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Valor absoluto

Definicién

El valor absoluto de x € R se define como
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Valor absoluto

Definicién

El valor absoluto de x € R se define como
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Valor absoluto

Definicién

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X1 = —x, si x <0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| =
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.

i) Six <0, entonces |x| =
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.

i) Six <0, entonces |x| = — x
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.

i) Six <0, entonces |x] = — x > 0.

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.
i) Six <0, entonces |x] = — x > 0.

iii) Si x =0, entonces |x| = |0| =
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.
i) Six <0, entonces |x] = — x > 0.

iii) Si x =0, entonces |x| = |0| = 0.
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.

i) Six <0, entonces |x] = — x > 0.
iii) Si x =0, entonces |x| = |0| = 0.
iv)

1V

Si x # 0, entonces
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.

i) Six <0, entonces |x] = — x > 0.

)
iii) Si x =0, entonces |x| = |0| = 0.
)

iv) Six #0, entonces x >0 6 x < 0.
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Definicion

El valor absoluto de x € R se define como

Ix| = x, si x>0
X = —x, si x<0.

Demostrar que para cualquier x € R,

[x| >0, yque |x|=0&x=0.

Demostracion

Sea x € R. Notemos que

i) Si x>0, entonces |x| = x > 0.

i) Six <0, entonces |x] = — x > 0.

)
iii) Si x =0, entonces |x| = |0| = 0.
)

iv) Six #0, entonces x >0 6 x < 0. Luego por i) y ii), |x| > 0.
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 ¥x € R;
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.

Demostracion
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.

Demostracion
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.

Demostracion

x>0=> —x
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.

Demostracion

x>0= —x<0=>
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.

Demostracion

x>0= —x<0=|—x|=
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.

Demostracion

x>0= —x<0=|—x|= —(—x) =
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.

Demostracion

x>0= —x<0=|—x|= —(—x)=x=
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x|.

Demostracion

x>0= —x<0=|—x|= = (—x)=x=|x].
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x]|.

Demostracion

x>0= —x<0=|—x|= = (—x)=x=|x].

x<0=
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x]|.

Demostracion

x>0= —x<0=|—x|= = (—x)=x=|x].

x<0= —x>0=>
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Valor absoluto

Demostracion

De i), ii) y iii) se tiene que |x| > 0 Vx € R; y de iii) y iv) se sigue que
x| =0 x=0.0

Dado x € R, demostrar que | — x| = |x]|.

Demostracion

x>0= —x<0=|—x|= = (—x)=x=|x].

x<0= —x>0=|—x|=—x=|x]
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Valor absoluto

Demostrar que |x|*> = x.
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Valor absoluto

2

Demostrar que |x|*> = x.

Demostracion
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Valor absoluto

Demostrar que |x|*> = x.

Demostracion
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Valor absoluto

2

Demostrar que |x|*> = x.

Demostracion

x>0=|x]*=
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Valor absoluto

2

Demostrar que |x|*> = x.

Demostracion

x>0=|x]?=x2
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Valor absoluto

Demostrar que |x|*> = x.

Demostracion
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Valor absoluto

2

Demostrar que |x|*> = x.

Demostracion

x>0=|x]?=x2

x<0=|x]*=
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Valor absoluto

Demostrar que |x|*> = x.

Demostracion
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Valor absoluto

2

Demostrar que |x|*> = x.

Demostracion

x>0=|x]?=x2

I
X

x<0= |x|2 = (—x)2 2
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Valor absoluto

Demostrar que |ab| = |a||b|.
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0=
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion
a>0yb>0= ab>0.
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| =
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab =
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0=
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| =
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab =
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) =
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Valor absoluto

Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.

a>0yb<0=
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.

a>0yb<0= ab<0.
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.

a>0yb<0= ab<0.
Por lo tanto |ab| =
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.

a>0yb<0= ab<0.
Por lo tanto |ab| = — (ab) =
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.

a>0yb<0= ab<0.
Por lo tanto |ab| = — (ab) = a(—b) =
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.

a>0yb<0= ab<0.
Por lo tanto |ab| = — (ab) = a(—b) = |a||b|.
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.

a>0yb<0= ab<0.
Por lo tanto |ab| = — (ab) = a(—b) = |a||b|.

Similarmente, sia < 0 y b > 0, entonces
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Demostrar que |ab| = |a||b|.

