

UPPER PRIMARY

Beginner Maths

E-Booklet

Part 4

Whole Numbers - 1 Million or more

Upper Primary Beginner Maths

Solve the maths problems.

LEARN YOUR *Millions*

1. $9,062,547 = \underline{\hspace{3cm}} + 62,000 + 500 + 40 + 7$. What is the missing number?

Ans :

2. Write seven million and thirty-four in numerals.

3. In 672,345 the value of the digit 7 is _____.

1. **What is the primary purpose of the study?**

4. $426,321 = 400,000 + 20,000 + \underline{\hspace{2cm}} + 300 + 20 + 1$
What is the missing number?

Ans : _____

5a. Write five million, two hundred and one thousand and fifty in numerals.

1. **What is the primary purpose of the study?**

5b. Write one million, three hundred and twenty-five thousand and eighty-three in numerals.

1. **What is the primary purpose of the study?** (e.g., to evaluate the effectiveness of a new treatment, to explore a new research question, to describe a population, etc.)

Whole Numbers - 1 Million or more - Solutions

Upper Primary Beginner Maths

Solve the maths problems.

LEARN YOUR
Millions

1. $9,062,547 = \underline{\hspace{2cm}} + 62,000 + 500 + 40 + 7$. What is the missing number?

Adding the components: $9,000,000 + 62,000 = 9,062,000$; then $+500 = 9,062,500$; $+40 = 9,062,540$; $+7 = 9,062,547$.

Ans : 9,000,000

2. Write seven million and thirty-four in numerals.

7,000,034

3. In 672,345 the value of the digit 7 is .

70,000

4. $426,321 = 400,000 + 20,000 + \underline{\hspace{2cm}} + 300 + 20 + 1$
What is the missing number?

Adding step-by-step: $400,000 + 20,000 = 420,000$; $+6,000 = 426,000$;
 $+300 = 426,300$; $+20 = 426,320$; $+1 = 426,321$.

Ans : 6,000

5a. Write five million, two hundred and one thousand and fifty in numerals.

5,201,050

5b. Write one million, three hundred and twenty-five thousand and eighty-three in numerals.

1,325,083

Place Values - Numbers 1 Million or more

Upper Primary Beginner Maths

Circle the correct option.

1. In 1,275,369 the digit 2 is in the _____ place.
(A) ten thousands
(B) hundred thousands
(C) one thousands

2. In 3,768,429 the digit 3 is in the _____ place.
(A) ten thousands
(B) thousands
(C) millions

3. In 1,529,617 the digit 9 is in the _____ place.
(A) million
(B) one thousands
(C) ten thousands

4. In 4,078,762 the digit 6 is in the _____ place.
(A) tens
(B) hundred thousands
(C) one thousands

5. In 5,874,319 the digit 8 is in the _____ place.
(A) ten thousands
(B) hundred thousands
(C) thousands

Place Values - Numbers 1 Million or more - Solutions

Upper Primary Beginner Maths

Circle the correct option.

1. In 1,275,369 the digit 2 is in the _____ place.
(A) ten thousands
(B) hundred thousands
(C) one thousands

2. In 3,768,429 the digit 3 is in the _____ place.
(A) ten thousands
(B) thousands
(C) millions

3. In 1,529,617 the digit 9 is in the _____ place.
(A) million
(B) one thousands
(C) ten thousands

4. In 4,078,762 the digit 6 is in the _____ place.
(A) tens
(B) hundred thousands
(C) one thousands

5. In 5,874,319 the digit 8 is in the _____ place.
(A) ten thousands
(B) hundred thousands
(C) thousands

Factors of Numbers

Upper Primary Beginner Maths

Solve the maths problems.

Factors 8

Factors are numbers that we multiply together to get another number. A factor divides it exactly without leaving a remainder.

Example:

12

1×12

2×6

3×4

The factors of 12 are 1, 2, 3, 4, 6 and 12.

1.

42

and

and

and

and

2.

24

and

and

and

3.

30

and

and

and

4.

40

and

and

and

5.

54

and

and

and

6.

70

and

and

and

Factors of Numbers - Solutions

Upper Primary Beginner Maths

Solve the maths problems.

Factors 8

Factors are numbers that we multiply together to get another number. A factor divides it exactly without leaving a remainder.

Example:

12

1×12

2×6

3×4

The factors of 12 are 1, 2, 3, 4, 6 and 12.

factor pairs

1.

42

1 and 42
2 and 21
3 and 14
6 and 7

2.

24

1 and 24
2 and 12
3 and 8
4 and 6

3.

30

1 and 30
2 and 15
3 and 10
5 and 6

4.

40

1 and 40
2 and 20
4 and 10
5 and 8

5.

54

1 and 54
2 and 27
3 and 18
6 and 9

6.

70

1 and 70
2 and 35
5 and 14
7 and 10

Multiples of Numbers

Upper Primary Beginner Maths

List the first five multiples.

Multiples 8

A multiple of a number is the result you get when you multiply that number by any whole number.

Example:

8

What are the multiples of 8?

8 16 24 32 40
48 56 64 72 80

Skip counting
helps you
quickly list the
multiples of
that number.

1. 4

2. 7

3. 9

4. 12

5. 10

6. 6

7. 11

8. 3

Multiples of Numbers - Solutions

Upper Primary Beginner Maths

List the first five multiples.

Multiples 8

A multiple of a number is the result you get when you multiply that number by any whole number.

Example:

8

What are the multiples of 8?

8 16 24 32 40
48 56 64 72 80

Skip counting
helps you
quickly list the
multiples of
that number.

1.

4

4 8
12 16
20

2.

7

7 14
21 28
35

3.

9

9 18
27 36
45

4.

12

12 24
36 48
60

5.

10

10 20
30 40
50

6.

6

6 12
18 24
30

7.

11

11 22
33 44
55

8.

3

3 6
9 12
15