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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Definición

El valor absoluto de x ∈ R se define como

|x | =
{

x, si x ≥ 0
−x, si x ≤ 0.

Ejercicio

Demostrar que para cualquier x ∈ R,

|x | ≥ 0, y que |x | = 0 ⇔ x = 0.

Demostración

Sea x ∈ R. Notemos que

i) Si x > 0, entonces |x | = x > 0.

ii) Si x < 0, entonces |x | = − x > 0.

iii) Si x = 0, entonces |x | = |0| = 0.

iv) Si x ̸= 0, entonces x > 0 ó x < 0. Luego por i) y ii), |x | > 0.
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iv) Si x ̸= 0, entonces x > 0 ó x < 0. Luego por i) y ii), |x | > 0.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Definición

El valor absoluto de x ∈ R se define como

|x | =
{

x, si x ≥ 0
−x, si x ≤ 0.

Ejercicio

Demostrar que para cualquier x ∈ R,

|x | ≥ 0, y que |x | = 0 ⇔ x = 0.

Demostración

Sea x ∈ R. Notemos que

i) Si x > 0, entonces |x | = x > 0.

ii) Si x < 0, entonces |x | = − x > 0.

iii) Si x = 0, entonces |x | = |0| =

0.
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Demostración

De i), ii) y iii) se tiene que |x | ≥ 0 ∀x ∈ R;

y de iii) y iv) se sigue que
|x | = 0 ⇔ x = 0. 2

Ejercicio

Dado x ∈ R, demostrar que | − x | = |x |.

Demostración

x ≥ 0 ⇒ − x ≤ 0 ⇒ | − x | = − (−x) = x = |x |.

x ≤ 0 ⇒ − x ≥ 0 ⇒ | − x | = −x = |x |.

2
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Demostrar que |x |2 = x2.

Demostración

x ≥ 0 ⇒ |x |2 = x2.

x ≤ 0 ⇒ |x |2 = (−x)2 = x2.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que |ab| = |a||b|.

Demostración

a ≥ 0 y b ≥ 0 ⇒ ab ≥ 0.
Por lo tanto |ab| = ab = |a||b|.

a ≤ 0 y b ≤ 0 ⇒ ab ≥ 0.
Por lo tanto |ab| = ab = (−a)(−b) = |a||b|.

a ≥ 0 y b ≤ 0 ⇒

ab ≤ 0.
Por lo tanto |ab| = − (ab) = a(−b) = |a||b|.

Similarmente, si a ≤ 0 y b ≥ 0, entonces |ab| = |a||b|. 2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean a, b ∈ R con b ̸= 0. Demostrar que
∣∣ a
b

∣∣ = |a|
|b| .

Demostración

a ≥ 0 y b > 0 ⇒ a
b ≥ 0 ⇒

∣∣ a
b

∣∣ = a
b = |a|

|b| .

a ≥ 0 y b < 0 ⇒ a
b ≤ 0 ⇒

∣∣ a
b

∣∣ = − a
b = a

−b = |a|
|b| .

a ≤ 0 y b > 0 ⇒ a
b ≤ 0 ⇒

∣∣ a
b

∣∣ = − a
b = −a

b = |a|
|b| .

a ≤ 0 y b < 0 ⇒ a
b ≥ 0 ⇒

∣∣ a
b

∣∣ = a
b = −a

−b = |a|
|b| . 2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que
|x | ≤ b ⇔ −b ≤ x ≤ b.

Demostración

⇒) Notemos que
x ≤ |x | y − x ≤ |x | ∀x ∈ R.

Luego

|x | ≤ b ⇒ x ≤ b y − x ≤ b ⇒ x ≤ b y x ≥ −b ⇒ − b ≤ x ≤ b.

⇐) x ≥ 0 ⇒ |x | = x ≤ b;

x < 0 ⇒ |x | = − x. Como −b ≤ x ⇒ b ≥ −x, y aśı, |x | = −x ≤ b.

Aśı, en cualquier caso, |x | ≤ b. 2
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Aśı, en cualquier caso, |x | ≤ b. 2

Ingrid Quilantán Ortega, Aroldo Pérez Pérez Desigualdades Numéricas 7 / 60



Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que
|x | ≤ b ⇔ −b ≤ x ≤ b.

Demostración

⇒) Notemos que
x ≤ |x | y − x ≤ |x | ∀x ∈ R.

Luego

|x | ≤ b ⇒ x ≤ b y − x ≤ b ⇒ x ≤ b y x ≥ −b ⇒ − b ≤ x ≤ b.

⇐) x ≥ 0 ⇒ |x | = x ≤ b;

x < 0 ⇒ |x | = − x. Como −b ≤ x ⇒ b ≥ −x, y aśı, |x | = −x ≤ b.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que
|x | ≤ b ⇔ −b ≤ x ≤ b.

Demostración

⇒) Notemos que
x ≤ |x | y − x ≤ |x | ∀x ∈ R.

Luego

|x | ≤ b ⇒ x ≤ b y − x ≤ b ⇒ x ≤ b y x ≥ −b ⇒ − b ≤ x ≤ b.