Demostracion

a>0yb>0= ab>0.
Por lo tanto |ab| = ab = |a||b|.

a<0yb<0= ab>0.
Por lo tanto |ab| = ab = (—a)(—b) = |a||b|.

a>0yb<0= ab<0.
Por lo tanto |ab| = — (ab) = a(—b) = |a||b|.

Similarmente, sia < 0 y b > 0, entonces |ab| = |a||b|. O
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que |

Tl
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i

Demostracion
V.
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i

Demostracion

a>0yb>0=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i

Demostracion

a>0yb>0= 7
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i

Demostracion

a>0yb>0= 7>0=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i

Demostracion

a>0yb>0=2>0= |2|=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i

Demostracion

a>0yb>0=>2>0= |2|=2=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i

Demostracion

|a|

aZOyb>0:>%20:>|g|:%:ﬁ_
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Valor absoluto

|a

Sean a,b € R con b # 0. Demostrar que | 2| = -

Demostracion

|a

a>0yb>0=2>0=|2|=2=1{

a>0yb<0=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i|

Demostracion

a>0yb>0=

Tl
vV
o
I

a>0yb<0=

Tl
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i|

Demostracion

a>0yb>0= lal

Tl
V
o
I

a>0yb<0=

oy
|
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i|

Demostracion

a>0yb>0=2>0=|2|=2=10
a>0yb<0=>2<0= |2|=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i|

Demostracion

a>0yb>0=2>0=|

|
Tlu

a>0yb<0=

S
VAN
o
4
Il

Tl
|
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = %'I.

b

Demostracion

a>0yb>0=2>0= | lal

|
Tlu

a>0yb<0=

S
VAN
o
4
Il

Tl
|

&
Il
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = %'I.

Demostracion

a al _ a _ |al
320yb>0:>520=>|g|—5—ﬁ

a al a _ a _ |4
a>0yb<0=>2<0= |2|= —a=2 =
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Valor absoluto

|a

Sean a,b € R con b # 0. Demostrar que | 2| = -

Demostracion

a al _ a _ |al
320yb>0:>520=>|g|—5—ﬁ

a al a _ a _ |4
a>0yb<0=>2<0= |2|= —a=2 =

a<0yb>0=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = %
Demostracion
aZOyb>0:>gzoz>|%|:%:%
220y5<0= <0 [f|= —§= % =i
a<0yb>0= %
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = %
Demostracion
aZOyb>0:>gzoz>|%|:%:%
220y5<0= <0 [f|= —§= % =i
a<0yb>0=2<0=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = %
Demostracion
aZOyb>0:>gzoz>|%|:%:%
220y5<0= <0 [f|= —§= % =i
a<0yb>0=2<0= |Z|=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que|%| = %
Demostracion
aZOyb>0:>g20:>|%|:%:|Iall
a>0yb<0=>2<0= |2|= _%_—ib:%
a<0yb>0=2<0=|2|=-2=
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Valor absoluto

|a

Sean a,b € R con b # 0. Demostrar que | 2| = -

Demostracion

a al _ a _ |a
aZOyb>0:>520:>|E|_E_ﬁ

a al a _ a _ |4
a>0yb<0=>2<0= |2|= —a=2 =

a al a __ —a __
a<0yb>0=2<0= |2|=-2==
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Valor absoluto

|a

Sean a,b € R con b # 0. Demostrar que | 2| = -

Demostracion

a al _ a _ |a
aZOyb>0:>520:>|E|_E_ﬁ

a al a _ a _ |4
a>0yb<0=32<0=|3|=-2=F=7

a al a _ —a _ |3
aSOyb>O:E§O:>|E|_ — =T =
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que | 2| = ||i|

