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Una desigualdad uatil

Una desigualdad util

Teorema

Si a, b, x,y son niimeros reales y x,y son positivos, entonces se tiene la siguiente
desigualdad
2 2 2
a b a+b
R Chl

Yy = x4y (1)
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Una desigualdad uatil

Una desigualdad util

Teorema

Si a, b, x,y son niimeros reales y x,y son positivos, entonces se tiene la siguiente
desigualdad
2 2 2
a b a+b
— A => g (]_)

X y Xty

Demostracion
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Una desigualdad uatil

Una desigualdad util

Teorema

Si a, b, x,y son niimeros reales y x,y son positivos, entonces se tiene la siguiente
desigualdad
2 2 2
a b a+b
— A => g (]_)

X y Xty

Demostracion

Notemos que
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Una desigualdad uatil

Una desigualdad util

Teorema

Si a, b, x,y son niimeros reales y x,y son positivos, entonces se tiene la siguiente
desigualdad
2 2 2
a b a+b
— A => g (]_)

X y Xty

Demostracion

Notemos que

2 2 2
a Bt (Ehb)
X y — xty
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Una desigualdad uatil

Una desigualdad util

Teorema

Si a, b, x,y son niimeros reales y x,y son positivos, entonces se tiene la siguiente
desigualdad
2 2 2
a b a+b
— A => g (]_)

X y Xty

Demostracion

Notemos que

"’:ﬂfz(axibf s (Xy)<a2+b2>2(xy) {("“’)T
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Una desigualdad uatil

Una desigualdad util

Teorema

Si a, b, x,y son niimeros reales y x,y son positivos, entonces se tiene la siguiente
desigualdad
2 2 2
a b a+b
— A => g (]_)

X y Xty

Demostracion

Notemos que

¥+E>@+W@(W%f+5>ﬂwﬂ@ﬂf}

X y = Xty X+y
b2
o yR+xb> (Xyl(j_—; )

=
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Una desigualdad uatil

Una desigualdad util

Teorema

Si a, b, x,y son niimeros reales y x,y son positivos, entonces se tiene la siguiente
desigualdad
2 2 2
a b a+b
— A => g (]_)

X y Xty

Demostracion

Notemos que

a? b _ (a+b)? a? P (a+ b)?
S>> & Z+=) > =

= Z2 o ) (242 2 00 |2
(xy)(a+ b)?

Xty
& ay(x+y)+bx(x+y) = (a+ b)’xy

& yat+xb® >
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Una desigualdad uatil

Una desigualdad util

Teorema

Si a, b, x,y son niimeros reales y x,y son positivos, entonces se tiene la siguiente
desigualdad
2 2 2
a b a+b
— A => g (]_)

X y Xty

Demostracion

Notemos que

iJrle(iibyy & (Xy)<‘f+lj>2(xy) {(iibf}

(xy)(a+ b)?
X+y
& ay(x+y)+bx(x+y) = (a+ b)’xy
& a’xy + a’y? + b?x® + b?xy > a’xy + 2abxy + b*xy

& yat+xb® >
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Una desigualdad uatil

Demostracion

& a%y? + b?x® —2abxy > 0
54
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Una desigualdad uatil

Demostracion

& a%y? + b?x® —2abxy > 0
& (ay — bx)>>0.
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Una desigualdad uatil

Demostracion

& a%y? + b?x® —2abxy > 0
& (ay — bx)>>0.

Como esta ultima desigualdad se cumple, tenemos que
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Una desigualdad uatil

Demostracion

& a%y? + b?x® —2abxy > 0
& (ay — bx)>>0.

Como esta dltima desigualdad se cumple, tenemos que (1) se cumple.
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Una desigualdad uatil

Demostracion

& a%y? + b?x® —2abxy > 0
& (ay — bx)>>0.

Como esta dltima desigualdad se cumple, tenemos que (1) se cumple. Vemos que
la igualdad se tiene si y solo si
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Una desigualdad uatil

Demostracion

& a%y? + b?x® —2abxy > 0
& (ay — bx)>>0.

Como esta dltima desigualdad se cumple, tenemos que (1) se cumple. Vemos que
la igualdad se tiene si y solo si ay = bx, esto es, si
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Una desigualdad uatil

Demostracion

& a%y? + b?x® —2abxy > 0
& (ay — bx)>>0.

Como esta dltima desigualdad se cumple, tenemos que (1) se cumple. Vemos que
la igualdad se tiene si y solo si ay = bx, esto es, si 2 = }—‘j. O
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Una desigualdad uatil

Usando la desigualdad til dos veces, podemos extender la desigualdad para dos
ternas de nimeros,
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Una desigualdad uatil

Usando la desigualdad til dos veces, podemos extender la desigualdad para dos
ternas de nimeros,
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Una desigualdad uatil

Usando la desigualdad til dos veces, podemos extender la desigualdad para dos
ternas de nimeros,

a®> b2 2 _(a+b)? 2 < (a+b+c)?
X y z X+y z X+y—+z

)
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Una desigualdad uatil

Usando la desigualdad til dos veces, podemos extender la desigualdad para dos
ternas de nimeros,
a? b2 2 _(a+b)? 2 _(at+b+c)

—t+—F—2——+—2
X y z X+y z X+y+z

)

y un simple argumento inductivo muestra que
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Una desigualdad uatil

Usando la desigualdad til dos veces, podemos extender la desigualdad para dos
ternas de nimeros,
a? b2 2 _(a+b)? 2 _(at+b+c)

—F+—+—2 +—2=
X y z X+y z X+y+z

)

y un simple argumento inductivo muestra que

2 2 2 2
a; a a (a1 +a+---+a,)
1 2 1 2 n
X1 Xo Xn X1 +x04+ -+ X,
para todos los nlimeros reales aj, as,...,a, Y X1, X2, ..., X, > 0, con la igualdad si

y solo si
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Una desigualdad uatil

Usando la desigualdad til dos veces, podemos extender la desigualdad para dos
ternas de nimeros,

a? b P a+b)? a+b+c)?
S S (ath)? & (atbic)
X y z X+y z X+y+z

7

y un simple argumento inductivo muestra que

2 2 2 2

a a a ata+---+a

S W PG R ) 2)
X1 X2 Xn X1+Xxo+ -+ X

para todos los nlimeros reales aj, as,...,a, Y X1, X2, ..., X, > 0, con la igualdad si
y solo si

A _B2_ _ &

X1 X2 Xn
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Una desigualdad uatil

