

European Hyperloop Week 2023 RULES AND REGULATIONS

Version 3.2

March 3th 2023

Table of Contents

1. Introduction	6
2. General Information	7
2.1. Purpose of the Document	7
2.2. Terminology	7
2.3. Eligibility	7
2.4. Liability & Safety	8
2.5. COVID-19 Situation	8
2.6. Intellectual Property of Submitted Documentations	8
2.7. Privacy	9
3. Schedule of EHW 2023	10
4. Application Categories	12
4.1. Showcase	12
4.2. Demonstration	13
4.3. Research Submission	14
4.4. Basics of the Application Process	15
4.5. Application Timeline	17
4.5.1. Application Timeline for Showcase	17
4.5.2. Application Timeline for Demonstration	18
4.5.3. Application Timeline for Research Submission	19
5. Showcase Application	20
5.1. Rules & Requirements for Showcase	20
5.2. Application Process for Showcase	20
5.2.1. Intent to Showcase (ITS)	21
5.2.2. Final Showcase Documentation (FSD)	22
5.2.3. Safety Instruction (SI)	24
5.2.4. Posters	25
6. Demonstration Application	26
6.1. Safety Considerations	26
6.2. Rules & Requirements for Demonstration	26
6.3. Application Process for Demonstration	38
6.3.1. Intent to Demonstrate (ITD)	38
6.3.2. Final Demonstration Documentation (FDD)	40
6.3.3. Testing and Safety Documentation (TSD)	42
6.3.4. Posters	44
6.3.5. Scrutineering	45
6.3.6. Procedures Check	45
7. Research Submission Application	46

7.1. Rules & Requirements for Research Submission	46
7.2. Application Process for Research Submission	46
7.2.1. Intent to Submit Research (ITSR)	46
7.2.2. Final Research Submission (FRS)	47
7.2.3. Posters	49
8. Design Competition & Awarding System	51
8.1. Introduction	51
8.1.1. General Information on the Evaluation	51
8.2. Subsystem Awards	53
8.2.1. Description	53
8.3. Complete System Design Award	54
8.4. Full-Scale Awards	55
8.4.1. General rules Full-Scale Awards	55
8.4.2. Guidelines Full-Scale Awards	56
8.4.3. Full-Scale Award - Socio-Economic Aspects of Hyperloop Systems	56
8.4.4. Full-Scale Award - Technical Aspects of Hyperloop Systems	57
9. EHW Infrastructure & Associated Requirements	58
9.1. Test Track	58
9.1.1. Test Track Specifications	59
9.1.2. Test Track Requirements	59
9.1.3. Custom Test Track Location	60
9.2. Communications	61
9.3. Transport, Storage and Lifting Requirements	61
10. Administrative Information	63
10.1. Representative of the Applicant	63
10.2. Submission of Documentations	63
10.3. Questions & Suggestions	63
10.4. Document Version and Further Updates	63
10.5. Changelog	64
11. ANNEX A – TESTING GUIDELINES	65
11.1. Purpose	66
11.2. General Safety Remark	66
11.3. Guidelines	66
11.3.1. General	66
11.3.2. Mechanical Systems	67
11.3.3. Electrical Systems	67
11.3.4. Thermal Systems	68
11.3.5. Pressurised Systems	68
11.3.6. Rotating Systems	69
11.3.7. Complete Systems & Pods	69

1. Introduction

"The European Union must reduce the emissions of the transport sector by 60% by 2050"

"Transport services represent an industry worth 664 billion euros and employ 11 million people on just one continent" - European Commission

Under this premise, four European Hyperloop teams came together to create an event that will drive the development of the Hyperloop in Europe and around the world. It aims to be an event that brings the Hyperloop community together and that focuses on the scientific exchange between all those working on the concept of the Hyperloop. On one hand, the successful transition from the concept of Hyperloop to an actually feasible system calls for all forces to work together towards a common goal, and on the other, it is essential to inspire and convince the public that this form of transport has the potential to shape the future.

The event organising Committee is comprised of four student teams of the European Hyperloop community, namely:

DELFT HYPERLOOP	Delft Hyperloop - Technische Universiteit Delft, Netherlands
HYPERLOOP EDINBURGH	HYPED - The University of Edinburgh, Scotland
4	Hyperloop UPV - Universitat Politècnica de València, Spain
swissloop	Swissloop - Eidgenössische Technische Hochschule Zürich, Switzerland

2. General Information

2.1. Purpose of the Document

This document outlines the technical aspect of the European Hyperloop Week 2023, also referred to as *EHW 2023* or *Event*.

2.2. Terminology

- For the sake of simplicity, any systems, demonstrators, or models capable of being exhibited, presented, or operated at the Event are referred to as *Systems*. Where necessary, the term *Subsystem* can also be used if, for example, a subordinate reference shall be made clear. In Chapter 9, the term *Demonstrator* is used equivalently.
- Every team, company, start-up, foundation etc. that wishes to apply for the Event is referred to as an *Applicant*.
- Every applicant that is admitted to the Event is referred to as an Exhibitor.

2.3. Eligibility

No restrictions are set with regard to who may apply to participate in the Event. Furthermore, no exceptions are made for any applicant, therefore each applicant must follow the application process and fulfil the technical requirements in order to be allowed to participate.

Additionally, there are no restrictions concerning which systems, demonstrators or models are allowed to be registered, as long as they stand in context with the Hyperloop concept. Some examples thereof might include:

- Demonstrators of subsystems, either conceptual or operational.
- Fully integrated systems, in real size or to scale, either conceptual or operational.
- Infrastructural concepts or demonstrators.
- Design concepts, either virtual or physical.
- Simulations, visualisations etc.

However, the EHW Committee reserves the right to decide who is admitted to the event and which systems are allowed to be brought along with the exhibitors to the Event.

2.4. Liability & Safety

- LS.1 Every exhibitor must sign the European Hyperloop Week 2023 Terms and Conditions of Participation (hereinafter "EHW Terms & Conditions") which regulates the administrative modalities and the framework of the EHW 2023. The applicants will receive the Terms & Conditions separately via the established communication channels.
- LS.2 Every exhibitor is required to take full responsibility for their systems even though the EHW Committee makes the final decision if a system might be brought to the Event or operated.
- LS.3 The EHW will NOT be liable for any damages incurred or incidents that may occur.
- LS.4 Every exhibitor who actively operates a system on the site of the Event will be obliged to possess a valid liability insurance that covers both personal injury and property damage at any Event venues.
- LS.5 Safety is of utmost priority at any time and every exhibitor must endeavour to guarantee that.
- LS.6 The instructions of the EHW Committee and associated personnel must always be followed. Failure to do so might result in the exclusion from the Event.

2.5. COVID-19 Situation

This version of the EHW 2023 Rules & Regulations was created with a view to organising the event with presence in the United Kingdom. As it is not possible at the time of publication of the Rules and Requirements to assess the situation in July 2023, any new measures related to COVID-19 will be released in a future amendment. The EHW Committee is certainly aware of the situation and is monitoring it closely in order to be able to react accordingly.

2.6. Intellectual Property of Submitted Documentations

The EHW Committee and all associated partners guarantee to treat the submitted documentation of the applicants confidentially and not disclose or disseminate any information from it. The EHW Committee and all persons involved in the application and evaluation process for the EHW Awards explicitly do not have any rights to the content of the documentation. Thus, the documentation submitted remains the intellectual property of the respective applicant. This intellectual property regime is also set out in the **EHW Terms & Conditions**.

2.7. Privacy

The EHW Committee guarantees to treat the personal data of the applicants confidentially, not to use them for any other purpose than for conducting the Event and not to pass them on to third parties without their consent.

3. Schedule of EHW 2023

Based on current planning, the European Hyperloop Week is scheduled for 17th-23th July 2023. The event will last for one week and will be completely dedicated to Hyperloop, Hyperloop related technologies and Hyperloop research.

The main constituents of the event will be:

Presentations:

Exhibitors will present their Hyperloop related research, prototypes and/or technology. To do so, an exhibitor must apply for one of the application categories described in Chapter 4 and follow the appropriate application process as per either Chapter 5, 6 or 7.

• Conferences:

Talks, round tables, workshops and others will be presented by industry and academia experts.

• Design Competition:

There will be a Design Competition among the exhibitors who present a system during the event. However, this will be independent from the General Showcasing and Demonstrating and not all exhibitors will be able to take part in the Design Competition. There will be a limit to the number of participants in each of the awards of the Design Competition. Systems that stand out through innovation, feasibility, technical evaluation and public appeal have the chance to win one of eight EHW awards. Details on the Design Competition can be found in Chapter 8.

It is important to point out the distinction between **Presentations** and **Design Competition** since it is a relevant update with respect to past editions of the EHW. The EHW 2023 will incorporate an option to showcase outside the Design Competition to encourage the knowledge transfer between all participants, without the need to qualify for one of the limited positions in the Design Competition.

The above-mentioned constituents will take place simultaneously throughout the week. The week itself will be arranged thematically such that presentations and conference elements dealing with similar systems or similar technologies will be held on the same day.

The weekdays will provide the opportunity to present subsystems and smaller systems which do not need large infrastructure to be operated. The spotlight during these days should be on the showcase and networking among participants, with individual presentations to the Technical Jury happening in the background for those exhibitors taking part in the Design Competition.

Towards the end of the week, extended infrastructure will be available for use such that

entire systems can be demonstrated. The infrastructure provided by the EHW Committee and its technical characteristics can be found in Chapter 9.

The conclusion of the EHW 2023 will be a public exhibition and will be the time when the EHW Design Competition awards will be presented.

More details on the event schedule will be included in future versions of the *EHW 2023 Rules & Regulations*. Be aware that the presented schedule is only a rough outline and is still subject to change. Furthermore, it will be the EHW Committee who will schedule any activities of the exhibitors, which explicitly includes the system presentations.

4. Application Categories

Technical and safety regulations for the EHW 2023 are specified according to each of three application categories. These are:

- Showcase.
- Demonstration.
- Research Submission.

They present three different levels of mandatory safety precautions which must be followed. In terms of Showcase and Demonstration of a system, it is possible to apply for an award in both categories. Although the demonstration of a system has the potential to gain slightly more points, it is possible to gain an award by only showcasing a system. Further details on the awarding system can be found in Chapter 8.

Furthermore, it is not mandatory to register for an award if an exhibitor is solely interested in showcasing or demonstrating a system or submitting research outside the Design Competition. On the contrary, it is not possible to register a certain system for an award if this very system is neither showcased nor demonstrated.

In addition, a system which involves any kind of energy conversion, usage or storage such as but not limited to:

- chemical,
- electromagnetic,
- kinetic,
- potential,
- thermal

may only be brought on site of the EHW 2023 if an application of the respective system for Demonstration was submitted to and accepted by the EHW Committee. In any other cases, a system must not contain the named energy carriers, else the applicant would need to seek special approval from the EHW Committee.

4.1. Showcase

The basic application category for the EHW 2023 is Showcase. It solely involves the presentation of a physical or virtual model of a system without operating it in any way. This reduces the necessary safety requirements to a minimum and, consequently, simplifies the application process. The minimum required content of a Showcase application must be met. The application process for Showcase is described in Chapter 5.

4.2. Demonstration

The application category Demonstration allows the physical operation of a certain system at the EHW 2023. Consequently, the necessary degree of safety precaution involved in the application process is higher than for Showcase. The minimum required content of a Demonstration application must be met. The applicant must prove that the system they want to apply for Demonstration is safe to operate. One of the core requirements to be allowed to demonstrate a system at the EHW 2023 is the previous testing of the respective system in the exact same configuration as the proposed demonstration. All systems of Demonstration applications must be thoroughly tested and evidenced.

Demonstrations shall fall in one of the three following categories:

Pod-run demonstrations:

- Can be performed on the EHW 2023 Test Track, or on a custom track, provided by the participant, suitable for the prototype pod.
- In the nominal case, this category of demonstration consists of a prototype pod that is launched down the track to accelerate and brake autonomously.

Proof-of-Concept demonstrations:

Complete pod but demonstrating the functionality of individual subsystems:

- Can be performed on the EHW 2023 Test Track, or on a custom track, provided by the participant, suitable for the prototype pod.
- In the nominal case, this category demonstrates specific functionalities of individual subsystems that are integrated within a prototype pod.
- Subsystem functionalities could include:
 - the navigation algorithm,
 - stationary levitation,
 - the control system, and
 - the braking system.

Subsystem demonstrations:

- This category demonstrates functionalities of individual subsystems. It is not mandatory for the subsystem to be part of a prototype pod.
- This could be, but not limited to, in the form of subsystem demonstration rigs, or alike.

If any of the infrastructure provided by the EHW shall be used, the requirements associated with each infrastructure must be met. Details concerning the available infrastructure are to be found in Chapter 9.

An exhibitor may use their own equipment/infrastructure for a demonstration (e.g., a custom test bench). However, any equipment/infrastructure from an exhibitor must be considered and described in the documentation, shall follow the same safety standards as the systems themselves, and will require a certification by the EHW Committee. Details on the application process for Demonstration are provided in Chapter 6.

