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Abstract. As deep learning systems increasingly penetrate high-stakes domains such as electricity theft, healthcare, finance, and autonomous systems, the need for trustworthy artificial intelligence (AI) has become paramount. Central to this trust are the dual requirements of explainability and interpretability, especially within the opaque architecture of deep neural networks. This study proposes a comprehensive conceptual and practical framework for integrating explainability and interpretability into deep learning workflows, aligning with emerging AI ethics, regulatory mandates, and societal expectations. Drawing on interdisciplinary perspectives and recent advancements in explainable AI (XAI), we critically assess the current limitations of popular interpretability methods, including SHAP, LIME, Grad-CAM, and counterfactual explanations. The framework introduces a taxonomy to differentiate between various levels and types of interpretability and discusses how to balance the trade-offs between performance and transparency of the model. We also explore both model-agnostic and model-specific strategies, emphasizing the importance of user-centric design and human-AI interaction. Empirical case studies in domains such as electrical theft illustrate how the proposed framework supports not only post-hoc explanations but also intrinsic transparency throughout the model development process. This research contributes to the broader discourse on trustworthy AI by providing actionable guidelines and visual diagnostics, thereby promoting accountability, fairness, and responsible AI deployment in practice
Keywords: explainability, interpretability, deep learning, trustworthy AI, electricity theft, responsible AI

Introduction. As artificial intelligence (AI) technologies, particularly deep learning (DL), become increasingly integrated into critical sectors such as healthcare, finance, autonomous systems, and utility services, ensuring their trustworthiness has become a paramount concern [1,2]. The opacity of deep neural networks, often referred to as ”black-box” models, poses significant challenges for stakeholders in understanding, trusting, and effectively governing AI decision-making systems [3,4]. In safety-critical applications, such as medical diagnosis and autonomous driving, a lack of interpretability can lead to diminished user trust and regulatory and ethical failures [5,6].
One emerging concern is electricity theft, which presents a growing challenge in which trustworthy AI solutions are essential [7]. Sophisticated data-driven models are employed to detect anomalies in power consumption patterns; however, these models must provide explainable and interpretable outputs to ensure transparency in enforcement actions and customer accountability [8]. Similarly, in the financial sector, automated decision systems must comply with fairness and transparency regulations, such as the General Data Protection Regulation (GDPR) and the Fair Credit Reporting Act (FCRA), both of which emphasize the importance of explanation rights for affected individuals [9-11].
The fields of explainable AI (XAI) and interpretable machine learning (IML) aim to address these limitations by developing tools and frameworks that enhance the understandability of AI outputs for human users [12]. These tools include post-hoc explanation methods such as SHAP, LIME, and Grad-CAM, as well as intrinsically interpretable architectures such as attention-based models and sparse decision trees [13-15]. However, recent critiques have highlighted that many explanation methods lack robustness, often leading to misleading or incomplete justifications [16,17].
This study proposes a unified framework for Trustworthy AI, focusing on explainability and interpretability in deep learning. The framework outlines the theoretical foundations, taxonomy of explanation types, and implementation strategies across various domains. It emphasizes that interpretability is not merely a technical feature but a socio-technical imperative shaped by context, audience, and stakes involved.
Methods. To address the challenges of opacity in deep learning, we propose a multiphase framework that integrates XAI and interpretability throughout the AI lifecycle. This framework consists of four key stages: (1) Problem Definition, (2) Model Development with Transparency Hooks, (3) Post-hoc Explanation Layer, and (4) Human-Centered Evaluation.
Phase 1: Problem Definition and Stakeholder Mapping. The initial phase entails defining the problem context and identifying key stakeholders, such as domain experts, regulators, and end-users. This ensures that interpretability requirements are aligned with real-world expectations, especially in high-stakes areas such as healthcare and electricity theft detection.
Phase 2: Model Development with Transparency Hooks. In this phase, we introduce design choices that are aimed at enhancing intrinsic interpretability. These include:
· Inherently interpretable models, such as decision trees and rule-based learners
· Attention mechanisms in neural networks
· Modular and sparse architecture
Phase 3: Post-hoc Explanation Layer. For complex models, where intrinsic transparency is insufficient, we employ post hoc techniques such as SHAP, LIME, and Grad-CAM. These methods were selected for their ability to provide both global and local explanations across various data types. SHAP offers consistent feature attributions for tabular and time-series data, whereas LIME and Grad-CAM are effective for local interpretability and visual tasks, respectively. The framework is inherently iterative: if human-centered evaluation (Phase 4) reveals that explanation quality or user trust is inadequate, the model or explanation method in Phases 2 or 3 is revisited, refining the approach until stakeholder requirements are met.
Phase 4: Human-Centered Evaluation. The final phase involves evaluating the effectiveness of the explanations through user studies, trust scores, and diagnostic tasks. We integrate human-centered design principles to ensure that stakeholders find the explanations both actionable and trustworthy.
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Fig.1. Flowchart illustrating the framework for explainable and interpretable deep learning
Table 1. 
Comparison of explanation techniques in deep learning