⇐) x ≥ 0 ⇒ |x | = x ≤ b;

x < 0 ⇒ |x | = − x. Como −b ≤ x ⇒ b ≥ −x, y aśı, |x | = −x ≤ b.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Observación

|x |2 = x2 ⇒ |x | =
√
|x |2 =

√
x2.

Proposición

(Desigualdad del triángulo) Para a, b ∈ R se cumple

|a+ b| ≤ |a|+ |b|.

Además la igualdad ocurre solamente cuando ab ≥ 0.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Notemos que como |a+ b| ≥ 0 y |a|+ |b| ≥ 0, basta verificar que

|a+ b|2 ≤ (|a|+ |b|)2:

|a+ b|2 = (a+ b)2 = a2 + 2ab + b2 = |a|2 + 2ab + |b|2

≤ |a|2 + 2|ab|+ |b|2 (ya que ab ≤ |ab|)
= |a|2 + 2|a||b|+ |b|2 = (|a|+ |b|)2 .

Notemos que cuando ab ≥ 0 se tiene que ab = |ab| = |a||b|. 2

Observación

|a+ b + c | = |(a+ b) + c | ≤ |a+ b|+ |c | ≤ |a|+ |b|+ |c |.
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|a+ b + c | = |(a+ b) + c | ≤ |a+ b|+ |c | ≤ |a|+ |b|+ |c |.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Forma general de la desigualdad del triángulo:

∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣ ≤
n∑

k=1

|xk | .

La igualdad se tiene cuando todos los xk ’s tienen el mismo signo.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que ||a| − |b|| ≤ |a− b|.

Demostración

Notemos que
|a| = |a− b + b| ≤ |a− b|+ |b|.

De donde
|a| − |b| ≤ |a− b|. (1)

También
|b| = |b − a+ a| ≤ |b − a|+ |a|.

De donde
−|a− b| ≤ |a| − |b|. (2)

De (1) y (2) obtenemos

−|a− b| ≤ |a| − |b| ≤ |a− b|.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que ||a| − |b|| ≤ |a− b|.

Demostración

Notemos que
|a| = |a− b + b| ≤ |a− b|+ |b|.

De donde
|a| − |b| ≤ |a− b|. (1)

También
|b| = |b − a+ a| ≤ |b − a|+ |a|.

De donde
−|a− b| ≤ |a| − |b|. (2)

De (1) y (2) obtenemos

−|a− b| ≤ |a| − |b| ≤ |a− b|.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Luego,
||a| − |b|| ≤ |a− b|.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sea a ≥ 0. Demostrar que

|x | ≥ a ⇔ x ≤ −a o x ≥ a.

Demostración

Supongamos que |x | ≥ a.
Si x ≥ 0, entonces x = |x | ≥ a; y
si x < 0, entonces −x = |x | ≥ a, de manera que x ≤ −a.

Rećıprocamente, si x ≥ a, entonces ya que a ≥ 0, |x | = x ≥ a; y
si x ≤ −a, entonces −x ≥ a, y aśı, debido a que a ≥ 0, |x | = −x ≥ a. 2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sea a ≥ 0. Demostrar que

|x | ≥ a ⇔ x ≤ −a o x ≥ a.

Demostración

Supongamos que |x | ≥ a.
Si x ≥ 0, entonces x = |x | ≥ a; y
si x < 0, entonces −x = |x | ≥ a, de manera que x ≤ −a.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Para a, b, c ∈ R demostrar que

|a|+ |b|+ |c | − |a+ b| − |b + c | − |c + a|+ |a+ b + c | ≥ 0.

Demostración

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
|a| ≥ |b| ≥ |c | > 0 ya que la desigualdad es simétrica en a, b, c. Dividiendo entre
|a|, la desigualdad es equivalente a

1 +

∣∣∣∣ba
∣∣∣∣+ ∣∣∣ca ∣∣∣−

∣∣∣∣1 + b

a

∣∣∣∣− ∣∣∣∣ba +
c

a

∣∣∣∣− ∣∣∣1 + c

a

∣∣∣+ ∣∣∣∣1 + b

a
+

c

a

∣∣∣∣ ≥ 0.

Como
∣∣ b
a

∣∣ ≤ 1 y
∣∣ c
a

∣∣ ≤ 1, se tiene que∣∣∣∣1 + b

a

∣∣∣∣ = 1 +
b

a
y

∣∣∣1 + c

a

∣∣∣ = 1 +
c

a
.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Para a, b, c ∈ R demostrar que

|a|+ |b|+ |c | − |a+ b| − |b + c | − |c + a|+ |a+ b + c | ≥ 0.

Demostración

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
|a| ≥ |b| ≥ |c | > 0 ya que la desigualdad es simétrica en a, b, c. Dividiendo entre
|a|, la desigualdad es equivalente a

1 +

∣∣∣∣ba
∣∣∣∣+ ∣∣∣ca ∣∣∣−

∣∣∣∣1 + b

a

∣∣∣∣− ∣∣∣∣ba +
c

a

∣∣∣∣− ∣∣∣1 + c

a

∣∣∣+ ∣∣∣∣1 + b

a
+

c

a

∣∣∣∣ ≥ 0.