4.3. Research Submission

Research Submission is an application category for EHW 2023 relating to the Full-Scale Awards and no other aspect of the Design Competition. The submission should consist of a single PDF document detailing the research the applicant has conducted. If the applicant chooses to present a relevant prototype to this research, then documentation for this prototype needs to be submitted as well. This should be done following the guidelines of a Showcase or Demonstration, depending on the activity the applicant aims to conduct at EHW 2023. The application process for Research Submission is described in Chapter 7.

Note that the Research Submission should be self-sufficient, meaning that the applicant should not need to present any material (prototypes, pieces of software, videos etc.) for the submission to be coherent and complete. All details of relevant additional material (e.g., design and functionality of a prototype or piece of software) should be included in the research submission itself.

4.4. Basics of the Application Process

Concerning the application process the subsequent points must be followed:

AP.1 General

- AP.1.1 Virtual participation in the Design Competition is not permitted.
- AP.1.2 Every system requires its own explicit application. This means that one applicant might register some systems for Demonstration and some for Showcase.
- AP.1.3 It is not necessary to register one system for both Showcase and Demonstration. An application for Demonstration implicitly includes an application for Showcase of the respective system as well.
- AP.1.4 Depending on the category for which the system is to be registered, the respective application guidelines must be followed. It is not necessary to follow the application guidelines for Demonstration if that system shall only be showcased.
- AP.1.5 The general concept for each system which an applicant wants to register shall be fixed in the first documentation: either ITS (Intent to Showcase) or ITD (Intent to Demonstrate). This means, adaptations of the respective system between ITS/ITD and the second documentation FSD/FDD are allowed to such extent that the basic concept is not changed. Applications that are concluded to be inconsistent with the previous documentation by the EHW Committee will be rejected.
- AP.1.6 A priority order must be added to applications from each applicant. First and foremost, applications will be reviewed and accepted based on the required minimum content and quality. In the case of many applications that successfully meet and exceed these criteria, the priority order will be used to limit the number of applications to the Design Competition. Feedback will be provided after the ITS/ITD (first documentation stage) for all applications, whether accepted or rejected. The Full-Scale Awards should not be part of this priority order, as Research Submission applications will be considered separately.

AP.2 Documentation

AP.2.1 Each application must have a completed *EHW Design Competition Application Cover Page* submitted with the first documentation (ITS/ITD/ITSR), which clearly identifies which application category and, for which awards/award category each system or work of research is to be registered. Applications lacking this information will be automatically rejected without exceptions. Use the cover page appended to this document.

- AP.2.2 If the applicant wants to apply to the EHW 2023 Design Competition with multiple systems and/or works of research, they must submit individual applications for each system and work of research. Each application must be independent of each other, and it must include all relevant information in its documentation. Referencing other joint submissions is permitted to avoid repetition. The mandatory content, as specified for the various documentations (see Chapters 5, 6 and 7), must be included in each application.
- AP.2.3 If the applicant wants to apply to the EHW 2023 Design Competition with a single system for multiple awards, the applicant must submit separate applications, each focused on the respective functionality. If the distinction between applications cannot be made, the EHW Committee reserves the right to reject the application(s).
- AP.2.4 If the demonstration of a certain system requires the active operation of other systems, such systems must be addressed in every documentation. All documentation must be approved by the EHW Committee and be in accordance with the Rules & Requirements for Demonstration (Section 6.2).
- AP.2.5 Systems or parts of a system that are not intended for demonstration or showcase as part of an application should not be included in the documentation, unless they are important to the functioning of the systems being demonstrated (e.g. a control system). In that case, however, they should be included in a concise, focused manner.
- AP.2.6 On the basis of the various submitted documents, the EHW Committee will generally not give any feedback on further improvements that would allow admission. Additionally, a request for feedback will be ignored.
- AP.2.7 However, if there is feedback from the EHW Committee, the applicant is obliged to implement/follow that feedback to ensure a successful application.
- AP.2.8 The documentation timeline as presented in Section **4.5** must be followed. Failure to do so may result in the exclusion from the EHW 2023.
- AP.2.9 All documentation shall be established as a *Formulated Engineering Documentation*, meaning that they are developed, written documents and consequently are not in presentation or slides format. The EHW Committee may reject applications that are inadequately written.
- AP.2.10 All the represented data (i. e. Figures) must be own-referenced or the external reference must be explicitly stated. All graphs must have legible axis titles and legends (preferably with the same font type and size as the text) and with a common format throughout the document.
- AP.2.11 All documents and deliverables the applicant provides to the EHW should be written in English.

AP.3 Registration for Awards

- AP.3.1 The relevant award for each application must be defined in the first documentation. However, registering for an award is not mandatory, and if the award is not stated this application will be processed as a showcase, demonstration or research submission outside the Design Competition.
- AP.3.2 Every system or work of research that is to compete for an award must first be registered and accepted for either showcase, research submission, or demonstration.

4.5. Application Timeline

Please note that each date mentioned below that is not specified in detail, will be announced at a later date.

4.5.1. Application Timeline for Showcase

The application process for Showcase consists of three stages. However, the applicant will receive the final acceptance or rejection for their application after the first stage. The second stage is primarily used for operational reasons for the Event and to register the respective system for an award. The last stage is simply the submission of the required Transport, Lifting and Safety Procedures.

Due Date	Action	Who
15 December 2022 23:59 CET	Submission of <i>Intent to Showcase</i>	Applicant
January 2023	Applicant receives the acceptance or rejection for the applied Showcase	EHW Committee
17 March 2023 23:59 CET	Submission of <i>Final Showcase Documentation</i>	Applicant
9 June 2023 23:59 CEST	Submission of Safety Instruction	Applicant
Late June 2023	Submission of <i>Posters</i>	Applicant
Before EHW 2023	Further information concerning the event week provided to the exhibitor	EHW Committee
17-23 July 2023	European Hyperloop Week	

Table 4.1: Application timeline for Showcase

4.5.2. Application Timeline for Demonstration

The application process for Demonstration is a three-stage process as well. Since an application for Demonstration is simultaneously also an application for Showcase, the applicant will get a final acceptance or rejection for Showcase already after the first stage.

In order to qualify for Demonstration, the applicant must pass all three stages successfully. However, the successful pass of all three stages is not a final guarantee that a demonstration will be permitted, since the EHW Committee has the right to prohibit a demonstration at any point of time.

If a demonstration were to be denied by the EHW Committee at any point after the successful completion of the first stage, the applicant may still showcase their system as successfully passing the first stage implies acceptance for Showcase. Should this occur, the applicant may be required to submit a *Final Showcase Documentation* (second stage of Showcase qualification) even if the corresponding deadline has already passed.

Due Date	Action	Who
15 December 2022 23:59 CET	Submission of Intent to Demonstrate	Applicant
January 2023	Applicant receives:	EHW Committee
17 March 2023 23:59 CET	Submission of <i>Final Demonstration Documentation</i>	Applicant
May 2023	Applicant receives notification if successfully qualified for the next step in the Application for Demonstration	EHW Committee
9 June 2023 23:59 CEST	Submission of <i>Testing and Safety Documentation</i>	Applicant
Late June 2023	Submission of <i>Posters</i>	Applicant
Before EHW 2023	 Applicant receives notification if successfully qualified for Demonstration Further information concerning the event week will be provided to the exhibitor 	EHW Committee
17-23 July 2023	European Hyperloop Week	

Table 4.2: Application timeline for Demonstration

4.5.3. Application Timeline for Research Submission

The application process for Research Submission consists of two stages. The applicant will receive the final acceptance or rejection for their application after the first stage. The second stage of the application process consists of submitting the work of research itself.

If the applicant chooses to present a prototype along with their Research Submission, then the application process for Showcase or Demonstration needs to be followed separately for said prototype.

Due Date	Action	Who
15 December 2022 23:59 CET	Submission of Intent to Submit Research	Applicant
January 2023	Applicant receives the acceptance or rejection for the applied Research Submission	EHW Committee
9 June 2023 23:59 CEST	Submission of <i>Final Research Submission</i>	Applicant
Late June 2023	Submission of <i>Posters</i>	Applicant
Before EHW 2023	Further information concerning the event week provided to the exhibitor	EHW Committee
17-23 July 2023	European Hyperloop Week	

Table 4.3: Application timeline for Research Submission

5. Showcase Application

As stated in Chapter 4.1 the application of a system for Showcase shall be considered if the applicant intends to solely present the system at the EHW 2023 without operating it.

5.1. Rules & Requirements for Showcase

In order to receive the permission for a showcase at the EHW 2023, the applicant must follow the following rules:

- SC.1 The system is powerless.
- SC.2 No kind of potential, kinetic, chemical or electromagnetic energy stored in, on, within or around the system (thus especially no batteries within the system). This includes that no kind of the mentioned energy storages are allowed on the site of the EHW 2023.
- SC.3 The exhibitor needs to sign the **EHW Terms & Conditions**. Therefore, they take full responsibility for any damage, incident, or accident caused to or by an exhibitor's system.
- SC.4 Any further low power devices or appliances that are not part of the system and only intended for visual display or presentation purposes (i.e., LEDs, lights, monitors) must also be mentioned and highlighted in the Showcase application and can be powered on site if approved by the EHW Committee.
- SC.5 The requirements for Transport, Storage and Lifting as specified in Section 9.3 must be followed.

5.2. Application Process for Showcase

In order to get the approval for a Showcase at the EHW 2023, the applicants shall document the respective systems by submitting the three required documents in PDF form by the indicated deadlines. Failure to do so will result in an unsuccessful application. For details on the submission itself refer to Chapter 10.2.

5.2.1. Intent to Showcase (ITS)

This document is used as a first application for the EHW 2023. It shall contain the types of showcases that the exhibitor intends to do and further provide a brief overview of the status and upcoming steps of the respective system. The applicant is reminded to complete AP.2.1 at this documentation stage.

- ITS.1. Due: 15 December 2022, 23:59 CET via this form.
- ITS.2. Every ITS starts with this cover page filled in.
- ITS.3. **Document format:** Formulated engineering documentation (see **AP.2.9**). Preferably using bullet points, tables, and descriptive images.
- ITS.4. **Document scope:** Generally, no limitation; maximum of 10 pages per system, excluding citations, index or a cover page.

ITS.5. Minimum content:

ITS.5.1. General:

- ITS.5.1.1. Description of the applicant and updated list of team members.
- ITS.5.1.2. Details on the development environment and the research objectives.
- ITS.5.1.3. Determination of one representative who will be in correspondence with the EHW Committee.
- ITS.5.1.4. The Design Competition Award for which this application is registered.

ITS.5.2. System:

- ITS.5.2.1. Technical description of the system to be showcased:
 - ITS.5.2.1.1. Desired functionality, and principal physics of its functionality.
 - ITS.5.2.1.2. Constraints (mass, dimensions and budget).
 - ITS.5.2.1.3. Initial concepts and Free Body Diagram.
- ITS.5.2.2. Size, components, appearance of the system (CADs, if available at this stage).
- ITS.5.2.3. Integration of the system into a subordinate structure/system (if applicable).
- ITS.5.2.4. Key elements and features of the system.
- ITS.5.2.5. Description of how the system will be showcased (physical prototype, virtual models, etc.).

ITS.5.3. Safety:

ITS.5.3.1. Precautions taken in order to comply with the Rules & Requirements for Showcase.

ITS.5.4. Other:

ITS.5.4.1. Clear outline of content that will be presented in the FSD.

5.2.2. Final Showcase Documentation (FSD)

With this document, the applicants shall give further exact details of the system they want to showcase at the EHW 2023. Content-wise, it is similar to the Intent to Showcase and shall provide additional insight into the development of the respective systems. Although the final acceptance or rejection of the application for showcase already happens after the ITS, the FSD is of the same importance and failure to submit the FSD will result in an unsuccessful application.

The EHW Committee reserves the right to reject an application if the FSD does not meet expectations or if it differs greatly from the ITS.

Most importantly, the applicant shall state in the FSD which award the system shall be registered for, in the case that the application is withdrawn, but the Award for which this application was registered for in the ITS cannot be changed.

- FSD.1. **Due:** 17 March 2023, 23:59 CET.
- FSD.2. **Document format:** Formulated engineering documentation (see AP.2.9).
- FSD.3. **Addendums:** Applicants have until 15 April 2023, 23:59 CET, to send in an addendum to their FSD. Only minor, inevitable changes related to force majeure limitations will be accepted. Said limitations must be explicitly stated in the addendum.

FSD.4. Minimum content:

FSD.4.1. General:

- FSD.4.1.1. Description of the applicant and updated list of team members, advisors and industry partners.
- FSD.4.1.2. Details on the development environment and the research objectives.
- FSD.4.1.3. Definition of budget, funding and method of manufacturing (in-house, outsourced, or combination).

FSD.4.1.4. The Design Competition Award for which this application is registered for, in the case that the application is withdrawn, but the Award for which this application was registered for in the ITS cannot be changed.

