually assumed. Here, on the contrary, time

emerges from the causal chain of events, and it is that chain which

determines the arrow of time and the order of actions.

We can enumerate each action according to causal order, and thus

obtain a sequence:

⟨n1|, ⟨n2|, ⟨n3|, . . .

where ⟨nk| represents the observer being “occupied” (or activated) at
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step k of the History. For example, if at step 1 observer “1” acts, at

step 2 observer “3”, at step 3 observer “18”, and so on, the sequence

could be:

⟨1|, ⟨3|, ⟨18|, ⟨4|, ⟨9|, ⟨7|, . . .

This sequence (generally infinite) fully describes what we call the phys-

ical History of the universe.

Histories expressed as digit strings. If there are N observers

(labeled 0, 1, . . . , N − 1), each ⟨nk| is a “digit” in base N . Therefore,

the entire sequence can be seen as a string of digits in that base. For

example, if N = 10 and the History is

⟨3|, ⟨1|, ⟨4|, ⟨1|, ⟨5|, ⟨9|, . . .

we can imagine it as the digit sequence 314159. . . Here, unlike the

usual notation for real numbers, we do not require a comma or decimal

point; we simply consider the (potentially infinite) string of digits.

There are as many possible Histories as there are digit sequences in

base N . This is perfectly analogous to the multitude of real numbers

that, when written in base N , are described by infinite strings. Thus,

illustratively, we speak of “universe π10” if we take the digits of π in

base 10, or “universe
√
27” if we follow the digits of

√
2 in base 7, and

so on.

“Complete” or “cyclic” Histories. It will often be useful to con-

sider Histories that, after a finite number of steps, return to the start-

ing point to form a closed cycle. That is, we assume that the last

observer in the list acts upon the one who initiated the sequence, so

that all observers in the chain give and receive action the same number

of times.

For example, the chain

72314

is considered complete if observer “4” ends up acting upon “7”, thus

closing the loop. We will call such chains “complete” or “cyclic.” Unless
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stated otherwise, we will assume by default that the Histories we

deal with belong to this “complete” category.

Example: the “π3 universe” with a finite cycle. Consider the

expansion of π in base 3. Take a truncated section of its digits (without

the decimal point), for example:

10010221102

and force the last digit (2) to act upon the first (1), so that the sequence

1 → 0 → 0 → 1 → 0 → 2 → 2 → 1 → 1 → 0 → 2 → (1),

forms a closed cycle. This “complete History” of length eleven (plus

the closing action) will be referred to, illustratively, as “π3 truncated

to 11 digits with closure,” or simply “π3,11.”

The essential point is that, with this chain-based language, there is

no need to assume from the outset any space or physical coordinates:

the History is simply the sequence of interactions.

In summary, we will consider:

• Histories as sequences of observers,

• representations of those sequences in base N ,

• and complete or “cyclic” Histories in which the chain closes upon

the beginning.

From here, we will construct the rest of our theory, showing how the

notions of distance, space, mass, and other physical concepts emerge

without assuming a priori any preexisting geometry.

We choose to postulate that the History of the universe is a single causal

chain—not because it is the only conceivable possibility, but because it

offers the clearest foundation for a theory in which time emerges from

causality. While more complex structures can be imagined—branching
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timelines, converging paths, or tangled networks—their interpretation

would demand additional assumptions, especially in the absence of

any predefined space or external clock. By contrast, a single unbroken

sequence of actions provides a minimal yet coherent framework: it de-

fines temporal order through causation alone. Moreover, it aligns with

our own experience—as conscious observers, we each perceive time as

a linear flow. This postulate does not claim to be metaphysically fi-

nal, but rather methodologically essential: other alternatives may, of

course, be studied, but only after this simplest case has been fully un-

derstood. For example, if two distinct branches never intersect, they

must be analyzed independently—as if they belonged to separate par-

allel universes, because no causal links would exist between them —

there would exist two separate timelines.

Although our theory arises from a radically different ontological foun-

dation, it shares certain deep structural similarities with causal set

theory, a prominent approach in quantum gravity. Both frameworks

begin with the assumption that the fundamental structure of the uni-

verse is discrete, and that neither time nor space exists a priori. In-

stead, both seek to derive temporal and spatial relations from more

primitive elements—in our case, from interactions between conscious

observers; in causal set theory, from abstract causal relations among

events.

Causal set theory models the universe as a set of events endowed

with a partial order ≺, where a ≺ b means that event a causally pre-

cedes event b. The set is required to be transitive, irreflexive, and

acyclic, and contains no spatial structure beyond what can be de-

rived from the pattern of causal relations. Within any causal set, to-

tally ordered chains—sequences of events where every pair is causally

related—always exist. In this sense, the unique causal chain postulated

in our theory can be viewed as a special case: a minimal, degenerate

causal set.

However, our framework imposes much stricter constraints. In our
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model, every event is not an anonymous point in a structure, but an

action from one observer upon another. More importantly, each ob-

server experiences their own life as a linear sequence of such interac-

tions: no branching, no merging, no ambiguity. This excludes causal

structures in which an observer would participate in multiple incom-

patible chains, or where causal influence would appear without direct

experiential continuity. Such scenarios would violate the coherence of

memory and identity, and are therefore inadmissible.

Finally, while causal set theory accommodates spacelike-separated

events—those that are causally unrelated and thus unordered—our

theory has no use for such events. In our framework, space does not

arise from simultaneity or independence, but from the pattern and

geometry of interaction. In summary, causal set theory provides a

broader mathematical landscape in which our model is technically em-

bedded, but our ontological principles serve as a filter, selecting only

those causal structures that preserve agency, reciprocity, and the lin-

earity of individual experience.
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Action and Sensation

To quantify action, we introduce the accumulated action function

T(x, y).

T(x, y) := the total number of actions in which observer x acts upon

observer y throughout the History.

In other words, T(x, y) counts how many times (in the historical se-

quence) observer x has “acted” upon observer y.

We can express action more compactly as a matrix: T. Each row

Tn(y) := Tn(x = n, y) represents the number of times observer n has

acted upon each observer y. And each column Tm(x) := T(x, y = m)

represents the number of times observer m has sensed each observer x.

In this way, we introduce the accumulated sensation function

S(x, y). We define the element Snm of the matrix S as the total num-

ber of actions in which observer n has sensed the action of observer m

throughout History.

It is evident that:

Snm = Tmn

which holds for any n,m. This leads us to the equation:

S(x, y) = T(y, x)

Or, in matrix form:

S = T∗

Example: Construction of T from the universe π3,11 Recall the

example from the previous section, where we had a “universe” with

three observers {0, 1, 2}, and we considered the finite (cyclic) History

18



consisting of eleven steps:

10010221102

We can count how many times the action x → y occurs throughout

these steps (including the one that closes the cycle). We obtain, for

example:

0 → 0 occurs once, 0 → 1 occurs once, 0 → 2 occurs twice,

1 → 0 occurs three times, 1 → 1 occurs once, 1 → 2 does not occur,

2 → 0 does not occur, 2 → 1 occurs twice, 2 → 2 occurs once.

Compiling everything into the action matrix, we obtain:

T =

1 1 2

3 1 0

0 2 1

 =⇒ S = T∗ =

1 3 0

1 1 2

2 0 1


Each entry Tnm is an integer that exactly reflects how many times n

has acted upon m. Note that the row and column sums of T are equal,

yielding the total number of actions performed and received by each

observer.

Properties and notation. We now define the action and sensation

vectors associated with the rows Tn(y) and columns Tm(x) of T:

⟨τ | := ⟨I |T

⟨s| := ⟨I |S

In other words, the component τn of the vector ⟨τ | is the sum of row

n of T,

τn =
∑
m

Tnm

which is interpreted as the number of actions performed by observer

n.
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Or, expressed in functional terms:

τ(x) =
∑
y

T(x, y)

Similarly, the sensation s is:

s(x) =
∑
y

S(x, y)

which is interpreted as the number of actions received by observer x.

If we consider the History as a closed cycle (i.e., where the last

observer acts on the first), all the observers (included the first one)

maintain a balance between the number of times they act and the

number of times they are “acted upon”. Therefore, in such cases we

have:

⟨τ | = ⟨s|,

and we interpret τn(t) as the number of “proper instants” of each

observer n, that is, how many times observer n has acted, wich is the

same as he has sensed the action of others. We will call the vector

⟨τ(t)| the proper time, as it will serve us later to relate the dynamics of

each observer to the time scale that the observer itself “experiences.”

This interpretation highlights a key point: for an observer, time

does not “flow” continuously or externally—it only advances when

a complete act of interaction occurs. In particular, no proper time

elapses for an observer between the moment it sends out a signal (or

acts upon another) and the moment it senses the return. From its own

perspective, the interval between “giving” light and “receiving” it is

instantaneous. Thus, proper time is not a background variable, but a

direct measure of the number of meaningful interactions the observer

has undergone—each one marking a definite instant of experience.

Finally:

⟨I |T = ⟨I | S = ⟨τ |,

It is useful to note that the action matrix T can be interpreted as

the adjacency matrix of a weighted digraph (directed graph), whose
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vertices are the observers and where the weight of the edge n → m is

precisely Tnm. If we denote by t the total sum of all entries of T, then

t can be considered the volume of this digraph, that is, the sum of all

weights (in our case, the total number of interactions t). In this way,

the study of dynamics based on the matrix T can be connected with

the properties of a weighted directed graph in future developments.

Action matrices A, action flux A, and accumulated

action T

Once the accumulated action matrix T is known, we can talk about

increments in action, sensation, and proper time over a time interval

∆t:

∆T = T(t+∆t)− T(t)

∆S = S(t+∆t)− S(t)

⟨∆τ | = ⟨τ(t+∆t)| − ⟨τ(t)|

With this, we can define the action and action flux matrices.

The action flux matrix A is defined as the average action per unit

of time:

A =
1

∆t
∆T =⇒ ∆T = A∆t

Likewise, the sensation flux matrix S is defined as the average sensation

per unit of time:

S =
1

∆t
∆S =⇒ ∆S = S∆t

Since S = T∗, then:

S = A∗

We define the frequency vector ⟨ω| as the “proper time per unit of

absolute time”, that is,

⟨ω| = 1

∆t
⟨∆τ |

The action matrix A is defined as the action per unit of proper time:

A = ̂∆τ∆T
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or equivalently:

A = ̂ωA
And the sensation matrix S is defined as the sensation per unit of

proper time:

S = ̂∆s∆S = ̂∆τ∆S = ̂∆τ∆T∗

or equivalently:

S = ̂ωS
Therefore, we can relate Action and Sensation:

S = ̂ωA∗ω̂ A = ̂ωS∗ω̂

In our example, considering a time interval ∆t = 11, we have:

∆T =

1 1 2

3 1 0

0 2 1

 =⇒ ∆S = ∆T∗ =

1 3 0

1 1 2

2 0 1


⟨∆τ | = ⟨I |∆T = ⟨I |∆S =

(
4 4 3

)
=⇒ ⟨ω| = 1

11

(
4 4 3

)

A =
1

∆t
∆T =

1

11

1 1 2

3 1 0

0 2 1

 =⇒ S =
1

∆t
∆S = A∗ =

1

11

1 3 0

1 1 2

2 0 1



A = ̂ωA =

1/4 1/4 2/4
3/4 1/4 0

0 2/3 1/3

 S = ̂ωS =

1/4 3/4 0
1/4 1/4 2/4
2/3 0 1/3


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The Random Walk. Light

Describing the History of the universe as a chain of observers, where

each one acts upon the next, is mathematically equivalent to a random

walk on a graph whose “nodes” are, ultimately, the observers. The idea

is that there is a “particle” that “jumps” from one node to the next at

each step of the sequence.

We will call this particle light. However, it is important to empha-

size that in this theory there is no actual particle physically moving

from one observer to another; “light” is merely an abstraction to model

the order in which actions occur. In other words, there is no mate-

rial object performing a random walk: what we are representing as

“motion” is simply the causal sequence of who acts upon whom.

At each step, we say that “light passes” from the current observer

to the next. But, again: it is not that a ray of light physically moves

between nodes; there is no such propagation in a pre-existing space.

Rather, the “jump” encodes the causal relation: observer ⟨n| acts upon
⟨m|, and thus the sequence advances one step. We can describe this

mathematically as a random walk on the nodes of a graph—with the

conceptual caveat that here the graph is not embedded in an external

space or time, but rather is, in itself, the whole of our reality.

This formulation will allow us, in later chapters, to introduce met-

ric properties, notions of equilibrium, and other classical results from

the theory of random walks, applying them to the idea of “emergent

spacetime” and other physical concepts.

Transition Matrix or Temporal Evolution Matrix A

Since actions are free, there is no cause beyond the observer itself that

determines which action occurs at each instant. As a first approxi-

mation, we assume that each observer acts upon the others according

to some probability, leading us to study random walks on graphs in a

broad sense. We will systematically use the term “graph” to include
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networks in which each edge can represent the probability of interac-

tion, including directed and weighted cases, always with the necessary

conditions of connectivity and aperiodicity to properly define a random

walk.

This defines a transition matrix, or “temporal evolution” matrix

A(t):

A(t) = [Anm(t) ] ∈ RN×N ,

where Anm(t) represents the probability that observer n acts upon

observer m at instant t, given that ⟨n| holds the light at that moment.