Demostracion

a al _ a _ |a
aZOyb>0:>520:>|E|_E_ﬁ

a a a _ a _ |4
a>0yb<0=32<0=|3|=-2=F=7

a al a _ —a _ |3
aSOyb>O:E§O:>|E|_ — =T =

a<0yb<0=
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Valor absoluto

|a

Sean a,b € R con b # 0. Demostrar que | 2| = -

Demostracion

a al _ a _ |a
aZOyb>0:>520:>|E|_E_ﬁ

a al a _ a _ |4
a>0yb<0=32<0=|3|=-2=F=7

a al a _ —a _ |3
aSOyb>O:E§O:>|E|_ — =T =

a<0yb<0=

Tl
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Valor absoluto

|a

Sean a,b € R con b # 0. Demostrar que | 2| = -

Demostracion
aZOyb>0:>gzoz>|%|:%:%
a>0yb<0=>2<0= |2|= _%:_ib:%
20yb>0= 3<0= 3=~ 5= =
a<0yb<0=7>0=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que || :%.
Demostracion
aZOyb>0:>gzoz>|%|:%:%
a>0yb<0=>2<0= |2|= _%:_ib:%
250yb>0+ 350 |3 = —¢-% -
a<0yb<0=>2>0= |2|=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que || :%.
Demostracion
aZOyb>0:>gzoz>|%|:%:%
a>0yb<0=>2<0= |2|= _%:_ib:%
a<0yb>0=2<0= |Z|= —%:—Ta:%
a<0yb<0=>2>0= |2|=2=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que || :%.
220yb>0=2>0= |2 =2=12
a>0yb<0=>2<0= |2|= _%:_ib:%
a<0yb>0=2<0= |Z|= —%:—Ta:%
a<0yb<0=>2>0=|3|=2==2=
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Valor absoluto

Sean a,b € R con b # 0. Demostrar que || :%.
aZOyb>0:>gzoz>|%|:%:%

a>0yb<0=>2<0= |2|= _%:_ib:%
a<0yb>0=2<0= |Z|= —%:—ba:%
a§0yb<0:>%20:>|%|:%::—;’;:%.D
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Valor absoluto

Demostrar que

x| <bs —b < x<b.
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Valor absoluto

Demostrar que

x| <bs —b<x<b.

Demostracion
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego

x| < b=
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego

x| <b=x<b y —x<b=
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego

x| <b=x<b y —x<b=x<b y x>-b =
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego

x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR
Luego

x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h

<)

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h

S)x>0=>
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h

E)x>0= |x]| =

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h

E)x>0= |x|=x
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h

S)x>0=|x|=x<b;
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h
=) x>0= |x| =x < b;

x<0=
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h
=) x>0= |x| =x < b;

x<0= |x| =

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h
=) x>0= |x| =x < b;

x<0= |x|= —x.

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h
S)x>0=|x|=x<b;

x<0= |x|= —x. Como —b < x =
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h
=) x>0= |x| =x < b;

x<0= |x|= —x. Como —b< x= b>—x,yasi,
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h
=) x>0= |x| =x < b;

x<0= |x|= —x. Como —b< x= b>—x,yasi,

x| =—x<b.
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Valor absoluto

Demostrar que

x| <bs —b < x<b.

Demostracion

=) Notemos que

x < |x] y —x<|x| ¥xeR

Luego
x| <b=x<b y —x<b=x<b y x>-b = —-b<x<h
S)x>0=|x|=x<b;

x<0=|x|= —x. Como —b<x= b>—x,yas,

x| =—-x<b.

Asi, en cualquier caso,

x| < b. O
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Valor absoluto

Observacion

X2 = = [x| = /[P = V52
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Valor absoluto

Observacion

Ix|? = x2 = |x| = /|x[]2 = Vx2.

Proposicion
(Desigualdad del triangulo) Para a, b € R se cumple

la+ b| <|a| +|b].

Ademads la igualdad ocurre solamente cuando ab > 0.

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:

la+ B> =
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:

la+b> = (a+b)?=
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:

la+b> = (a+b)?=a%+2ab+b*=
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:

la+ b2 = (a+b)?>=a’+2ab+ b® = |a|® +2ab+ |b|?
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:

la+ b2 = (a+b)?>=a’+2ab+ b® = |a|® +2ab+ |b|?
|a|? + 2|ab| + |b|* (ya que ab < |ab|)

IA
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:

la+ b2 = (a+b)?>=a’+2ab+ b® = |a|® +2ab+ |b|?
|a? + 2[ab| + [b]* (ya que ab < |ab])
|af? +2]a||b] + |b]* =

IA
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:
la+ b2 = (a+b)?>=a’+2ab+ b® = |a|® +2ab+ |b|?
|af* +2/ab| + |b|* (va que ab < |ab])
2
|al? + 2Jal|b] + [b* = (la] + |b])° -

IA
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + [b])*:

la+ b2 = (a+b)?>=a’+2ab+ b® = |a|® +2ab+ |b|?
|a|? + 2|ab| + |b|* (ya que ab < |ab|)
|a|? + 2|a| ] + |b]* = (la] + |b])*.