FSD.4.2. System:

- FSD.4.2.1. Technical description of the system to be showcased:
- FSD.4.2.1.1. Detailed explanation of theory and principle physics of desired functionality.
- FSD.4.2.1.2. Description of design process taken.
- FSD.4.2.1.3. Free Body Diagrams to define load cases for simulations (if applicable).
- FSD.4.2.1.4. Evidence of simulations validating the theory, and detailed analysis of results (if applicable).
- FSD.4.2.2. Size, components, appearance of the system:
- FSD.4.2.2.1. Evidence of CAD models. Technical drawings of the complete system may be used to illustrate dimensions, but they should not be included for individual components of the system.
- FSD.4.2.3. Integration of the system into a subordinate structure/system (if applicable).
- FSD.4.2.4. Detailed plan of the showcase, specifying the needed equipment and infrastructure (both expected to be provided by the EHW and brought by the team):
- FSD.4.2.4.1. Parts list (including dimensions and mass), in tabular format. Please identify which parts are made in-house or outsourced from an external supplier.
- FSD.4.2.4.2. Images, or CAD renders, of the showcase setup including all parts of the system that will be brought to the EHW 2023.

FSD.4.3. Safety:

- FSD.4.3.1. Technical description of the system to ensure compliance with the Rules & Requirements for Showcase (see Section 5.1).
- FSD.4.3.2. Preliminary risk assessment for Showcase, including transport and lifting procedures.

FSD.4.3.3. Requirements for transport, storage and lifting as defined in Section **9.3**, especially TS.4.

5.2.3. Safety Instruction (SI)

In order to comply with the requirements for transport, storage and lifting as specified in Section 9.3 the applicant must establish procedures for those actions. These procedures shall be submitted in the last stage of the application process for Showcase. Furthermore, if the system utilises a transport cart to be transported, this must be tested according to TS.2 in Section 9.3. Evidence of this test shall be included in the Safety Instruction as well.

SI.1. Due: 9 June 2023, 23:59 CEST.

SI.2. Minimum content:

SI.2.1. Required Procedures:

- SI.2.1.1. Revised and further detailed risk assessment for Showcase.
- SI.2.1.2. Transport procedure.
- SI.2.1.3. Lifting procedure.

SI.2.2. Safety Requirements:

- SI.2.2.1. Test evidence of the transport cart for the system according to **TS.2** (if applicable).
- SI.2.2.2. Requirements for transport, storage and lifting as defined in Section 9.3.

SI.2.3. Detailed plan of the showcase:

SI.2.3.1. List, in tabular format, of which parts are needed in each venue on each day of EHW 2023. Reference the list of parts submitted in the FSD, since no changes are allowed. The week schedule will be released prior to this submission.

5.2.4. Posters

All successful applicants must bring to EHW a poster with a minimum content and format requirement. One poster shall be made per showcase submission. More information and the poster template will be provided by the EHW Committee closer to the event dates in further versions of the EHW 2023 Rules & Regulations. All exhibitors must follow the minimum content requirements outlined below, or bring their own medium for showcasing which must be previously approved by the EHW Committee prior to the event

- SP.1. **Due:** Late June 2023.
- SP.2. **Minimum content:** The poster should summarise and reflect information included in the FSD.

SP.3. Required format:

- SP.3.1. Minimum size A2.
- SP.3.2. PDF, SVG, AI or EPS format.
- SP.3.3. 300 dpi (dots per inch) or fully vectorized.
- SP.3.4. CMYK colour mode.
- SP.3.5. Bleed and registration marks for correct guillotining must be included in the final delivery.

6. Demonstration Application

As stated in Chapter 4.2 the application for Demonstration shall be considered if the applicant intends to operate a system at the EHW 2023.

Every applicant who wishes to register a system for demonstration at the Event shall read the following subchapters carefully and check if they can meet the requirements, with special emphasis to all the safety precautions. If the applicant fails to fulfil even one point for a certain system, then the particular system will not be permitted for a demonstration. If a demonstration application is rejected but the requirements for showcasing are fulfilled, the applicant may still showcase their system.

6.1. Safety Considerations

It must be understood that the operation of any system requires a significant amount of understanding of the respective system. Safety must be guaranteed at all times and the EHW Committee will only allow a demonstration if it is convinced of the system's safety. Thus, the applicant is expected to put in significantly more effort into the application process, the documentation and the testing of a system compared to showcasing.

Most importantly, no demonstration will be permitted if the systems involved in the demonstration have not been tested prior to the EHW 2023 by the applicants themselves. Furthermore, the conducted test results and methodology must be provided to the EHW Committee prior to the event. This means that there will NOT be the possibility to test the systems on site but just to demonstrate what has already been tested. Additionally, there will NOT be the opportunity to prove a system's functionality on site and be allowed for a demonstration at the last minute. Thus, if a certain system has not been approved for a potential demonstration prior to the Event, it cannot qualify to do so during the Event.

6.2. Rules & Requirements for Demonstration

In order to receive the permission for a demonstration at the Event, the applicant must follow the following rules:

DM.1 General:

DM.1.1 The applicant must specify the subsystem(s) intended for demonstration and the manner in which they are to be operated. If an entire system is to be demonstrated, specifications for the operation of the entire system must be provided.

- DM.1.2 In order to be approved for the desired demonstrations within this category, detailed technical documentation and proof of testing/functionality of the respective systems must be provided prior to the Event, according to the timeline prescribed in the previous Sections. Any testing between this deadline and the Event will be ignored. The technical documentations are the sole measure for admitting an exhibitor to demonstrate, and the EHW Committee will not retrospectively provide feedback on further improvements that would allow admission.
- DM.1.3 In general, it is to be understood that it is NOT the EHW Committee that checks the safety of a system, but instead, it is the exhibitor who needs to prove to the EHW Committee of the system's safety in order to be allowed for a demonstration. Hence, no exact guidelines on what the documentation must contain are provided. The EHW Committee will consequently decide upon what the exhibitor is allowed to demonstrate and when to do so.
- DM.1.4 Every application for Demonstration is simultaneously also an application for Showcase. In case an application for demonstration of a system is denied, showcasing will still be permitted provided that the conditions for the Showcase category are fulfilled.

DM.2 Technical Documentations:

- DM.2.1 If the demonstration of a certain system/subsystem requires the active operation of other subsystems, they must be accounted for as well in every documentation and be described in the same depth. If one subsystem among multiple necessary to conduct a demonstration is considered as unsafe, the demonstration will be prohibited.
- DM.2.2 The handling of high power systems, especially for electromagnetic braking and propulsion systems, should be worked out in detail and tested properly.
- DM.2.3 Electromagnetic systems potentially involve a great amount of thermal and electric energy. The affected teams shall focus especially on the processing and handling of the energy involved. They need to document and test such systems extremely precisely and thoroughly.

DM.3 Proof of functionality (Testing)

- DM.3.1 Demonstrations are explicitly not to be used as tests. Every intended demonstration must be tested by the exhibitor prior to the event in order to be allowed to conduct it. This means that demonstrations may only be conducted in the exact same configuration of the system with the same set of parameters as it was tested before.
- DM.3.2 If the participant wants to perform a longer pod run demonstration in the EHW 2023 event due to having a shorter test track at home, (meaning a change in the *exact same configuration of the system* tested at its home facilities), proof of the safety of the system at the expected conditions will have to be provided along the submitted documents.

The expected maximum speed in the longer track will have to be provided, and all other systems will have to be tested to ensure they are fully functioning at this higher speed. Numerical calculations and simulations will not be accepted as a means of "testing", and static tests at nominal power will have to be carried out to check all parts are safe for as long as the pod run will last. Information such as simulations, dynamic prediction of the velocity profile, power consumption, tests of the systems at the predicted maximum speed, thermal management of the onboard systems and other key aspects will have to be provided in a detailed manner in order to prove the safety of the prototype.

- DM.3.3 The testing results, together with the testing methodology must be described in the Testing and Safety Documentation (see Section 6.3.3). Any deliberate manipulation or wrong presentation of testing results, testing methods or equivalent will lead to the immediate ban from the Event.
- DM.3.4 All critical subsystems, as well as system setpoints utilised during the proof of functionality, must be documented (e.g., pressure, current, voltage etc.).
- DM.3.5 Industrial components do not need to be tested individually if they are operated within their authorised range and if they are not manipulated to alter its functionality in any way.
- DM.3.6 The system must be tested in the complete configuration with all components attached, just as it is intended to be operated in the demonstration.
- DM.3.7 For pod demonstrations on the test track, the first points of contact need to be properly defined. Also, they need to be of significantly softer material (only material softer than 6082 T6 Aluminium) than the test track. It has to be proven by all teams that any parts that will (potentially) be in contact with the test track will not harm it.

- DM.3.8 Low voltage systems are considered to be under 50 V. Demonstrators above said voltage are required special safety measures, such as the definition of safe/clear zones during the operation, the explicit statement of which individuals are allowed and trained to handle the demonstrator during its operation and the use of PPE:
 - DM.3.8.1. Safety glasses with side shields.
 - DM.3.8.2. Suitable footwear (safety/steel-toed boots, rated dielectric footwear).
 - DM.3.8.3. Insulating gloves (rated, used along with leather/cloth linings for shock protection).
 - DM.3.8.4. Insulated tools.
- DM.3.9 At all times when participants are working with either their pod or track, proper safety equipment must be worn. (e.g., High visibility jacket, steel-toed boots, safety glasses and safety helmet). Participants are responsible to bring their own equipment.

DM.4 Design and Demonstration specifications:

DM.4.1 System outline:

- DM.4.1.1. Pods considered in the Complete System category (see Chapter 8.3) should range between 1 and 5 metres length. Similarly, all the demonstrators intended to be operated during the Event must have a maximum characteristic length of 5 metres.
- DM.4.1.2. A detailed concept sketch of the demonstration set up and operation of the system during the demonstration must be proposed in the Intent to Demonstrate, developed in the Final Demonstration Documentation and detailed in the Testing and Safety Documentation.

DM.4.2 Mechanical:

- DM.4.2.1. The structural design guidelines must be given and developed in a brief manner in the Intent to Demonstrate, detailed in the Final Demonstration Documentation and proved in the Testing and Safety Documentation.
- DM.4.2.2. The safety factor of all the structural elements in the worst-case scenario must be **higher than 2**.

- DM.4.2.3. If applicable, any pneumatic or pressurised fluid circuit must be drawn with accompanying specifications, and all the vessels and enclosures must be marked with a certification nameplate, with all the certified maximum allowable pressure (MAWP) ratings being provided.
- DM.4.2.4. If applicable, the operating conditions of the pressurised systems must meet the certified ratings with a **safety factor higher than 2.**
- DM.4.2.5. Rotational systems must be balanced to avoid inertial asymmetry. This process must be explicitly stated and justified.
- DM.4.2.6. Bearings and wheel contact surfaces must be developed to withstand the rotational speeds, as well as frictional head loads and deformations. The worst-case scenarios considered in the simulations and design criteria must be explicitly stated in the documentation.

DM.4.3 Braking system:

- DM.4.3.1. The pod should have an emergency braking system.
- DM.4.3.2. In the neutral, not powered state the emergency braking system should be applying the required braking force for an emergency stop at maximum speed.
- DM.4.3.3. The emergency braking mechanism should be automatically activated when the power or a control signal to the braking activation actuator is interrupted.
- DM.4.3.4. The safety margin to the end of the track must be at least the worst-case scenario emergency distance at maximum speed of the pod.
- DM.4.3.5. The emergency braking mechanism should be automatically activated when the pressure of a hydraulic or a pneumatic braking system drops beneath the minimum required braking pressure for stopping the pod within the minimum stopping safety margin.
- DM.4.3.6. The braking forces should be in a symmetrical manner so that the net braking force is zero in all directions except opposite the direction of travel.
- DM.4.3.7. All braking power calculations and specifications must ensure a safe stop within the worst-case emergency

- braking distance in case of any failure of the system or any integrated subsystem.
- DM.4.3.8. If the braking system is electromagnetic, the handling of generated/recuperated electrical energy must be precisely tested and documented.
- DM.4.3.9. The handling of generated/recuperated energy must be precisely tested and documented.
- DM.4.3.10. All risks of damaging the EHW infrastructure, if used, must be discussed and completely mitigated. Any damage to the EHW infrastructure during the demonstration will result in the exclusion of the Exhibitor from the Event, with no eligibility to any of the awards.

DM.4.4 Electrical (batteries):

- DM.4.4.1. Specifications of batteries must be given.
- DM.4.4.2. The battery management system fault must be tolerant to avoid overcharging.
- DM.4.4.3. The battery management system must isolate the battery in over-temperature conditions.
- DM.4.4.4. The positive and negative terminals of the batteries must be prevented from being connected (shorted).
- DM.4.4.5. A battery pack is defined as a single enclosed collection of batteries.
- DM.4.4.6. If the battery pack voltage is above 50V, a Manual Isolation Disconnect (or Manual Service Disconnect) must be installed, isolating at least one pole of the pack without opening a contactor or relay.
- DM.4.4.7. If the battery pack voltage is above 50V, the following parameters must be reported to the operator:
 - DM.4.4.7.1. State of charge.
 - DM.4.4.7.2. Pack voltage and current.
 - DM.4.4.7.3. Cell temperature of at least 25% of all cells inside the pack.
 - DM.4.4.7.4. Minimum, and maximum cell voltages.
- DM.4.4.8. All conductors on electronics above 50V must be concealed.