In other words, the matrix is row-normalized:

N∑
m=1

Anm(t) = 1 for each n,

or, more compactly,

A(t)|I ⟩ = |I ⟩

where |I ⟩ is the column vector of ones. This convention corresponds to

a “forward” evolution and aligns the interpretation of A with stochastic

operators used in Markov theory. A is a stochastic matrix.

State of the System

At each time t, the system is described by a vector:

⟨ψ(t)| ∈ RN

where ψn(t) represents the probability of finding the light at observer

n at time t. The evolution of the system is given by the iterated

application of A:

⟨ψ(t)|A = ⟨ψ(t+ 1)| ⟨ψ(t)| = ⟨ψ(0)|At

It is important to note that the matrix A— the transition or “tem-

poral evolution” matrix of the system— can in general depend on time,
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A(t). However, we will focus on the case where A is constant (indepen-

dent of t), which generalizes the typical study of homogeneous Markov

chains.

Example: An Evolution Matrix A

To illustrate how temporal evolution works numerically, consider the

following example of a constant 3× 3 matrix A:

A =


0 1/2 1/2

2/3 0 1/3

1/3 2/3 0


Its interpretation is that, for example, if observer ⟨2| holds the light at
a given moment, then the probability it acts upon ⟨1| is 2/3, and the

probability it acts upon ⟨3| is 1/3, etc. (read by rows).

Evolution of ⟨ψ|. Now suppose we know that the light is initially

at observer ⟨1|. In column vector notation:

⟨ψ0| =
(
1 0 0

)
After one time step (i.e., one evolution step), the state becomes:

⟨ψ1| = ⟨ψ0|A.

If we compute the multiplication explicitly:

⟨ψ0|A =
(
1 0 0

)
0 1/2 1/2

2/3 0 1/3

1/3 2/3 0

 =
(
0 1/2 1/2

)

That is, in the next step, the light is at ⟨2| and ⟨3| with probability 1/2

each.

After two steps, the resulting state will be:

⟨ψ2| = ⟨ψ0|A2 = ⟨ψ1|A,
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⟨ψ2| = ⟨ψ1|A =
(
0 1/2 1/2

)
0 1/2 1/2

2/3 0 1/3

1/3 2/3 0

 =
(
1/2 1/3 1/6

)

and so on. In this way, we see in practice how A functions as a

temporal evolution operator on the state vector ⟨ψ|.

Stationary Distribution

If the graph defined by A is strongly connected and aperiodic, the

system admits a unique stationary state ⟨ω| ∈ RN , with ωn > 0 and∑
n ωn = 1, such that:

⟨ω|A = ⟨ω|

⟨ω|I ⟩ = 1

This vector ⟨ω| represents the equilibrium distribution: if the system

starts with ⟨ψ(0)| = ⟨ω|, then ⟨ψ(t)| = ⟨ω| for all t. It is the unique

(normalized) fixed vector under the dynamics of A.

In what follows, ⟨ω| will play a crucial role. ⟨ω| can be interpreted

as the probability distribution of finding the light at each observer

after an infinite time. Or as the number of times the light reaches each

observer divided by the total number of light movements. Or as the

probability that the light is at each observer if we choose a random

moment in time.
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Expected Action T in Terms of Evolution A

Previously, we defined the accumulated action matrix T as a way to

record which observer has acted upon which, throughout history—that

is, an action that has “already happened.” We now want to express the

expectation of action: how much action ∂T can we expect over a period

of time ∂t if we know the dynamics that govern the evolution of the

system?

Suppose the temporal evolution matrix A is constant and irre-

ducible, with stationary distribution |ω⟩. We can express |ω⟩ as:

⟨ω| = 1

∂t
⟨∂τ |

Here we introduce the symbol ∂ to indicate that we are assuming a

long time interval, over which the law of large numbers can be validly

applied. This implies that all the formulas in this section refer to

sufficiently large times, where the expressions stabilize and are correct

in the limit ∂t→ ∞.

Then, the expected number of times the light passes from observer

n to observer m over a time interval ∂t, is given by:

∂Tnm = ωnAnm∂t.

This can be written in matrix form as:

∂T = ω̂A∂t,

This expression gives us, for long times ∂t >>, the accumulated ex-

pected action assuming that the evolution is governed by A.

From this perspective, it is more convenient to work with action

per unit time:

A :=
1

∂t
∂T = ω̂A

This represents the expected action per unit of time. Equivalently,

it is the expected action in a time interval equal to 1. That is, Anm
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is the expected number of actions from n to m divided by the total

number of light movements. We can also interpret it as the probability

that, choosing a random instant, n is acting upon m.

An interesting property of A is:

⟨I |A = ⟨I |A∗ = ⟨ω|

and therefore:

⟨I |A|I ⟩ = 1

Inverse Evolution: The Probability of a Past Action

In the previous section, we described forward evolution via the operator

A, which encodes the probability of the light passing from one observer

to another at a given instant. We now turn to the inverse problem:

given the system’s state at the present instant, how can we infer where

the light “was” in the previous instant?

To approach this, we recall that the accumulated sensation, in our

context, can be expressed as:

S = A∗∂t,

where A∗ denotes the transpose of A.
From this sensation, we define the operator S through the following

relation:

A∗ =
1

∂t
∂S = ω̂S

hence:

A∗ = ω̂S = (ω̂A)∗ = A∗ω̂

and finally:

S = ̂ωA∗ω̂

We will see that S describes the inverse evolution: given the current

state ⟨ψ(t)|, S tells us the corresponding probability distribution at

the previous instant.
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Interpretation of S

Recall that ⟨ψ(t)| is a probability vector describing “where” the light

is at time t. If we wish to estimate the probability that the light came

from a particular observer ⟨n|, S acts to give us that information.

Formally:

⟨ψ(t)|S = ⟨ψ(t− 1)|

That is, S allows us to rewind the probability one step in time, under

the assumption that the global dynamics is described by the matrix A.

It is important to note that S is also a stochastic matrix and that

its equilibrium vector is also ⟨ω|:

⟨ω|S = ⟨ω|

Backward Iteration in Time

Given a final state ⟨ψ(t)|, we can apply S repeatedly to find where the

light was in previous instants. For example, to rewind t steps in time:

⟨ψ(−t)| = ⟨ψ(0)|St

Note that time moves “backward” in this inverted model, and each

application of S corresponds to an inverse jump in the action chain.

In short, S is the operator that facilitates inverse evolution, allow-

ing us to answer the question: “From which observer did the light most

likely come, given that it is currently at ⟨ψ(t)|?” This does not mean we

can physically “undo” interactions, but that we can probabilistically

assign a distribution over past states, consistent with the dynamics A

and its transpose.
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Explicit Computation of A and S in the Numerical

Example

Let us return to the same transition matrix:

A =


0 1/2 1/2

2/3 0 1/3

1/3 2/3 0


whose three rows, in standard notation, describe how “observer n” acts

upon the other nodes.

Stationary Distribution ⟨ω|. The (unique) stationary distribution

is:

⟨ω| = 1
41

(
14 15 12

)
This can be verified by checking that ⟨ω|A = ⟨ω| and that the compo-

nents sum to 1: ⟨ω|I ⟩ = 1.

Construction of A.
A = ω̂A

This represents, in a certain sense, the “action” normalized per unit

time (see previous sections). We now perform the multiplication ex-

plicitly, row by row of A:

A =


0 1/2 1/2

2/3 0 1/3

1/3 2/3 0

, ω̂ =


14
41 0 0

0 15
41 0

0 0 12
41

.

A = ̂ωA = 1
41

 0 7 7

10 0 5

4 8 0


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Construction of S. On the other hand, inverse evolution is de-

scribed by the matrix:

S = ̂ωA∗ ω̂,

Thus:

S = A∗ ̂ω = 41

1/14 0 0

0 1/15 0

0 0 1/12

 1
41

0 10 4

7 0 8

7 5 0

 =

 0 5/7 2/7
7/15 0 8/15
7/12 5/12 0


It’s easy to verify that:

⟨ω|S = ⟨ω|

We want to illustrate how, with the computed matrix S, we can go

backward in time. Assuming that at time “zero” the light is certainly

at observer ⟨1|, we have:

⟨ψ(0)| =
(
1 0 0

)
Given that:

S =

 0 5/7 2/7
7/15 0 8/15
7/12 5/12 0


the state at time t = −1 is:

⟨ψ(−1)| = ⟨ψ(0)|S = (first row of S) =
(
0 5

7
2
7

)
.

Note that 5
7 + 2

7 = 1, so this vector is normalized and describes the

probability that at time t = −1, the light was at ⟨2| (with probability
5
7 ) or at ⟨3| (with

2
7 ).

Two Steps Backward. To go two steps back, we apply S again:

⟨ψ(−2)| = ⟨ψ(−1)|S = ⟨ψ(0)|S2

Thus,

⟨ψ(−2)| =
(
0 5

7
2
7

) 0 5/7 2/7
7/15 0 8/15
7/12 5/12 0

 = 1
42

(
21 5 16

)
=

(
1
2

5
42

8
21

)
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Interpretation. The meaning of ⟨ψ(−2)| is that, according to the

inverse evolution model S, if at time t = 0 the light was at ⟨1|, then
two steps earlier, the probability that it was at ⟨1| is 1

2 , at ⟨2| is 5
42 ,

and at ⟨3| is 8
21 .

Thus we confirm that S indeed allows us to “go back” in the chain of

actions with a probabilistic interpretation consistent with the dynamics

defined by A.
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Universes with Temporal Symmetry: A = S

So far we have considered the general case in which the forward evolu-

tion matrix (A) and the inverse evolution matrix (S) are, in principle,

different. However, there is a special case of great importance, both in

Markov theory and in statistical physics, where both matrices coincide.

We will call this case a universe with temporal symmetry.

Formal Definition. We say that a universe has temporal symmetry

if

A = S.

Recall that

S = ̂ωA∗ ω̂,

where A∗ denotes the transpose (or adjoint) of A, and ω̂ is the diagonal

matrix associated with the stationary distribution ⟨ω|. The condition

of temporal symmetry A = S thus implies that A = ̂ωA∗ ω̂, which can

be rewritten as:

ω̂A = A∗ ̂ω
In the context of Markov chains, this property is equivalent to the

system satisfying the detailed balance condition:

ωmAnm = ωnAmn, ∀n,m,

which implies a fundamental symmetry in the transition probabilities

when seen forward and backward.

Physical Interpretation: Time Reversal. In a universe with

temporal symmetry, forward and inverse evolution are, in fact, the

same. In other words, A and S describe the same dynamics, with

no distinction in the direction of the time arrow. From a probabilistic

point of view, if we know that A = S, we can “watch the movie in

reverse” and find the same distribution of trajectories.

33



Symmetric Matrix A. Another way to understand temporal sym-

metry is through the matrix A = ω̂A. In a universe with temporal

symmetry, the condition A = S translates to A = A∗. Indeed, if

A = ̂ωA∗ ω̂ and A = ω̂A, then

A∗ = (ω̂A)∗ = A∗ω̂∗ = A∗ω̂ =
(
ω̂ A ω̂

) ̂ω = ω̂A = A.

Thus, A becomes a symmetric matrix. In graph theory terms, this

corresponds to a non-directed graph (possibly with weights), where

the action rate Anm between n and m is equal in both directions.

Undirected Graphs and Physical Analogies. When A is sym-

metric, we can interpret the universe as an undirected graph, since the

“weight” or “interaction probability” between nodes n and m is the

same in both directions. This connects to the idea of “time reversal”

in physics: a system with temporal symmetry does not privilege any

direction of time. - If A ̸= S, we say the system has temporal asym-

metry, since forward dynamics does not match the inverse dynamics.

- If A = S, or equivalently A is symmetric, the system has tempo-

ral symmetry, meaning the evolution remains invariant under time

reversal.

Conclusion

In universes with temporal symmetry, evolution is completely invari-

ant under time reversal: the forward propagation operator A coincides

with the backward propagation operator S, and the matrix A becomes

symmetric. These features allow us to treat such systems as undi-

rected graphs, and their behavior reflects the absence of a preferred

time arrow in the transition probabilities. In contrast, in universes

with temporal asymmetry, A ̸= S and A is not symmetric, reflecting a

fundamental asymmetry in the system’s causal structure.

If A = A∗, then action and sensation are equal:

∂A = A∂t = A∗∂t = ∂S
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That is, each observer gives light to another in the same proportion as

they receive it:

∂A = ∂S ⇐⇒ Temporal Symmetry

Evolution Is Not Reversible: Information Loss

Although the matrices A and S allow us to model forward and back-

ward evolution respectively, they are not inverse operators. In general,

S ̸= A−1, and thus we also have I ̸= SA. This reflects a fundamental

property: evolution is irreversible in terms of information.

Explicit Example We consider a system with three observers and

the previously known transition matrix:

A =


0 1/2 1/2

2/3 0 1/3

1/3 2/3 0


and its stationary distribution:

⟨ω| = 1
41

(
14 15 12

)
From this we construct the sensation matrix:

S = ̂ωA∗ ω̂ =

 0 5/7 2/7
7/15 0 8/15
7/12 5/12 0


First Applying A, Then S

We take a deterministic initial state:

⟨ψ(0)| =
(
1 0 0

)
Apply A:
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⟨ψ(1)| = ⟨ψ(0)|A =
(
0 1/2 1/2

)
And now apply S to the result:

⟨ψ′(0)| = ⟨ψ(1)|S =
(
0 1/2 1/2

) 0 5/7 2/7

7/15 0 8/15

7/12 5/12 0


= 1

240

(
126 50 64

)
≈
(
0.53 0.21 0.27

)
This new vector ⟨ψ(0)′| does not match the original ⟨ψ(0)|, which shows that we

do not recover the original state—there is information loss.