Como
∣∣ b
a

∣∣ ≤ 1 y
∣∣ c
a

∣∣ ≤ 1, se tiene que∣∣∣∣1 + b

a

∣∣∣∣ = 1 +
b

a
y

∣∣∣1 + c

a

∣∣∣ = 1 +
c

a
.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Luego, solo es necesario demostrar que[∣∣∣∣ba
∣∣∣∣+ ∣∣∣ca ∣∣∣−

∣∣∣∣ba +
c

a

∣∣∣∣]+ [−(1 + b

a
+

c

a

)
+

∣∣∣∣1 + b

a
+

c

a

∣∣∣∣] ≥ 0,

lo cual se sigue de la desigualdad del triángulo y el hecho de que x ≤ |x | ∀x ∈ R.
2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Definición

Sean a1, a2, . . . , an ≥ 0.

a) La media aritmética de estos n números es

a1 + a2 + · · ·+ an
n

≡ m1.

b) La media cuadrática es√
a21 + a22 + · · ·+ a2n

n
≡ m2.

c) La media geométrica es

n
√
a1a2 · · · an ≡ m0.
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a21 + a22 + · · ·+ a2n

n
≡ m2.

c) La media geométrica es

n
√
a1a2 · · · an ≡ m0.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Definición

d) Si a1, a2, . . . , an > 0, la media armónica es

n
1
a1

+ 1
a2

+ · · ·+ 1
an

≡ m−1.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exámenes se obtuvo 8 y 10,

m1 =
8 + 10

2
= 9,

y entonces es como si se hubiera sacado un 9 en los dos exámenes, pues se puede
pasar un punto del 10 al 8. Notemos también que

m2 =

√
82 + 102

2
=

√
82 ≃ 9.06,

m0 =
√
(8)(10) =

√
80 ≃ 8.94,

m−1 =
2

1
8 + 1

10

=
2
9
40

=
80

9
≃ 8.89.

Obviamente, si los resultados en ambos exámenes es 9,

m−1 = m0 = m1 = m2 = 9.
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m1 =
8 + 10

2
= 9,

y entonces es como si se hubiera sacado un 9 en los dos exámenes, pues se puede
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m−1 = m0 = m1 = m2 = 9.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Notemos que la media aritmética le da el mismo valor a sacar 8, 10 que 9, 9.

Pero
la media cuadrática le da más valor a sacar 8, 10 que 9, 9, de esta manera un
profesor puede usarla para valorar que sacar un 10 es más dif́ıcil que sacar un 9.

En general, la media cuadrática le da más peso a las notas altas. Sin embargo, las
medias geométricas y armónicas le dan más peso a las notas bajas. Por lo que
estos dos últimos tipos de medias pueden usarse para valorar la constancia.

En particular, en este ejemplo observamos que

m−1 ≤ m0 ≤ m1 ≤ m2.

Veremos después que estas desigualdades son válidas en general, y que las
igualdades se dan si y solo si a1 = a2 = · · · = an.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sea x ≥ 0. Demostrar que
x + 1 ≥ 2

√
x .

Demostración

Tenemos por la desigualdad entre la media geométrica y la media aritmética que

x + 1

2
≥
√
(x)(1) ⇔ x + 1 ≥ 2

√
x .

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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x
+

1

y
≥ 4

x + y
.
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2
1
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≤ x + y

2
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1
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x
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y
≥ 4

x + y
.
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2
1
x + 1

y

≤ x + y

2
⇔

1
x + 1

y

2
≥ 2

x + y
⇔ 1

x
+

1

y
≥ 4

x + y
.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que para cualesquiera a, b, c > 0, se cumple que(
a2b + b2c + c2a

) (
ab2 + bc2 + ca2

)
≥ 9a2b2c2.

Demostración

La desigualdad entre las medias aritmética y geométrica nos dice que

a2b + b2c + c2a

3
≥ 3

√
a3b3c3 ⇒ a2b + b2c + c2a ≥ 3abc,

ab2 + bc2 + ca2

3
≥ 3

√
a3b3c3 ⇒ ab2 + bc2 + ca2 ≥ 3abc,

luego (
a2b + b2c + c2a

) (
ab2 + bc2 + ca2

)
≥ (3abc) (3abc) = 9a2b2c2.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que para cualesquiera a, b, c > 0, se cumple que(
a2b + b2c + c2a

) (
ab2 + bc2 + ca2

)
≥ 9a2b2c2.

Demostración

La desigualdad entre las medias aritmética y geométrica nos dice que
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que para x , y , z > 0,

1

x
+

1

y
+

1

z
≥ 1

√
xy

+
1

√
yz

+
1√
zx

.

Demostración

Por la desigualdad entre la media armónica y la media geométrica,

2
1
x + 1

y

≤ √
xy ⇔ 1

x
+

1

y
≥ 2

√
xy

2
1
y + 1

z

≤ √
yz ⇔ 1

y
+

1

z
≥ 2

√
yz

2
1
z + 1

x

≤
√
zx ⇔ 1

z
+

1

x
≥ 2√

zx
.

Luego, sumando obtenemos
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que para x , y , z > 0,

1

x
+

1

y
+

1

z
≥ 1

√
xy

+
1

√
yz

+
1√
zx

.