IA

Notemos que cuando ab > 0 se tiene que ab = |ab| = |a||b|. O
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b2 < (la] +|b])*:
la+b> = (a+b)?=a®+2ab+ b*=|a|* +2ab+|b?
< |a|* +2|ab| + |b|* (ya que ab < |ab|)
2
|al? + 2Jal|b] + [b* = (la] + |b])° -

Notemos que cuando ab > 0 se tiene que ab = |ab| = |a||b|. O

Observacion
la+b+c|l=
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b2 < (la] +|b])*:
la+b> = (a+b)?=a®+2ab+ b*=|a|* +2ab+|b?
< |a|* +2|ab| + |b|* (ya que ab < |ab|)
2
|al? + 2Jal|b] + [b* = (la] + |b])° -

Notemos que cuando ab > 0 se tiene que ab = |ab| = |a||b|. O

Observacion
la+b+c|l=|(a+b)+c| <
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b2 < (la] +|b])*:
la+b> = (a+b)?=a®+2ab+ b*=|a|* +2ab+|b?
< |a|* +2|ab| + |b|* (ya que ab < |ab|)
2
|al? + 2Jal|b] + [b* = (la] + |b])° -

Notemos que cuando ab > 0 se tiene que ab = |ab| = |a||b|. O

Observacion
la+b+c|l=|(a+b)+c|<|a+b|+|c| <
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Valor absoluto

Demostracion

Notemos que como |a+ b| > 0 y |a| + |b| > 0, basta verificar que
|a+ b < (|a] + |])*:

la+b> = (a+b)?=a®+2ab+ b*=|a|* +2ab+|b?
< |a|* +2|ab| + |b|* (ya que ab < |ab|)
|l +2lallb] + [bI* = (Ja] + [5])*

Notemos que cuando ab > 0 se tiene que ab = |ab| = |a||b|. O

Observacion
la+b+c|l=|(a+b)+c|<|a+b|+|c| <|a|+|b|+ |c|-
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Valor absoluto

Forma general de la desigualdad del tridangulo:
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Valor absoluto

Forma general de la desigualdad del tridangulo:

n n
D x| <D bl
k=1 k=1
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Valor absoluto

Forma general de la desigualdad del tridangulo:
n n

LIRS
k=1 k=1

La igualdad se tiene cuando todos los xx's tienen el mismo signo.
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Valor absoluto

Demostrar que ||a| — |b|| < |a — b|.
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que
lal = |a— b+ b| <
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Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que

la| =|a— b+ b| <|a— b| + |b|.
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Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que

la| =|a— b+ b| <|a— b| + |b|.
De donde
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Demostrar que ||a| — |b|| < |a— b|.

Demostracion
Notemos que
la| =|a— b+ b| <|a— b| + |b|.

De donde
|a| —[b] < |a— b]. (1)
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion
Notemos que
la| =|a— b+ b| < |a— b|+ |b].
De donde
|a| = [b] < |a— b. (1)
También
|b] =
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion
Notemos que
la| =|a— b+ b| < |a— b|+ |b].
De donde
|a| — |b| < [a— b]. (1)
También
|b|=|b—a+al <
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion
Notemos que
la| =|a— b+ b| < |a— b|+ |b].
De donde
|a| —[b] < |a— b]. (1)
También
|b|=|b—a+a|l <|b—a|l+]a|
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que
la| =|a— b+ b| < |a— b|+ |b].

De donde
|a| —[b] < |a— b]. (1)
También
|b|=|b—a+a|l <|b—a|l+]a|
De donde
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que
la| =|a— b+ b| < |a— b|+ |b].

De donde
|a| —[b] < |a— b]. (1)
También
|b|=|b—a+a|l <|b—a|l+]a|
De donde

—la—b| <faf - b]. )

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que
la| =|a— b+ b| < |a— b|+ |b].

De donde
|a| —[b] < |a— b]. (1)
También
|b|=|b—a+a|l <|b—a|l+]a|
De donde

—la— bl < a| - [b]. ()
De (1) y (2) obtenemos
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Valor absoluto

Demostrar que ||a| — |b|| < |a— b|.