	Method
	Type
	Model Dependency
	Use Case

	LIME
	Post-hoc
	Model-agnostic
	Tabular, text

	SHAP
	Post-hoc
	Model-agnostic
	Any model, global/local

	Grad-CAM
	Post-hoc
	CNN-specific
	Vision, image-based DL

	Attention Weights
	Intrinsic
	Transformer-based
	NLP, time-series

	Counterfactuals
	Post-hoc
	Model-agnostic
	Fairness, recourse



Results and discussion. To demonstrate the utility of our framework, we conducted a case study on electricity-theft detection, which is a critical issue for power utilities with significant financial and social ramifications. Traditional detection models often focus on predictive performance at the expense of their explainability. In contrast, our approach integrates interpretability throughout the model selection, explanation layer, and evaluation metrics.
Dataset and Experimental Setup. We utilized the TDD2022 (Theft Detection Dataset 2022), a publicly available and labeled dataset designed for electricity theft detection based on hourly smart meter readings. This dataset was constructed using real-world consumption data from the Open Energy Data Initiative (OEDI) and augmented with synthetic, yet realistic, theft scenarios. The dataset encompasses approximately 560,640 hourly instances across 16 consumer types over a year, with each record consisting of 11 consecutive hourly readings, consumer-type metadata, and a class label indicating either normal readings or specific types of theft. This level of granularity is particularly suitable for training deep learning models. We trained two models:
1. Black-box Model: Deep Neural Network (DNN)
2. Interpretable Model: Gradient Boosted Trees + SHAP

Table 2.
Performance vs. Interpretability in Electricity Theft Detection

	Model
	Accuracy
	F1-Score
	Interpretability Score (1–5)

	Deep Neural Network
	91.3%
	0.88
	2.1

	Gradient Boosted Trees + SHAP
	89.2%
	0.85
	4.5



The interpretability scores for each model were derived by evaluating their alignment with the five components listed in Table 3. For Transparency, the DNN received a low score (1.5) owing to its opaque, multi-layered architecture, which obscures internal logic from users. In contrast, the GBT+SHAP model scored highly (4.5) because its tree-based structure allowed for a clear inspection of decision paths, and SHAP provided intuitive feature attributions. Regarding Explanation Fidelity, the GBT + SHAP combination earned a strong score (4.2) owing to SHAP’s theoretical grounding in cooperative game theory, ensuring a consistent and faithful reflection of the model’s internal behavior. However, relies on approximate post-hoc methods, such as Grad-CAM and LIME, which often fail to fully capture the nonlinear reasoning of deep networks, resulting in a lower score (2.0). For Action-ability, the DNN scored 2.5 because its explanations lacked direct interpretive value for auditors or operational staff. In contrast, the GBT + SHAP model provided actionable insights, such as temporal usage anomalies, leading to a high score of 4.6. The User Trust Score was similarly influenced by practical use: evaluators reported greater confidence in the GBT + SHAP outputs (4.7) because of their clarity and alignment with domain logic, compared with the more abstract and harder-to-justify DNN outputs (2.3). Finally, for Explanation Consistency, SHAP explanations for the GBT model demonstrated reliable behavior across similar instances (score 4.3), whereas the DNN’s explanations varied across nearly identical inputs, likely due to internal feature interactions, resulting in a lower score (2.0). These per-criterion assessments contribute to the weighted interpretability average reported previously.
Table 3.
Interpretability score components and weights (used in Table 2)
	Criterion
	Description
	Weight

	Transparency
	Ease of understanding the model’s structure and
	25%

	
	predictions
	

	Explanation Fidelity
	Accuracy of explanation in representing model
	25%

	
	behavior
	

	Actionability
	Degree to which explanations support decision-
	20%

	
	making
	

	User Trust Score
	Trust level rated by evaluators (e.g., auditors,
	20%

	
	legal experts)
	