- DM.4.5 Electrical (drivetrain Battery Packs above 50V and 20A):
 - DM.4.5.1. All protections specified on the requirements should be implemented by hardware in order to minimise possibility of failure.
 - DM.4.5.2. A Manual Isolation Disconnect (MID) must be installed, featuring
 - isolation of at least one pole of the battery pack when removed.
 - placement in the high current line,
 - independence of low voltage electronics,
 - removability without any tools,
 - accessibility if the pod/subsystem is stuck,
 - accessibility without removing any other parts of the pod/subsystem,
 - positive locking mechanism preventing disconnection through external forces,
 - no conducting surfaces other than the electrical connection.
 - DM.4.5.3. For each pack, at least two independent, normally open relays must be installed, featuring
 - opening of both high and low pole of the battery pack,
 - completely isolating the pack when open (i.e. no electric potential outside the pack),
 - adequate rating for the expected power.
 - DM.4.5.4. For each pack, at least one fuse with a lower rating than the maximum break current of the relay must be installed.
 - DM.4.5.5. For each pack, a battery management system must be installed, featuring
 - balancing of all cells (active or passive),
 - reporting of state of charge, pack voltage and current, cell temperature for at least 25% of all cells inside the pack.
 - voltage of every cell connected in series.
 - DM.4.5.6. In case of at least two (2) drivetrain packs, a Manual Relay Disconnect must be installed, cutting low voltage power or signal lines to all isolation relays in all drivetrain packs. This can be in the form of a switch, button or similar.
 - DM.4.5.7. If a high capacitance load is connected to the battery pack, a proper pre-charge circuit must be in place inside the pack.

DM.4.5.8. All the cables must be rated for the maximum system voltage.

DM.4.5.9. The cables:

- DM.4.5.9.1. Must be visually distinguishable for low and high sides.
- DM.4.5.9.2. Must be physically segregated from low-voltage cables (excluding interlock circuit connections) by at least 25 mm.
- DM.4.5.9.3. Must be coloured orange when carrying voltages above 120V.
- DM.4.5.10. The pack must satisfy electrical breakdown clearance dictated by the Paschen Curve, i.e., any exposed conductors must be separated by at least twice the minimum arcing distance, accounting for maximum mechanical flex and vibrations.
- DM.4.5.11. Each pack must feature a separate Insulation Monitoring Device, monitoring high-to-chassis and low-to-chassis insulation.
- DM.4.5.12. Visual indications (e.g., LEDs) must be placed, signalling
 - presence of high voltage on the connectors (i.e., relays closed),
 - proper insulation.

Said visual indications shall be visible without removing any mechanical components. Visual indications signalling presence of voltage at pack connectors shall not be controlled through software, power shall come directly via hardware and/or circuitry connected to the system.

DM.4.6 Magnetics

- DM.4.6.1. Permanent magnets require careful operation. Teams using them shall implement a detailed description of a system for demounting and/or covering the magnets.
- DM.4.6.2. The magnetic flux density cannot exceed 1 mT anywhere on the surface of the cover or storage box of any permanent magnet.

DM.4.6.3. The magnetic flux density cannot exceed 0.5 mT at a distance of one metre or more from the pod's outer perimeter.

DM.4.7 Navigation control:

- DM.4.7.1. If applicable, the speed of the Demonstrator must be monitored during the demonstration.
- DM.4.7.2. The emergency braking must be accessible by the person monitoring the speed.
- DM.4.7.3. A Stop Command must be implemented, such that the Demonstrator/Subsystem can be commanded to come to a safe stop. For pods, this doesn't have to be the same physical mechanism as for standard braking.
- DM.4.7.4. Demonstrator health should be quickly assessed by an external viewer (see **DM.4.5.11**).

DM.4.8 Software:

- DM.4.8.1. A state machine diagram must be provided, listing all software states and their interconnecting transitions.
- DM.4.8.2. It should not be possible in any state for the emergency brakes and propulsion system to be powered at the same time.
- DM.4.8.3. In the **FDD** a table of all requirements should be given. In this document it is explained how to set up good requirements.
- DM.4.8.4. For any case when a value goes out of the required range, a safety procedure should be available and described in the **FDD**.
- DM.4.8.5. A graphical user interface must be implemented in order to visualise in real time all the data requested on the requirements.
 - DM.4.8.5.1. A diagram of the system architecture and implementation of the Graphical user interface should be included in the **FDD**.
 - DM.4.8.5.2. A correct error detection and notification mechanism should be implemented. Any error on the vehicle should be visualised on the Graphical user Interface including cause and timestamp.

- DM.4.8.5.3. Logging of all the data (together with its timestamps) on the requirements is compulsory. Data should be stored from the moment the vehicle is turned on and presented immediately after the demonstration to the jury in order to avoid data manipulation.
- DM.4.8.5.4. Latency of the data shown on the Graphical user interface should be less than 100 milliseconds, in order for the emergency procedures and orders to be sent on time in case of an emergency not detected by the vehicle.
- DM.4.8.5.5. Latency of the orders sent to the prototype must be less than 100 milliseconds in order to ensure correct response.
- DM.4.8.5.6. Data should be refreshed on the monitoring application with a minimum frequency of 2 Hz (refresh rate should be measured and monitored).
- DM.4.8.6. In the **FDD** the scenarios should be given clearly for powering up the pod, accelerating the pod, decelerating the pod, the emergency braking of the pod and powering the pod down.
- DM.4.8.7. All the source code made by the team will be uploaded to a github repository provided by the EHW. It will be handed in addition to the **TSD**.
- DM.4.8.8. The state transition tables and requirements table should also be updated if applicable and presented in the **TSD**.
- DM.4.8.9. After the **TSD**, the team will have to justify any change they want to make, always oriented to improving the safety of the system and not adding any new functionality. The EHW reserves the right to have the participant set the software back to the **TSD** version.
- DM.4.8.10. A team has to ask explicit permission from the EHW to change software during the EHW.

DM.4.9 Communications

- DM.4.9.1. The Applicant must include mechanisms that bring the Demonstrator to a safe state in case of loss of communication.
- DM.4.9.2. The Applicant can only use frequency ranges shown in Table 6.1.

Number	Frequencies	Power	Bandwidth	Duty cycle	Remarks
Α	472 - 479 kHz	7 dBμA/m at 10 m			
В	1.81 - 1.85 MHz	7 dBμA/m at 10 m			
С	1.85 - 2 MHz	7 dBµA/m at 10 m			
D	3.5 - 3.8 MHz	42 dBµA/m at 10 m			
E	5.3515 - 5.3665 MHz	42 dBµA/m at 10 m			
F	7 - 7.2 MHz	42 dBµA/m at 10 m			
G	10.1 - 10.15 MHz	42 dBµA/m at 10 m			
F	14 - 14.35 MHz	42 dBµA/m at 10 m			
ı	18.068 - 18.168 MHz	10 mW e.r.p, 42 dBμA/m at 10 m			
J	21 - 21.45 MHz	10 mW e.r.p, 42 dBμA/m at 10 m			
K	24.89 - 24.99 MHz	10 mW e.r.p, 42 dBμA/m at 10 m			
L	28 - 29.7 MHz	100 mW e.r.p.			
М	50 - 52 MHz	10 mW e.r.p.			
N	68 - 70.5 MHz	10 mW e.r.p.			
0	144 - 146 MHz	10 mW e.r.p.		Duty Cycle limit < 1.0 %	
Р	430 - 440 MHz	10 mW e.r.p.		Duty cycle limit ≤ 10%	
Q	1.24 - 1.35 GHz	10 mW e.i.r.p.			
R	2.3 - 2.302 GHz	10 mW e.i.r.p.			
S	2.39 - 2.45 GHz	10 mW e.i.r.p.			
Т	5.65 - 5.85 GHz	25 mW e.i.r.p			
U	10 - 10.475GHz	25 mW e.i.r.p			
V	24 - 24.25 GHz	100 mW e.i.r.p.			
W	47 - 47.2 GHz	100 mW e.i.r.p.			
Х	75.5 - 81 GHz	100 mW e.i.r.p.			
Y	122.25 - 123 GHz	100 mW e.i.r.p			
Z	134 - 141 GHz	100 mW e.i.r.p			
AA	241 - 250 GHz	100 mW e.i.r.p.			

#Table 6.1: Available frequencies for communication in the UK (source: http://static.ofcom.org.uk/static/spectrum/map.html). Limitations to Power, Bandwidth and Duty Cycle will be released at a future date.

DM.4.9.3. Connections are restricted to the IP address of the EHW internal networks, and further details will be given after the acceptance of the Applicant as an Exhibitor.

DM.4.10 Custom Track

- DM.4.10.1. The custom track is limited to a maximum length of 50 metres.
- DM.4.10.2. The custom track should be provided with sufficient electrical grounding, to prevent harm or injury to people.

- DM.4.10.3. The custom track should be fitted with a physical stop at the end of the track that is able to withstand the impact of the pod hitting it at maximum speed.
- DM.4.10.4. The pod should not be able to leave the track during a run.
- DM.4.10.5. The custom track is not able to move during a run, due to forces exerted on it. This should be done by properly attaching to the ground by anchoring it.
- DM.4.10.6. The design of the custom track should be analysed to withstand an external temperature difference of ±20°C without impacting the structural integrity or affecting the alignment in such a way that it impacts the motion of the pod.
- DM.4.10.7. With prior approval of the EHW Committee, it is possible to drill into the ground.
- DM.4.10.8. Add rules for fire safety inside of tubes!!!, make sure a team can extinguish a fire inside of a tube.

DM.5 Conduction of Demonstrations:

- DM.5.1 Prior to a demonstration, the EHW Committee (and associated personnel) is allowed to inspect the system. If the inspection reveals any issues, the demonstration can be denied.
- DM.5.2 The operation of any system during a demonstration must be performed according to a set of procedures, which need to be established by the exhibitor and approved by the EHW Committee prior to the Event.
- DM.5.3 The demonstrations can take place at the university campus or at the test track, and depending on the type of demonstration, time frames for the demonstrations will be assigned by the EHW Committee.

DM.6 Transportation, Storage and Lifting:

DM.6.1 The requirements for Transportation, Storage and Lifting as defined in Section 9.4 must be met.

DM.7 Vacuum chamber test

DM.7.1 Test Outline:

DM.7.1.1. In order to prove vacuum compatibility of the systems with a near vacuum environment, the possibility of performing a

vacuum chamber test is provided by the EHW. The EHW Committee has found a location in Glasgow where this test can be performed during the competition itself.

- DM.7.1.2. Due to the limited dimensions of the vehicles that can fit inside this chamber and the long distance between Edinburgh and Glasgow, it has been decided to also allow the test to be performed by the teams prior to the competition in a vacuum chamber of their own choice. Both tests, either prior to the competition or at the EHW provided vacuum chamber, will share the same characteristics.
- DM.7.1.3. The test will only be assessed to determine the vacuum compatibility of the (sub)system. The (sub)system still has to be demonstrated at the EHW to be considered as a successful demonstration.

DM.7.2 Vacuum test characteristics

- DM.7.2.1. The test must be performed at a maximum pressure of 200 mbar.
- DM.7.2.2. The pod must stay under these conditions for at least 3 minutes.
- DM.7.2.3. At least one subsystem (braking mechanism, propulsion, levitation, etc.) should be demonstrated.

DM.7.3 Documentation of results

To ensure the integrity of the test performance, a series of procedures must be followed. The documentation of the results must be provided to the EHW prior to the event. For the test performed during the competition week itself, more information will follow.

- DM.7.4 **Due date:** 1 July, 2023, 23:59 CEST.
- DM.7.5 **Document format:** Formulated engineering documentation (see AP.2.9).
- DM.7.6 **Document scope:** The document should contain at least a description of the elements involved in the vacuum chamber test, the setup, procedures followed and a discussion of the results.
- DM.7.7 Additional documentation: Continuous audio visual proof must be presented showing the full duration of the test where the subsystem is being demonstrated. Adhering to TSD.3.3.1, TSD.3.3.2 and TSD.3.3.3. This means the video starts when the pressure inside the chamber is atmospheric and it ends after the chamber has been brought back to atmospheric pressure again after the test. At least the following videos must be presented:

- DM.7.7.1. The vacuum chamber and at least 1 barometer.
- DM.7.7.2. The pod/subsystem performing the test in the vacuum chamber.
- DM.7.7.3. The relevant data gathered from the sense and control system of the pod.
- DM.7.8 **Disclaimer:** The EHW jury reserves the right to not award any points to this test if the vacuum test characteristics are not met or if there are any doubts about the integrity of the test results provided. It is for the team to prove that the vacuum test occurred successfully.

DM.8 Liability:

- DM.8.1 Every exhibitor is obliged to possess a valid liability insurance that covers both personal injury and property damage at all the EHW 2023 venues.
- DM.8.2 The exhibitor needs to sign the **EHW Terms & Conditions**. This contains among other things that the exhibitor takes full responsibility for the operation of all systems. Thus, although the EHW Committee makes the fundamental decision for a go or no go of a demonstration, any damage, incident, or accident caused by or to an exhibitor's system is solely their responsibility.
- DM.9 The EHW Committee explicitly reserves the right to impose **further restrictions** on any demonstration in whatever form (power, force, duration, speed, etc.), and is allowed to change or prohibit demonstrations at any point.

6.3. Application Process for Demonstration

In order to get the approval for a Demonstration at the Event, the applicants shall demonstrate their understanding of subsystems with the following documents that are to be submitted in PDF format by the indicated deadlines. Failure to do so might result in the exclusion of the Event. For details on the submission itself refer to Chapter 10.2.