Usando la desigualdad til dos veces, podemos extender la desigualdad para dos
ternas de nimeros,

a? b P a+b)? a+b+c)?
S S (ath)? & (atbic)
X y z X+y z X+y+z

7

y un simple argumento inductivo muestra que

2 2 2 2
a; a a (a1 +a+---+a,)
1 2 1 2 n
A By (2)
X1 X2 Xn X1 +X2 4+ Xy
para todos los nlimeros reales aj, as,...,a, Y X1, X2, ..., X, > 0, con la igualdad si
y solo si
ai a an
X1 x C Xn

La desigualdad (2) es conocida también como la desigualdad de Cauchy-Schwarz
en la forma de Engel o el principio del minimo de Arthur Engel.
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Una desigualdad uatil

Sean ay,...,an, b1, ..., b, nimeros positivos, tales que
aat+a+---+a,=b+by+---+ b,

Demostrar que

2 2

= TN >1(a+ + an)
a1+ by a,+b, — 2 ! nre
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Una desigualdad uatil

Sean ay,...,an, b1, ..., b, nimeros positivos, tales que

anta+---+a,=by+by+---+ b,.

Demostrar que

% % >1(a—|— + ap)
a1 + by an+ b, ~ 27" "

Demostracion
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Una desigualdad uatil

Sean ay,...,an, b1, ..., b, nimeros positivos, tales que

anta+---+a,=by+by+---+ b,.

Demostrar que

2 2

SR, S Y PR
a1 + by a,+b, =2\ "

Demostracion

El principio del minimo de Arthur Engel implica
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Una desigualdad uatil

Sean ay,...,an, b1, ..., b, nimeros positivos, tales que

anta+---+a,=by+by+---+ b,.

Demostrar que

2 2

SR, S Y PR
a1 + by a,+b, =2\ "

Demostracion
El principio del minimo de Arthur Engel implica

aj 4 Jri > (an - am b one gy
ar + by a,+b, = at+at+---Fa,+b+b+---+b,
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Una desigualdad uatil

Sean ay,...,an, b1, ..., b, nimeros positivos, tales que
anta+---+a,=by+by+---+ b,.

Demostrar que

a% de oo db a’27 >1(a _|_..._|_a)
a1 + by ant+ b, 2" "

Demostracion

El principio del minimo de Arthur Engel implica

2 2 (a1t a2+ +an)

oot >
ar + by an+ by aatart--+an+b +b+--+b,
(a1 +ar+--+a)’
2(a1+ax+---+an)
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Una desigualdad uatil

Sean ay,...,an, b1, ..., b, nimeros positivos, tales que
anta+---+a,=by+by+---+ b,.

Demostrar que

a% de oo db a’27 >1(a _|_..._|_a)
a1 + by ant+ b, 2" "

Demostracion

El principio del minimo de Arthur Engel implica

aj T ap . (an - am b one gy
ar + by a,+b, = at+at+---Fa,+b+b+---+b,
(a+a+--+a) 1

2(a1+ax+---+an) _5(

aita+---+an).
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Una desigualdad uatil

Para nimeros positivos a, b, c, d demostrar que

1+1+4+E>6—4
a b ¢ d T a+b+c+d
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Una desigualdad uatil

Para nimeros positivos a, b, c, d demostrar que

114,16 64
a b ¢ d T a+b+c+d

Demostracion
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Una desigualdad uatil

Para nimeros positivos a, b, c, d demostrar que

114,16 64
a b ¢ d T a+b+c+d

Demostracion

Por el principio del minimo de Arthur Engel
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Una desigualdad uatil

Para nimeros positivos a, b, c, d demostrar que

114,16 64
a b ¢ d T a+b+c+d

Demostracion

Por el principio del minimo de Arthur Engel

1+1+4+E
b d°
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Una desigualdad uatil

Para nimeros positivos a, b, c, d demostrar que

114,16 64
a b ¢ d T a+b+c+d

Demostracion

Por el principio del minimo de Arthur Engel

1 1 4 16 _ (1+1+2+4)2

S+l >
a+b+c+d_ at+b+c+d
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Una desigualdad uatil

Para nimeros positivos a, b, c, d demostrar que

114,16 64
a b ¢ d T a+b+c+d

Demostracion

Por el principio del minimo de Arthur Engel

1 1 4 16 14+1+2+4)2 64
*—l—*—l-*—i—*Z( il o A6 = o
a b ¢ d at+b+c+d at+tb+c+d
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Una desigualdad uatil

Sean a, b, c niimeros positivos, tales que abc = 1. Demostrar que

1 L 1 n 1 3
a(b+c) bd(a+c) c3(a+b)
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Una desigualdad uatil

Sean a, b, c niimeros positivos, tales que abc = 1. Demostrar que

1 1 1
a3(b+ c) + b3(a+ c) + c3(a+b)

Demostracion

3
> —.
-2
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Una desigualdad uatil

Sean a, b, c niimeros positivos, tales que abc = 1. Demostrar que

1 1 1
a3(b+ c) + b3(a+ c) + c3(a+b)

Demostracion

Notemos que

3
> —.
-2
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Una desigualdad uatil

Sean a, b, c niimeros positivos, tales que abc = 1. Demostrar que

1 1 1
a3(b+ c) + b3(a+ c) + c3(a+b)

Demostracion

Notemos que

3
> —.
-2

1 1 1
a3(b+c) * b3(a+ c) i c3(a+b)
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Una desigualdad uatil

Sean a, b, c niimeros positivos, tales que abc = 1. Demostrar que

1 1 1
a3(b+ c) + b3(a+ c) + c3(a+b)

Demostracion

Notemos que

3
> —.
-2

1 1 1 ! = !