Demostración

Por la desigualdad entre la media armónica y la media geométrica,

2
1
x + 1

y

≤ √
xy ⇔ 1

x
+

1

y
≥ 2

√
xy

2
1
y + 1

z

≤ √
yz ⇔ 1

y
+

1

z
≥ 2

√
yz

2
1
z + 1

x

≤
√
zx ⇔ 1

z
+

1

x
≥ 2√

zx
.

Luego, sumando obtenemos
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Valor absoluto
Las desigualdades de las medias
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xy

z
+

yz

x
+

zx

y
≥ x + y + z .
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x
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z

)(yz
x

)
⇔ xy

z
+
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y
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√(xy
z

)(zx

y

)
⇔ xy

z
+
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y
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yz
x + zx

y

2
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√(yz
x

)(zx

y

)
⇔ yz

x
+

zx

y
≥ 2z .
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Por la desigualdad entre la media geométrica y la aritmética tenemos,

xy
z + yz

x

2
≥

√(xy
z

)(yz
x

)
⇔ xy

z
+

yz

x
≥ 2y ,

xy
z + zx

y

2
≥

√(xy
z

)(zx

y

)
⇔ xy

z
+

zx

y
≥ 2x ,

yz
x + zx

y

2
≥

√(yz
x

)(zx

y

)
⇔ yz

x
+

zx

y
≥ 2z .

Sumando obtenemos
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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2
xy

z
+ 2

yz

x
+ 2

zx

y
≥ 2x + 2y + 2z ⇔

xy

z
+

yz

x
+

zx

y
≥ x + y + z .

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Encontrar el valor máximo de x
(
1− x3

)
para 0 ≤ x ≤ 1.

Demostración

Si y = x
(
1− x3

)
, entonces

y3 = x3
(
1− x3

) (
1− x3

) (
1− x3

)
⇔ 3y3 = 3x3

(
1− x3

) (
1− x3

) (
1− x3

)
,

donde
3x3 +

(
1− x3

)
+
(
1− x3

)
+
(
1− x3

)
= 3.

Luego por la desigualdad entre la media geométrica y la media aritmética,

4
√

3y3 = 4
√
3x3 (1− x3) (1− x3) (1− x3) ≤

3x3 + 3
(
1− x3

)
4

=
3

4
.

De donde
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4
√

3y3 = 4
√
3x3 (1− x3) (1− x3) (1− x3) ≤

3x3 + 3
(
1− x3

)
4

=
3

4
.

De donde
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4
√

3y3 = 4
√
3x3 (1− x3) (1− x3) (1− x3) ≤

3x3 + 3
(
1− x3

)
4

=
3

4
.

De donde

Ingrid Quilantán Ortega, Aroldo Pérez Pérez Desigualdades Numéricas 28 / 60



Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Encontrar el valor máximo de x
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

3y3 ≤
(
3

4

)4

⇔

y3 ≤ 1

3

(
3

4

)4

=
33

44
⇔ y ≤ 3

3
√
44

=
3

3
√

4 (43)
=

3

4 3
√
4
.

Además, el valor máximo se alcanza cuando

3x3 = 1− x3 ⇔ 4x3 = 1 ⇔ x3 =
1

4
⇔ x =

1
3
√
4
.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

3y3 ≤
(
3

4

)4

⇔ y3 ≤ 1

3

(
3

4

)4

=
33

44
⇔ y ≤ 3

3
√
44

=
3

3
√
4 (43)

=
3

4 3
√
4
.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean p y q dos números reales positivos tales que p + q = 1. Demostrar que(
p +

1

p

)2

+

(
q +

1

q

)2

≥ 25

2
.

¿Cuándo se obtiene la igualdad?

Demostración

Usando la desigualdad entre la media aritmética y la media cuadrática, tenemos
que

p + 1
p + q + 1

q

2
≤

√√√√(p + 1
p

)2
+
(
q + 1

q

)2
2

o equivalentemente(
p + 1

p + q + 1
q

)2
4

≤

(
p + 1

p

)2
+
(
q + 1

q

)2
2

,
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean p y q dos números reales positivos tales que p + q = 1. Demostrar que(
p +

1

p

)2

+

(
q +

1

q

)2

≥ 25

2
.

¿Cuándo se obtiene la igualdad?

Demostración

Usando la desigualdad entre la media aritmética y la media cuadrática, tenemos
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

esto es
1

2

(
p +

1

p
+ q +

1

q

)2

≤
(
p +

1

p

)2

+

(
q +

1

q

)2

.

Usando ahora que p + q = 1, se obtiene

1

2

(
1 +

1

p
+

1

q

)2

≤
(
p +

1

p

)2

+

(
q +

1

q

)2

. (3)
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2
=

1

2
(1 + 4)2 ≤ 1
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1 +

1

p
+

1

q

)2

≤
(
p +

1

p

)2

+

(
q +

1

q

)2

,

que es lo que queŕıamos demostrar.

Para que se alcance la igualdad debe
cumplirse que p = q = 1

2 (por la igualdad en la desigualdad entre la media
aritmética y la media armónica). 2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Teorema

Sean a1, a2, . . . , an, b1, b2, . . . , bn ∈ R tales que

a1 ≤ a2 ≤ · · · ≤ an y b1 ≤ b2 ≤ · · · ≤ bn.