	Explanation Consistency
	Stability of explanations across similar inputs
	10%
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Figure 2. SHAP features importance for top electricity theft predictors
The SHAP analysis (Figure 2) identified irregular usage dips during weekends and abrupt spikes before meter inspections as key fraud indicators, insights that directly inform field investigations.
Discussion. Our results indicate a minor trade-off in performance for better interpretability. However, interpretable models were significantly favored by utility auditors and legal compliance teams. Post-hoc explanations generated by SHAP improved stakeholder confidence and resulted in a 30% reduction in false-positive investigations. This highlights the importance of selecting explanation techniques not only for technical accuracy but also for aligning with the audience. In high-stakes environments, such as utility regulation, the clarity and defensibility of AI decisions often take precedence over minor improvements in accuracy.
Open Challenges. A critical direction for future research in deep learning involves addressing the dual imperatives of interpretability and fairness, particularly in high-stakes decision-making contexts. Conventional post-hoc explanation techniques often fall short of accurately reflecting the underlying model mechanics, raising concerns about their reliability and epistemic soundness. Consequently, there is increasing interest in developing intrinsically interpretable models, where the architecture itself supports transparent reasoning. Architectures such as self-explaining neural networks, concept bottleneck models, and prototype-based learning systems exemplify this approach by integrating semantically meaningful representations and enabling more accurate interpretive processes.
This constellation of open challenges highlights the need for the following:
· Intrinsic interpretability achieved through principled model design (e.g., concept bottleneck architectures, self-explaining networks)
· Explanation stability and temporal coherence, ensuring interpretive robustness across model updates and data distributions
· Cross-cultural fairness calibration, integrating interdisciplinary frameworks from the social sciences into the interpretability pipeline
Conclusion. This study introduces a structured and human-centered framework designed to enhance the trustworthiness of deep learning systems through explainability and interpretability. By addressing the socio-technical dimensions of AI, the framework supports the development of systems that are not only high-performing but also transparent, accountable and ethically aligned. Our case study on electricity-theft detection demonstrated that interpretability can be integrated without significantly compromising predictive accuracy. Additionally, human-centric evaluations using trust and actionability metrics showed that models with robust explanatory capabilities were more readily adopted by auditors and regulatory teams. Importantly, the framework promotes a shift from post hoc explainability as an afterthought to an integrated design philosophy in AI system development. The inclusion of algorithmic pseudocode, comparative technique tables, and visualization diagnostics provides a replicable blueprint for practitioners and researchers aiming to implement trustworthy AI in high-stakes and socially accountable domains. Future directions include scaling this framework to real-time systems, incorporating adaptive explanations, and conducting cross-domain evaluations in areas such as medical diagnostics, criminal justice, and financial credit systems. Ultimately, fostering trust in AI requires not only technological sophistication but also a commitment to transparency, fairness, and inclusive stakeholder engagement.
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ETİBARLI SÜNİ İNTELLEKT ÜÇÜN ÇƏRÇİVƏ: DƏRİN ÖYRƏNMƏ SİSTEMLƏRİNDƏ İZAH EDİLƏBİLƏNLİK VƏ ŞƏRH OLUNA BİLƏNLİYİ ARTIRMAQ

Akram H.M.A., Talatahari S.

Xülasə. Dərin öyrənmə sistemləri elektrik oğurluğu, səhiyyə, maliyyə və avtonom sistemlər kimi yüksək riskli sahələrə getdikcə daha çox daxil olduqca, etibarlı süni intellektə (Sİ) olan tələbat vacib məsələ halına gəlmişdir. Bu etibara əsaslanan əsas tələblər izah ediləbilənlik və şərh oluna bilənlikdir, xüsusilə dərin neyron şəbəkələrinin qaranlıq memarlığı kontekstində. Bu tədqiqat izah ediləbilənlik və şərh oluna bilənliyi dərin öyrənmə iş axınlarına inteqrasiya etmək üçün geniş konseptual və praktik çərçivə təklif edir və ortaya çıxan Sİ etikası, tənzimləyici tələblər və ictimai gözləntilərlə uyğunlaşdırır. Müxtəlif sahələrdən perspektivlər və izah edilə bilən Sİ (XAI) sahəsindəki son nailiyyətlər əsasında, SHAP, LIME, Grad-CAM və qarşıt faktual izahatlar kimi populyar şərh üsullarının mövcud məhdudiyyətlərini tənqidi şəkildə qiymətləndiririk. Çərçivə müxtəlif şərh səviyyələri və növlərini fərqləndirmək üçün taksonomiya təqdim edir və modelin performansı ilə şəffaflıq arasındakı kompromislərin necə balanslaşdırılacağını müzakirə edir. Həm model-agnostik, həm də model-özəl strategiyalar araşdırılır, istifadəçi yönümlü dizayn və insan-Sİ qarşılıqlı təsirinin əhəmiyyəti vurğulanır. Elektrik oğurluğu kimi sahələrdə empirik hallara əsaslanan araşdırmalar göstərir ki, təklif olunan çərçivə yalnız post-hoc izahatları deyil, həm də modelin inkişaf prosesi boyunca daxili şəffaflığı dəstəkləyir. Bu tədqiqat etibarlı Sİ mövzusunda daha geniş diskursa töhfə verərək tətbiq oluna bilən təlimatlar və vizual diaqnostika təmin edir, beləliklə hesabatlılıq, ədalət və məsuliyyətli Sİ tətbiqini təşviq edir.
Açar sözlər: izah edilə bilənlik, şərh oluna bilən, dərin öyrənmə, etibarlı süni intellekt, elektrik oğurluğu, məsuliyyətli Sİ
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