6.3.1. Intent to Demonstrate (ITD)

This document is used as a first application for the Event. It shall contain the types of demonstrations that the exhibitor intends to do and further provide an overview of the current status and upcoming steps of the respective system. Most importantly, the applicant must explain how the respective system will be tested prior to the Event. The applicant is reminded to complete AP.2.1 at this documentation stage.

- ITD.1. **Due:** 15 December 2022, 23:59 CET via this form.
- ITD.2. **Document format:** Formulated engineering documentation (see **AP.2.9**). Preferably using bullet points, tables, and descriptive images.
- ITD.3. Every ITD starts with this cover page filled in.
- ITD.4. **Document scope:** Generally, no limitation; maximum of 10 pages per system, excluding citations, index or a cover page.

ITD.5. Minimum content:

ITD.5.1. General:

- ITD.5.1.1. Description of the applicant and list of updated team members.
- ITD.5.1.2. Details on the development environment and the research objectives.
- ITD.5.1.3. Determination of one representative who will be in correspondence with the EHW Committee.
- ITD.5.1.4. The Design Competition Award which this application is registered for.

ITD.5.2. System:

- ITD.5.2.1. Technical description of system to be demonstrated:
 - ITD.5.2.1.1. Desired functionality, and principal physics of its functionality.
 - ITD.5.2.1.2. Constraints (mass, dimensional and budget).
 - ITD.5.2.1.3. Initial concepts and Free Body Diagrams.
- ITD.5.2.2. Size, components, appearance of the system (CADs, if available at this stage).
- ITD.5.2.3. Integration of the system into a subordinate structure/system (if applicable).
- ITD.5.2.4. Key elements and features of the system.
- ITD.5.2.5. Outline of how the system will be operated during demonstration and what infrastructure will be necessary to do so (either own infrastructure or provided by EHW Committee).
- ITD.5.2.6. What other systems need to run in order to operate the system?

ITD.5.3. Safety:

- ITD.5.3.1. Precautions taken in order to comply with the Rules & Requirements for Demonstration.
 - ITD.5.3.1.1. What are the key elements of the system? Which features incorporate the highest safety risks?
 - ITD.5.3.1.2. How will the respective subsystems be tested prior to the Event?

ITD.5.4. Other

ITD.5.4.1.1. Outline of content to be included in the *Final Demonstration Documentation (FDD)*.

6.3.2. Final Demonstration Documentation (FDD)

With this document, the applicants shall give further exact details of the system they want to demonstrate at the Event. Content-wise, it is similar to the Intent to Demonstrate and shall provide additional insight into the development of the respective systems. It is of special use for the organisational unit of the EHW Committee. It is intended as technical documentation and the applicant shall demonstrate that the corresponding system is designed and engineered safely, and that he is able to test and operate the system safely. Furthermore, the testing of systems shall be described in detail.

- FDD.1. **Due:** 17 March 2023, 23:59 CET.
- FDD.2. **Document format:** Formulated engineering documentation (see AP.2.9).
- FDD.3. **Addendums:** Applicants have until 15 April 2023, 23:59 CET, to send in an addendum to their FDD. Only minor, inevitable changes related to force majeure limitations will be accepted. Said limitations must be explicitly stated in the addendum.

FDD.4. Minimum content:

FDD.4.1. General:

- FDD.4.1.1. Description of the applicant and list of team members.
- FDD.4.1.2. Details on the development environment and the research objectives.
- FDD.4.1.3. Definition of budget, funding and method of manufacturing (in-house, outsourced, or combination) for each subsystem.

FDD.4.1.4. The Design Competition Award for which this application is registered for, in the case that the application is withdrawn, but the Award for which this application was registered for in the ITD cannot be changed.

FDD.4.2. System:

- FDD.4.2.1. Technical description of the system to be demonstrated.
 - FDD.4.2.1.1. Detailed explanation of theory and principle physics of desired functionality.
 - FDD.4.2.1.2. Description of design process taken.
 - FDD.4.2.1.3. Free Body Diagrams to define load cases for simulations.
 - FDD.4.2.1.4. Evidence of simulations validating the theory, and detailed analysis of results.
 - FDD.4.2.1.5. Detailed description of dimensioning process.
 - FDD.4.2.1.6. Description of the manufacturing processes.
- FDD.4.2.2. Size, components, appearance of the system:
 - FDD.4.2.2.1. Evidence of CAD models; Technical drawings of the complete system may be used to illustrate dimensions, but they should not be included for individual components of the system.
- FDD.4.2.3. Integration of the system into a subordinate structure/system (if applicable).
- FDD.4.2.4. Detailed plan of the demonstration, specifying the needed equipment and infrastructure (either own infrastructure or provided by EHW Committee):
 - FDD.4.2.4.1. Parts list (including dimensions and mass), in tabular format. Please identify which parts are made in-house or outsourced from an external supplier.
 - FDD.4.2.4.2. Images or CAD renders of the demonstration setup including all parts of the system that will be brought to the Event.

- FDD.4.2.5. Section specifying a complete list of needed equipment and infrastructure (either own infrastructure or provided by EHW Committee):
 - FDD.4.2.5.1. If the applicant intends to use own infrastructure (e.g. test bench), its safety must be proven as well.

FDD.4.2.6. Safety:

- FDD.4.2.6.1. Technical description of the system to ensure compliance with the Rules & Requirements for Demonstration (see 6.2).
- FDD.4.2.6.2. Preliminary risk assessment for Demonstration, including transport and lifting procedures.
- FDD.4.2.6.2.1. Detailed FMEA and description of risk mitigation measures.
- FDD.4.2.6.2.2. Summary of all energy storage types and components present in system(s).
 - FDD.4.2.6.3. Requirements for Transport, Storage and Lifting as defined in Section **9.3**, especially TS.4.
- FDD.4.2.6.3.1. Transport and Lift Plan of the system
- FDD.4.3. Procedures for safe storage of systems including potential energy.

FDD.4.4. Testing:

- FDD.4.4.1. Outline of manufacturing and testing procedures to be included in the *Testing and Safety Documentation (TSD)*.
- FDD.4.4.2. Provide a preliminary testing plan including methodology and expected results.

6.3.3. Testing and Safety Documentation (TSD)

This document shall describe in detail which tests have been performed and how they were conducted. The tests must contain the aim of the tests, results, measurements and data in order to prove that they have been performed. Additionally, it is possible and recommended to hand in video recordings of the tests in order to prove that the tests were conducted properly. This will provide a baseline based on which the EHW Committee defines the

allowed setpoints/operating conditions of each system during the demonstration. Note that Annex A provides some further testing guidelines.

Any deliberate manipulation or wrong presentation of testing results, testing methods or equivalent will lead to the immediate ban from the Event.

Furthermore, any Transport, Storage, Lifting and Demonstration must be executed according to one or multiple predefined procedures. These procedures shall include every important step involved in the operation of the system such that a wrong handling of the system is impossible. These procedures must be established by the applicant and submitted with the Testing and Safety Documentation. Failure to establish such procedures might lead to a denial of a Demonstration. Additionally, if the system utilises a transport cart to be transported, this must be tested according to TS.2 in Section 9.3. Evidence of this test shall be included in the TSD as well.

- TSD.1. **Due:** 9 June 2023, 23:59 CEST.
- TSD.2. **Document format:** Formulated engineering documentation (see AP.2.9).
- TSD.3. Minimum content:
 - TSD.3.1. A cover page, concisely describing:
 - TSD.3.1.1. What is going to be demonstrated physical prototype(s) involved.
 - TSD.3.1.2. How is it going to be demonstrated infrastructure involved in the demonstration, overview of demonstration procedure.
 - TSD.3.2. Written report of every completed test for the respective systems, which include, for each test:
 - TSD.3.2.1. Aim/objectives of the test (hypothesis).
 - TSD.3.2.2. Test description (methodology).
 - TSD.3.2.3. Information about used testing infrastructure and setup (components, material, dimensions, instrumentation, etc.).
 - TSD.3.2.4. Risk assessment.
 - TSD.3.2.5. Detailed testing protocols (including entrance and exit criteria for each step in the protocol).
 - TSD.3.2.6. Testing setpoints/conditions (e.g. load cases, pressure, voltage, speed, etc.).
 - TSD.3.2.7. Expected results.
 - TSD.3.2.8. Measurement data.

TSD.3.2.9. Processed results (graphs, diagrams). All the representation of results must be own-referenced or the external reference must be explicitly stated. All graphs must have legible axis and legend titles (preferably with the same font as the text) and with a common format throughout the document.

TSD.3.2.10. Conclusion.

- TSD.3.3. Video of performed tests submitted in the following format:
 - TSD.3.3.1. Static camera position.
 - TSD.3.3.2. Clear vision of performed test.
 - TSD.3.3.3. At least 1080p resolution.
 - TSD.3.3.4. **Uploaded to online streaming service** (e.g. YouTube) and provide a **link** within the TSD report.
 - TSD.3.3.5. The date of the video upload onto the streaming service must precede the submission deadline of the TSD.
- TSD.3.4. Detailed procedure and safety measures; the procedures should include at least:
 - TSD.3.4.1. Power on/off Procedure and Operation Procedure of the system.
 - TSD.3.4.2. Emergency Procedure.
 - TSD.3.4.3. Transport & Lifting procedure (if applicable; according to Section **9.4**).
 - TSD.3.4.4. Test Track Load & Unload Procedure (if applicable).
- TSD.3.5. Evidence of a valid liability insurance that covers both personal injury and property damage in all the venues of the Event¹.
- TSD.3.6. If the applicant brings their own custom track, a planning for the setting up, testing and packing up of the custom track should be included.

6.3.4. Posters

All successful applicants must bring to EHW a poster with a minimum content and format requirement. One poster shall be made per demonstration submission. Note that an application for Demonstration implicitly includes an application for Showcase of the respective system as well, and there is going to be a presentation of all the registered systems (see Chapter 3). More information and the poster template will be provided by the

¹ In the EHW 2023, said liability insurance must be valid in the United Kingdom.

EHW Committee closer to the event dates in further versions of the EHW 2023 Rules & Regulations. All exhibitors must follow the minimum content requirements outlined below or bring their own medium for demonstration which must be previously approved by the EHW Committee prior to the event.

- DP.1. **Due:** Late June 2023.
- DP.2. **Minimum required content:** The poster should summarise and reflect information included in the FDD.

DP.3. Required format:

- DP.3.1. Minimum size A2
- DP.3.2. PDF, SVG, AI or EPS format.
- DP.3.3. 300 dpi (dots per inch) or fully vectorized.
- DP.3.4. CMYK colour mode.
- DP.3.5. Bleed and registration marks for correct guillotining must be included in the final delivery.

6.3.5. Scrutineering

The safety of the teams, jury and audience is crucial. Therefore, the prototypes of the teams will be thoroughly checked before they are cleared for demonstrations with a round of scrutineering before the event.

During the scrutineering, prototypes will be inspected by the technical jury. The technical jury will assess the manufacturing and the assembly of the prototype and will check safety related aspects. In addition to that, the resemblance of the pod with the documentation previously supplied to the EHW (FDD and TSD) will be checked.

Applicants must expect, for example, the following verifications from the technical jury:

- Are wires connected properly?
- Are the batteries produced in a safe way?
- Are there any sharp edges?
- Are there significant differences between the CAD models and the manufactured parts?
- Are the manufacturing processes used coherent with the documentation provided beforehand?
- ... etc.

If there are significant changes from the FDD and TSD, the prototype will not be allowed to demonstrate.

The scrutineering will happen some days before the EHW 2023. Detailed logistical information will be given in further versions of this R&R document. Team members will need to be present during the scrutineering. Your pod or demonstrator has to be present during the scrutineering to be eligible for demonstration.

6.3.6. Procedures Check

The procedures check during the EHW is another judging moment for the EHW to ensure the teams operate their pod in a safe manner. The team will demonstrate the full procedures in sequence from having the pod in the storage box to the procedure before the run is performed. Thereafter, all procedures from after the pod has braked to the pod being back in storage will also have to be performed. It will not be necessary to perform a run, however the jury can ask the team to do a run to verify the procedures and safety systems of the pod work as intended. The procedures check will be done during the EHW.

7. Research Submission Application

As stated in Chapter **4.3** the Research Submission consists of a self-sufficient document fully detailing the work of research the applicant has completed.

7.1. Rules & Requirements for Research Submission

In order for the Research Submission to go ahead at EHW 2023, the applicant must abide by the following rules:

- RS.1. The research presented is the applicant's own work. Previous literature can be used, as long as the applicant adheres to scientific standards. All contributions to the research by collaboration and information exchange with third parties should be clearly indicated.
- RS.2. The applicant needs to sign the **EHW Terms and Conditions**.
- RS.3. The Research Submission itself may consist of a single PDF document per topic. If the applicant would like to present additional material related to their research submission, then they need to follow the application process for showcase or demonstration as required by their intended activities. These processes are detailed in Chapters 5 and 6.

7.2. Application Process for Research Submission

In order to be allowed to submit and present research at EHW 2023, the applicants shall document their work in the Intent to Submit Research (ITSR) and Final Research Submission (FRS) in PDF format by the indicated deadlines. Failure to do so will result in an unsuccessful application. For details on the submission itself refer to Chapter 10.2.