Para cada permutación (a′1, a
′
2, . . . , a

′
n) de (a1, a2, . . . , an), se tiene que

a1b1 + a2b2 + · · ·+ anbn ≥ a′1b1 + a′2b2 + · · ·+ a′nbn (4)

≥ anb1 + an−1b2 + · · ·+ a1bn. (5)

La igualdad en (4) es cierta si y sólo si (a′1, a
′
2, . . . , a

′
n) = (a1, a2, . . . , an) y la

igualdad en (5) es cierta si y sólo si (a′1, a
′
2, . . . , a

′
n) = (an, an−1, . . . , a1).

A la desigualdad (4) se le llama la desigualdad del reacomodo.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Supongamos que b1 ≤ b2 ≤ · · · ≤ bn.

Sean
S = a1b1 + a2b2 + · · ·+ arbr + · · ·+ asbs + · · ·+ anbn

y
S ′ = a1b1 + a2b2 + · · ·+ asbr + · · ·+ arbs + · · ·+ anbn.

Notemos que

S − S ′ = arbr + asbs − asbr − arbs = (bs − br ) (as − ar ) .

Como s > r , bs − br ≥ 0 y aśı S − S ′ ≥ 0 si y sólo si as − ar ≥ 0, o
equivalentemente, S ≥ S ′ si y sólo si as ≥ ar . Repitiendo este proceso tenemos
que la suma S es la mayor cuando a1 ≤ a2 ≤ · · · ≤ an. 2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Supongamos que b1 ≤ b2 ≤ · · · ≤ bn.

Sean
S = a1b1 + a2b2 + · · ·+ arbr + · · ·+ asbs + · · ·+ anbn

y
S ′ = a1b1 + a2b2 + · · ·+ asbr + · · ·+ arbs + · · ·+ anbn.

Notemos que

S − S ′ = arbr + asbs − asbr − arbs = (bs − br ) (as − ar ) .
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Corolario

Para cada permutación (a′1, a
′
2, . . . , a

′
n) de (a1, a2, . . . , an), se tiene que

a21 + a22 + · · ·+ a2n ≥ a1a
′
1 + a2a

′
2 + · · ·+ ana

′
n.

Demostración

Se sigue de (4) tomando bi = ai , i = 1, . . . , n. 2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Corolario

Sean a1, a2, . . . , an > 0. Para cada permutación (a′1, a
′
2, . . . , a

′
n) de (a1, a2, . . . , an),

se tiene que
a′1
a1

+
a′2
a2

+ · · ·+ a′n
an

≥ n.

Demostración

No existe pérdida de generalidad en suponer que a1 ≤ a2 ≤ · · · ≤ an. Entonces

1

an
≤ 1

an−1
≤ · · · ≤ 1

a1
.

Luego de (5),

n =

(
1

a1

)
a1 +

(
1

a2

)
a2 + · · ·+

(
1

an

)
an ≤ a′1

a1
+

a′2
a2

+ · · ·+ a′n
an

.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Media armónica, geométrica y aritmética

Teorema

Si x1, . . . , xn > 0, entonces

n
1
x1

+ 1
x2

+ · · ·+ 1
xn

≤ n
√
x1x2 · · · xn ≤ x1 + x2 + · · ·+ xn

n

y las igualdades se dan si y sólo si x1 = x2 = · · · = xn.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Se demostró ya (usando la desigualdad del reacomodo) que si (a′1, a
′
2, . . . , a

′
n) es

una permutación de (a1, a2, . . . , an) donde ai > 0 para todo i = 1, . . . , n, entonces

a1
a′1

+
a2
a′2

+ · · ·+ an
a′n

≥ n. (6)

Sea m0 = n
√
x1x2 · · · xn y consideremos (a1, a2, . . . , an) =

(
x1
m0

, x1x2
m2

0
, . . . , x1x2···xn

mn
0

)
.

Por (6) tenemos que

n ≤ a1
a2

+
a2
a3

+ · · ·+ an−1

an
+

an
a1

=
m0

x2
+

m0

x3
+ · · ·+ m0

xn
+

m0

x1
,

luego
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

≤ m0.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

De nuevo por (6),

n ≤ a1
an

+
a2
a1

+ · · ·+ an
an−1

=
x1
m0

+
x2
m0

+ · · ·+ xn
m0

,

luego

m0 ≤
x1 + x2 + · · ·+ xn

n
.

Las igualdades ocurren si y sólo si a1 = a2 = · · · = an, es decir, si y sólo si

x1
m0

=
x1x2
m2

0

= · · · = 1

(
=

x1x2 · · · xn
mn

0

)
si y sólo si m0 = x1 = x2 = · · · = xn. 2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Desigualdad de Tchebyshev