_ a2 &

a3(b+c) * b3(a+ c) i c3(a+b)  alb+c) * b(a+ c) * c(a+b)

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Una desigualdad uatil

Sean a, b, c niimeros positivos, tales que abc = 1. Demostrar que

1 1 1
a3(b+ c) + b3(a+ c) + c3(a+b)

Demostracion

Notemos que

3
> —.
-2

t ;1! = = + v + =
a3(b+c) b3(a+c) c3(a+b) a(b+c) bla+c) cla+b)
141, 1)
(a+b+c)
2(ab+ bc + ac)
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Una desigualdad uatil

Sean a, b, c niimeros positivos, tales que abc = 1. Demostrar que

1 n 1 - 1 >§
aB(b+c) b¥atc) c3a+b) 2

Demostracion

Notemos que

t ;1! = = + v + =
a3(b+c) b3(a+c) c3(a+b) a(b+c) bla+c) cla+b)

2
Gts+e)
2(ab+ bc + ac)
2
(55 +¢)

2(ab + bc + ac)
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Una desigualdad uatil

Sean a, b, c niimeros positivos, tales que abc = 1. Demostrar que

1 n 1 - 1 >§
aB(b+c) b¥atc) c3a+b) 2

Demostracion

Notemos que

t ;1! = = + v + =
a3(b+c) b3(a+c) c3(a+b) a(b+c) bla+c) cla+b)

G+i+d)°
2(ab+ bc + ac)
SR
2(ab + bc + ac)

( ac+abbcc+ab ) 2

2(ab + bc + ac)
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Una desigualdad uatil

Demostracion

__ab+ bc+ac
-7
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Una desigualdad uatil

Demostracion

__ab+ bc+ac < 3+¢/(abc)?

2 - 2
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Una desigualdad uatil

Demostracion

__ab+ bc+ac < 3+¢/(abc)?

2 - 2

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Una desigualdad uatil

Demostracion

__ab+ bc+ac < 3v/(abc)* 3
2 - 2 2’
donde la primer desigualdad se sigue del principio del minimo de Arthur Engel y la
segunda se deduce de la desigualdad entre la media geométrica y la media
aritmética.
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Una desigualdad uatil

Sean x,y,z > 0, demostrar que

X " y " z
X+2y+3z y+2z+3x z+2x+3y

1
> —.
-2
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Una desigualdad uatil

Sean x,y,z > 0, demostrar que

X y z 1
" + > =
X+2y+3z y+2z4+3x z+2x+3y — 2

Demostracion
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Una desigualdad uatil

Sean x,y,z > 0, demostrar que

X y z 1
" + > =
X+2y+3z y+2z4+3x z+2x+3y — 2

Demostracion

Notemos que
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Una desigualdad uatil

Sean x,y,z > 0, demostrar que

X y z >1

x—|—2y—|—3z+y+2z—|—3x+z+2x—|—3y 2

Demostracion

Notemos que

X i y N z
X+2y+3z y+2z+3x z+4+2x+3y

Desigualdades Numéricas
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Una desigualdad uatil

Sean x,y,z > 0, demostrar que

X y z 1
" + > =
X+2y+3z y+2z4+3x z+2x+3y — 2

Demostracion

Notemos que

X i y N z
X+2y+3z y+2z+3x z+4+2x+3y
%2 y2 22

N X2+2xy+3xz+y2—|—2yz—|—3xy +z2—|—2xz+3yz'
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Una desigualdad uatil

Sean x,y,z > 0, demostrar que

X y z 1
" + > =
X+2y+3z y+2z4+3x z+2x+3y — 2

Demostracion

Notemos que

X i y N z
X+2y+3z y+2z+3x z+4+2x+3y
%2 y2 22

N X2+2xy+3xz+y2—|—2yz—|—3xy +z2—|—2xz+3yz'

Por el principio del minimo de Arthur Engel tenemos
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Una desigualdad uatil

Demostracion

X2 y2 z2

x2 + 2x +3xz+y2+2yz+3xy+z2+2xz+3yz
Yy

>
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Una desigualdad uatil

Demostracion

X2 y2 z2

x2—|—2xy+3xz+y2+2yz+3xy+z2+2xz+3yz
S (x +y+2)°
T X2+ y2 4+ 22 +5(xy + xz+ yz)
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Una desigualdad uatil

Demostracion

X2 y2 z2

x2—|—2xy+3xz+y2+2yz+3xy+z2+2xz+3yz
S (x +y+2)°
T X2+ y2 4+ 22 +5(xy + xz+ yz)

Luego
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Una desigualdad uatil

Demostracion

X2 y2 z2

x2—|—2xy+3xz+y2+2yz+3xy+z2+2xz+3yz
S (x +y+2)°
T X2+ y2 4+ 22 +5(xy + xz+ yz)

Luego

X i y N z
x+2y+3z y+2z+4+3x z+4+2x+3y

>
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Una desigualdad uatil

Demostracion

X2 . % . 22
x2+2xy +3xz  y?+2yz+3xy z2+2xz+3yz
S (x +y+2)°
T X2+ y2 4+ 22 +5(xy + xz+ yz)
Luego
X y z
+ +
x+2y+3z y+2z+4+3x z+4+2x+3y
(x +y+2)?

> .
T X2+ y2 4+ 22+ 5(xy + xz + yz)
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Una desigualdad uatil

Demostracion

X2 2 2
4 Y = z
x2+2xy +3xz  y?+2yz+3xy z2+2xz+3yz
S (x +y+2)°
T X2+ y2 4+ 22 +5(xy + xz+ yz)
Luego
X y z
+ +
x+2y+3z y+2z+4+3x z+4+2x+3y
(x +y+2)?

> .
T X2+ y2 4+ 22+ 5(xy + xz + yz)

Por lo que solo resta demostrar que
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Una desigualdad uatil

Demostracion

(x+y+z)?
X2+ y?2+ 22+ 5(xy + xz + yz
=

>1
) 2
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Una desigualdad uatil

Demostracion

(x+y+z)? >1
X2+ y?+ 22+ 5(xy +xz+yz) — 2
S20x+y+2)?>x2+y2+ 22 +5(xy + xz + yz2)
=
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Una desigualdad uatil

Demostracion

(x+y+z)? >1
X2+ y2 4+ 22+ 5(xy +xz+yz) — 2
S20x+y+2)?>x2+y2+ 22 +5(xy + xz + yz2)

@2(X2—|—y2—|—z2)—|—4(xy—|—xz—|—yz)2x2—|—y2—|—22—|—5(xy+xz—|—yz)

=
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Una desigualdad uatil

Demostracion

(x+y+z)? >1
X2+ y2 4+ 22+ 5(xy +xz+yz) — 2
S20x+y+2)?>x2+y2+ 22 +5(xy + xz + yz2)

<:>2(x2+y2+z2)+4(xy+xz+yz)2x2+y2+22+5(xy+xz+yz)

(:>X2+y2+222xy+xz+yz.
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Una desigualdad uatil

Demostracion

(x+y+z)? >1
X2+ y2 4+ 22+ 5(xy +xz+yz) — 2
S20x+y+2)?>x2+y2+ 22 +5(xy + xz + yz2)

<:>2(x2+y2+z2)+4(xy+xz+yz)2x2+y2+22+5(xy+xz+yz)

(:>X2+y2+222xy+xz+yz.

Como esta (ltima desigualdad es vdlida (desigualdad del reacomodo), tenemos
que el resultado deseado es valido. O
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/%jt\/gz\/}h/y.
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/);724—\/?2\/}4—\0.