Demostracion

Notemos que
la| =|a— b+ b| < |a— b|+ |b].

De donde
|a| —[b] < |a— b]. (1)
También
|b|=|b—a+a|l <|b—a|l+]a|
De donde

—la— bl < a| - [b]. ()
De (1) y (2) obtenemos

—Ja—b| < [a| - |b] < |a - b].

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostracion

Luego,
lla] —|b|| <]a— bl
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion
V.
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Si x > 0, entonces
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Six >0, entonces x = |x| > a; y
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Six >0, entonces x = |x| > a; y
si x < 0, entonces
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Six >0, entonces x = |x| > a; y
si x < 0, entonces —x = |x| > a, de manera que
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Six >0, entonces x = |x| > a; y
si x < 0, entonces —x = |x| > a, de manera que x < —a.
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Six >0, entonces x = |x| > a; y
si x < 0, entonces —x = |x| > a, de manera que x < —a.

Reciprocamente, si x > a, entonces ya que a > 0,
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Six >0, entonces x = |x| > a; y
si x < 0, entonces —x = |x| > a, de manera que x < —a.

Reciprocamente, si x > a, entonces ya que a >0, |x| =x > a; y
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Six >0, entonces x = |x| > a; y
si x < 0, entonces —x = |x| > a, de manera que x < —a.

Reciprocamente, si x > a, entonces ya que a >0, |x| =x > a; y
si x < —a, entonces —x > a, y asi, debido a que a > 0,
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Valor absoluto

Sea a > 0. Demostrar que

x| >a&ex<—-a o x>a

Demostracion

Supongamos que |x| > a.
Six >0, entonces x = |x| > a; y
si x < 0, entonces —x = |x| > a, de manera que x < —a.

x|=x>ay
x|=—-x>a. 0O

Reciprocamente, si x > a, entonces ya que a > 0,
si x < —a, entonces —x > a, y asi, debido a que a > 0,
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Valor absoluto

Para a, b,c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad.
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
la| > |b| > |c| > 0 ya que la desigualdad es simétrica en a, b, c.
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
|a| > |b| > |c| > 0 ya que la desigualdad es simétrica en a, b, c. Dividiendo entre
|a|, la desigualdad es equivalente a
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
|a| > |b| > |c| > 0 ya que la desigualdad es simétrica en a, b, c. Dividiendo entre

|a|, la desigualdad es equivalente a
b c b b ¢ c b ¢
1++H—‘1+—’+—)1+‘+‘1++ > 0.
a a a a a a a a
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
|a| > |b| > |c| > 0 ya que la desigualdad es simétrica en a, b, c. Dividiendo entre

|a|, la desigualdad es equivalente a
b c b b ¢ c b ¢
1++H—‘1+—’+—)1+‘+‘1++ > 0.
a a a a a a a a

Como |§| <ly |§| < 1, se tiene que
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
|a| > |b| > |c| > 0 ya que la desigualdad es simétrica en a, b, c. Dividiendo entre

|a|, la desigualdad es equivalente a
b c b b ¢ c b ¢
1++H—‘1+—’+—)1+‘+‘1++ > 0.
a a a a a a a a

Como |§| <ly |§| < 1, se tiene que

=
a
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
|a| > |b| > |c| > 0 ya que la desigualdad es simétrica en a, b, c. Dividiendo entre

|a|, la desigualdad es equivalente a
b c b b ¢ c b ¢
1++H—‘1+—’+—)1+‘+‘1++ > 0.
a a a a a a a a

Como |§| <ly |§| < 1, se tiene que
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Valor absoluto

Para a, b, c € R demostrar que

la| + |b| + |c| —|a+b| = |b+c|—|c+al+|a+b+c|>0.