Teorema

Si a1 ≤ a2 ≤ · · · ≤ an y b1 ≤ b2 ≤ · · · ≤ bn, entonces

a1b1 + a2b2 + · · ·+ anbn
n

≥ a1 + a2 + · · ·+ an
n

· b1 + b2 + · · ·+ bn
n

.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Aplicando varias veces la desigualdad del reacomodo obtenemos

a1b1 + a2b2 + · · ·+ anbn = a1b1 + a2b2 + · · ·+ anbn

a1b1 + a2b2 + · · ·+ anbn ≥ a1b2 + a2b3 + · · ·+ anb1

a1b1 + a2b2 + · · ·+ anbn ≥ a1b3 + a2b4 + · · ·+ anb2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1b1 + a2b2 + · · ·+ anbn ≥ a1bn + a2b1 + · · ·+ anbn−1,

al sumar todas las expresiones, obtenemos

n (a1b1 + a2b2 + · · ·+ anbn) ≥ (a1 + a2 + · · ·+ an) (b1 + b2 + · · ·+ bn) ,

de lo cual, la desigualdad de Tchebyshev se sigue multiplicando por 1
n2 . 2
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Valor absoluto
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Valor absoluto
Las desigualdades de las medias
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Desigualdad media cuadrática-media aritmética

Corolario

Si x1, . . . , xn ≥ 0, entonces√
x21 + x22 + · · ·+ x2n

n
≥ x1 + x2 + · · ·+ xn

n
.

Demostración

Por la desigualdad de Tchebyshev con ai = bi = xi , i = 1 . . . , n, tenemos que

x21 + x22 + · · ·+ x2n
n

≥
(
x1 + x2 + · · ·+ xn

n

)2

.

Luego, tomando ráız cuadrada, se sigue que√
x21 + x22 + · · ·+ x2n

n
≥ x1 + x2 + · · ·+ xn

n
.

2
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Corolario

Si x1, . . . , xn ≥ 0, entonces√
x21 + x22 + · · ·+ x2n

n
≥ x1 + x2 + · · ·+ xn

n
.

Demostración

Por la desigualdad de Tchebyshev con ai = bi = xi , i = 1 . . . , n, tenemos que

x21 + x22 + · · ·+ x2n
n

≥
(
x1 + x2 + · · ·+ xn

n

)2

.

Luego, tomando ráız cuadrada, se sigue que√
x21 + x22 + · · ·+ x2n

n
≥ x1 + x2 + · · ·+ xn

n
.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Desigualdad media cuadrática-media aritmética
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R tales que

x1 ≤ x2 ≤ · · · ≤ xn y y1 ≤ y2 ≤ · · · ≤ yn.

Si (z1, z2, . . . , zn) es una permutación de (y1, y2, . . . , yn), demostrar que

(x1 − y1)
2 + · · ·+ (xn − yn)

2 ≤ (x1 − z1)
2 + · · ·+ (xn − zn)

2
.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Desarrollando los binomios, tenemos que la desigualdad anterior es equivalente a

n∑
i=1

x2i − 2
n∑

i=1

xiyi +
n∑

i=1

y2
i ≤

n∑
i=1

x2i − 2
n∑

i=1

xizi +
n∑

i=1

z2i ,

pero como
∑n

i=1 y
2
i =

∑n
i=1 z

2
i , la desigualdad que tenemos que demostrar es

equivalente a probar que
n∑

i=1

xizi ≤
n∑

i=1

xiyi ,

la cual es la desigualdad del reacomodo. 2
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La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean a, b, c ≥ 0. Demostrar que a3 + b3 + c3 ≥ a2b + b2c + c2a.

Demostración

Como la expresión es simétrica en a, b y c podemos suponer sin perder
generalidad que a ≤ b ≤ c. Entonces, debido a que a, b, c ≥ 0, se tiene que
a2 ≤ b2 ≤ c2. Luego, por la desigualdad del reacomodo

a3 + b3 + c3 = a2(a) + b2(b) + c2(c) ≥ a2b + b2c + c2a.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean a, b, c > 0 con abc = 1. Demostrar que

a3 + b3 + c3 + (ab)3 + (bc)3 + (ca)3 ≥ 2
(
a2b + b2c + c2a

)
.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Podemos suponer que c ≤ b ≤ a. Por el ejercicio anterior tenemos

a3 + b3 + c3 ≥ a2b + b2c + c2a. (7)

Como c ≤ b ≤ a, entonces 1
a ≤ 1

b ≤ 1
c y debido a que a, b, c > 0, 1

a2 ≤ 1
b2 ≤ 1

c2 .

También, debido a que abc = 1, se cumple que bc = 1
a , ca = 1

b y ab = 1
c . Luego,

usando la desigualdad del reacomodo, se obtiene

(ab)3 + (bc)3 + (ca)3 =
1

a3
+

1

b3
+

1

c3
≥ 1

a2
1

c
+

1

b2
1

a
+

1

c2
1

b

= a2b + b2c + c2a. (8)

Sumando las desigualdades (7) y (8) se obtiene,

a3 + b3 + c3 + (ab)3 + (bc)3 + (ca)3 ≥ 2
(
a2b + b2c + c2a

)
.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo
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La desigualdad del reacomodo
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Valor absoluto
Las desigualdades de las medias
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean a, b, c > 0. Demostrar que

a+ b + c

abc
≤ 1

a2
+

1

b2
+

1

c2
.

Demostración

Podemos suponer, sin perder generalidad que c ≤ b ≤ a. Entonces

1

a
≤ 1

b
≤ 1

c
.

Luego, usando la desigualdad del reacomodo con
(a1, a2, a3) = (b1, b2, b3) =

(
1
a ,

1
b ,

1
c

)
y (a′1, a

′
2, a

′
3) =

(
1
b ,

1
c ,

1
a

)
, tenemos

1

a2
+

1

b2
+

1

c2
≥ 1

ab
+

1

bc
+

1

ac
=

a+ b + c

abc
.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean a, b, c > 0. Demostrar que

a+ b + c

abc
≤ 1

a2
+

1

b2
+

1

c2
.