7.2.1. Intent to Submit Research (ITSR)

This document is used as the first application for the EHW 2023. It shall contain information on the topic of research the applicant aims to submit, the scope of the work and a brief overview of the methodology used. The applicant is reminded to complete AP.2.1 at this documentation stage.

- ITSR.1. **Due:** 15 December 2022, 23:59 CET, via this form.
- ITSR.2. **Document format:** Extended abstract, use of tables and descriptive images recommended.
- ITSR.3. Every ITSR starts with this cover page filled in.

ITSR.4. **Document scope:** Sketch the outline of your research; maximum of 5 pages per research submission, excluding citations, index or a cover page.

ITSR.5. Minimum Content:

ITSR.5.1. General:

- ITSR.5.1.1.Description of the applicant and up-to-date list of team members.
- ITSR.5.1.2.Details on the development environment and the research objectives.
- ITSR.5.1.3.Designation of one representative who will be in correspondence with the EHW Committee.
- ITSR.5.1.4.The Design Competition (Full-Scale) Award for which this application is registered. (if applicable)

ITSR.5.2. Research:

- ITSR.5.2.1. Title of the research project.
- ITSR.5.2.2. Motivation of the research project.
- ITSR.5.2.3. Scope of the research.
- ITSR.5.2.4. Overview of the methodology followed (or to be followed) in conducting the research.
- ITSR.5.2.5. Clear outline of content that will be presented in the FRS.

ITSR.5.3. Other:

ITSR.5.3.1.If applicable, description of supplementary material the applicant would like to present and whether this material will be showcased or demonstrated based on the definitions of the Rules and Regulations.

7.2.2. Final Research Submission (FRS)

This document should contain all details of the research conducted by the applicant that is to be presented at EHW 2023. Content-wise, it should follow the guidelines described in this section and be self-sufficient without requiring additional material. Although the final acceptance or rejection of the application for research submissions already happens after the ITSR, the FRS is equally, if not more, significant and failure to submit it will result in an unsuccessful application.

The EHW Committee reserves the right to reject an application if the FRS does not meet expectations or if it differs greatly from the ITSR.

The applicant is reminded again, that if they wish to showcase or demonstrate additional material relevant to this submission, they should follow the application process for showcase or demonstration respectively and submit all the relevant documentation.

- FRS.1. **Due:** 9 June 2023, 23:59 CEST.
- FRS.2. **Document format:** Research paper. The submission should be a single PDF file no longer than 20.000 words (roughly 40 A4 pages), not counting the reference list and appendices. This is the uppermost limit on the length of the submission, however this does not necessarily reflect the recommended page count for research of any scope. The applicant should not be discouraged if their submission is significantly shorter than 40 pages, as long as the content requirements are met.
- FRS.3. **Addendums:** No addendums will be accepted for the FRS. Submissions should be in their final form at this stage.

FRS.4. Minimum content:

FRS.4.1. General

- FRS.4.1.1. Description of the applicant and updated list of team members, advisors, and industry partners.
- FRS.4.1.2. Details on the development environment and the research objectives.
- FRS.4.1.3. The Design Competition Award for which this application is registered in the respective ITSR, in case the FRS is submitted for an award.

FRS.4.2. Research

FRS.4.2.1. Abstract:

FRS.4.2.1.1. Research question.

FRS.4.2.1.2. Brief overview of motivation.

FRS.4.2.1.3. Summary of methods.

FRS.4.2.1.4. Presentation of main results and conclusions.

FRS.4.2.2. Introduction:

FRS.4.2.2.1.Detailed presentation of the topic of research and the motivation for it.

FRS.4.2.2.Background information on the topic that may prove useful later.

FRS.4.2.2.3.Aim of the research.

FRS.4.2.3. Methodology:

FRS.4.2.3.1.Detailed account of methods used. May include simulation software, mathematical models, literature review methods and more. The methodology should be presented in a way such that the process is repeatable.

FRS.4.2.4. Results and Discussion

FRS.4.2.4.1.Detailed presentation of the outcomes of the research conducted.

FRS.4.2.4.2.Discussion on the significance and validity of those results.

FRS.4.2.5. Bibliography

FRS.4.2.5.1.All references used in writing the paper.
FRS.4.2.5.2.If referencing a website or other frequently updated source, include date accessed.

7.2.3. Posters

All successful applicants must bring a poster to the EHW with a minimum content and format requirements. One poster shall be made per research submission. More information and the poster template will be provided by the EHW Committee closer to the event dates in further versions of the EHW 2023 Rules & Regulations. All exhibitors must follow the minimum content requirements outlined below or bring their own medium for showcasing, which must be approved by the EHW Committee prior to the event.

- RSP.1. **Due:** 17 June 2023, 23:59 CET.
- RSP.2. **Minimum required content:** The poster should summarise and reflect information included in the FRS.

RSP.3. Required format:

- RSP.3.1. Minimum size A2
- RSP.3.2. PDF, SVG, AI or EPS format.
- RSP.3.3. 300 dpi (dots per inch) or fully vectorized.
- RSP.3.4. CMYK colour mode.

8. Design Competition & Awarding System

8.1. Introduction

As one of the core features of the EHW 2023, the best systems showcased or demonstrated will be awarded. There are eight different awards that an applicant can register for. The grading of the systems applying for an award will be done by an impartial jury consisting of people with a technical, industrial or a design background.

The eight awards are:

- Best Mechanical Subsystem Award.
- Best Electrical Subsystem Award.
- Best Sense & Control Subsystem Award.
- Best Traction Subsystem Award.
- Best Guiding Subsystem Award.
- Complete System Award.
- Full-Scale Award Technical Aspects of Hyperloop Systems
- Full-Scale Award Socio-Economic Aspects of Hyperloop Development

There will be additional Best Design Awards sponsored by partners of the Event. Applications to the Complete System Award will automatically be added to the Best Design Awards. Event partner representatives will evaluate submissions based on their own criteria, and the recipients of the award will be published at the Event. Best Design Awards may be, but not limited to:

- Most Scalable Design Award.
- Best Heat Management Award.
- Best Power Electronics Award.
- Cost Efficiency and Business Plan Award.
- Hyperloop Community Award.
- Sustainable Legacies Award.
- Innovation Award

8.1.1. General Information on the Evaluation

The applicant shall notice the following points concerning how all systems will be evaluated:

AS.1 In order to compete for an award, it is necessary that the corresponding system or work of research is either showcased, demonstrated or presented as a research submission during the event, thus it must go through the application process.

- AS.2 As stated in Chapters **5**, **6** and **7**, a system or work of research must be registered explicitly by the applicant. This shall happen in the Intent to Showcase (ITS), Intent to Demonstrate (ITD), or Intent to Submit Research (ITSR) where applicable.
- AS.3 The awarding system is designed such that competitors who demonstrate will have an advantage over teams that can only showcase. There are some points which can only be achieved if a demonstration of the corresponding system occurs. However, teams who only showcase can win an equal amount of points for innovation and scalability as teams who demonstrate. Teams who demonstrate designs which are not innovative or scalable may not be awarded full points in these categories. This is not relevant to the Full-Scale awards.
- AS.4 The FDD, FSD, or FRS (whichever is applicable) of the respective system or work of research form an important part of the grading of the system/submission. This means in particular:

AS.4.1 Subsystem Awards:

The documentation shall include all aspects of the respective systems included in the award. Systems will be evaluated based on "good engineering," which includes but is not limited to design, engineering, scalability, cost efficiency and product quality. It may be advantageous to address in detail new ideas, innovative and scalable concepts, and ground-breaking aspects of the system that may appeal as close-to-market designs for ongoing hyperloop development.

AS.4.2 Complete System Design Award:

Every aspect of the entire pod and custom track (if applicable) may be evaluated for the award, but focus is made on the integration of pod subsystems and with the track. This means that it will be highly recommended to treat all subsystems of the pod in detail, as well as the systems integration. Systems will be evaluated based on "good engineering," which includes but is not limited to design, engineering, scalability, cost efficiency and product quality. It may be advantageous to address in detail new ideas, innovative and scalable concepts, and ground-breaking aspects of the system in detail that may appeal as close-to-market designs for ongoing hyperloop development.

AS.4.3 Full-Scale Awards:

Every aspect of the submission may be evaluated.

AS.5 Depending on the number of competitors and registered systems for every award, the EHW Committee may further limit the number of systems that are evaluated as part of the Design Competition.

The evaluation schemes for each award will be released after the EHW Committee has decided on all showcase and demonstration applications upon receiving the ITS/ITD/ITSR submissions.

8.2. Subsystem Awards

8.2.1. Description

This category focuses on designs and prototypes for a specific subsystem of a Hyperloop Pod. The design can be for a full-scale Hyperloop system or a small-scale prototype Pod. If a certain subsystem can be evaluated in different categories due to the multiple functions it has, it will be strictly evaluated in each category based on the corresponding functionality.

For the subsystem awards, two different types exist. For the mechanical and electrical subsystem awards, the entirety of the subsystem is evaluated. Parts included in the evaluation are stated below. For the Traction and Guiding Subsystem Award multiple systems can be entered and will be graded together but participants are allowed to submit only one system.

Subsystems eligible for the Subsystem Awards shall fall under the following four categories, which at the same time also represent the four Subsystem Awards:

1. Mechanical Subsystem

- a. In the Mechanical Subsystem Award, all mechanical systems in the pod and on the track are evaluated, including but not limited to
 - i. Brakes
 - ii. Mechanical suspension
 - iii. Stability
 - iv. Chassis
 - v. Shell
 - vi. Track structure or tube.

2. Electrical Subsystem

- a. In the Electrical Subsystem Award, all power electronics systems in the pod are evaluated, including
 - i. Power supply
 - ii. Electrical integration
 - iii. Power stage design and implementation
 - iv. Battery and battery management systems.
- b. Excluded from this category are
 - i. Motors.
 - ii. Levitation systems
 - iii. Braking systems.

3. Sense & Control Subsystem

- a. In this award the sensing and controlling systems for the pod and track are evaluated, including
 - i. Control system (whole, in its entirety)
 - 1. Data acquisition (sensor network)
 - 2. Signal processing
 - 3. Controllers
 - ii. Communication systems
 - iii. Location systems
- b. What is not part of the award:
 - i. Control systems that only control one subsystem (like a levitation system).

4. Traction Subsystem

a. The Traction Subsystem Award is open to both propulsion and deceleration systems; motors and brakes. These systems may be solely mechanical or electro-mechanical.

5. Guiding Subsystem

a. The Guiding Subsystem Award is open to all suspension and stability systems guiding and keeping the vehicle on the track. Levitating systems are included in this award and treated as a suspension or a stability system based on their lateral or vertical guiding capability.

8.3. Complete System Design Award

This category focuses on the presentation of a complete functional design of a small-scale Hyperloop pod prototype. Prototypes considered in this category should range between 1-and 5-metres length. Prototypes should be self-propelled and self-braked for teams using the I-beam test track. Teams using their own custom test track can use the track for propulsion and braking. For this category, applicants present a Final Showcase Documentation (FSD) or Final Demonstration Documentation (FDD) for their prototype. Only one design will be graded per exhibitor.

8.4. Full-Scale Awards

This category focuses on presenting designs and concepts relating to a real-world Hyperloop system. Exhibitors must demonstrate an understanding of the implementation of Hyperloop technologies in today's society, by presenting research relevant to full-scale Hyperloop development.

At EHW 2023, there will be two separate Full-Scale Awards, each concerning a different area of research. The categories are as follows:

- Socio-Economic Aspects of Hyperloop Development.
- Technical Aspects of Hyperloop Systems.

Applicants wishing to compete for the Full-Scale Awards, should clearly indicate which of the two categories they are applying for in the ITSR. Submissions that do not fall within one of those topics will not be considered for the Full-Scale Awards. However, applicants wishing to present research on a different topic at EHW may submit the ITSR document without applying for an award. The EHW is looking into making it possible to publish a selection of the Submissions.

The two categories define broad topics that the research questions of the submissions should fall within, however it is not necessary for a submission to examine all aspects of a topic. For instance, submissions towards the "Technical Aspects of Hyperloop Systems" do not necessarily need to examine every single subsystem of the pod and infrastructure in order to be eligible to compete for the award. The categories have been chosen to be broad to allow applicants freedom to explore the topics that they find most appealing and impactful.

Applicants may submit up to one application per award category, however more research submissions are allowed outside the EHW Competition.

8.4.1. General rules Full-Scale Awards

- 8.4.1.1. A submission for one of the two awards is not longer than 20.000 words (approximately 40 A4 pages) excluding sources and appendices.
- 8.4.1.2. Every report has a cover page containing the following items (an example can be seen here).
 - Title of submission
 - Name of the student Hyperloop team
 - Name of the award in which it participates
 - Word count of the submission (Excluding sources, appendices and the cover page)
 - Specification of the location where the submission will be published (ideally with a link to the website page)

- An abstract with a maximum of 300 words
- A statement of contribution of all contributors to the report. (Excluding proofreaders)
- 8.4.1.3. Sources should be openly accessible by scientific publishing platforms or a website.
- 8.4.1.4. The EHW will not accept confidential sources.
- 8.4.1.5. A team has to publish their submission on an open access platform after the competition, so from the 23th of July 2023 onwards.