Demostracion
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/);724—\/?2\/}4—\0.

Demostracion

Como la expresion es simétrica en x y y, podemos suponer sin perder generalidad
que0 < x <y.
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/);724—\/?2\/}4—\0.

Demostracion

Como la expresion es simétrica en x y y, podemos suponer sin perder generalidad
que 0 < x < y. Entonces
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/);724—\/?2\/}4—\0.

Demostracion

Como la expresion es simétrica en x y y, podemos suponer sin perder generalidad
que 0 < x < y. Entonces

Vy? > Ve
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/);724—\/?2\/}4—\0.

Demostracion

Como la expresion es simétrica en x y y, podemos suponer sin perder generalidad
que 0 < x < y. Entonces

Vyi>ve oy
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/);724—\/?2\/}4—\0.

Demostracion

Como la expresion es simétrica en x y y, podemos suponer sin perder generalidad
que 0 < x < y. Entonces

/y2Z’/X2 y 1> 1
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/);724—\/?2\/}4—\0.

Demostracion

Como la expresion es simétrica en x y y, podemos suponer sin perder generalidad
que 0 < x < y. Entonces

/y2Z’/X2 y 1> 1

Luego, por la desigualdad del reacomodo,
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Miscelanea de ejercicios

Si x,y > 0, demostrar que

\/);724—\/?2\/}4—\0.

Demostracion

Como la expresion es simétrica en x y y, podemos suponer sin perder generalidad
que 0 < x < y. Entonces

V2> Vx2 oy \/ZZ\/E

Luego, por la desigualdad del reacomodo,

\/);7+\/%2\/§+ﬁ.
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x4 )y + 2)(z +x) 2 Bxyz.
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion
Por la desigualdad entre la media geométrica y la media aritmética,
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion
Por la desigualdad entre la media geométrica y la media aritmética,

X—;y > W\/Xy &
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion

Por la desigualdad entre la media geométrica y la media aritmética,

X+y
2

>\xy & x+y>2xy
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion

Por la desigualdad entre la media geométrica y la media aritmética,

X—;y >\xy & x+y>2xy
yTHZ vz &
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion

Por la desigualdad entre la media geométrica y la media aritmética,

X—;y >\xy & x+y>2xy

%“z\/yz & yt+z>2)yz
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion

Por la desigualdad entre la media geométrica y la media aritmética,

X—;y >\xy & x+y>2xy

%“z\/yz & yt+z>2)yz

Z+ X

>\zx &
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion

Por la desigualdad entre la media geométrica y la media aritmética,

X;—yzw/xy & x4y >2xy
VT“ > V2 o y+z>2yz
Z_;X >Vzx & z4 x> 24/zx.
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion

Por la desigualdad entre la media geométrica y la media aritmética,

X;—yzw/xy & x4y >2xy
VT“ > V2 o y+z>2yz
Z_;X >Vzx & z4 x> 24/zx.

Por lo tanto
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Miscelanea de ejercicios

Six,y,z > 0, demostrar que

(x+ )y +2)(z +x) = Byz.

Demostracion

Por la desigualdad entre la media geométrica y la media aritmética,

X—;y >\xy & x+y>2xy

%“z\/yz & yt+z>2)yz

Z_;X >Vzx & z4 x> 24/zx.

Por lo tanto
(x+y)(y + z)(z + x) > 8xyz.
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® ‘
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion

Para que las expresiones estén definidas es necesario que
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion

Para que las expresiones estén definidas es necesario que 1+ 2x > 0
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x >0 y
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x > 0 y x # 0,
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

42
N <2x+0.

(- VIT2)

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x > 0 y x # 0, es
decir, que
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

42
N <2x+0.

(- VIT2)

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x > 0 y x # 0, es
decir, que x > —3% y
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

42
N <2x+0.

(- VIT2)

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x > 0 y x # 0, es
decir, que x > —3% y x # 0.
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x > 0 y x # 0, es
decir, que x > —3% y x # 0.

Supongamos pues que x > —% y x # 0.
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x > 0 y x # 0, es
decir, que x > —3% y x # 0.

Supongamos pues que x > —% y x # 0. Entonces
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Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x > 0 y x # 0, es
decir, que x > —3% y x # 0.

Supongamos pues que x > —% y x # 0. Entonces

(1+VT+2x)°
1+ vITx)

4x?

(- VIT %)

< 2x+9

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Miscelanea de ejercicios

Determinar los valores de x para los que se cumple la desigualdad

B coxto
1-vit2x)® '

Demostracion

Para que las expresiones estén definidas es necesario que 1 +2x > 0 y x # 0, es
decir, que x > —3% y x # 0.

Supongamos pues que x > —% y x # 0. Entonces

4x2 (1+VT+2x)° ~ oeo
(1-vIit2x) |1+ vVIt2x)
2 2

4x (1+\/1+2x) < %40

[1— (1+2x)°
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Miscelanea de ejercicios

Demostracion

4x2 (1 +2v/1+2x+1 +2x)
4x2

2x+9
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Miscelanea de ejercicios

Demostracion

4x2 (1—|—2\/1—|—2x—|—1+2x)
4x2
24+2x+2vV1+2x < 2x+9

2x+9
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Miscelanea de ejercicios

Demostracion

4x% (1+2v/1+2x + 1+ 2x)
42
242x+2V/14+2x < 2x+9
2V1+2x < 7

2x+9
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Miscelanea de ejercicios

Demostracion

4x2 (1—|—2\/1—|—2x—|—1+2x)
4x2
24+2x+2vV1+2x < 2x+9

2x+9

2VI+2x < 7
4(1+2x) < 49

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Miscelanea de ejercicios

Demostracion

4x2 (1—|—2\/1—|—2x—|—1+2x)

e 2x+9
24+2x+2vV1+2x < 2x+9
2V1+2x < 7
4(1+2x) < 49
49
142
+2x < 7
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Miscelanea de ejercicios

Demostracion

4x2 (1—|—2\/1—|—2x—|—1+2x)

e 2x+9
24+2x+2vV1+2x < 2x+9

2V1+2x < 7

4(1+2x) < 49

49

1+2 —

+2x < 7

45

2 e

x < 2
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Miscelanea de ejercicios

Demostracion

4x2 (1 +2/1+2 142
x? (1+2v/1+2x+ 1+ 2x) e
4x2
24+2x+2vV1+2x < 2x+9
2V1+2x < 7
4(1+2x) < 49
49
142
+2x < 7
45
2
x < 2
- 45
X .
8
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Miscelanea de ejercicios