Demostración

Podemos suponer, sin perder generalidad que c ≤ b ≤ a. Entonces

1

a
≤ 1

b
≤ 1

c
.

Luego, usando la desigualdad del reacomodo con
(a1, a2, a3) = (b1, b2, b3) =

(
1
a ,

1
b ,

1
c

)
y (a′1, a

′
2, a

′
3) =

(
1
b ,

1
c ,

1
a

)
, tenemos

1

a2
+

1

b2
+

1

c2
≥ 1

ab
+

1

bc
+

1

ac
=

a+ b + c

abc
.

2
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1

a
≤ 1

b
≤ 1

c
.

Luego, usando la desigualdad del reacomodo con
(a1, a2, a3) = (b1, b2, b3) =

(
1
a ,

1
b ,

1
c

)
y (a′1, a

′
2, a

′
3) =

(
1
b ,

1
c ,

1
a

)
, tenemos

1

a2
+

1

b2
+

1

c2
≥ 1

ab
+

1

bc
+

1

ac
=

a+ b + c

abc
.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean a, b, c las longitudes de los lados de un triángulo. Demostrar que

a2(b + c − a) + b2(a+ c − b) + c2(a+ b − c) ≤ 3abc. (9)

Demostración

Como a, b y c son las longitudes de los lados de un triángulo, tenemos que

a+ b − c ≥ 0, a+ c − b ≥ 0 y b + c − a ≥ 0.

Notando ahora que la expresión (9) es simétrica en a, b y c, podemos suponer sin
perder generalidad que c ≤ b ≤ a. Veremos que en este caso,

a(b + c − a) ≤ b(a+ c − b) ≤ c(a+ b − c).

En efecto, la primera desigualdad se sigue de lo siguiente
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Ingrid Quilantán Ortega, Aroldo Pérez Pérez Desigualdades Numéricas 49 / 60



Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Sean a, b, c las longitudes de los lados de un triángulo. Demostrar que
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

a(b + c − a) ≤ b(a+ c − b) ⇔ ab + ac − a2 ≤ ab + bc − b2

⇔

ac − bc ≤ a2 − b2

⇔ (a− b)c ≤ (a+ b)(a− b)

⇔ (a+ b)(a− b)− (a− b)c ≥ 0

⇔ (a− b)︸ ︷︷ ︸
≥0

(a+ b − c)︸ ︷︷ ︸
≥0

≥ 0.

La segunda desigualdad se demuestra en forma análoga.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Usando ahora la desigualdad (5), tenemos

a2(b+c−a)+b2(c+a−b)+c2(a+b−c) ≤ ba(b+c−a)+cb(c+a−b)+ac(a+b−c)

y

a2(b+c−a)+b2(c+a−b)+c2(a+b−c) ≤ ca(b+c−a)+ab(c+a−b)+bc(a+b−c).

Por lo tanto

2
[
a2(b + c − a) + b2(c + a− b) + c2(a+ b − c)

]
≤ 6abc

o equivalentemente

a2(b + c − a) + b2(c + a− b) + c2(a+ b − c) ≤ 3abc.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Desigualdad de Nesbitt

Ejercicio

Dados a, b, c > 0, demostrar que

a

b + c
+

b

a+ c
+

c

a+ b
≥ 3

2
,

y que la igualdad se alcanza si y solo si a = b = c.

Demostración

Como la expresión es simétrica en a, b y c, podemos suponer sin perder
generalidad que a ≤ b ≤ c. Luego

a+ b ≤ a+ c ≤ b + c y
1

b + c
≤ 1

a+ c
≤ 1

a+ b
.

Usando la desigualdad del reacomodo dos veces, obtenemos
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

a

b + c
+

b

a+ c
+

c

a+ b
≥ b

b + c
+

c

a+ c
+

a

a+ b
(10)

y
a

b + c
+

b

a+ c
+

c

a+ b
≥ c

b + c
+

a

a+ c
+

b

a+ b
. (11)

Sumando, obtenemos

2

(
a

b + c
+

b

a+ c
+

c

a+ b

)
≥
(
b + c

b + c
+

a+ c

a+ c
+

a+ b

a+ b

)
= 3,

o equivalentemente
a

b + c
+

b

a+ c
+

c

a+ b
≥ 3

2
.

Notemos que se dan las igualdades en (10) y (11) si y solo si a = b = c. 2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Desigualdad de Cauchy-Schwarz

Teorema

Dados x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R, se cumple(
n∑

i=1

xiyi

)2

≤

(
n∑

i=1

x2i

)(
n∑

i=1

y2
i

)
.

Si algún xi ̸= 0, la igualdad se alcanza si y solo si existe λ ∈ R tal que yi = λxi ∀
i = 1, . . . , n.

