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Introducción

Estas notas están dirigidas a estudiantes de nivel medio superior que se preparan para competen-
cias nacionales de matemáticas. El énfasis está en el razonamiento, la correcta manipulación de
congruencias y el uso estratégico de resultados clásicos como los teoremas de Fermat y Euler.

1. Congruencias

1.1. Definición

Sean a, b,m ∈ Z con m > 0. Decimos que a es congruente con b módulo m si

m | (a− b).
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Esto se denota por
a ≡ b (mód m).

1.2. Propiedades fundamentales

Si a ≡ b (mód m) y c ≡ d (mód m), entonces:

a+ c ≡ b+ d (mód m),

a− c ≡ b− d (mód m),

ac ≡ bd (mód m),

ak ≡ bk (mód m) para todo k ∈ N.

1.3. Clases residuales

Los enteros se dividen en m clases residuales:

[0], [1], . . . , [m− 1],

donde
[a] = {x ∈ Z : x ≡ a (mód m)}.

1.4. Ejemplo 1

Determinar si 137 ≡ 17 (mód 10).

Solución paso a paso

1. Calculamos la diferencia: 137− 17 = 120.

2. Como 10 | 120, la congruencia es verdadera.

3. Por tanto, 137 ≡ 17 (mód 10).

1.5. Ejemplo 2

Resolver la congruencia
7x ≡ 1 (mód 26).

Solución paso a paso

1. Buscamos el inverso de 7 módulo 26.

2. Aplicamos el algoritmo de Euclides:

26 = 3 · 7 + 5, 7 = 1 · 5 + 2, 5 = 2 · 2 + 1.

3. Retrocediendo:
1 = 5− 2 · 2 = 3 · 5− 2 · 7.
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4. Como 5 = 26− 3 · 7, obtenemos
1 = 3 · 26− 11 · 7.

5. Entonces −11 ≡ 15 (mód 26) es el inverso de 7.

6. La solución es x ≡ 15 (mód 26).

1.6. Ejercicios

1. Determinar el residuo de 21001 módulo 3.

2. Resolver 12x ≡ 8 (mód 20).

3. Probar que si a ≡ b (mód m), entonces a3 ≡ b3 (mód m).

4. Encontrar todos los enteros x tales que 5x ≡ 10 (mód 15).

5. Calcular el último dígito de 72023.

6. Probar que n2 ≡ 0, 1 (mód 4) para todo entero n.

2. Potencias módulo m

2.1. Orden de un elemento

Sea a un entero coprimo con m. El orden de a módulo m es el menor entero positivo k tal que

ak ≡ 1 (mód m).

2.2. Teorema pequeño de Fermat

Teorema 1. Si p es primo y gcd(a, p) = 1, entonces

ap−1 ≡ 1 (mód p).

2.3. Teorema de Euler

Teorema 2. Si gcd(a,m) = 1, entonces

aφ(m) ≡ 1 (mód m),

donde φ es la función indicatriz de Euler.

2.4. Ejemplo 1

Calcular 3100 (mód 7).

Solución

1. Por Fermat, 36 ≡ 1 (mód 7).
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2. Escribimos 100 = 6 · 16 + 4.

3. Entonces
3100 ≡ 34 ≡ 81 ≡ 4 (mód 7).

2.5. Ejemplo 2

Calcular 7222 (mód 40).

Solución

1. gcd(7, 40) = 1 y φ(40) = 16.

2. Entonces 716 ≡ 1 (mód 40).

3. Como 222 = 16 · 13 + 14, se obtiene

7222 ≡ 714 ≡ 9 (mód 40).

2.6. Ejercicios

1. Calcular 21000 (mód 9).

2. Hallar el orden de 3 módulo 10.

3. Determinar 51234 (mód 11).

4. Probar que el orden de a módulo m divide a φ(m).

5. Encontrar el último dígito de 9999.

6. Calcular 112025 (mód 12).

3. Problemas tipo Olimpiada

Problemas

1. Demostrar que para todo entero n,

n5 − n ≡ 0 (mód 30).

2. Sea p > 3 un primo. Probar que p2 − 1 es divisible por 24.

3. Calcular el residuo de 22025 + 32025 módulo 5.

4. Sea a un entero impar. Probar que

a2
n ≡ 1 (mód 8)

para todo n ≥ 1.
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5. Determinar todos los enteros n tales que

n2 ≡ 1 (mód 24).

6. Probar que si gcd(a, 10) = 1, entonces

a4 ≡ 1 (mód 10).

Pistas

Factorizar y trabajar módulo 2, 3 y 5.

Usar que p2 − 1 = (p− 1)(p+ 1).

Aplicar Fermat y separar potencias.

Proceder por inducción.

Analizar el problema módulo 8 y módulo 3.

Usar que φ(10) = 4.
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