Demostracion

4x2 (1 +2/1+2 1+2
x? (1+2v/1+2x+ 1+ 2x) e
4x2
24+2x+2vV1+2x < 2x+9
2V1+2x < 7
4(1+2x) < 49
49
1+2
+2x < 7
45
2
x < 2
- 45
X .
8
Por lo tanto
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Miscelanea de ejercicios

Demostracion

4x2 (1 +2/1+2 1+2
x? (1+2v/1+2x+ 1+ 2x) e
4x2
24+2x+2vV1+2x < 2x+9
2V1+2x < 7
4(1+2x) < 49
49
1+2
+2x < 7
45
2
x < 2
- 45
X .
8
Por lo tanto . A5
—§§x<§ y x # 0.
O
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Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b i c >3
b+c—a c+a—-b a+b—c

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b o c .
b+c—a c+a—b a+b—c

Demostracion
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Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b o c S
b+c—a c+a—b a+b—c

Demostracion

Podemos suponer, sin pérdida de generalidad, que a < b < c.
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Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b o c S
b+c—a c+a—b a+b—c

Demostracion

Podemos suponer, sin pérdida de generalidad, que a < b < c. Entonces
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Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b o c S
b+c—a c+a—b a+b—c

Demostracion

Podemos suponer, sin pérdida de generalidad, que a < b < c. Entonces

1 1 1
< < .
b+c—a c+a—-b  a+b—c
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Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b o c S
b+c—a c+a—b a+b—c

Demostracion

Podemos suponer, sin pérdida de generalidad, que a < b < c. Entonces

1 1 1
< < .
b+c—a c+a—-b  a+b—c

Luego, por la desigualdad del reacomodo
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Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b o c S
b+c—a c+a—b a+b—c

Demostracion

Podemos suponer, sin pérdida de generalidad, que a < b < c. Entonces

1 1 1
< < .
b+c—a c+a—-b  a+b—c

Luego, por la desigualdad del reacomodo

a i b i c b i c i a
b+c—a c¢c+a—-b at+b—c b+tc—a ct+a—-b a+b-c
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Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b o c S
b+c—a c+a—b a+b—c

Demostracion

Podemos suponer, sin pérdida de generalidad, que a < b < c. Entonces

1 1 1
< < .
b+c—a c+a—-b  a+b—c

Luego, por la desigualdad del reacomodo

a i b i c b i c i a
b+c—a c¢c+a—-b at+b—c b+tc—a ct+a—-b a+b-c

y también
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Miscelanea de ejercicios

Si a, b y c son las longitudes de los lados de un tridngulo, demostrar que

a i b o c S
b+c—a c+a—b a+b—c

Demostracion

Podemos suponer, sin pérdida de generalidad, que a < b < c. Entonces

1 1 1
< < .
b+c—a c+a—-b  a+b—c

Luego, por la desigualdad del reacomodo

a i b i c b i c i a
b+c—a c¢c+a—-b at+b—c b+tc—a ct+a—-b a+b-c

y también

a i b i c S c i a o b
b+c—a c+a—-b at+b—c b+c—a c+a—-b a+b-—c
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Miscelanea de ejercicios

Demostracion

Sumando estas desigualdades obtenemos
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Miscelanea de ejercicios

Demostracion

Sumando estas desigualdades obtenemos

a b c b+ c c+a a+b
2 + < >
b+c—a c+a—b a+b-—c b+c—a c+a—-b a+b-—c
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Miscelanea de ejercicios

Demostracion

Sumando estas desigualdades obtenemos

b+ c

c+a a+b

5 a . b " c
b+c—a c+a—b a+b-—c

y finalmente, restando

~“b+c—a

ct+a—-b a+b-c
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Miscelanea de ejercicios

Demostracion

Sumando estas desigualdades obtenemos

a b c b+ c c+a a+b
2 + < >
b+c—a c+a—b a+b-—c b+c—a c+a—-b a+b-—c

y finalmente, restando

a N b i c
b+c—a c+a—-b a+b—c
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Miscelanea de ejercicios

Demostracion

Sumando estas desigualdades obtenemos

a 0 b " c S b+ c c+a a+b
b+c—a c¢c+a—-b a+b—-c) b+c—a c+a-b at+b-c
y finalmente, restando

a N b i c
b+c—a c+a—-b a+b—c

en ambos lados de esta dltima desigualdad, obtenemos
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Miscelanea de ejercicios

Demostracion

Sumando estas desigualdades obtenemos

a 0 b " c S b+ c c+a a+b
b+c—a c¢c+a—-b a+b—-c) b+c—a c+a-b at+b-c
y finalmente, restando
a N b i c
b+c—a c+a—-b a+b—c

en ambos lados de esta dltima desigualdad, obtenemos
a n b n c S b+c—a c+a—-b a+b-—c
b+c—a c¢c+a-b a+b—c — b+c—a c+a—-b at+b-c
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Miscelanea de ejercicios

Demostracion

Sumando estas desigualdades obtenemos

a b c b+ c c+a a+b
2 + a4 >
b+c—a c+a—b a+b-—c b+c—a c+a—-b a+b-—c
y finalmente, restando
a N b i c
b+c—a c+a—-b a+b—c
en ambos lados de esta dltima desigualdad, obtenemos
a n b n c S b+c—a c+a—-b a+b-—c
b+c—a c¢c+a-b a+b—c — b+c—a c+a—-b at+b-c
= 3.

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas




Miscelanea de ejercicios

Sean a, b y ¢ niimeros reales positivos tales que abc = 1. Demostrar que

P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.
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Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion
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Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion

La desigualdad entre las medias aritmética y geométrica (o simplemente
desarrollar (1 — a)> > 0) nos indica que
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Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion

La desigualdad entre las medias aritmética y geométrica (o simplemente
desarrollar (1 — a)? > 0) nos indica que 1 + a*> > 2a y,
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Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion

La desigualdad entre las medias aritmética y geométrica (o simplemente
desarrollar (1 — a)? > 0) nos indica que 1 + a* > 2a y, andlogamente,
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Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion

La desigualdad entre las medias aritmética y geométrica (o simplemente
desarrollar (1 — a)> > 0) nos indica que 1 + a®> > 2a y, andlogamente, 1 + b> > 2b
y1l+c?>2c,
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Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion

La desigualdad entre las medias aritmética y geométrica (o simplemente
desarrollar (1 — a)> > 0) nos indica que 1 + a®> > 2a y, andlogamente, 1 + b> > 2b
y 14 c? > 2c, de lo cual obtenemos
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Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion

La desigualdad entre las medias aritmética y geométrica (o simplemente
desarrollar (1 — a)> > 0) nos indica que 1 + a®> > 2a y, andlogamente, 1 + b> > 2b
y 14 c? > 2c, de lo cual obtenemos

(148 + 0 (1+ )+ (1+2)° >4 (P + B2 + 222).