8.4.2. Guidelines Full-Scale Awards

- 8.4.2.1. The EHW website, your own platform (like <u>Hyperloopconnected.org</u>), your university repository or other open access platform can be used as a platform to publish open access submissions.
- 8.4.2.2. As with all academic research, an extensive literature review is key to not repeat existing research and to label sources correctly.
- 8.4.2.3. The appendix contains supplementary information which are relevant, but not necessary to understand the paper.
- 8.4.2.4. A repository with a collection of known repositories for Hyperloop research and a curated literature repository for Hyperloop research from EHW, jurors and partners is available at the Hyperloop Paper Repository.

8.4.3. Full-Scale Award - Socio-Economic Aspects of Hyperloop Development

This category of the Full-Scale Award is meant to explore the aspects of Hyperloop development that do not have to do with the technology itself, but are equally important. Considerations such as cost estimates, demand modelling for Hyperloop, predictions of socio-economic effect, route planning and more would fit into this category.

The topic of the submitted research should fall within the broad category of Socio-Economic Aspects of Hyperloop Development, but does not need to be all-encompassing. Full-scale Socio-Economic Aspects submissions can include your own surveys.

We highly encourage teams to do research on one or more of the following topics or come up with their own underexposed area of Hyperloop research:

- Sustainability of the construction and the operation of an Hyperloop system
- Accessibility of Hyperloop stations and pods for People with Reduced Mobility
- Acceptability for Hyperloop infrastructure from the public
- Passenger comfort
- Emergency procedures for a Hyperloop system
- Affordability of Hyperloop travel for low and middle income families
- Changes in social structure of countries when travel time is cut significantly
- Security of passengers
- Lowering infrastructure costs

8.4.4. Full-Scale Award - Technical Aspects of Hyperloop Systems

The purpose of this category of the Full-Scale Award is to explore different aspects of the Hyperloop system, including both the pods and the infrastructure. The development of Hyperloop technology is very much still underway, with many technical questions remaining unanswered. EHW 2023 is an opportunity for student teams to attempt to answer some of those questions.

Any topic that falls within the category of Technical Aspects of Hyperloop Systems is an acceptable choice for submissions to this award. The scope of the submission, both in terms of depth (i.e., how rigorous and detailed the work is) and breadth (i.e., how many different aspects of the category are being considered), is left up to the applicant to determine. Full-scale Technical Aspects submissions for technical systems could include your own laboratory research.

We highly encourage teams to do research on one or more of the following topics or come up with their own underexposed area of Hyperloop system research:

- Emergency exits, safe havens or other safety systems
- Fresh air supply in the Hyperloop pod during travel
- Efficiently creating a vacuum (like designing new more efficient vacuum pumps)
- Cooling solutions for the pod / heat transfer out of the pod
- (Innovative) Airlock concepts

EHW Infrastructure & Associated Requirements

In this chapter, an overview of the infrastructure provided by the EHW is supplied as well as details on custom tracks.

9.1. Test Track

An I-Beam is installed on concrete foundations at the King's Buildings campus of the University of Edinburgh. The straight track is 100m long and has an access point at the beginning for loading and unloading the pods. This access point consists of a 4x4.5m (Figure 9.2) covered concrete pad with one table, two chairs and two 230V electrical outlets. A 400V/three phase outlet for battery charging will be provided nearby. A 1000kg workshop crane will be provided for lifting the pod onto the I-Beam track.

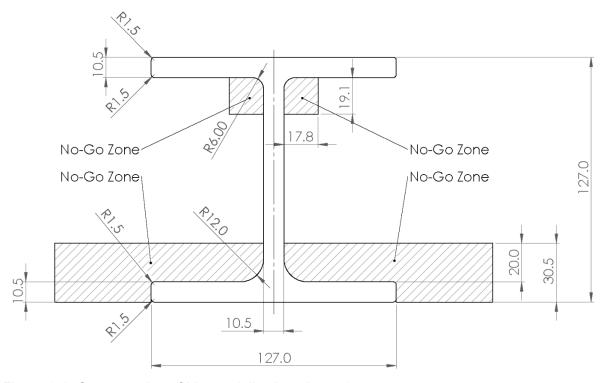


Figure 9.1: Cross section of I-beam (all values in mm).

Figure 9.2: I-beam access point concrete patch.

9.1.1. Test Track Specifications

TT.1 Material: 6082 T6 Aluminium.

TT.2 Length: 100 m.

TT.3 **Tolerances:** The track consists of 6 m sections. The maximum deviation between the sections is listed below:

TT.3.1 Lateral: 2 mm.

TT.3.2 Vertical: 2 mm.

TT.3.3 Gap between segments: 3 mm.

TT.4 **Slope:** The track has an upwards slope of 1.4%, which is constant along the track.

9.1.2. Test Track Requirements

As a summary, the following requirements must be met in order to be allowed to operate any system on the test track.

- TT.1 Under no circumstances should the keep out zone be violated. The keep out zones are defined in Figure 9.1. The bottom keep out zones extend outward in horizontal direction infinitely.
- TT.2 The exhibitor must prove that the demonstrated system does not harm the test track infrastructure by any means. Thus, any (possible) contact point with the track needs

- to be of significantly softer material (only material softer than 6082-T6 aluminium) than the test track.
- TT.3 During a demonstration, it is forbidden for people or subjects to remain within the pod loading area, the pod unloading area, and the keep out safety zones.
- TT.4 Loading and unloading of a demonstrator must happen in the designated loading area.
- TT.5 The demonstrator shall preferably be designed such that it can propel itself to the unloading area. Demonstrators which might be stuck on the test track may only be pushed by hand to the loading or unloading area, if the exhibitor previously has conducted a procedure to power off the demonstrator, thus showing that touching the demonstrator is safe.
- TT.6 The only manipulations allowed to be performed at the demonstrator while it is on the test track are to recover a stuck demonstrator. Any other manipulations are solely permitted if the demonstrator is either at the loading or the unloading area.
- TT.7 A moving demonstrator on the test track must use at least two independent and appropriate methods to measure its location or velocity.
- TT.8 Further details on the exact procedures for a demonstration on the Test Track will be provided at a later stage.
- TT.9 All teams wanting to use the I-Beam track must provide detailed Health and Safety documentation for the demonstration of the pod on the track.

 This must include Risk Assessments (RA), Safe Systems of Work (SSoW) as well as Control of Substances Hazardous to Health forms (COSHH) and Safety Data Sheets (SDS) of any hazardous chemicals used. Avoid the use of chemicals if at all possible. These must be part of the TSD and separately uploaded to the TSD/SI submission form. The templates in the link below are required to be used.

Relevant Guidance and Templates can be found here: https://www.ed.ac.uk/health-safety/online-resources/risk-assessments

9.2. Custom Test Tracks

For custom tracks (maximum length: 50m) a space will be provided.

ATT.1 All teams who would want to bring their own Custom Test Track to demonstrate must provide a detailed assembly and disassembly plan in the **FDD**. This must include a timeline, requested equipment, days and times when a forklift will be required as well as the number of people that will be working on the Custom Test Track simultaneously.

- ATT.2 Participants have one and a half weeks before the EHW event to assemble their own track. The tracks must be disassembled within three days of the end of the event (see Section 9.2.2.).
- ATT.3 All custom tracks and assembly plans must be approved by EHW.
- ATT.4 A team bringing their own custom test track has to fill in this form before the 14th of November 23:59 CET. Late applications will not be accepted.

9.2.1. Technical Requirements for Custom Tracks

- TRC.1 The maximum hole depth is 150mm. Anchoring systems must be removable and not cause any undue damage to the surface. Proposed anchoring systems and their layout (location, size and depth) must be included in the **FDD** and are subject to approval by EHW.
- TRC.2 Any damage to the surface caused by the respective team has to be repaired before 26th of July, 17:00 BST. This includes refilling the holes made in the surface with (cold) asphalt.
- TRC.3 All custom tracks will be placed on paved roadways (asphalt thickness ~50mm).
- TRC.4 The flatness of the custom track location cannot be guaranteed, meaning a leveling system must exist. A topological survey will be provided at a later date with specifics.
- TRC.5 All teams bringing custom tracks must provide detailed Health and Safety documentation for assembly, demonstration of the pod and disassembly of the track. Separate H&S documentation must be provided for demonstration and assembly/disassembly (e.g. 2 RA documents).

This must include Risk Assessments (RA), Safe Systems of Work (SSoW) as well as Control of Substances Hazardous to Health forms (COSHH) and Safety Data Sheets (SDS) of any hazardous chemicals used. Avoid the use of chemicals if at all possible. These must be part of the **TSD** and separately uploaded to the TSD/SI submission form. The templates in the link below are required to be used.

Relevant Guidance and Templates can be found here: https://www.ed.ac.uk/health-safety/online-resources/risk-assessments

9.2.2. Logistical Requirements for Custom Tracks

- LRC.1 All components of the custom tracks (including equipment and control station) should fit within the allotted space (as requested on the application form).
- LRC.2 Custom tracks shall arrive in as few deliveries as practical.
- LRC.3 All deliveries must arrive in sturdy containers that can be lifted by a forklift (maximum weight 2.5 Tonnes symmetrical load). Other lifting mechanisms provided by the teams can be used, but must first be approved by EHW.
- LRC.4 Shipments may arrive from the 4th of July, 09:00 BST. Any shipments that arrive earlier will be turned away.
- LRC.5 Teams may start assembly of their track from the 7th of July, 09:00 BST.
- LRC.6 All tracks must be disassembled and outbound by the 26th of July, 17:00 BST.
- LRC.7 The document outlines the scope of what EHW will provide and will not go beyond that.
- LRC.8 EHW does not provide cover for custom tracks.

9.3. Communications

General EHW Pod Communications Rules & Requirements:

- CM.1 **Test track** communication: Under no circumstances shall the exhibitor transmit in frequency ranges other than the bandwidths shown in Table 6.1 and with power and duty cycles higher than shown in Table 6.1.
- CM.2 Communication during demonstration happening in infrastructure provided by the Applicant: Under no circumstances shall the exhibitor transmit in frequency ranges other than the bandwidths shown in Table <u>6.1</u> and with power and duty cycles higher than shown in Table <u>6.1</u>.
- CM.3 While a demonstration is being performed, the rest of the exhibitors should be disconnected from the EHW network, and any transmission equipment should be turned off so it cannot interfere.
- CM.4 The pod should be always under control, if a disconnection or other connectivity error that impedes continuous data flow and control is detected, the pod should enter in a safe state, stopping its trajectory.
- CM.5 The pods should not have connection to the Internet. Connections are restricted to the IP address of the EHW internal networks.

- CM.6 Exhibitors should be equipped with at least one NAP (Network Access Point) for the correct development of all the testing.
- CM.7 All IP addressing will be static thus DHCP or DNS Servers are not needed.

9.4. Transport, Storage and Lifting Requirements

- TS.1 Each demonstrator needs a method to move around either by hand or on a transport cart.
- TS.2 Any transport cart must be tested prior to EHW with its maximum payload. The conducted test shall either be covered in the **TSD** or in the **SI** whichever is applicable.
- TS.3 Each demonstrator shall provide the possibility of being lifted either by hand or with a forklift/small crane.
- TS.4 The exhibitor must prove that the lifting points of the demonstrator are dimensioned to its mass. This proof shall be included in the FDD or FSD.
- TS.5 If a demonstrator is hand-lifted, the allowable weight for each person is limited to 23 kg.
- TS.6 A demonstrator must have as many lifting points as required to ensure the previous requirement to be allowed to be hand-lifted.
- TS.7 If a demonstrator needs a forklift, please contact the EHW organisation.
- TS.8 Unstable demonstrators must have a straight base for the demonstrator handling.
- TS.9 There is limited storage space during the EHW, so please specify the amount of storage the participant needs.
- TS.10 If the needed storage space is exceptionally large (not limited to only a pod and scalability stand), the space is to be discussed by the EHW. If not enough space is available, the Participant may be responsible for their own storage.
- TS.11 Each Participant must provide wooden box(es) in which they store their demonstration/showcase materials. The dimensions must be specified in the FDD/FSD. These boxes must be liftable by a maximum of 8 people (with a maximum carry weight of 23 kg per person and a total weight of 184 kg).
- TS.12 Transport boxes over 150 kg should be able to be lifted by a forklift.
- TS.13 For external events, the EHW organisation should provide cargo trucks in which each demonstrator must go inside its pertinent box. If the Participant brings an exceptionally large amount of equipment, please discuss with the EHW organisation.
- TS.14 The exhibitor shall contact the EHW Committee if they intend to ship their demonstrator themself.

TS.15 The EHW organisation will oversee the storage of the demonstrators. More details will be included in further editions of the R&R.

10. Administrative Information

10.1. Representative of the Applicant

Each applicant shall determine one representative, who will be in correspondence with the EHW Committee. The representative will be responsible for submitting the documentations and will receive feedback and updates from the EHW Committee. If any questions arise, the correspondence between the applicant and the EHW Committee shall be conducted via the representative only.

10.2. Submission of Documentations

All required documentations should be uploaded as a single PDF document to the respective form: <u>Google Form (FDD & FSD)</u> and <u>Google Form (TSD/SI)</u>, and <u>Google Form (FRS)</u>.

All video submissions related to the TSD need to be submitted through an online streaming service as specified in Section **6.3.3**.