Demostración

Si x1 = x2 = . . . = xn = 0 o bien y1 = y2 = . . . = yn = 0 el resultado es claro. En

caso contrario, sean S =
√∑n

i=1 x
2
i y T =

√∑n
i=1 y

2
i ; entonces, claramente

S > 0 y T > 0.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Recordemos que para cualquier permutación (a′1, a
′
2, . . . , a

′
n) de (a1, a2, . . . , an) se

tiene que

a21 + a22 + · · ·+ a2n ≥ a1a
′
1 + a2a

′
2 + · · ·+ ana

′
n.

Luego, tomando ai =
|xi |
S y an+i =

|yi |
T para i = 1, 2, . . . , n, tenemos

2 =
n∑

i=1

x2i
S2

+
n∑

i=1

y2
i

T 2
=

2n∑
i=1

a2i

≥ a1an+1 + a2an+2 + · · ·+ ana2n + an+1a1 + · · ·+ a2nan

= 2
|x1y1|+ |x2y2|+ · · ·+ |xnyn|

ST
,

o equivalentemente√√√√ n∑
i=1

x2i

√√√√ n∑
i=1

y2
i = ST ≥

n∑
i=1

|xiyi | ≥

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ .
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Recordemos que para cualquier permutación (a′1, a
′
2, . . . , a

′
n) de (a1, a2, . . . , an) se

tiene que
a21 + a22 + · · ·+ a2n ≥ a1a

′
1 + a2a

′
2 + · · ·+ ana

′
n.

Luego, tomando ai =
|xi |
S y an+i =

|yi |
T para i = 1, 2, . . . , n, tenemos

2 =
n∑

i=1

x2i
S2

+
n∑

i=1

y2
i

T 2
=

2n∑
i=1

a2i

≥ a1an+1 + a2an+2 + · · ·+ ana2n + an+1a1 + · · ·+ a2nan

=

2
|x1y1|+ |x2y2|+ · · ·+ |xnyn|

ST
,

o equivalentemente√√√√ n∑
i=1

x2i

√√√√ n∑
i=1

y2
i = ST ≥

n∑
i=1

|xiyi | ≥

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ .

Ingrid Quilantán Ortega, Aroldo Pérez Pérez Desigualdades Numéricas 55 / 60
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

De aqúı, el resultado se sigue elevando al cuadrado.

Tomemos ahora ai =
xi
S y an+i =

yi
T para i = 1, . . . , n. Entonces

ST =
n∑

i=1

xiyi ⇔ x1
S

=
y1
T
,
x2
S

=
y2
T
, . . . ,

xn
S

=
yn
T

⇔ yi =
T

S
xi , i = 1, . . . , n.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Ejercicio

Demostrar que para cualesquiera x1, x2, . . . , xn ∈ R,

(x1 + x2 + · · ·+ xn)
2 ≤ n

(
x21 + x22 + · · ·+ x2n

)
.

Demostración

Aplicando la desigualdad de Cauchy-Schwarz a los números x1, x2, . . . , xn del
enunciado y a los números y1 = y2 = · · · = yn = 1 obtenemos

(x1 · 1 + x2 · 1 + · · ·+ xn · 1)2 ≤
(
x21 + x22 + · · ·+ x2n

) (
12 + 12 + · · ·+ 12

)
,

o equivalentemente

(x1 + x2 + · · ·+ xn)
2 ≤ n

(
x21 + x22 + · · ·+ x2n

)
.

2
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Recordemos que

1 + 2 + · · ·+ n =

n(n + 1)

2
(12)

y

1 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
. (13)

Ejercicio

Demostrar que para cualquier número natural n ≥ 2, se cumple que

1 + 2
√
2 + 3

√
3 + · · ·+ n

√
n <

n(n + 1)

6

√
6n + 3.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Recordemos que

1 + 2 + · · ·+ n =
n(n + 1)

2
(12)

y

1 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
. (13)

Ejercicio

Demostrar que para cualquier número natural n ≥ 2, se cumple que

1 + 2
√
2 + 3

√
3 + · · ·+ n

√
n <

n(n + 1)

6

√
6n + 3.
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

Aplicando la desigualdad de Cauchy-Schwarz a los números

x1 = 1, x2 = 2, . . . , xn = n y y1 = 1, y2 =
√
2, . . . , yn =

√
n

obtenemos(
1 + 2

√
2 + 3

√
3 + · · ·+ n

√
n
)2

≤
(
1 + 22 + · · ·+ n2

)
(1 + 2 + · · ·+ n) .

Usando las fórmulas (12) y (13) tenemos(
1 + 2

√
2 + 3

√
3 + · · ·+ n

√
n
)2

≤ n2(n + 1)2(2n + 1)

2(6)

o equivalentemente
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Valor absoluto
Las desigualdades de las medias
La desigualdad del reacomodo

Demostración

(
1 + 2

√
2 + 3

√
3 + · · ·+ n

√
n
)2

≤ n2(n + 1)2

62
6(2n + 1)

2

⇔

1 + 2
√
2 + 3

√
3 + · · ·+ n

√
n ≤ n(n + 1)

6

√
6n + 3.

Falta solo ver que no puede darse la igualdad, para lo que usaremos que n ≥ 2.
Observemos que si esta se alcanzara, entonces existiŕıa λ tal que 1 = λ · 1 y
2 = λ

√
2, pero de la primera igualdad deducimos que λ = 1 y de la segunda que

λ =
√
2, lo cual es una contradicción. 2
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