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion

La desigualdad entre las medias aritmética y geométrica (o simplemente
desarrollar (1 — a)> > 0) nos indica que 1 + a®> > 2a y, andlogamente, 1 + b> > 2b
y 14 c? > 2c, de lo cual obtenemos

(148 + 0 (1+ )+ (1+2)° >4 (P + B2 + 222).

Usando nuevamente la desigualdad entre las medias aritmética y geométrica, asi
como el hecho de que abc = 1, nos da
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Miscelanea de ejercicios

Sean a, b y ¢ nimeros reales positivos tales que abc = 1. Demostrar que
P+’ +R2 1+ +32(1+2) > 12

y determinar los casos en que se cumple la igualdad.

Demostracion

La desigualdad entre las medias aritmética y geométrica (o simplemente
desarrollar (1 — a)> > 0) nos indica que 1 + a®> > 2a y, andlogamente, 1 + b> > 2b
y 14 c? > 2c, de lo cual obtenemos

(148 + 0 (1+ )+ (1+2)° >4 (P + B2 + 222).

Usando nuevamente la desigualdad entre las medias aritmética y geométrica, asi
como el hecho de que abc = 1, nos da

22b? + b2c? + a%c? > 3Vatbhch = 3.
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Miscelanea de ejercicios

Demostracion

Combinando las dos desigualdades anteriores se llega al resultado deseado.
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Miscelanea de ejercicios

Demostracion

Combinando las dos desigualdades anteriores se llega al resultado deseado.

Observemos que para que se dé la igualdad, ha de cumplirse que
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Miscelanea de ejercicios

Demostracion

Combinando las dos desigualdades anteriores se llega al resultado deseado.

Observemos que para que se dé la igualdad, ha de cumplirse que

(1_3)2 :Oa
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Miscelanea de ejercicios

Demostracion

Combinando las dos desigualdades anteriores se llega al resultado deseado.

Observemos que para que se dé la igualdad, ha de cumplirse que

(1-a)®=0, (1-b)2=0
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Miscelanea de ejercicios

Demostracion

Combinando las dos desigualdades anteriores se llega al resultado deseado.

Observemos que para que se dé la igualdad, ha de cumplirse que

(1-a)*>=0, (1-b)2=0 y
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Miscelanea de ejercicios

Demostracion

Combinando las dos desigualdades anteriores se llega al resultado deseado.

Observemos que para que se dé la igualdad, ha de cumplirse que

(1-a)*>=0, 1-b2=0 y (1-c)?=0,
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Miscelanea de ejercicios

Demostracion

Combinando las dos desigualdades anteriores se llega al resultado deseado.

Observemos que para que se dé la igualdad, ha de cumplirse que
(1-a)* =0, (1-b%=0 y (1-c¢)?=0,

de donde vemos facilmente que la igualdad se alcanza si y solo si
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Miscelanea de ejercicios

Demostracion

Combinando las dos desigualdades anteriores se llega al resultado deseado.
Observemos que para que se dé la igualdad, ha de cumplirse que
(1-a=0, (1-b2=0 'y (1—-c)?=0,

de donde vemos facilmente que la igualdad se alcanza si y solo sia=b=c=1.
O
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Miscelanea de ejercicios

Dados tres niimeros positivos a, b y ¢ tales que a+ b+ ¢ = 1, demostrar que

Va+bc+vVb+ac++Vc+ab<2,

y determinar los casos en que se cumple la igualdad.
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Miscelanea de ejercicios

Dados tres nimeros positivos a, b y ¢ tales que a+ b+ ¢ = 1, demostrar que

\/a+bc—|—\/b—|—ac+\/c—|—ab§2,

y determinar los casos en que se cumple la igualdad.

Demostracion
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Miscelanea de ejercicios

Dados tres nimeros positivos a, b y ¢ tales que a+ b+ ¢ = 1, demostrar que

\/a+bc—|—\/b—|—ac+\/c—|—ab§2,

y determinar los casos en que se cumple la igualdad.

Demostracién
Aplicando la desigualdad entre las medias aritmética y cuadrdtica, obtenemos que
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Miscelanea de ejercicios

Dados tres nimeros positivos a, b y ¢ tales que a+ b+ ¢ = 1, demostrar que

\/a+bc—|—\/b—|—ac+\/c—|—ab§2,

y determinar los casos en que se cumple la igualdad.

Demostracién
Aplicando la desigualdad entre las medias aritmética y cuadrdtica, obtenemos que

a+b+c+ab+ bc+ ac
3 }

\/a+bc+\/b+ac+\/c+ab§3\/
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Miscelanea de ejercicios

Dados tres nimeros positivos a, b y ¢ tales que a+ b+ ¢ = 1, demostrar que

\/a+bc—|—\/b—|—ac+\/c—|—ab§2,

y determinar los casos en que se cumple la igualdad.

Demostracién
Aplicando la desigualdad entre las medias aritmética y cuadrdtica, obtenemos que

a+b+c+ab+ bc+ ac
3 }

\/a+bc+\/b+ac+\/c+ab§3\/

Ahora bien, podemos usar que a+ b+ c =1 y que
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Miscelanea de ejercicios

Dados tres nimeros positivos a, b y ¢ tales que a+ b+ ¢ = 1, demostrar que

\/a+bc—|—\/b—|—ac+\/c—|—ab§2,

y determinar los casos en que se cumple la igualdad.

Demostracién
Aplicando la desigualdad entre las medias aritmética y cuadrdtica, obtenemos que

a+b+c+ab+ bc+ ac

\/a+bc+\/b+ac+\/c+ab§3\/ e

Ahora bien, podemos usar que a+ b+ c =1 y que

(a+b+cP—(+b+2) 1—(P+b+)

2 B 2

ab+ bc + ac =
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Miscelanea de ejercicios

Dados tres nimeros positivos a, b y ¢ tales que a+ b+ ¢ = 1, demostrar que

\/a+bc—|—\/b—|—ac+\/c—|—ab§2,

y determinar los casos en que se cumple la igualdad.