First Applying S, Then A

Now we perform the inverse process: first apply S to the initial state.

⟨ψ(0)|S =
(
0 5/7 2/7

)
Then apply A:

⟨ψ(0)|SA = ⟨ψ(1)|A =
(
0 5/7 2/7

)
0 1/2 1/2

2/3 0 1/3

1/3 2/3 0


=

1

21

(
12 4 5

)
≈
(
0.57 0.19 0.24

)
Again, the result does not match the initial state.

Note that applying SA did not yield the same result as applying AS. This can

be expressed by stating that the commutator is non-zero:

[A,S] := AS − SA ̸= 0

This shows that the system’s evolution is not invertible: light propagates ac-

cording to dynamics that scatter information, and the past can only be recon-

structed as a probable distribution, not as a deterministic state.

This phenomenon is analogous to the increase in entropy in thermodynamics:

although the fundamental laws may be time-symmetric, practical knowledge of the

past degrades with each step. Irreversibility is therefore a natural and structural

feature.
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Lower Entropy Implies Lower Information Loss

Intuitively, information loss in this model is directly related to the degree of dis-

persion caused by the evolution matrix A. The more random the action is (i.e., the

more uniform or “entropized” each column of A is), the greater the degradation of

the original state when attempting to reconstruct it from the future (or past).

Consider the following lower-entropy case:

A =

 0 1/2 1/2

9/10 0 1/10

1/10 9/10 0


We start from the deterministic state:

⟨ψ(0)| =
(
1 0 0

)
And obtain:

⟨ψ(0)|AS ≈
(
0.65 0.086 0.26

)∗
−→ reasonably close to |ψ(0)⟩

⟨ψ(0)|SA ≈
(
0.85 0.05 0.1

)
−→ even closer to |ψ(0)⟩

Although we do not recover the original state exactly, the deviation is much smaller

than in the previous, more entropic example. This suggests that the rate of entropy

increase—or the degree of information loss—is lower when interactions are more

directed.

Extreme Case: Evolution Without Loss. Reversible System

We now consider the case of the pure shift matrix ▷:

A = ▷ :=

0 1 0

0 0 1

1 0 0

 =⇒ ⟨ω| = ⟨I | =⇒ S = ▷∗ =

0 0 1

1 0 0

0 1 0


Here we do have:

S = A−1 and SA = AS = I

No information is lost. Evolution is perfectly deterministic and cyclic. The past can

be reconstructed exactly. Starting from the same state as in the previous example

⟨ψ(0)|, we have:

⟨ψ(0)|A =
(
0 1 0

)
and ⟨ψ(0)|AS =

(
1 0 0

)
= ⟨ψ(0)|

The same holds if we reverse the order:

⟨ψ(0)|SA =
(
0 1 0

)
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1 Observation

An observation is the set formed by an action and the immediately following sensa-

tion. An observer observes when he look at another observer and see what happens.

We will adopt the following terminology systematically:

• To look =⇒ to act.

• To see =⇒ to feel.

We will generalize the concept of observation to include sequences of multiple

chained actions and sensations: look, see, look, see, etc. These composite observa-

tions will be called experiments when a distinction is needed, although in general

we will continue to use the term observation for both.

Numbering and Naming of Observers

In the context of observation, we will often number the observers from 0 to N ,

meaning the universe contains N + 1 observers. Observer ⟨0| will be referred to as

I or the observer. When referring to this observer, we will use the first person

for economy of language. We will use expressions such as I act on ⟨n|, meaning

observer ⟨0| acts on ⟨n|. When speaking of the other observers or the external

world, their indices will range from 1 to N .

The Observable Matrix Θ. Definition

To define the observation of the first observer (without loss of generality), we start

from the global action matrix AG, and decompose its structure into four blocks:

AG =

(
0 ⟨a|

|a+⟩ A

)
(1)

where:

• ⟨a| is the first row of AG excluding the element (AG)00: it represents my

action toward the others.

• |a+⟩ is the first column of AG excluding the element (AG)00: it represents

the reaction toward me. We will refer to it as the halo.

• A is the N ×N submatrix of AG corresponding to the interactions between

the observers other than myself.

Note that in this context, we call Action a substochastic matrix—i.e., each row

sums to ≤ 1.
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We will assume that the are no masses, or the elements of the diagonal

(AG)nn = 0 for all n. This hypothesis will be justified later. For now, intu-

itively: if others act on themselves, I cannot perceive it; and if I act on myself, I

obtain no information, so it will not be considered an observation.

Formal definition. The observable matrix is defined as:

Θ := G2â+ (2)

G2 := (I −A)−1 (3)

Interpretation. The matrix G2 = (I − A)−1 is known as the fundamental

matrix (or Green’s matrix), which accumulates the expected visits to each node

before returning.

Θ is a stochastic matrix: its rows sum to 1, reflecting that, when performing

an experiment by acting on ⟨m|, the light returns to me from some node with total

probability one.

The observable matrix Θ represents the only information that observer ⟨0|
can extract from the universe. Formally, its entry Θnm represents the probability

that, if I act on observer ⟨n|, the light returns to me from ⟨m|—or more compactly,

the probability of seeing ⟨m| when looking at ⟨n|:

Θnm := Prob(I see m | I look at n) (4)

The Fundamental Matrix G2

We start from the equation for the stationary evolution of AG:

⟨ωG|AG = ⟨ωG|

We can separate this expression into blocks as we did in equation (1):(
ω0 ⟨ω|

)( 0 ⟨a|
|a+⟩ A

)
=
(
ω0 ⟨ω|

)
From this we obtain two equations. First:

⟨ω|a+⟩ = ω0 (5)

and the other:

⟨a|ω0 + ⟨ω|A = ⟨ω| =⇒ ⟨ω| (I −A) = ⟨a|ω0 =⇒ ω0⟨a| (I −A)−1 = ⟨ω|

which leads to the following equation:

⟨a|G2ω0 = ⟨ω| (6)

This expression can be interpreted as saying that G2 is the operator that,

applied to my action, returns the frequency of the other observers.
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From (6) and (5) we obtain the following fundamental relation:

⟨a|G2|a+⟩ = 1 (7)

The matrix G2 := (I −A)−1 is known as the Green’s function or fundamental

matrix in the context of absorbing Markov chains.

Convergence of the Geometric Series

Since the matrix A is substochastic (its rows sum to at most 1), it is well known

in operator theory and Markov chains that its spectral radius satisfies ρ(A) < 1.

This guarantees that the matrix I − A is invertible, and that the inverse can be

expressed as a convergent geometric series:

G2 = (I −A)−1 =

∞∑
0

At

Note the analogy with the geometric series for real numbers:
∑∞

0 rt = 1
1−r

This sum converges absolutely, since all powers At are norm-bounded and decay

exponentially in magnitude.

The Observer as an Absorbing State

To better understand G2, consider the block form of AG under the assumption that

observer ⟨0| is absorbing—that is, it only acts on itself, so when the light reaches

it, it never escapes:

AG =

(
1 ⟨∅|

|a+⟩ A

)
Then At

G takes the form:

At
G =

(
1 ⟨∅|(

I +A+A2 + · · ·+At−1
)
|a+⟩ At

)
Starting at node ⟨n| (n = 1, . . . , N), while the light remains outside of ⟨0| its

dynamics are governed by the submatrix A (with ρ(A) < 1).

Interpretation of G2
nm

Being in ⟨m|, starting from ⟨n| after t steps without having touched ⟨0| has proba-

bility At
nm. Summing over all t gives the expected number of times the light visits

⟨m| before being absorbed:

∞∑
0

At
nm = G2

nm

Thus, we obtain the following direct interpretation:
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G2
nm is the expected number of times the light visits ⟨m|

before being absorbed at ⟨0|, starting from ⟨n|.

Strictly Positive Entries

Each power At represents the indirect action of order t between observers (excluding

⟨0|). Formally, the entry At
nm := ⟨n|At|m⟩ expresses the probability that the light

is at |m⟩ at time t assuming it started from ⟨n| at t = 0.

If the graph defined by A is strongly connected, then for every pair of observers

⟨n|, ⟨m|, there exists at least one value t ∈ N such that:

⟨n|At|m⟩ > 0 for some t ∈ N

Hence, summing over all t in the definition of the fundamental matrix yields:

⟨n|G2|m⟩ =
∞∑
t=0

⟨n|At|m⟩ > 0 for all n,m

since at least one term in the sum is strictly positive and all others are non-

negative.

As a result, all entries of the matrix G2 are strictly positive:

G2
nm > 0 for all n,m

Any matrix with strictly positive entries defines a strictly positive quadratic

form, so G2 defines such a form:

⟨x|G2|x⟩ > 0 ∀ |x⟩ ̸= |∅⟩

Positive Spectrum of G2

Let µi be the eigenvalues of A. Then the eigenvalues of (I − A) are 1 − µi, and

those of G2:

λi(G
2) =

1

1− µi(A)

Since ρ(A) < 1, all eigenvalues µi of A satisfy |µi| < 1, so their real parts obey:

ℜ(µi) < 1 =⇒ ℜ(1− µi) > 0

Therefore:

ℜ
(

1

1− µi

)
> 0

This is justified by noting that if z ∈ C, with |z| < 1, then 1 − z lies in a

disk centered at 1 with strictly positive real part. The function f(z) = 1
1−z

is

holomorphic in that disk, and satisfies:
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ℜ
(

1

1− z

)
> 0 if |z| < 1

Hence, all eigenvalues of G2 have strictly positive real part.

Summary

Let us review the properties and relevance of G2.

1. Definition and Existence

G2 =
∞∑
t=0

At = (I −A)−1, ρ(A) < 1 =⇒ the series converges.

• A is substochastic: rows sum to ≤ 1.

• There exists at least one escape route to ⟨0| ⇒ some row of A sums to < 1

⇒ ρ(A) < 1.

2. Probabilistic Interpretation

G2
nm is the expected number of times the light visits |m⟩

before being absorbed at |0⟩, starting from |n⟩.

In classical absorbing Markov chain theory, G2 is the fundamental matrix (Ke-

meny–Snell).

3. Algebraic Properties

• (I −A)G2 = G2(I −A) = I.

• Eigenvalues: if A|v⟩ = λ|v⟩, then G2|v⟩ = 1
1−λ

|v⟩. All eigenvalues have

strictly positive real part.

• Entries are strictly positive if the external graph is strongly connected.

4. Physical and Mathematical Connections

1. Electrical networks: I−A acts like a directed Laplacian; G2 is the effective

impedance between nodes.

2. Difference equations: To solve ⟨x|(I−A) = ⟨b|, we compute ⟨v| = ⟨b|G2 .

3. Diffusion mechanics: G2 is the response to a point source in discrete

media.

5. Connection with Observation As previously stated and further

explored in the next section, the observable matrix can be expressed as:

Θ = G2â+
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Deriving the Observable Matrix Θ

We start at an external node ⟨n| (n = 1, . . . , N). While the light remains outside of

⟨0|, its dynamics are governed by the submatrix A (with ρ(A) < 1). Let a+m denote

the halo: the probability that the light, upon reaching ⟨m|, immediately escapes to

⟨0|.

Escape Exactly at Step t

Being at ⟨m| after t steps without having touched ⟨0| has probability (At)nm. At

that instant, it escapes with probability a+m. Therefore,

Pr
(
reaches me via |m⟩ at step t

)
= (At)nma

+
m.

Summing Over All Path Lengths

Pr
(
reaches me via ⟨m|

)
=

∞∑
t=0

(At)nma
+
m = a+m

∞∑
t=0

(At)nm︸ ︷︷ ︸
G2

nm

= G2
nma

+
m = Θnm

And finally, organizing these probabilities into a matrix:

Θ = G2â+,

• Each row ⟨n|Θ is the probability distribution describing the likelihood that

the light returns to ⟨0| via each node ⟨m|, when the observer acted on |n⟩.

• The rows of Θ sum to 1: they are proper probability distributions.

Explicit Example

We consider the typical example with N = 3 and compute the observation of the

first observer:

AG =


0 1/2 1/2

2/3 0 1/3

1/3 2/3 0

 (8)

We then separate:

|a+⟩ =
(

2/3

1/3

)
, ⟨a| =

(
1/2 1/2

)
, A =

(
0 1/3

2/3 0

)
We compute:

I −A =

(
1 −1/3

−2/3 1

)
(9)
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Its inverse is:

G2 = (I −A)−1 =

(
9/7 3/7

6/7 9/7

)
We can interpret the rows of the matrix G2 as follows: If I act on ⟨1|, the light

visits 9/7 times ⟨1| and 3/7 times ⟨2| before returning to me. If I act on ⟨2|, the light

visits 9/7 times ⟨2| and 6/7 times ⟨1| before returning to me.

The observable matrix is obtained as:

Θo =

(
9/7 3/7

6/7 9/7

)(
2/3 0

0 1/3

)
=

(
6/7 1/7

4/7 3/7

)
(10)

We can interpret the rows of the matrix Θ as follows: If I act on observer ⟨1|,
the light returns 6/7 of the time from |1⟩ and 1/7 from |2⟩. If I act on observer ⟨2|,
the light returns 4/7 of the time from |1⟩ and 3/7 from |2⟩.

