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Introducciéon
Estas notas estan dirigidas a estudiantes de nivel medio superior que se preparan para competen-

cias nacionales de matemaéticas. El énfasis estd en el razonamiento, la correcta manipulacion de
congruencias y el uso estratégico de resultados clasicos como los teoremas de Fermat y Euler.

1. Congruencias

1.1. Definiciéon
Sean a,b,m € Z con m > 0. Decimos que a es congruente con b médulo m si

m | (a —b).



Esto se denota por
a=b (méd m).

1.2. Propiedades fundamentales

Sia=b (méd m)y ¢ =d (méd m), entonces:

a+c=b+d (méd m),

a—c=b—d (méd m),

ac = bd (méd m),

» a¥ =b* (méd m) para todo k € N.

1.3. Clases residuales

Los enteros se dividen en m clases residuales:
0], [1],...,[m —1],
donde
[a] ={x€Z:x=a (méd m)}.
1.4. Ejemplo 1

Determinar si 137 = 17 (mdd 10).

Solucién paso a paso

1. Calculamos la diferencia: 137 — 17 = 120.
2. Como 10 | 120, la congruencia es verdadera.

3. Por tanto, 137 = 17 (mdd 10).

1.5. Ejemplo 2

Resolver la congruencia

7Tr=1 (méd 26).
Solucién paso a paso

1. Buscamos el inverso de 7 moédulo 26.

2. Aplicamos el algoritmo de Euclides:

26=3-7T+5, 7T=1-54+2, 5=2-241.

3. Retrocediendo:
1=5-2-2=3-5-2-T7.



4. Como 5 =26 — 3 -7, obtenemos
1=3-26—11-7.

5. Entonces —11 = 15 (mdéd 26) es el inverso de 7.

6. La solucion es x = 15 (méd 26).

1.6. Ejercicios

1. Determinar el residuo de 2'°9! modulo 3.
2. Resolver 12z = 8 (mdd 20).
3. Probar que si a = b (méd m), entonces a® = b* (méd m).

4. Encontrar todos los enteros x tales que 5z = 10 (mdd 15).

5. Calcular el tltimo digito de 72023,

6. Probar que n? = 0,1 (méd 4) para todo entero n.

2. Potencias modulo m

2.1. Orden de un elemento

Sea a un entero coprimo con m. El orden de a mddulo m es el menor entero positivo k tal que

a" =1 (méd m).

2.2. Teorema pequeno de Fermat

Teorema 1. Sip es primo y ged(a,p) = 1, entonces

a? =1 (méd p).

2.3. Teorema de Euler

Teorema 2. Si gcd(a, m) =1, entonces

a?(m)

Il
_

(méd m),

donde @ es la funcion indicatriz de Euler.

2.4. Ejemplo 1

Calcular 319 (méd 7).

Solucién

1. Por Fermat, 3% =1 (mdd 7).



2. Escribimos 100 = 6 - 16 + 4.
3. Entonces

30 =31=81=4 (méd 7).

2.5. Ejemplo 2

Calcular 7%22 (méd 40).
Solucién
1. ged(7,40) = 1y ¢(40) = 16.
2. Entonces 7'6 = 1 (méd 40).

3. Como 222 = 16 - 13 + 14, se obtiene

722 =71 =9 (mdd 40).

2.6. Ejercicios

1. Calcular 219 (méd 9).

2. Hallar el orden de 3 moédulo 10.

3. Determinar 5234 (méd 11).

4. Probar que el orden de a moédulo m divide a p(m).
5. Encontrar el tltimo digito de 99%.

6. Calcular 112925 (méd 12).

3. Problemas tipo Olimpiada

Problemas

1. Demostrar que para todo entero n,

n®—n=0 (méd 30).

2. Sea p > 3 un primo. Probar que p? — 1 es divisible por 24.

modulo 5.

3. Calcular el residuo de 22025 4 32025

4. Sea a un entero impar. Probar que
a® =1 (méd 8)

para todo n > 1.



5. Determinar todos los enteros n tales que

n?=1 (méd 24).

6. Probar que si ged(a, 10) = 1, entonces

a®=1 (méd 10).

Pistas

= Factorizar y trabajar moédulo 2, 3 y 5.

Usar que p> — 1= (p—1)(p+1).

Aplicar Fermat y separar potencias.

Proceder por induccion.

Analizar el problema médulo 8 y modulo 3.

Usar que ¢(10) = 4.
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