Demostracién
Aplicando la desigualdad entre las medias aritmética y cuadrdtica, obtenemos que

a+b+c+ab+ bc+ ac

\/a+bc+\/b+ac+\/c+ab§3\/ e

Ahora bien, podemos usar que a+ b+ c =1 y que

abt beqac BFEFP (@A) 1-(£+5+c)
2 2

para transformar la tltima expresion, obteniendo que
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Miscelanea de ejercicios

Demostracion

3_ 2 b2 2
\/a+bc+\/b—|—ac+\/c+ab§3\/ (32 +c?)
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Miscelanea de ejercicios

Demostracion

3— (a2 + b+ c?)
= :

Usando de nuevo la desigualdad entre las medias aritmética y cuadratica
deducimos que

\/a+bc+\/b—|—ac+\/c+ab§3\/
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Miscelanea de ejercicios

Demostracion

_ 2 2 2
\/a+bc+\/b+ac+\/c+ab§3\/3 e +6b +c?)

Usando de nuevo la desigualdad entre las medias aritmética y cuadratica
deducimos que

2
a2+b2+c223<a+§+c) :%,
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Miscelanea de ejercicios

Demostracion

_ 2 2 2
\/a+bc+\/b+ac+\/c+ab§3\/3 e +6b +c?)

Usando de nuevo la desigualdad entre las medias aritmética y cuadratica
deducimos que

a+b+c)2_ 1

a2+b2+c223< 3 =

37

con lo que finalmente llegamos a que
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Miscelanea de ejercicios

Demostracion

_ 2 2 2
\/a+bc+\/b+ac+\/c+ab§3\/3 e +6b +c?)

Usando de nuevo la desigualdad entre las medias aritmética y cuadratica
deducimos que

2
a2+b2+c223<a+b+c) _1

3 3’
con lo que finalmente llegamos a que

3
Va+bc+vVb+ac++Vc+ab<3 c 3 =2
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Miscelanea de ejercicios

Demostracion

_ 2 2 2
\/a+bc+\/b+ac+\/c+ab§3\/3 e +6b +c?)

Usando de nuevo la desigualdad entre las medias aritmética y cuadratica
deducimos que

2
a2+b2+c223<a+b+c) _1

3 3’

con lo que finalmente llegamos a que

3
Va+bc+vVb+ac++Vc+ab<3 c 3 =2

De la desigualdad entre las medias aritmética y cuadratica deducimos que la
igualdad se alcanza si y solo si
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Miscelanea de ejercicios

Demostracion

_ 2 2 2
\/a+bc+\/b+ac+\/c+ab§3\/3 e +6b +c?)

Usando de nuevo la desigualdad entre las medias aritmética y cuadratica
deducimos que

2
a2+b2+c223<a+b+c) _1

3 3’

con lo que finalmente llegamos a que

3
Va+bc+vVb+ac++Vc+ab<3 c 3 =2

De la desigualdad entre las medias aritmética y cuadratica deducimos que la

igualdad se alcanza si y solo sia=b=c = % m|

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)? < px® + qy°.

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)* < p<* + qy”.

Demostracion
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Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)* < p<* + qy”.

Demostracion

Aplicando la desigualdad de Cauchy-Schwarz para x; = \/p,
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Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)* < p<* + qy”.

Demostracion

Aplicando la desigualdad de Cauchy-Schwarz para x; = \/p, X2 = /4,
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Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)* < p<* + qy”.

Demostracion
Aplicando la desigualdad de Cauchy-Schwarz para x1 = \/p, X2 = \/q, y1 = x\/P
yy2=y/q
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Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)* < p<* + qy”.

Demostracion
Aplicando la desigualdad de Cauchy-Schwarz para x1 = \/p, X2 = \/q, y1 = x\/P
Y Y2 = y+/q obtenemos
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Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)* < p<* + qy”.

Demostracion
Aplicando la desigualdad de Cauchy-Schwarz para x1 = \/p, X2 = \/q, y1 = x\/P
Y Y2 = y+/q obtenemos

(px+ay)* < (p+9q) (p* + qy°) .
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Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)* < p<* + qy”.

Demostracion
Aplicando la desigualdad de Cauchy-Schwarz para x1 = \/p, X2 = \/q, y1 = x\/P
Y Y2 = y+/q obtenemos

(px+ay)* < (p+9q) (p* + qy°) .

Como p + q < 1, se sigue que

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Miscelanea de ejercicios

Sean x,y,p y q nimeros reales tales que p,q >0 y p+ g < 1. Demostrar que

(px + qy)* < p<* + qy”.

Demostracion

Aplicando la desigualdad de Cauchy-Schwarz para x1 = \/p, X2 = \/q, y1 = x\/P
Y Y2 = y+/q obtenemos

(px+ay)* < (p+9q) (p* + qy°) .
Como p + q < 1, se sigue que

(px+qy)® < px* + qy°.
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X y
<1.
1—|—y+l—|—x_
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion

Tenemos que
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que
X y
14y + 14 x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que
X y
<
14y + 14+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
X y _l—|—xy—x2—y2

1— — = .
1+y 1+4x (1+x)(1+y)
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y 14+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
X y _l—|—xy—x2—y2

1— — = .
1+y 1+4x (1+x)(1+y)

Si x >y, entonces xy — y> >0
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y 14+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
X y _l—|—xy—x2—y2

1— — = .
1+y 1+4x (1+x)(1+y)

Si x >y, entonces xy — y> > 0 y por otro lado
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x
Pero
X y _l—|—xy—x2—y2

1— — = .
1+y 1+4x (1+x)(1+y)

Si x >y, entonces xy — y?> > 0 y por otro lado 1 — y?> > 0.
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x
Pero
X y _l—|—xy—x2—y2

1— _ — .
14y 14x (1+x)(1+y)
Si x >y, entonces xy — y> > 0 y por otro lado 1 — y?> > 0. Por lo tanto
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
X y _l—|—xy—x2—y2

1— _ = .
14y 14x (1+x)(1+y)
Si x >y, entonces xy — y> > 0 y por otro lado 1 — y?> > 0. Por lo tanto
1+xy—x>2—y2>0,y
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
X y _l—|—xy—x2—y2

1— — = .
1+y 1+4x (1+x)(1+y)

Si x >y, entonces xy — y> > 0 y por otro lado 1 — y?> > 0. Por lo tanto
1+ xy —x?—y? >0, y como también
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
X y _l—|—xy—x2—y2

1— — = .
1+y 1+4x (1+x)(1+y)

Si x >y, entonces xy — y> > 0 y por otro lado 1 — y?> > 0. Por lo tanto
1+xy —x2—y2>0, ycomotambién1+x>0y1l+y >0,
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y+1+x

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
X y _l—|—xy—x2—y2

1— — = .
1+y 1+4x (1+x)(1+y)