We can compute the observation matrices of the remaining observers using the

same procedure:

Θ1 =

(
3/5 2/5

1/5 4/5

)
Θ2 =

(
3/4 1/4

1/2 1/2

)
(11)

Observation as the Application of the Operator Θ

The matrix Θ lies at the center of all observations. If I look at an observer, the

probability of seeing each of the observers is precisely given by Θ.

In fact, in any experiment consisting of looking according to a distribution of

action ⟨a|, the expected distribution of resulting sensations will be:

⟨a|Θ = ⟨s| (12)

If we recall equation (6) and multiply both sides on the right by â+, we obtain:

⟨s|ω0 = ⟨ω|â+ (13)

Example 1: staring at a single observer ⟨n| If the experiment

consists of repeatedly observing a single observer ⟨n| (a sufficient number of times

to apply the law of large numbers), that is, if:

⟨a| = ⟨n|

then the resulting sensation will simply be:

⟨s| = ⟨a|Θ = ⟨n|Θ

that is, the n-th row of the observable matrix.
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Example 2: action according to AG In the case where my action

follows the original dynamics given by the first row of AG, that is:

⟨a| =
(
1/2 1/2

)
we have:

⟨s| = ⟨a|Θ =
(
1/2 1/2

)(6/7 1/7

4/7 3/7

)
=
(
10/14 4/14

)
=
(
5/7 2/7

)
Recalling the global sensation matrix for this example (calculated in previous

sections):

SG =

 0 5/7 2/7

7/15 0 8/15

7/12 5/12 0


we see that the sensation of ⟨0| is ⟨s| =

(
5/7 2/7

)
, as expected.

Example: an arbitrary action We can arbitrarily choose an action and

use the observable to obtain the resulting sensation. For example: What happens if

I conduct the following experiment? I act according to this distribution, and ”see”

what happens:

⟨a| =
(
2/3 1/3

)
then the resulting sensation is:

⟨s| = ⟨a|Θ =
(
2/3 1/3

)(6/7 1/7

4/7 3/7

)
=
(

12
21

+ 4
21

2
21

+ 3
21

)
=

1

21

(
16 5

)
This illustrates how, through the observable matrix, the distribution of sensa-

tions depends linearly on the way I act.

The Observation matrix ∢
The matrix Θ is not merely a technical construction. It governs the phenomenon

of observation. Every time I act upon the universe, the distribution of what I see

is determined by it. It represents the universe’s reaction to my action. Everything

I can know, everything I can infer about the other observers, must go through Θ.

In this sense, this matrix constitutes the bridge between what I do and what I feel.

As we have seen our observation depends on the observable matrix and our own
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action. We define the Observation matrix ∢ as:

∢ = âΘ = â G2â+

The element ∢nm can be understood as the number of times that I look at n and

I see m per unit of proper time.

It is important to note that the observation matrix ∢ is the one that the observer

can directly access. However, the observable matrix Θ can be readily deduced from

it by extracting the observer’s action from the observation.

Θ = ̂a∢
Positive Spectrum of Θ

The eigenvalues of Θ also have strictly positive real part if the halo is invertible.

Indeed:

The matrix G̃2 := â+
1/2

G2â+
−1/2

is similar to G2, since â+
1/2

is invertible (as

long as |a+⟩ has no zero entries). Therefore:

Spec(G̃2) = Spec(G2)

Moreover,

Θ = â+
1/2 · G̃2 · â+

1/2

and since â+
1/2

is invertible, we conclude that Θ is similar to G̃2. By transitivity,

we obtain:

Spec(Θ) = Spec(G̃2) = Spec(G2)

Since all eigenvalues of G2 have strictly positive real part, the same holds for

the eigenvalues of Θ.

Mute or Invisible Observers and the Structure of the

Halo

The observable matrix Θ = G2â+ depends directly on the halo vector |a+⟩, which

represents how much of the light arriving at each observer is sent directly to |0⟩.

The Case of Zero Halos

It may happen that for some m, we have a+
m = 0. This means that observer |m⟩

never acts on ⟨0|. In that case:

- Column m of Θ is entirely zero. - The vector ⟨m| belongs to the kernel of Θ.

- The dimension ⟨m|, from the standpoint of observation, becomes mute: no action

on the system yields sensations originating from ⟨m|.
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However, this does not mean that |m⟩ does not participate in the dynamics.

It may be involved as an intermediary along the path the light takes from other

observers, and thus still appear in other columns of Θ.

In particular, the row ⟨m| of Θ reflects the observation resulting from acting

on ⟨m|, i.e., the probability that light returns from each observer when acting on

⟨m| (even if |m⟩ never sends light directly to ⟨0|).
This behavior is consistent with the operational interpretation of the observable

matrix: it represents what the observer can perceive. If a given node never sends

light back, it is invisible from the perspective of ⟨0|, which is faithfully reflected in

a zero row.

Invertibility of the Observable

When all entries of |a+⟩ are strictly positive, that is,

|a+⟩ > 0 (entrywise),

then the matrix â+ is diagonal and invertible, and hence:

Θ = G2â+ is invertible.

Moreover, Θ is similar to G2:

Θ = â+
1/2 ·

(
â+

−1/2
G2â+

1/2
)
· â+

1/2

and therefore they share the same spectrum. In particular, since all eigenvalues of

G2 have strictly positive real part, the same holds for the eigenvalues of Θ.

Summary

The structure of the vector |a+⟩ directly determines:

- Which observers are visible from ⟨0| as sources of light. - Which directions

are included in the effective range of Θ. - The dimension of the kernel of Θ, in case

some a+
m = 0.

When there are no mute observers, the observable matrix is invertible and

shares the spectral properties of G2, including the positivity of the real part of its

eigenvalues.

Knowing the halo

Let us consider a universe with only three observers. The first observer, whom we

will call ”o” or I, observes the other two. Below we display the full action matrix

A and the Observable matrix Θ of o. Θ is the only direct information that o can

access. We will now verify how the observer can fully reconstruct A from this
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observation alone assuming no masses. I, as the observer, know my observation,

and therfoer the observable matrix.

Θ =

(
Θ011 1−Θ011

1−Θ022 Θ022

)
:=

(
Θ1 1−Θ1

1−Θ2 Θ2

)
And I want to know the full Action matrix:

A =

 0 A01 A01

A10 0 A12

A20 A21 0



We can extract G2:

Ao =

(
0 A12

A21 0

)
→ G2 = (I −Ao)

−1 =
1

1−A12A21

(
1 A12

A21 1

)
From the definition of Θ, we also have:

Θ = G2â+ → Θ−1 = ̂a+(G2)−1 = ̂a+(I −Ao) →

(I −Ao) = â+Θ−1

Now we have to assume that the masses (the observers’s action upon themselves)

are all equal to zero. There is no way for an observer to notice the mass of other

observers. Assuming this, the diagonal elements of â+Θ−1 must be 1:

Diag(â+Θ−1) = |I ⟩ → ̂a+ = Diag(Θ−1)

Let us compute Θ−1:

Θ−1 =
1

Θ1 +Θ2 − 1

(
Θ2 −(1−Θ1)

−(1−Θ2) Θ1

)

Therefore:
1

a+

1

=
Θ2

Θ1 +Θ2 − 1
,

1

a+

2

=
Θ1

Θ1 +Θ2 − 1

which leads directly to the expression of the halo in terms of the observable:

|a+⟩ = (Θ1 +Θ2 − 1)

(
1/Θ2

1/Θ1

)
This expression allows the observer to deduce their halo from their own obser-

vation, thereby fully reconstructing the global action matrix. Given the halo, the

full action matrix is simply:

A =

 0 a1 a2

a+

1 0 1− a+

1

a+

2 1− a+

2 0


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where

⟨a| =
(
a1 a2

)
is known by the observer, since it is their own action.

Thus, in a universe with 3 observers, no masses, and strong connectivity, any

observer can deduce the full action matrix from their own observation alone.

It is important to note that if any of the other observers had mass, observer o

would not be able to detect it.

As long as the halo has no zeros, the observable Θ is invertible. And so, we could

theorically operate the same way despite the number of observers, obtain my ob-

servable matriz (with infinite precision) get its inverse and assume the nth element

of the diagonal is 1/a+
n. That way we could get the full halo |a+⟩, and therefore

I − A. My own action ⟨a| is known by me. So I can reconstruct the whole action

matrix AG.

AG =

(
0 ⟨a|

|a+⟩ A

)
So:

I could deduce the entire action of the whole Universe AG

if I could get my full observable matrix Θ with infinite precision

Numerical Example

We assume the typical example:

A =


0 1/2 1/2

2/3 0 1/3

1/3 2/3 0


Θo =

(
6/7 1/7

4/7 3/7

)
, Θ1 =

(
3/5 2/5

1/5 4/5

)
, Θ2 =

(
3/4 1/4

1/2 1/2

)
We now apply the halo expression to reconstruct the Action from the observ-

able:

|a+⟩ = (Θ1 +Θ2 − 1)

(
1/Θ2

1/Θ1

)
According to observer o:

Θo =

(
6/7 1/7

4/7 3/7

)
→ |a+⟩ = (6/7 + 3/7 − 1)

(
7/3

7/6

)
=

(
2/3

1/3

)
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According to observer 1:

Θ1 =

(
3/5 2/5

1/5 4/5

)
→ |a+⟩ = (3/5 + 4/5 − 1)

(
5/4

5/3

)
=

(
1/2

2/3

)
And according to observer 2:

Θ2 =

(
3/4 1/4

1/2 1/2

)
→ |a+⟩ = (3/4 + 1/2 − 1)

(
2/1

4/3

)
=

(
1/2

1/3

)
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Direct and Indirect Action Between Observers

The Set of Observers Ω and the Global Action Ma-

trix AG

Let AG be a global action matrix defined over the entire universe. We focus on a

subset of observers Ω and the flow of light among them. Light may travel from one

observer ⟨n| to another |m⟩ either directly — ⟨n| acts on |m⟩ — or indirectly: ⟨n|
acts on an observer external to Ω, and the light returns to Ω through |m⟩.

To define the direct and indirect action among the observers in Ω, we start

from the global action matrix AG, which we decompose into four blocks:

AG =

(
M ⟨⟨a|

|a+⟩⟩ A

)
(14)

The Energy Equation

To obtain the expression for energy, we begin from the stationary evolution equation

of AG:

⟨ωG|AG =
(
⟨ωΩ| ⟨ω|

)( M ⟨⟨a|
|a+⟩⟩ A

)
=
(
⟨ωΩ| ⟨ω|

)
From which we extract two equations. The first:

⟨ωΩ|M + ⟨ω||a+⟩⟩ = ⟨ωΩ| (15)

And the second:

⟨ωΩ|⟨⟨a|+ ⟨ω|A = ⟨ω| ⇒ ⟨ω|(I −A) = ⟨ωΩ|⟨⟨a|

Which leads to:

⟨ω| = ⟨ωΩ|⟨⟨a|G2 (16)

Multiplying both sides on the right by |a+⟩⟩, we obtain:

⟨ω||a+⟩⟩ = ⟨ωΩ|⟨⟨a|G2|a+⟩⟩

Combining this with equation (15), we obtain:

⟨ωΩ|
(
M + ⟨⟨a|G2|a+⟩⟩

)
= ⟨ωΩ|

Which yields the final stationary evolution equation for Ω:

⟨ωΩ|(M + E) = ⟨ωΩ| with E := ⟨⟨a|G2|a+⟩⟩
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Direct Action Matrix: The Mass M

The mass matrix M of the body Ω is the matrix of direct action between the nodes

in Ω, defined as the visible part of the original AG matrix corresponding to direct

interaction:

M :=
(
(AG)n→m

)
n,m∈Ω

Indirect Action Matrix: The Energy E

The energy matrix E of the body Ω represents the indirect interaction, i.e., the

total expected interaction from each n to each m through intermediate paths that

pass exclusively through nodes not in Ω. Its general expression is:

E = ⟨⟨a|G2|a+⟩⟩ G2 := (I −A)−1

The entry G2
nm can be interpreted as the expected number of times light passes

through m starting from n before returning to Ω. The entry Enm corresponds to

the probability that light returns to Ω through m when departing from n.

Total Action Matrix

It is defined as the sum:

A :=M + E

This matrix A can be interpreted as the matrix of total accessibility (direct +

indirect) between nodes in Ω.

Numerical Example

We consider the matrix AG:

AG =


0 1/2 1/2

2/3 0 1/3

1/3 2/3 0

 ⟨ωG| = 1
41

(
14 15 12

)

We define Ω as the set of observers ⟨1| (”You”) and ⟨0| (”Me”), and treat node

|2⟩ as the external world. Then we have:

M =

(
0 1/2

2/3 0

)
, A = 0, ⟨ωΩ| =

1

41

(
14 15

)
The fundamental matrix is:
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G2 = (I −A)−1 = 1

From the rows and columns of A that connect with Ω, we extract:

|a+⟩⟩ =
(
1/3 2/3

)
, ⟨⟨a| =

(
1/2

1/3

)
Thus:

E = ⟨⟨a|G2|a+⟩⟩ =
(

1/2

1/3

)
· 1 ·

(
1/3 2/3

)
=

(
1/6 1/3

1/9 2/9

)
So we obtain:

A =M + E =

(
0 1/2

2/3 0

)
+

(
1/6 1/3

1/9 2/9

)
=

(
1/6 5/6

7/9 2/9

)
Note that the resulting matrix is stochastic, as expected.