10.3. Questions & Suggestions

In case of any uncertainties or suggestions concerning the present version of the *EHW 2023 Rules & Regulations* please contact the following email address:

info@hyperloopweek.com
subject: Rules & Regulations Query

[Important]: The EHW will only react to queries sent to the EHW email address, thus do not message EHW-members individually. Typically the response time for queries is one week.

10.4. Document Version and Further Updates

- The EHW Committee explicitly reserves the right to alter, add or delete any regulations within this document at any time and release a new version.
- Any exhibitor who wants to compete in the EHW 2023 must implement any changes from this document and must comply with the latest version at the EHW 2023.

- Any updates from the EHW Committee's side will be sent to the representative via email.
- The copyright for the present document lies with the EHW 2023 Committee. It is prohibited to copy, reproduce, or distribute extracts from this document in any form.
- The present document represents version 3.2 of the *EHW 2023 Rules & Regulations* and dates on 26 February 2023. It replaces version 3.1 of the *EHW 2023 Rules & Regulations*, thus version 3.2 is the only valid version as of 26 February 2023.

10.5. Changelog

Subsequently, the major changes between different published versions of this document are listed.

Version 3.1

- Updated dates.
- Added rules on maximum magnetic flux densities.
- Change to the Full-scale award deliverable requirements.
- Added explanation about the procedures check.
- Updated I-beam and custom track area specifications.
- Requiring emergency braking systems for pods applying for demonstrating.
- Expanded rules on redundant braking.
- Added a statement on query response time.
- Split the Electrical award into the Electrical and the Sense & Control award.
- Added a maximum lifting weight of 184 kg for lifting operations done by only people.

Version 3.2

- Extended RS.1. with "Previous literature can be used, as long as the applicant adheres to scientific standards. All contributions to the research by collaboration and information exchange with third parties should be clearly indicated."
- Added "AP.2.11. All documents and deliverables the applicant provides to the EHW should be written in English."
- Added "FRS.4.2.1.4. Summary of methods."
- Added "FRS.4.2.2.3.Aim of the research."
- Changed ATT.2 to: "All teams who would want to bring their own Custom Test Track
 to demonstrate must provide a detailed construction and disassembly plan in the
 FDD and TSD. This must include a timeline, required equipment, days and times
 when a forklift will be required to move containers and as well as number of people
 that will be working."
- Added TT.9: "All teams wanting to use the I-Beam track must provide detailed Health and Safety documentation for the use of the track. This must include Risk Assessments (RA), Safe Systems of Work (SSoW) as well as Control of Substances Hazardous to Health forms (COSHH) and Safety Data Sheets (SDS) of any hazardous chemicals used. Avoid the use of chemicals if at all possible. These must be part of the TSD.

Relevant Guidance and Templates can be found here: https://www.ed.ac.uk/health-safety/online-resources/risk-assessments"

- Added rule TRC.2 "Any damage to the surface caused by the respective team has to be repaired before 26th of July, 17:00 BST. This includes refilling the holes made in the surface with (cold) asphalt. "
- Added TRC.5: "All teams bringing custom tracks must provide detailed Health and Safety documentation <u>for assembly, demonstration of the pod and disassembly of the</u> <u>track</u>. Separate H&S documentation must be provided for demonstration and assembly/disassembly (e.g. 2 RA documents).

This must include Risk Assessments (RA), Safe Systems of Work (SSoW) as well as Control of Substances Hazardous to Health forms (COSHH) and Safety Data Sheets (SDS) of any hazardous chemicals used. Avoid the use of chemicals if at all possible. These must be part of the **TSD** and separately uploaded to the TSD/SI submission form. The templates in the link below are required to be used.

Relevant Guidance and Templates can be found here:

https://www.ed.ac.uk/health-safety/online-resources/risk-assessments"

- Added custom track specifications:
 - All deliveries must arrive in sturdy containers that can be lifted by a forklift (maximum weight 2.5 Tonnes). Other lifting mechanisms provided by the teams can be used, these must first be approved by EHW.
 - Shipments may arrive from the 4th of July. Any shipments that arrive earlier will be turned away.
 - Teams may start assembly of their track from the 7th of July.
 - o All tracks must be disassembled and outbound by the 26th of July.
 - All tools used for the assembly and operation of the custom tracks must be brought by the teams.
- Added <u>document</u> that helps with setting up requirements.
- Added rules DM.4.8.7 to DM.4.8.10: "
 - All the source code made by the team will be uploaded to a github repository provided by the EHW. It will be handled in addition to the TSD.
 - The state transition tables and requirements table should also be updated if applicable and presented in the TSD.
 - After the TSD, the team will have to justify any change they want to make, always oriented to improving the safety of the system and not adding any new functionality. The EHW reserves the right to have the participant set the software back to the TSD version.
 - A team has to ask explicit permission from the EHW to change software during the EHW."
- Added section DM.7 Vacuum chamber test, to allow vacuum tests at home. This only
 applies to prove the vacuum compatibility of the (sub)system. The (sub)system still
 has to be demonstrated at the EHW to be considered as a successful demonstration.

11	ANNEX A -	TESTING	GUIDEL	INFS
1 1 -	/ \ \ \ \ \ \ \ \		OUIDEL	_

11.1. Purpose

Subsequently, we provide an idea of the testing information that could be expected the applicant to deliver in the Testing and Safety Documentation (TSD). Some of the points mentioned could be considered for any system tested while others refer to specific systems. Please note that the listed points are not a requirement but just a suggestion. Thus, some points might remain unconsidered while other points not included in the list could be added in the TSD. For the content of the TSD, refer to Section **6.3.3**.

11.2. General Safety Remark

Always be safe when testing a system!

Although the EHW is not responsible for any conducted tests, we strongly encourage you to NOT test a system in an unsuitable environment, with insufficient equipment and protection gear, or in an unsafe manner.

11.3. Guidelines

11.3.1. General

- Execute the tests according to the various procedures that are demanded for demonstrations at EHW anyways. By doing so, train the workflows and improve the procedures.
- Show and/or describe the safety measures that are implemented in the operation of a system. List the utilised safety gear and emergency equipment.
- For each performed test provide the relevant data to assess the tested system undoubtedly, especially the peak values and the respective durations.
- Make use of video recordings where appropriate. Note, however, that although video recordings can provide information about the basic functionality, the exact behaviour and the condition of a system can only be assessed using measurement data.
- It is recommended to test a system beyond the operating point to be used in a demonstration on site of the EHW to prove the reliability of the system.
- Compare the tests and the resulting measurement data with the expected behaviour of the system
- Provide the mass of the system
- Show how the connecting elements are fastened appropriately and secured against unintentional loosening. This could include:
 - o Mechanical connections, such as screws, bolts, etc.
 - o Electrical connections, such as connectors, cables, etc.

11.3.2. Mechanical Systems

• Top-level:

- o Prove that the assembly does not contain any hazardous sharp edges that might cause damage to the vacuum chamber, the track, or the public.
- Testing data and videos that prove that the system can withstand applicable vibrations. If possible, suggested to perform vibration testing by placing the whole assembly on a vibration plate to ensure it can undergo the full range of frequencies without failure
- Demonstrate an emergency mechanism in case of power outage during run
- o Prove that the system does not damage any infrastructure in case the emergency mechanism is triggered

System specific:

o Braking

- Perform braking (friction, magnetic, etc) performance test to ensure proper deceleration (to zero speed) with pod trajectory and telemetry data presented for worst case scenario
- Prove that braking will not damage the provided or the custom track
- Demonstrate the redundancy of brakes (the design should be at least 1-fault tolerant)
- Prove that braking is capable of handling the misalignments in the track

o Suspension

- Proof of the guidance systems reliability through strength test (FEM and/or test video)
- Test shock absorber with maximum loads and show that suspension is capable of withstanding misalignments in the track

o Propulsion

 Demonstrate that the pod can withstand maximum design speeds while moving in a stable and controlled manner on the track through video and sensor data.

o Structures

- Perform an I-beam (or customised track) assembly test while showing that the keep-out zone is not violated at all times
- Pull-out/shear tests for main subsystems (chassis, shell, etc.), any critical linkages and subsystems interfaces (FEM is acceptable too)

Levitation Systems

 Prove that the system does not damage the test track/infrastructure in case of power outage of the levitation system (defined contact points)

11.3.3. Electrical Systems

- Description of functionality of the device/subsystem (e.g. conventional three-phase inverter using PWM driven IGBTs)
- Documentation of electrical characteristics (supply voltage, peak and continuous power)
- Proof (video or time series) of the system in operation, displaying supply voltage and current drawn

- Proof (video or time series) of induced failure of the device and reaction of the system
- Proof (video or time series) of the thermal characteristics of the system (e.g. FLIR camera, thermistors)
- Proof (photo or schematic documentation) of isolation, electromagnetic interference, short circuit protection mechanisms
- Proof (photo or description) of battery enclosure(s)
- Proof (photo or list) of safety equipment

11.3.4. Thermal Systems

- Temperature time history during intended operation at least for desired duration of demonstration(s)
- Proof (data and/or videos) that temperature does not exceed any justified temperature limits, (e.g. material properties)
- (Recommended) Thermal imaging video (i.e FLIR) of test(s) highlighting relevant Temperature distribution and time-development during operation
- Atmospheric conditions (ambient temperature, pressure) at which the tests were conducted
- Operating boundary conditions/value setpoints of all relevant powered systems (for reference see the previously defined data to be provided depending on the subsystem) that correspond to the thermal measurements
- For electrical devices:
 - o Description of short circuit projections (e.g. max short for 5 ms @ 200 A \rightarrow heat up to 75°C)

11.3.5. Pressurised Systems

- \bullet Define the operating pressure P_{op} and the maximum pressure P_{max} of the system such as $P_{op} < P_{max}$
- Suggested data:
 - Prove that the system is able to withstand an adequate time at a pressure of P_{max} in order to detect evidence of malfunctioning and verify the system.
 - Prove that the system has no leaks:
 - Unplugging the pressure vessel after filling the pressurised circuit at P_{op} and studying the evolution. Prove that there are no leaks.
 - Test that the electro valves can protect against a regulator failure.
- If the pressurised system is part of the braking system:
 - Ensure the actuators have no leaks and the piston movements are correct for different values of pressure.
 - o Check that the return system is well dimensioned, and it can reach its initial position (different values of pressure).
 - o Increase the pressure to P_{max} gradually and verify the system has no losses and the structure does not experience any problem.
 - Perform a test of an adequate number of cycles on the actuator with the most convenient pressure studied on the previous points and demonstrate the system continues working properly.

- o Perform a load test in which the actuator performs some cycles at high pressure values and some load is added to simulate shear stress. Ensure the system dynamics is not affected by the load.
- o If it is going to be implemented into a vehicle/pod, it is required to test it in a testbench simulating a real run (video-test).
- If the pressurised system is part of the propulsion system:
 - o Ensure the propulsion system has no leaks.
 - o Perform a test of an adequate number of cycles of pressurisation and depressurization with the most convenient pressure limits.
 - o Define the pressure limits of the system $(P_{max}$ and $P_{min})$
 - o Increase the pressure as much as possible and verify the system is able to withstand the forces.
 - Decrease the pressure until its minimum and verify the system is able to withstand the forces.
 - o Test previously the correct work of the system (video-test). General data:
 - Thrust
 - Temperature evolution

11.3.6. Rotating Systems

- Identify rotating components. Specifications that could be considered for each component:
 - o Inertia
 - Maximum operational rotational speed and stored energy
 - o Are components/assemblies balanced; what are possible outcomes that imbalance could lead to.
 - Describe how the speed will be measured and monitored
 - o State and illustrate loads that are on the assembly: static, inertial, centrifugal, imbalance
 - o Identify bearing types and include specifications (load and speed ratings)
 - o Show the load paths from component/assembly to the chassis/supporting structure
- Structural integrity proof for their expected operational speeds and loads.
- Video or photos to show the test and measured speed of the rotating component/assembly.

11.3.7. Complete Systems & Pods

- Full Video of the complete system demonstration in the manner as intended at the EHW, preferably different angles or viewpoints that show the behaviour of critical subsystems (for instance levitation, braking, stability, and acceleration)
- General data:
 - o Achieved maximum speed, maximum horizontal/vertical acceleration, and deceleration
 - o Horizontal and vertical Acceleration-time, speed-distance, and speed-time plot
 - o Mention of braking distance and distance safety margin to end of track in worst case
 - o Total Duration of demonstration

- o Sensor data for vertical or horizontal distances between pod and track throughout the whole test
- o Time series of total power consumption (e.g. v(t) and i(t) for all sources of power
- Operating boundary conditions, value setpoints and value limits of all relevant powered systems (for reference see also the above suggested data to be provided depending on the subsystem), that are specified and measured during the complete system demonstration. Examples of the most important values to be recorded are:
 - o Voltage, current, electrical power consumption of electrical systems
 - o Rotational speed of rotating systems
 - o Operating pressure and actuator speeds of pressurised systems
 - o Temperature of thermal systems
 - o Ambient pressure and temperature
- Images, short protocol of condition of or any damage to infrastructure after test
- Images, short protocol of an inspection of the pod systems after the test
- Procedures for complete system power-on/power-off and operation during demonstration
- Conditions and critical values that lead to abortion of the test/demonstration. Verify that they work properly and reliably
- Provide the state diagram of the system and test all states and conditions of the system as far as possible