Si x >y, entonces xy — y> > 0 y por otro lado 1 — y?> > 0. Por lo tanto
1+xy —x2—y%2>0, y como también 1+ x >0 y1+y >0, se sigue que
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Y .
1+y 14x 7

Demostracion

Tenemos que

X y X Yy
1—|—y+1+x* 1+y 14x

Pero
X y _l—|—xy—x2—y2

1— — = .
1+y 1+4x (1+x)(1+y)

Si x >y, entonces xy — y> > 0 y por otro lado 1 — y?> > 0. Por lo tanto
1+xy —x2—y%2>0, y como también 1+ x >0 y1+y >0, se sigue que

X y
-5~ = 20
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Miscelanea de ejercicios

Sean x y y nidmeros reales tales que 0 < x <1 y 0 <y < 1. Demostrar que

X Yy
1+y 14+x

Demostracion

Tenemos que

X y X Y
1—|—y+1+x* 1+y 14x
Pero
X y _l—|—xy—x2—y2

Cl4+y 14x (I+x)(14y)

Si x >y, entonces xy — y> > 0 y por otro lado 1 — y?> > 0. Por lo tanto
1+xy —x2—y%2>0, y como también 1+ x >0 y1+y >0, se sigue que
e eb

El caso en que x < y es analogo. O
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que

a2X2 b2y2 C2Z2

(by + cz)(bz + cy) * (cz + ax)(cx + az) - (ax + by)(ay + bx)
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que

2252 . b2y? . 272

(by + cz)(bz +cy) (cz+ ax)(ex+az) (ax+ by)(ay + bx)

Demostracion

3
> 2.
=4
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que

32X2 b2y2 C222

(by + cz)(bz + cy) + (cz + ax)(cx + az) * (ax + by)(ay + bx)

3
> —.
4

Demostracion

Tenemos por la desigualdad del reacomodo que
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que

32X2 b2y2 C222

(by + cz)(bz + cy) + (cz + ax)(cx + az) * (ax + by)(ay + bx)

3
> —.
4

Demostracion

Tenemos por la desigualdad del reacomodo que

bz + cy < by + cz.
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que
22x2 b2y? 272

(by + cz)(bz + cy) + (cz + ax)(cx + az) * (ax + by)(ay + bx)

3
> —.
4

Demostracion

Tenemos por la desigualdad del reacomodo que
bz + cy < by + cz.

Luego
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que

32X2 b2y2 C222

(by + cz)(bz + cy) + (cz + ax)(cx + az) * (ax + by)(ay + bx)

3
> —.
4

Demostracion

Tenemos por la desigualdad del reacomodo que
bz + cy < by + cz.

Luego
(by + cz)(bz + cy) < (by + cz)*. 3)
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que

32X2 b2y2 C222

(by + cz)(bz + cy) + (cz + ax)(cx + az) * (ax + by)(ay + bx)

3
> —.
4

Demostracion

Tenemos por la desigualdad del reacomodo que
bz + cy < by + cz.

Luego
(by + cz)(bz + cy) < (by + cz)*. 3)

Usando ahora la desigualdad entre las medias aritmética y cuadrdtica se tiene que
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que

32X2 b2y2 C222

(by + cz)(bz + cy) + (cz + ax)(cx + az) * (ax + by)(ay + bx)

3
> —.
4

Demostracion

Tenemos por la desigualdad del reacomodo que
bz + cy < by + cz.

Luego
(by + cz)(bz + cy) < (by + cz)*. 3)

Usando ahora la desigualdad entre las medias aritmética y cuadrdtica se tiene que

(by + cz)® <2 (b’y* + c?2%) . (4)
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Miscelanea de ejercicios

Sean a, b, c,x,y y z nimeros reales tales que x >y >z>0ya>b>c>0.
Demostrar que

32X2 b2y2 C222

(by + cz)(bz + cy) + (cz + ax)(cx + az) * (ax + by)(ay + bx)

3
> —.
4

Demostracion
Tenemos por la desigualdad del reacomodo que

bz + cy < by + cz.

Luego
(by + cz)(bz + cy) < (by + cz)*. 3)

Usando ahora la desigualdad entre las medias aritmética y cuadrdtica se tiene que
(by + cz)® <2 (b’y* + c?2%) . (4)

Asi de (3) y (4) se sigue que
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Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).
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Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).

De manera anadloga
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Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).

De manera anadloga

(cz + ax)(cx + az) < 2 (X% + 22)
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Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).

De manera anadloga

(cz + ax)(cx + az) < 2 (X% + 22)
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Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).

De manera anadloga

(cz + ax)(cx + az) < 2 (X% + 22)

(ax + by)(ay + bx) < 2 (a°x* + b°y?).
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Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).

De manera anadloga
(cz + ax)(cx + az) < 2 (X% + 22)

y
(ax + by)(ay + bx) < 2 (a°x* + b°y?).

Si llamamos A al miembro de la izquierda de la desigualdad del enunciado,

Ingrid quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).

De manera anadloga
(cz + ax)(cx + az) < 2 (X% + 22)

y
(ax + by)(ay + bx) < 2 (a°x* + b°y?).

Si llamamos A al miembro de la izquierda de la desigualdad del enunciado, las
desigualdades que hemos demostrado nos aseguran que

1 2252 b2y? 272
AzS + +
2 b2y2 4 c272 a2x2 4L c2z2 a2x2 4 b2y2
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Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).
De manera anadloga

(cz + ax)(cx + az) < 2 (X% + 22)
y

(ax + by)(ay + bx) < 2 (a°x* + b°y?).

Si llamamos A al miembro de la izquierda de la desigualdad del enunciado, las
desigualdades que hemos demostrado nos aseguran que

1 2252 b2y? 272
AzS + +
2 b2y2 4 c272 a2x2 4L c2z2 a2x2 4 b2y2

Pero el término entre paréntesis es > % por la desigualdad de Nesbitt
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Miscelanea de ejercicios

Demostracion

(by + cz)(bz + cy) < 2 (b’y? + *2°).
De manera anadloga

(cz + ax)(cx + az) < 2 (X% + 22)
y

(ax + by)(ay + bx) < 2 (a°x* + b°y?).

Si llamamos A al miembro de la izquierda de la desigualdad del enunciado, las
desigualdades que hemos demostrado nos aseguran que

1 2252 b2y? 272
AzS + +
2 b2y2 4 c272 a2x2 4L c2z2 a2x2 4 b2y2

Pero el término entre paréntesis es > % por la desigualdad de Nesbitt y hemos
terminado. O
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