Also observe that:

⟨ωΩ|A = ⟨ωΩ|,
(
14/41 15/41

)(1/6 5/6

7/9 2/9

)
=
(
14/41 15/41

)
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Resistance distance

Motivation

In the system of observers defined so far, there is no explicit notion of spatial

distance. However, since interaction between observers occurs causally, through

successive actions, we can define a notion of distance based on the expected time

it takes for light to travel from one observer to another.

This distance does not rely on any pre-existing space: it is emergent, and its

definition is supported by the spectral properties of the system, as we shall see

later.

Definition

Resistance distance has been thoroughly studied in the context of random walks

on graphs and the analysis of electrical circuits. Here, we introduce an equivalent

alternative definition that allows us to understand its physical meaning.

To define it, let ∂νnm be the number of journeys made by light from n to m

during the time interval ∂t. Then, the resistance distance between observer |n⟩ and
observer |m⟩ is defined as:

Rnm :=
∂t

∂νnm

It can be interpreted as the instants per journey, or simply as:

The distance between n and m, Rnm, is the time

it takes for light to make a journey from n to m

Interpretation

To illustrate this, we may imagine an absolute clock as a counter of instants that

records every single movement of light. With it, we obtain ∂t. On the other hand,

to count the journeys from n to m, we begin by waiting until light reaches n— this

marks the start of a journey. We then wait until light reaches m — the journey is

complete, so we increment ∂νnm = 1. We repeat the process: wait for a new start

at n, and end at m, incrementing the counter each time. Eventually, we will have

counted the total number of journeys ∂νnm during the interval ∂t. Dividing the

total time by the number of journeys yields the average time per journey, which is

precisely the resistance distance.

The resistance distance Rnm satisfies the following fundamental properties,

which make it a proper metric:

• Non-negativity: Rnm ≥ 0
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• Symmetry: Rnm = Rmn

• Triangle inequality: Rnl ≤ Rnm + Rml

• Identity of indiscernibles: Rnn = 0

These properties can be proven rigorously. Here, we provide an intuitive ex-

planation.

Non-negativity: This is evident, since Rnm represents an average time, which

cannot be negative.

Symmetry: Symmetry is easy to understand. Once light makes a journey

from n to m, it cannot make the same journey again until it returns from m to n.

Thus, light always completes the same number of trips in both directions. From

the clock’s perspective, we always have ∂νnm = ∂νmn.

Triangle inequality: This holds because the time it takes for light to travel

from n to l along any path is always less than or equal to the time it takes when

forced to pass throughm. If light travels from n tom and then fromm to l, the total

time is greater than or equal to the direct time from n to l, except in the special case

when the only path from n to l goes through m, in which case both times are equal.

Identity of indiscernibles: Rnn = 0. This property is chosen by convention,

but will be justified later.

With these four properties, resistance distance behaves as a valid mathematical

metric, which will allow us to define a space in which to locate the observers.

Expression in Terms of the Pseudoinverse of the

Laplacian

As we will see later, the resistance distance between two observers n and m can be

defined as:

Rnm := ⟨n−m|L†|n−m⟩

where L† is the Moore–Penrose pseudoinverse of the Laplacian operator, defined

as:

L := ω̂(I −A)

An explicit construction of L† is given by:

L† =

(
L−

1

N
Π

)−1

+
1

N
Π

with:
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Π := |I ⟩⟨I |

Note: Although the formula for resistance distance in terms of the Laplacian

pseudoinverse is introduced at this point, its full derivation will be presented later

in the chapter. The intention of showing it here is to provide an immediate tool

for computing resistance distance and, at the same time, to link it with previous

studies. As we proceed, we will explore in detail how this formulation relates to

the dynamics and spectral properties of the system.

Subjective Distance

We define the subjective distance Rnm(o) between n and m from the point of view

of an observer |o⟩ as:

Rnm(o) :=
∂τo

∂νnm

where ∂τo is the proper time interval of observer |o⟩, and ∂νnm is the number

of light journeys from n to m during that interval. This can be restated as:

The subjective distance from my point of view between n and m, Rnm(o), is

the amount of my proper time ∂τo that light takes to make a journey from n to m.

With this definition, we can relate it to the resistance distance. Recall that:

ωo =
∂τo

∂t
, Rnm =

∂t

∂νnm

Then:

Rnm(o) =
∂τo

∂νnm
= ωo

∂t

∂νnm
= ωoRnm

Thus, we arrive at the expression:

Rnm(o) = ωoRnm (17)

Distance from the Observer’s Point of View. The

Relative Distance

A particularly important case is when |o⟩ = |n⟩, that is, we are measuring distances

to observer n. We adopt the following notation:

Rnm := Rnm(n) = ωnRnm
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That is, if no observer is explicitly referenced, it is understood that the observer

is the first index of Rnm, in this case n. We refer to this as the relative distance

from n to m.

With this convention, we can express:

The distance from me to you, Rnm, is the time it takes for light to travel from

me to you

It is understood that I am the observer (n), and both distance and time are

measured from my point of view.

Using this terminology, the distance from m to n, as seen from m, is:

Rmn = ωmRmn

And since resistance distance is symmetric:

Rmn = Rnm

we obtain the following relation between relative distances:

ωmRnm = ωnRmn (18)

This highlights that Rnm ̸= Rmn. The relative distance is not symmetric,

but this does not break the symmetry of subjective distance, because the equation

compares distances measured from different points of view. We could alternatively

write the same equation as:

ωmRnm(n) = ωnRmn(m)

Escape Probability

Definition

The escape probability between two nodes n andm, denoted σnm, is the probability

that light, starting at node n, reaches m before returning to n.

Relation between σ and Resistance Distance

The escape probability between nodes n and m can be expressed as:

σnm :=
∂νnm

∂τn

In other words, the number of light journeys from n to m per unit of proper time.
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This expression is precisely the inverse of the relative distance:

σnm =
1

Rnm

Interpretation

Let us imagine that I am the observer n. Then σnm is the probability that light,

starting from me, reaches m before returning to me. From my point of view, I act

repeatedly, and σnm is the probability of reaching m in each of those attempts.

Thus, the distance is the average number of attempts required to reach m:

Rnm = 1 · σ + 2 · (1− σ)σ + 3 · (1− σ)2σ + · · · = σ
∞∑

k=1

k(1− σ)k−1

where (1− σ)k−1σ is the probability that light reaches m on the k-th attempt.

Now, consider the infinite series:

S =

∞∑
k=1

k(1− σ)k−1

This is a standard series solvable using the derivative of a geometric series. We

know the geometric series:
∞∑

k=0

xk =
1

1− x
, for |x| < 1

Differentiating both sides with respect to x, we get:
∞∑

k=1

kxk−1 =
1

(1− x)2

Substituting x = 1− σ into this expression yields:
∞∑

k=1

k(1− σ)k−1 =
1

σ2

Therefore, the total sum is 1/σ2, and plugging this into the expression for Rnm,

we obtain:

Rnm = σ ·
1

σ2
=

1

σnm

From this, we derive an alternative (and more commonly seen) definition of the

resistance distance, frequent in the literature:

Rnm :=
1

ωnσnm

This leads us to define the ”conductance” ρnm as:

ρnm := ωnσnm ρnm =
1

Rnm
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Examples

We now illustrate the computation of distances through a few examples.

The Pair

The action matrix is:

A =

(
0 1

1 0

)
In this case, σ12 = σ21 = 1, and ω1 = ω2 = 1/2. Therefore:

R12 =
1

ω1σ12
=

1

1/2 · 1
= 2

R21 = R12 = 2 ⇒ R12 = R21 = 1

That is, light travels between them every 2 absolute instants, or once per instant

from the perspective of each observer.

The Segment

For N = 3, the action matrix is:

A =

 0 1 0

1/2 0 1/2

0 1 0

, A =
1

4

0 1 0

1 0 1

0 1 0

, ⟨ω| =
1

4

(
1 2 1

)
Let us imagine that I am the observer at the left end, observer ⟨0|:

∢
1 2 x x+ 1

To compute the distances, we reason in terms of escape probabilities.

What is the probability that I reach observer x?

We prove by induction that the solution is σ(x) = 1
x
.

This holds for x = 1 and x = 2 since:

σ1 = 1, σ2 =
1

2

Now let us compute σ(x+ 1) in terms of σ(x):
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Start from observer Θ

Fail to reach x

1− σ

failure

Reach x

σ

I

Reach x+ 1

1/2

success

Return to origin
1
2
σ

failure

Return to x

γ := 1
2
(1− σ)

repeat from I

So we get:

σ(x+ 1) = σ(x) ·
[
1

2
+

1

2
γ +

1

2
γ2 + · · ·

]
=
σ(x)

2
·

1

1− γ
=
σ(x)

2
·

1
1
2
(1 + σ(x))

⇒ σ(x+ 1) =
σ(x)

1 + σ(x)

By induction:

σ(x) =
1

x
⇒ σ(x+ 1) =

1

x+ 1

Thus we conclude:

σox =
1

x
, Rox = x

This generalizes easily to other observers:

σx1x2 =
1

2|x1 − x2|
, Rx1x2 = 2|x1 − x2|

Note: other observers can move both left and right, so the probability is halved.

Typical Example

In this case, we compute the Laplacian, its pseudoinverse, and the resistance dis-

tance.

A =


0 1/2 1/2

2/3 0 1/3

1/3 2/3 0

 ⟨ω| = 1
41

(
14 15 12

)

L = ω̂(I−A) = ω̂−A =
1

41

14 0 0

0 15 0

0 0 12

− 1
41

 0 7 7

10 0 5

4 8 0

 =
1

41

 14 −7 −7

−10 15 −5

−4 −8 12


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L† =

(
L−

1

N
Π

)−1

+
1

N
Π =

41

1260

 40 −20 −20

−11 37 −26

−29 −17 46


Thus, the distances are given by:

Rnm = ⟨n−m|L†|n−m⟩

R =
41

140

 0 12 15

12 0 14

15 14 0

 ≈

 0 3.51 4.39

3.51 0 4.1

4.39 4.1 0


And the subjective distances are:

R = ω̂ · R =

 0 6/5 3/2

9/7 0 3/2

9/7 6/5 0


Note: We have used the resistance distance formula involving the Laplacian.

Alternatively, we could compute each value directly, for example:

σ21 =
1

2
+

1

2
·
2

3
=

5

6
= R−1

21

Although the formula using the pseudoinverse of the Laplacian is introduced

here, its full derivation will be given later. The goal is to provide an immediate tool

to compute distances while linking with earlier concepts. We will later explore how

this formulation arises from the dynamics and spectral properties of the system.
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The potential ϕ

Definition

We will call potential ϕonm the probability that, if light starts at n, it reaches m

before o.

We can verify that this function is closely related to the observable. Let us recall

the meaning of the element Θonm:

Θonm = Probability that, if I (o) look at n, I see m

If I look at n, I already know that the light is at n. That is, we start from n.

What is the probability that m returns the light to me? First, the light must reach

m from n without passing through me. And that is precisely the potential ϕonm.

Once the light is at m, the probability that it is finally m who returns the light to

me is the same as if I had looked at m from the start. That is, Θomm.

Bounce probability O We define the bounce probability Oon := Θonn as

the probability that if I, o, act upon n, it is n who returns the light to me.

Finally, we have:

Θonm = ϕonmOom

Numerical example

Recall the calculation of the standard example for observations:

Θ1nm =

1 0 0

0 6/7 1/7

0 4/7 3/7



Θ2nm =

3/5 0 2/5

0 1 0

1/5 0 4/5

 Θ3nm =

3/4 1/4 0

1/2 1/2 0

0 0 1


Note that we have added consistent rows and columns for the observer.

To obtain the potentials we only need to scale the observations by the diagonal:

ϕ1nm = Θ1nmO−1
1m =

1 0 0

0 6/7 1/7

0 4/7 3/7


1 0 0

0 7/6 0

0 0 7/3


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Thus we finally obtain for all observers:

ϕ1nm =

1 0 0

0 1 1/3

0 2/3 1

 ϕ2nm =

 1 0 1/2

0 1 0

1/3 0 1



ϕ3nm =

 1 1/2 0

2/3 1 0

0 0 1


This represents the three slices o = 1, 2, 3 of the full tensor ϕ := ϕonm.

The reading is as follows. For example for ϕ12m:

ϕ12m =
(
0 1 1/3

)
=
(
ϕ121 ϕ122 ϕ123

)
If light starts from n = 2 and ends at o = 1, the probabilities are:

• 0 to pass through m = 1 first: ϕ121 = 0.

• 1 to pass through m = 2 first: ϕ122 = 1.

• 1/3 to pass through m = 3 first: ϕ123 = 1/3.

Definition of harmonic function

Let L be a linear operator defined on a vector space V , and let Ω ⊆ V be a linear

subspace, which we will call the boundary.

We say that a vector |f⟩ ∈ V is harmonic with respect to L with boundary in

Ω if:

L|f⟩ ∈ Ω

This means that L|f⟩ has no component outside the boundary: any imbalance

or source lies exclusively within the subspace Ω. Outside of it, the system is in

equilibrium.

Equivalently and explicitly, we have:

⟨z|L|f⟩ = 0 ∀ |z⟩ ⊥ Ω

that is, L|f⟩ is orthogonal to all vectors not in the boundary. This formulation

makes it easy to verify the harmonicity condition by evaluating the action of L on

|f⟩ projected onto an orthonormal basis.

Harmonic functions appear ubiquitously across many disciplines. In classical

analysis, they are solutions to Laplace’s equation and describe steady states in
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problems of diffusion, temperature, or electric potential. In physics, they corre-

spond to configurations without external sources. In graph theory and stochastic

processes, harmonic functions describe probabilistic equilibria and expected value

functions in Markov chains with absorbing states. In all these cases, a function

is harmonic when its value at each interior point depends only on its immediate

neighborhood, reflecting symmetry and local stability.

Potential theory is largely based on harmonic functions, and its analysis is

deeply connected to the concept of the Green’s function, which describes the sys-

tem’s response to a pointwise perturbation at the boundary. In fact, in many

contexts, a harmonic function is obtained as the solution to a system of linear

equations with prescribed boundary conditions, whose inverse matrix (or pseudoin-

verse) is precisely the Green’s function of the operator L.

In summary, the concept of a harmonic function allows us to identify balanced,

stable, or stationary configurations within a linear system, conditioned to possible

perturbations localized at a defined boundary.

Interpretation of ϕ as a harmonic function

Let ϕonm be the probability that, starting from node n, light reaches nodem before

node o. This function satisfies an averaging relation grounded in the law of total

probability.

Suppose light starts from node n. On the first step, it can reach any node i

with probability Ani. Once at i, the probability that light passes through m before

o is ϕoim. Therefore, the total probability from n is given by:

ϕonm =
∑
i

Aniϕoim ∀n /∈ {o,m}

This equation expresses that ϕonm is the weighted average of the probabilities

ϕoim, with weights given by the transition distribution Ani. The sum runs over

all possible nodes i that node n can act on, and the equation is valid as long as

n /∈ {o,m}, the boundary Ω.

Now fixing o and m, we define the potential function:

ϕom(n) := ϕonm

and the previous equation becomes:

ϕom(n) =
∑
i

Aniϕom(i) ∀n /∈ {o,m} (19)

We can express this in matrix form:

(I −A)|ϕom⟩ = αo|o⟩+ αm|m⟩ αo, αm ∈ R

This is precisely the harmonicity condition with respect to (I − A) outside the

boundary Ω : {o,m}.
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Dirichlet problem:

The proposed problem can be considered a discrete Dirichlet problem. Defining

the potential ϕ as:

ϕonm := Probability that light reaches m before o if it starts at n

The potential function ϕom(n) := ϕonm is harmonic with respect to the Laplacian

operator
2 := I −A

with boundary

Ω : {o,m}

and the following boundary conditions:

• ϕom(m) = 1 (light reaches m before o if starting from m)

• ϕom(o) = 0 (light cannot reach m before o if starting from o)

This can be written as:

2|ϕom⟩ = αo|o⟩+ αm|m⟩ αo, αm ∈ R (20)

Escape probability σ

So far, αo and αm are unknown. To determine them, note that the potential ϕ is

closely related to the escape probability σ.

We define the escape probability σom as the probability that, if light starts at

o, it reaches m before returning to o.

Let’s compute σom by building the event step by step. Imagine light starts

at o, on the first step it goes to each observer i with probability Aoi and, from

there, what is the probability that it reaches m before o? This is precisely ϕoim.

Therefore:

σom =
∑
i

Aoiϕom(i) (21)

Recall equation (19)∑
i

Aniϕom(i) = ϕom(n) ∀n /∈ {o,m}

And we observe that equation (21) is a special case of (19), where n = o, exactly

one of the boundary points Ω
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Similarly, starting from (21) but swapping the indices o↔ m∑
i

Amiϕmo(i) = σmo

Since the events reach o first and reach m first from n are complementary:

ϕmo(n) = 1− ϕom(n) ϕmno = 1− ϕonm

The above expression becomes:∑
i

Ami(1− ϕom(i)) =
∑
i

Ami −
∑
i

Amiϕom(i) = 1−
∑
i

Amiϕom(i) = σmo

And we finally arrive at the expression:∑
i

Amiϕom(i) = 1− σmo

Comparing again with equation (19) we see this equation is another special case of

(19), where n = m, the other boundary point Ω

All this allows us to complete equation (19) for the full domain as:

∑
i

Aniϕom(i) =


ϕom(n) ∀n /∈ {o,m}

σom n = o

1− σmo n = m

The boundary conditions are ϕom(o) = 0 and ϕom(m) = 1, allowing us to write

the previous equation as:

∑
i

Aniϕom(i) =


ϕom(n) ∀n /∈ {o,m}

ϕom(n) + σom n = o

ϕom(n)− σmo n = m

Or equivalently:

∑
i

(I −Ani)ϕom(i) =


0 ∀n /∈ {o,m}

−σom n = o

σmo n = m

In matrix form, this can be expressed as:

2|ϕom⟩ = σmo|m⟩ − σom|o⟩ (22)

Thus, αm = σmo and αo = −σom
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Expression of the resistance distance

Recall that the resistance distance could be defined as:

Rom =
1

ωoσom

We define the weighted Laplacian:

2 := ω̂ 2 := ω̂(I −A)

Therefore:

2|ϕom⟩ = ω̂ 2|ϕom⟩ = σmoω̂|m⟩−σomω̂|o⟩ = ωmσmo|m⟩−ωoσom|o⟩ =
1

Rmo
|m⟩−

1

Rom
|o⟩

And we arrive at the expression:

2|ϕom⟩ =
1

Rom
|m− o⟩ (23)

This expression is a system of linear equations. Since 2 is singular, it does not

have a unique solution. The solution admits a constant vector:

Rom|ϕom⟩ = G2|m− o⟩+ α|I ⟩

Where G2 is the Moore–Penrose pseudoinverse of 2.

We multiply both sides of the equation on the left by the vector ⟨m− o|:

Rom⟨m− o|ϕom⟩ = Rom(ϕomm − ϕoom) = Rom(1− 0) = Rom

⟨m− o|G2|m− o⟩+ α�����: 0
⟨m− o|I ⟩ = ⟨m− o|G2|m− o⟩

Thus we finally arrive at the well-known expression for the resistance distance:

Rom = ⟨m− o|G2|m− o⟩ (24)
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Aviso importante

From this point onward, the text corresponds to a draft in progress and

may contain errors or inaccuracies. Its content is subject to revision.

Maxwell’s Equations

General Setting

Let G = (V,E) be a finite directed graph without loops, |V | = n. A random walk

on G is described by a transition matrix A ∈ Rn×n with Aij ≥ 0 and
∑

j Aij = 1.

We assume the chain is irreducible and aperiodic, so it admits a unique stationary

distribution

w A = w, wi > 0,
∑
i

wi = 1, W := diag(w1, . . . , wn). (25)

Cochain complex.

• C0(G;R) = RV : functions on vertices (potentials).

• C1(G;R) = RE : antisymmetric functions Eij = −Eji (edge fields).

• C2(G;R) = R∆2 : antisymmetric functions on oriented triangles (fluxes).

Laplacian and Green’s function

We define the Laplace–Markov operator on vertices:

∆0 = W (I −A), ker∆0 = ⟨1⟩. (26)

Its Moore–Penrose pseudoinverse G2 := ∆†
0 is the Green’s function and provides

the resistance distances Rij = G2
ii +G2

jj − 2G2
ij .

Green Inner Product

On C0 we adopt the metric:

⟨φ,ψ⟩G := φ⊤G2 ψ, φ, ψ ∈ C0. (27)

It has a kernel ⟨1⟩; on the quotient C0/⟨1⟩ it is positive definite. On C1 and C2

we use the standard Euclidean one (other weightings also work).
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Hodge Operators

Gradient. d0 : C0 → C1: (d0φ)ij = φj − φi.

Codivergence. We define

δ1 := ∆0 d
†
0, d†0 =

(
d⊤0 d0

)†
d⊤0 . (28)

Then, ⟨d0φ,E⟩2 = ⟨φ, δ1E⟩G and ∆0 = δ1d0 (on C0/⟨1⟩).

Curl and its adjoint. Let d1 : C1 → C2 be the usual one: (d1E)ijk =

Eij + Ejk + Eki. Its adjoint δ2 = d∗1 : C2 → C1 acts as discrete curl.

Laws of Discrete Electrostatics and Magnetostatics

Potential, field, and charge. For φ ∈ C0/⟨1⟩, define

E := − d0φ ∈ C1, ρ := δ1E ∈ C0. (29)

Teorema 1.1 (Discrete Gauss Law). With definitions (26)–(29):

δ1E = ρ and ∆0φ = − ρ (Poisson).

Proof. By construction, δ1d0 = ∆0; multiplying by −φ yields both equalities.

Proposición 1.2 (Static Faraday Law). d1E = 0 since d1d0 = 0.

Steady Current and Magnetic Field

Definición 1.1. The irreversible current is defined as Jij := wiAij−wjAji (Jji =

−Jij).

Lema 1.3 (Current Conservation). δ1J = 0.

Proof.
∑

j Jij = wi
∑

j Aij −
∑

j wjAji = wi − wi = 0.

Minimum-norm Magnetic Field. Since J ∈ ker δ1, there exists B ∈ C2

such that δ2B = J . We choose the minimum-norm solution:

B := δ†2J =⇒ δ2B = J, d2B = 0. (30)

Observación 1.4. In a triangulated graph, the elementary formula Bijk = 1
2

(
Jij +

Jjk + Jki
)
also satisfies δ2B = J and d2B = 0 for interior edges; it can be adapted

at boundaries by dividing by 1.
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Discrete Magnetostatic Laws.

δ2B = J , d2B = 0

complete the electro-/magnetostatic analogy.

Detailed Example with Full Verifications

We work with the complete graph of three vertices:

A =


0 1

2
1
2

2
3

0 1
3

1
3

2
3

0

, φ =


0

1

2
3

.

Stationary Distribution, Laplacian and Green

Solving wA = w with
∑

i wi = 1 gives:

w =
(

14
41
, 15

41
, 12

41

)
.

The Laplacian (26) and its pseudoinverse are:

∆0 =
1

41

 14 −7 −7

−10 15 −5

−4 −8 12

, G2 = ∆†
0 =

1

123

151 −82 −69

−82 164 −82

−69 −82 151

.

Electric Field E = −d0φ

E01 = φ1 − φ0 = 1− 0 = 1,

E02 = φ2 − φ0 = 2
3
− 0 = 2

3
,

E12 = φ2 − φ1 = 2
3
− 1 = − 1

3
,

E =

 0 1 2
3

−1 0 − 1
3

− 2
3

1
3

0

.

Static Faraday Law.

d1E012 = E01 + E12 + E20 = 1 + (− 1
3
) + (− 2

3
) = 0 ⇒ d1E = 0.

Charge ρ = δ1E

For each vertex we use ρi =
∑

j wiAijEij .
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ρ0 =
14

41

(
1
2
(1) + 1

2
( 2
3
)
)
=

14

41
·
5

6
=

35

123
,

ρ1 =
15

41

(
2
3
(−1) + 1

3
(− 1

3
)
)
=

15

41

(
− 23

18

)
= −

35

123
,

ρ2 =
12

41

(
1
3
(− 2

3
) + 2

3
( 1
3
)
)
= 0.

Check that
∑

i ρi = 0.

Poisson Equation. Multiply ∆0φ:

∆0φ =
1

41


14(0)− 7(1)− 7( 2

3
)

−10(0) + 15(1)− 5( 2
3
)

−4(0)− 8(1) + 12( 2
3
)

 =


− 35

123

+ 35
123

0

 = −ρ.

So ∆0φ = −ρ, and therefore δ1E = ρ.

Irreversible Current J

J01 = w0A01 − w1A10 = 14
41

· 1
2
− 15

41
· 2
3
= − 3

41
,

J12 = w1A12 − w2A21 = 15
41

· 1
3
− 12

41
· 2
3
= − 3

41
,

J02 = w0A02 − w2A20 = 14
41

· 1
2
− 12

41
· 1
3
= + 3

41
.

Antisymmetric matrix:

J =

 0 − 3
41

3
41

3
41

0 − 3
41

− 3
41

3
41

0

.
Conservation. Row 0: (−3 + 3)/41 = 0; rows 1, 2 similar ⇒ δ1J = 0.

Magnetic Field B

Since there is only one triangle (0, 1, 2), we use the simple rule:

B012 =
1

2

(
J01 + J12 + J20

)
=

1

2

(
− 3

41
− 3

41
+ 3

41

)
= − 3

41
.

The opposite orientation gives B021 = +3/41.

Ampère Without Displacement.

δ2B01 = B012 = J01, δ2B12 = B120 = J12, δ2B02 = B201 = J02.

δ2B = J is verified.
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Absence of Monopoles. No 3-simplices ⇒ d2B = 0 trivially.

Numerical Summary

δ1E = ρ, d1E = 0, δ2B = J, d2B = 0 =⇒ electro- and magnetostatic laws verified pointwise.

Conclusion

The explicit computation confirms that the random walk with constant A exactly

reproduces the four equations of electrostatics and magnetostatics in Hodge dis-

cretization: Gauss, Faraday (static), Ampère without displacement,

and the no-monopole condition.

Conclusion

With the Hodge operators d0, d1, δ1, δ2 and Green’s metric G2 = ∆†
0, we have

recovered on a finite graph:

• Gauss’s law δ1E = ρ.

• Static Faraday law d1E = 0.

• Ampère’s law without displacement δ2B = J .

• Absence of monopoles d2B = 0.

The potential φ = −G2ρ and the magnetic field B = δ†2J are minimum-

energy solutions. With constant A we obtain, therefore, a complete description

of electrostatics and magnetostatics; the dynamic part will require introducing a

temporal operator and its adjoint, which will be addressed in future chapters.

Geometric–Dynamic Postulate

Postulado 1 (Resistance Metric). Let G = (V,E) be a finite graph with Laplacian

L =W (I −A). The geometric distance between vertices i, j is

Rij := (L†)ii + (L†)jj − 2(L†)ij .

A photon traverses that distance in proper time

Tij = Rij , c = 1.

Thus we set natural units ε0 = µ0 = c = 1; each edge (i, j) simultaneously has

length, resistance, and ”light-time” equal to Rij .
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Discrete Spacetime Complex

4-D Mesh

We use two indices: (i) for spatial vertices, (n) ∈ Z for temporal slices. The pair

(i, n) is a vertex of the 4-complex K.

dim. 0 φ(i, n)

dim. 1 spatial edges (i, j, n), temporal edges (i, n, n+ 1)

dim. 2 spatial faces (i, j, k, n), mixed faces (i, j, n, n+ 1)

dim. 3 volumes (i, j, k, n, n+ 1)

dim. 4 closed 4-D cells

Derivatives

Let dx be the purely spatial exterior derivative (known, d2x = 0), and dt the meso-

scopic temporal derivative:

(dtφ)(i,n,n+1) =
φ(i, n+ 1)− φ(i, n)

∆t
, ∆t≫ τmix.

Define

d := dx + dt, d2 = 0.

Physical Cochains

Definición 1.2.

A ∈ C1(K) :

Aij,n (spatial component)

Ai,t,n := Φi,n∆t (temporal component)

is the discrete 4-vector potential.

The field tensor is F := dA ∈ C2(K).

Decomposing:

Eij,n = −Aij,n − (dtA)ij,n, Bijk,n = (dxA)ijk,n,

we recover the electric and magnetic components already seen in the stationary

regime.

Full Maxwell Equations

Let δ be the total codifferential associated with the discrete Lorentz metric: ⟨·, ·⟩ =
⟨·, ·⟩G2 ⊕ (−)⟨·, ·⟩t.
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Teorema 1.5 (Discrete 4-D Maxwell).

dF = 0 (Bianchi identity), δF = J,

where the 3-cochain J = (ρ d3x+JidSi∧dt) satisfies δJ = 0 (charge conservation).

Sketch. d2 = 0 yields the first equation. The second is imposed as a constitutive

law and decomposes into:

δxE = ρ (Gauss)

dxE + ∂tB = 0 (Faraday)

δxB = 0 (no monopoles)

∂tE + dxB = J (Ampère with displacement)

with ∂t ≡ ∆−1
t (·)n+1 − (·)n.

Units and Norms

Since c = ε0 = µ0 = 1, the displacement term ∂tE enters with the same norm

weight as J ; no distinct Hodge stars are needed.

Relation to the Law of Large Numbers

Since ∆t ≥ 10 τmix (e.g.), the variance of any edge-sum observable is O(1/
√
∆t).

Thus:

F = E[F ] + O
(
∆t−1/2

)
,

and all the above equations hold on average with controlled precision.

Stationary Limit ∂t → 0

If A remains exactly constant and averages are stabilized, ∂tE = ∂tB = 0, and the

identities reduce to the electrostatic and magnetostatic cases treated in previous

chapters.

Conclusion

Under Postulate 0 (resistance-distance = light-time), the Whitney 4-complex with

total derivative d = dx + dt provides a discrete relativistic framework in which

Maxwell’s equations are identical to the continuous ones in natural units. The

discretization is consistent because ∆t exceeds the mixing time, ensuring that the

averages required by the LLN are reliable.

Outlook. Open problems include: (a) discrete curvature via Rij ; (c) fluctuations

of order O(∆t−1/2) and their large deviation theorems.
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Speed of Light, Moving Observers, and the

Emergence of Lorentz Transformations

In this theory, the resistance distance Rij is interpreted literally as the absolute

time it takes for light to travel from observer i to observer j. Light, understood

as an elementary action, propagates probabilistically according to the structure

defined by the transition matrix P, and its speed is constant in all frames: c = 1.

Change in the Transition Matrix

Let us now suppose that P = P(t) varies with time. This implies that the struc-

ture of interactions between observers changes, and with it the resistance distances

Rij(t). From the point of view of an observer, this change can be interpreted as

other observers moving relative to them.

Formally, if at two different time points t and t′ the matrix P changes, and yet

light continues to propagate at constant speed c = 1 between all pairs of observers,

then the new metric Rij(t
′) must be consistent with the previous one, such that:

Light still takes the same amount of time to travel the distance Rij(t
′) under the new configuration.

Relative Motion of Observers

This phenomenon can be interpreted as the emergence of a kinematics: if P(t)

changes but the speed of light remains constant, then the observers have changed

their relative positions in the emergent metric.

This change does not require postulating velocity or displacement: it arises

from the variation in interaction probabilities. An observer i ”moves away” from

another j if the probability of transitioning from i to j decreases, and ”moves closer”

if it increases. But regardless of this, light propagation automatically adjusts so

that its effective speed remains c = 1.

Emergence of Lorentz Transformations

In special relativity, the invariance of the speed of light implies that the transfor-

mations between reference frames must preserve the causal structure of spacetime.

These transformations are the Lorentz transformations.

In this model, the following is proposed:

• The matrix P(t) defines a dynamics and a geometry at each instant.

• Light propagates with c = 1 at all times, in every direction of the system.
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• The evolution of the metric Rij(t) describes the relative motion of observers.

• If the metric evolves such that the speed of light remains constant in all

local frames, then the transformations between observers must preserve that

constancy.

This is, essentially, the foundational condition of special relativity. Therefore,

if it is possible to express how P(t) varies in a way that is compatible with the

invariance of c, then it will be formally possible to deduce that the coordinate

changes connecting the perspectives of different observers must obey Lorentz-type

transformations.

A Path to Deriving Special Relativity

If a ”trajectory” of each observer is defined in the emergent space (RN−1) induced

by the resistance embedding, and its evolution is analyzed over time induced by

the sequence of matrices P(t), it becomes possible to derive the notion of relative

velocity, time dilation, and length contraction.

The key point is that in all frames defined by different observers:

Rij(t) = (absolute time taken by light) ⇒ c =
Rij(t)

∂t
= 1

Therefore, any transformation between the coordinates of observers that pre-

serves the functional form of Rij while allowing for relative motion must, by con-

struction, be a Lorentz transformation.

Conclusion

Special relativity is not postulated in this model: it emerges as a necessary conse-

quence of the constancy of the speed of light defined as the propagation of action

between observers. If the metric Rij(t) evolves in such a way that this constancy is

preserved, then the laws governing the change of reference between observers must

be precisely the Lorentz transformations.
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Spectral Dimension and the Threshold of

Existence

In this appendix, we develop one of the most fundamental questions for the model:

why does the universe have approximately three spatial dimensions? We propose

that the key lies in the system’s spectral dimension, and that there exists a

critical threshold beyond which observers may cease to receive light forever.

This threshold marks the boundary between continuous existence and functional

disappearance.

Random Walks and Return Time

Let pii(t) be the probability that a particle (light) which started at node i returns

to i in exactly t steps. The cumulative return time is:

Pi :=

∞∑
t=0

pii(t)

This value represents the expected number of times that light will return to

visit observer i, if it starts at i. If Pi = ∞, the observer is said to be recurrent.

If Pi < ∞, it is transient: there is a positive probability that it will never again

receive light.

Ontological Interpretation

In the framework of this theory, an observer that never again receives light can be

understood as an observer who has ceased to live. Therefore, a universe where

Pi < ∞ for some i is a universe where death (understood as ontological silence)

is possible. In contrast, if Pi = ∞ for all observers, then the system ensures that

every observer will continue to receive experiences indefinitely.

Spectral Dimension and Recurrence

The probability pii(t) is deeply related to the spectrum of the Laplacian operator

L associated with the graph. If the graph is regular or has properties similar to a

d-dimensional lattice, it is known that:

pii(t) ∼ t−ds/2 as t→ ∞

where ds is the system’s spectral dimension.

This implies that the total return time is:
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Pi =

∞∑
t=0

pii(t) ∼
∞∑
t=1

t−ds/2

And this sum converges if and only if ds > 2.

The critical limit of existence

We then arrive at a crucial result:

• If ds ≤ 2, then Pi = ∞ for all i: the system is recurrent, and every observer

will live indefinitely.

• If ds > 2, then Pi < ∞: the system is transient, and some observers may

cease to receive light forever.

Therefore, ds = 2 is the critical limit of existence. In ontological terms,

it is the threshold beyond which death emerges as a structural phenomenon in a

universe of infinite observers.

Global Stability

A global measure of the universe’s stability is the weighted average of the number

of returns, considering the stationary distribution πi:

S :=
∑
i

πiPi =

∞∑
t=0

∑
i

πipii(t)

This value represents the average rate of light returning to its origin, weighted

by the system’s energy balance. This sum diverges if ds ≤ 2 and converges if ds > 2,

confirming that the spectral dimension governs the global stability of the

universe.

Three Spatial Dimensions

The spectral dimension is not just a mathematical property: it is the functional

parameter that determines whether a universe of observers can sustain

itself without irreversible silences. If the universe has ds ≤ 2, light never

abandons anyone forever. If ds > 2, some observers may become isolated with no

return.

Thus, we propose that the emergent universe dynamically organizes itself near

the threshold ds = 2, seeking the maximum complexity compatible with the conti-

nuity of experience.

In this theory, observers do not inhabit a preexisting physical space: they form

among themselves a network of interactions that defines their own universe. Actions
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between observers generate time, and the path of light through that network defines

an emergent metric: the resistance distance.

We have seen that resistance distance, which is the real geometric distance, can

be expressed as the square of the Euclidean norm in a Hilbert space generated by

the spectral decomposition of the Laplacian:

Rij = r2ij = ∥xi − xj∥2 with xi ∈ Rds

This is the physical geometry, whose dimension is N , not the one in Hilbert

space, which is Euclidean and has dimension N − 1 and is the one that must have

not more than 2 dimensions. Space must “lift” one dimension: it must go from the

Hilbert space to the geometric space.

Thus, if observers live in a Hilbert space of dimension ds = 2, the geometry that

can contain those distances as geometric distances must have one more dimension.

The resistance distance is not directly expressed in the Hilbert space, but in an

emergent space with an additional dimension.

Dimension of physical space = ds + 1 = 3

The three dimensionsal space, then, is a must, for any stability, It is the mini-

mal geometry that allows the functional distances arising from their interaction to

become a continuous, external, and perceptible geometry.

The universe is not three-dimensional because it had to be from the start,

but because sustained interaction between conscious observers—can only emerge

in networks whose spectral dimension is two or less. The third dimension appears

to come back to the geometric space comming from the Hilbert space.
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Euclidean Embedding from Resistance Dis-

tance

Summary

The resistance distance Rij between pairs of nodes in a connected, undirected

graph defines a symmetric metric of negative type. It is possible to represent each

node as a point in a Euclidean space RN−1 such that the Euclidean distance rij

between these points satisfies Rij = r2ij . In this section, we rigorously develop

the associated embedding, analyze its relationship with the spectrum of the graph

Laplacian, and clarify the role played by the square root of this matrix in the

geometric construction.

Resistance Distance

Let G = (V,E) be an undirected, loopless, weighted graph with N = |V | nodes,
and assume it is connected. The graph Laplacian is defined as:

L = D −A

where: - D ∈ RN×N is the diagonal matrix of (weighted) degrees, - A ∈ RN×N

is the symmetric adjacency matrix.

Since the graph is connected, L is symmetric and positive semidefinite, with a

one-dimensional kernel generated by the constant vector 1 ∈ RN .

The Moore–Penrose pseudoinverse of L, denoted L+, is also symmetric and

positive semidefinite, with the same spectral basis as L but the reciprocals of the

non-zero eigenvalues.

The resistance distance between two nodes i and j is defined as:

Rij := (ei − ej)
⊤L+(ei − ej)

where ei ∈ RN is the canonical basis. This definition corresponds to the energy

dissipated when injecting one unit of current between nodes i and j, assuming

resistances are inversely proportional to the graph weights.

The matrix R = [Rij ] ∈ RN×N satisfies:

Rij ≥ 0, Rij = Rji, Rii = 0, Rij ≤ Rik +Rkj

so it defines a metric of negative type.

Associated Euclidean Embedding

We want to represent each node i ∈ V as a vector ri ∈ RN−1 such that:
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Rij = ∥ri − rj∥2

This representation exists and is unique up to isometries, since R is a metric

of negative type. To construct it, we diagonalize the Laplacian:

L = UΛU⊤

where: - U = [u1 | u2 | · · · | uN ] is an orthogonal matrix of eigenvectors, with

u1 = 1√
N
1, - Λ = diag(0, λ2, . . . , λN ), with 0 < λ2 ≤ · · · ≤ λN .

Then the pseudoinverse is written as:

L+ = UΛ+U⊤, where Λ+ = diag(0, λ−1
2 , . . . , λ−1

N )

Embedding Construction

The embedding of each node i in RN−1 is defined as:

ri :=

(
ui2√
λ2
,
ui3√
λ3
, . . . ,

uiN√
λN

)
∈ RN−1

Here, uik is the i-th component of the eigenvector uk, and the components

associated with the zero eigenvalue have been discarded.

Then:

∥ri − rj∥2 =

N∑
k=2

(
uik − ujk√

λk

)2

= Rij

We define explicitly:

rij := ∥ri − rj∥, Rij = r2ij

thus distinguishing between: - Rij : the resistance distance (negative type met-

ric), - rij : the Euclidean distance (positive type metric).

Role of the Change-of-Basis Matrix

We define:

G := Λ+1/2U⊤ ⇒ L+ = G⊤G

Since:

Rij = (ei − ej)
⊤L+(ei − ej) = ∥G(ei − ej)∥2

the images of the vectors ei under G generate the embedding:

ri = Gei ∈ RN−1
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That is, the matrix G acts as an active change-of-basis matrix: it transforms

the canonical basis vectors {ei} into their corresponding geometric representations

ri in the Euclidean space where the metric is the square root of the resistance

distance.
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Appendix O. Hilbert Space and Position Op-

erator: Between the Graph and Physical

Space

O.1 Introduction

In this theory, the Hilbert space associated with the graph of observers is not

assumed a priori but emerges from the structure of interaction between souls.

The metric on the graph induces a distance between nodes—the resistance dis-

tance—whose square root defines a Euclidean metric in a space of dimension N−1.

This structure allows the construction of a Hilbert space with canonical inner prod-

uct and complex wavefunctions.

The goal of this appendix is to rigorously define the position operator in

this Hilbert space, establishing its relationship with the geometric coordinates of

the spectral embedding and clearly distinguishing between physical space and state

space.

O.2 Two Distinct Spaces

1. Geometric space: we denote it by RN , and its canonical basis is formed by

the vectors |n⟩, with n = 1, . . . , N . Each vector |n⟩ represents observer n as a

point-like entity. Functions defined over the nodes of the graph are expressed as

linear combinations of these vectors.

2. Emergent Hilbert space: it has dimension N − 1, and is denoted with

basis {|ei⟩}N−1
i=1 . These vectors are the nontrivial orthonormal eigenvectors of the

system’s symmetric Laplacian. It is in this space that the wavefunctions |ψ⟩ live,

and where the quantum evolution of the system is expressed.

These two bases—{|n⟩} and {|ei⟩}—must not be confused: one represents con-

crete observers, the other principal directions in state space.

O.3 Spectral Embedding and Emergent Coordinates

The spectral embedding of the graph is built from the principal eigenvectors of the

Laplacian. For each node n, we define its spectral position as:

xn = (x
(1)
n , x

(2)
n , . . . , x

(d)
n ) ∈ Rd

where x
(k)
n is the k-th component of node n in the principal direction k, ex-

tracted from the eigenvector |ek⟩.
These spectral positions define the emergent geometric space where:
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r2nm =
d∑

k=1

(
x
(k)
n − x

(k)
m

)2
≈ Rnm

that is, Euclidean distances approximate resistance distances.

O.4 Definition of the Position Operator

In the emergent Hilbert space, we can define a position operator X̂k associated

with the k-th spectral coordinate as:

X̂k =

N−1∑
i=1

x
(k)
i |ei⟩⟨ei|

This operator acts on wavefunctions |ψ⟩ ∈ CN−1, and extracts the position

component in direction k. In this formulation:

- |ei⟩ represents the i-th principal direction of the graph (not observer i), - x
(k)
i

is the spectral coordinate of node i in direction k.

O.5 Physical Interpretation

This operator should not be interpreted as a classical spatial position. It represents

a projection within Hilbert space, whose internal structure contains the system’s

geometric information. The transition to physical space—i.e., the assignment of real

spatial coordinates—occurs via the metric derived from the spectral embedding.

In particular, if the spectral dimension of the system is ds = 2, one may

work with coordinates x, y in the embedding, and recover a third coordinate z by

considering the full distance R = r2, so that physical space emerges as R3.

O.6 Conclusion

The position operator in this theory is defined on the emergent Hilbert space and

reflects the metric structure of the graph. This operator is not postulated but

derived from the interaction between souls. The distinction between geometric

space and state space is fundamental, and it enables us to understand how the

physical universe can emerge from a purely relational network.
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Appendix G. Laplacian Spectrum and En-

ergy Levels

In this appendix, we show how the proposed theory reproduces, in the case of

regular networks, the characteristic spectral behavior of known quantum systems.

Specifically, we observe how the spectrum of the Laplacian operator of the graph

generates an energy structure identical to that appearing in the Schrödinger equa-

tion for free particles.

G.1 Regular Networks and Fourier Modes

Consider a graph with N nodes arranged in a regular network, for example a

ring (circular topology), an open line (segment), or a grid with periodic boundary

conditions.

In these cases, the eigenvectors of the Laplacian are discrete harmonic functions:

the Fourier modes. For the ring, for instance, the eigenvectors are:

vn(j) =
1

√
N
e2πinj/N

and they form an orthonormal basis of the discrete Hilbert space.

G.2 Laplacian Eigenvalues

The eigenvalues of the Laplacian for different graphs are well known:

• For the ring (circular connection):

λn = 1− cos

(
2πn

N

)
• For the open line (segment with free ends):

λn = 1− cos

(
nπ

N + 1

)
In both cases, when n≪ N , the eigenvalues behave as:

λn ≈
(
2πn

N

)2

or λn ≈
(

nπ

N + 1

)2

G.3 Identification with Energy

If we identify the evolution operator as:
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H := c · L

where c is a constant (for example c = ℏ2/2m), then the Laplacian eigenvalues

are directly interpreted as energy levels:

En = c · λn ∼ c · n2

This behavior matches what is observed in quantum mechanics for particles in

a box or in a square potential well.

G.4 Wavefunction Evolution

The wavefunction can be decomposed in the Fourier basis:

|ψ(t)⟩ =
∑
n

ψ̃n(0)e
−iEnt|vn⟩

where ψ̃n(0) are the initial components of ψ in the graph’s eigenmodes.

This expression is exactly the general solution of the free Schrödinger equation

in the discrete Hilbert space that emerges from the network.

G.5 Conclusion

The energy structure of quantum mechanics does not need to be postulated: in this

theory, it emerges directly from the spectrum of the interaction graph

between souls. Quantum energies are nothing more than the natural frequencies

of oscillation of light traveling through the network.
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A Discrete Synge Function from Resistance

Distances

All modern physics begins with the idea that space is a continuous manifold en-

dowed with a metric that gives it shape. This assumption is so fundamental that

it is rarely questioned: points, distances, tangents... everything stems from it.

But in this theory, we do not assume that such a space exists. We only assume

that there are observers —or souls— and that there are relations between them,

probabilities of interaction. From those relations, we construct a graph, and its

dynamics give rise to an emergent metric. Nothing continuous, nothing absolute.

And it turns out that this metric is not just similar to that of relativity: it is

formally identical. The resistance distance between nodes satisfies exactly the same

properties as the Synge function. And if we densify the graph, we recover classical

spacetime as a special case.

That is why this is not a metaphor nor an approximation: it is a generalization.

What used to be an assumption (space as a background) is now a consequence.

In this view, space does not exist on its own: it emerges from interaction.

Differential geometry is not the starting point but the continuous limit of a deeper

relational theory.

Summary

We present a rigorous and self-contained derivation of a discrete analog of Synge’s

world function, constructed from resistance distances on a directed, weighted graph.

We demonstrate that the pseudoinverse of the Laplacian operator plays a mathe-

matically equivalent role to that of the metric tensor on a differentiable manifold,

and that the resistance-based Synge function structurally coincides with its continu-

ous counterpart. This establishes a concrete link between combinatorial Laplacians

and differential geometry.

Synge Function in Smooth Geometry

Let (M, g) be a pseudo-Riemannian manifold, and let x, x′ ∈ M be two points

connected by a unique geodesic γ(s), with γ(0) = x, γ(1) = x′. The Synge function

is defined as:

σ(x, x′) :=
1

2

(∫ 1

0

√
gµν(γ(s))γ̇µ(s)γ̇ν(s) ds

)2

In normal coordinates around x, this function expands locally as:
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σ(x, x′) =
1

2
gµν(x)(x

′ − x)µ(x′ − x)ν + o(∥x− x′∥3)

Discrete Geometry and Resistance Distance

Let G = (V,E) be a directed, weighted graph with |V | = N nodes. Let T ∈ RN×N

be a column-stochastic transition matrix, and π a stationary distribution satisfying

Tπ = π. Define Π := diag(π) and the left Laplacian:

L := (I−T)Π

Let L+ denote the Moore–Penrose pseudoinverse of L.

We define the resistance distance between nodes i, j as:

Rij := (ei − ej)
⊤L+(ei − ej)

and the discrete Synge function as:

σij :=
1

2
Rij

Structural Equivalence

The function σij satisfies:

• Symmetry: σij = σji

• Positivity: σij ≥ 0

• Diagonal nullity: σii = 0

• Quadratic form: σij = 1
2
(ei − ej)

⊤L+(ei − ej)

Let ϕi := L+ei. Then:

σij =
1

2
∥ϕi − ϕj∥2

The Metric Tensor as Operator

In smooth geometry, the Laplace–Beltrami operator is:

∂gf =
1√
|g|
∂µ
(√

|g|gµν∂νf
)

Its inverse defines a Green’s function G(x, x′) satisfying:

∥x− x′∥2 ∝ G(x, x) +G(x′, x′)− 2G(x, x′)
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Analogously, for resistance distances:

Rij = L+
ii + L+

jj − 2L+
ij

Therefore, L+ is structurally the discrete analog of ∂−1
g , and encodes geometry

in the same way that gµν does in the continuous case.

Conclusion

We conclude that:

1. The resistance distance defines a discrete Synge function σij = 1
2
Rij ;

2. The pseudoinverse of the Laplacian L+ plays the structural role of the inverse

of the Laplace–Beltrami operator;

3. Therefore, L+ acts as a discrete metric tensor, and σij as a discrete Synge

function.

This establishes a rigorous bridge between the metric notions of graph theory

and those of differential geometry.

Beyond Geometry: Space as a Network of

Relations

Classical differential geometry begins from a fundamental assumption: that the

universe is a differentiable manifold endowed with a metric tensor, which defines

distances, angles, and volumes. Physics is built upon this geometric scaffold: points,

curves, tangents, and geodesics.

In this work, we take a radical step. We show that such a geometric structure

can emerge naturally and rigorously from a purely discrete model, without assuming

continuity or coordinates. The central object is not a field on a background, but

a network of interactions among elementary entities. These relationships define a

transition matrix, whose Laplacian gives rise to an emergent metric.

In this framework, the pseudoinverse of the Laplacian operator plays exactly the

role of the metric tensor. The resistance distance, derived from this pseudoinverse,

satisfies all the structural properties of Synge’s world function in general relativity.

In the limit of dense graphs, classical geometry is recovered as a special case.

This is not an analogy. It is a generalization. In this new perspective, differ-

ential geometry is not a fundamental axiom: it is the limiting case of a more basic

relational theory. Space ceases to be a stage: it is an emergent property of the

interaction pattern between observers.

This discrete, relational, and algebraically rigorous view of geometry not only

reproduces classical relativity—it contains it.
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Appendix N. Natural Units and the Emer-

gence of c and h

N.1 Introduction

Throughout the article, we have worked in natural units, where the speed of light

c and Planck’s constant h have been set to 1. This choice simplifies the formulas

and allows focus on the mathematical structure of the model. However, to connect

this theory with the physical world and human measurement units, it is necessary

to explicitly reintroduce these fundamental constants.

In this appendix, we show how the constants c and h naturally appear in the

model’s equations when arbitrary physical units are considered.

N.2 The Constant c: Speed of Light

In this theory, light represents the fundamental particle that travels between souls.

We have defined the absolute distance Rij as the average number of instants it

takes for light to propagate from soul i to soul j. In natural units, one “instant”

lasts τ = 1, and thus the distance rij =
√
Rij is also measured in units of “natural

space.”

To generalize this to physical units, we need to introduce:

- τ : duration of an instant in seconds (s), - c: speed of light in meters per

second (m/s).

Then, the physical distance in meters between two souls is:

r
(physical)
ij = c · τ ·

√
Rij

And the absolute resistance distance is expressed as:

R
(physical)
ij = τ ·Rij

This equation shows us that the geometry of physical space emerges directly

from counting instants, once the units of time and velocity are fixed.

N.3 The Constant h: Quantization of Action

In quantum physics, Planck’s constant h relates energy to frequency:

E = hν

In our model, the Hamiltonian can be derived from the Laplacian (or its sym-

metric version) of the graph:
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H = α · L

where the eigenvalues of L have units of inverse fundamental time. To translate

this to physical energy, we set:

α =
h

τ
Then:

H =
h

τ
· L

And the time evolution of the wavefunction becomes:

|ψ(t)⟩ = e−iHt/ℏ|ψ(0)⟩ = e−i h
ℏτ

Lt|ψ(0)⟩

If working with ℏ = h/2π, then the eigenvalues of L are interpreted as angular

frequencies, and H directly acquires dimensions of energy.

N.4 Conceptual Unification

The explicit appearance of c, h, and τ allows us to reinterpret these fundamental

parameters:

• τ : minimum duration of a subjective instant (related to the temporal reso-

lution of the soul’s consciousness),

• c: speed of light propagation in the space generated by the network of ob-

servers,

• h: minimal action, associated with the elementary process of interaction

between souls.

In this model, these values are not arbitrary but emerge from the causal weave

of fundamental actions. They are the constants that translate the internal language

of the universe of souls into the measurable language of human instruments.

N.5 Conclusion

The model developed in this article can be expressed both in natural units and in

conventional physical units. The explicit appearance of c and h when translating

the equations into human measurement systems reveals the explanatory power of

the model: it not only reconstructs time, space, and mass from first principles,

but also contains within its structure the fundamental constants that govern the

physical world.
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