Demostracion

Si a, b o c es cero, se tiene la igualdad. Entonces, podemos suponer que
|a| > |b| > |c| > 0 ya que la desigualdad es simétrica en a, b, c. Dividiendo entre

|a|, la desigualdad es equivalente a
b c b b ¢ c b ¢
1++H—‘1+—’+—)1+‘+‘1++ > 0.
a a a a a a a a

Como |§| <ly |§| < 1, se tiene que
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Valor absoluto

Demostracion

Luego, solo es necesario demostrar que

[EKER

a

b

a

b ¢ b ¢ b
-+l +|-(1+=-+=- )+ |1 +-=-+
a a a a a a

| o

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Valor absoluto

Demostracion

b
a

Luego, solo es necesario demostrar que
b ¢

b ¢ b ¢
4k + I —(1+="+=] 1=+
a a a a a

lo cual se sigue de la desigualdad del triangulo y el hecho de que x < |x| Vx € R.
O

|se
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Las desigualdades de las medias

Definicion
Sean ay,a»,...,a, > 0.

a) La media aritmética de estos n nimeros es
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Las desigualdades de las medias

Definicién
Sean ay,a»,...,a, > 0.
a) La media aritmética de estos n nimeros es
ata+---+ap
n

= m.
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Las desigualdades de las medias

Definicion

Sean ay,a»,...,a, > 0.
a) La media aritmética de estos n nimeros es

ata+---+a,
n

= m.

b) La media cuadratica es
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Las desigualdades de las medias

Definicion

Sean ay,a»,...,a, > 0.
a) La media aritmética de estos n nimeros es

ata+---+a,
n

= m.

b) La media cuadratica es

\/a§+a§+-~-+a,2,
n
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Las desigualdades de las medias

Definicién
Sean ay,a»,...,a, > 0.
a) La media aritmética de estos n nimeros es
ata+---+ap
n

= m.

b) La media cuadratica es

\/a§+a§+-~-+a,2,
n

c) La media geométrica es
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Las desigualdades de las medias

Definicién
Sean ay,a»,...,a, > 0.
a) La media aritmética de estos n nimeros es
ata+---+ap
n

= m.

b) La media cuadratica es

\/a§+a§+-~-+a,2,
n

= my.

c) La media geométrica es

\/aidz - -ap = nmy.
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Las desigualdades de las medias

Definicién

d) Siap,a,...,a, >0, la media arménica es
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Las desigualdades de las medias

Definicién

d) Siap,a,...,a, >0, la media arménica es
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10,
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10,

8410

9
2 )

m
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10,

8410

9
2 )

m

y entonces es como si se hubiera sacado un 9 en los dos exdmenes, pues se puede
pasar un punto del 10 al 8.
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10,

8410

9
2 )

m

y entonces es como si se hubiera sacado un 9 en los dos exdmenes, pues se puede
pasar un punto del 10 al 8. Notemos también que
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10,

8410

9
2 )

m

y entonces es como si se hubiera sacado un 9 en los dos exdmenes, pues se puede
pasar un punto del 10 al 8. Notemos también que

21102
o ¥:\/8>2906,
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10,

8410

9
2 )

m

y entonces es como si se hubiera sacado un 9 en los dos exdmenes, pues se puede
pasar un punto del 10 al 8. Notemos también que

21102
o ¥:\/8>2906,

mo = +/(8)(10) = v/80 ~ 8.94,
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10,

8+ 10
m = T = 9,
y entonces es como si se hubiera sacado un 9 en los dos exdmenes, pues se puede
pasar un punto del 10 al 8. Notemos también que

2 1102
o ¥:\/8>2906,
mo \/ )(10) = V/80 ~ 8.94,
2 80
may o= < 1:9——~889.
st w  °
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10

8+ 10
mlz%:&

y entonces es como si se hubiera sacado un 9 en los dos exdmenes, pues se puede
pasar un punto del 10 al 8. Notemos también que

21102
my = ¥:\/8>2906,
V/(8)(10) = v/80 ~ 8.94,
2 80
m-y = i:g—j”mg
8 10 40

Obviamente, si los resultados en ambos exdmenes es 9,
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Las desigualdades de las medias

Cada uno de estos conceptos se usa para obtener un solo valor que represente
los datos que nos han dado. Por ejemplo, si en dos exdmenes se obtuvo 8 y 10

8+ 10
mlz%:&

y entonces es como si se hubiera sacado un 9 en los dos exdmenes, pues se puede
pasar un punto del 10 al 8. Notemos también que

21102
my = ¥:\/8>2906,
V/(8)(10) = v/80 ~ 8.94,
2 80
m-y = i:g—j”mg
8 10 40

Obviamente, si los resultados en ambos exdmenes es 9,

m_1:m0:m1:m2:9.
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Las desigualdades de las medias

Notemos que la media aritmética le da el mismo valor a sacar 8, 10 que 9, 9.
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Las desigualdades de las medias

Notemos que la media aritmética le da el mismo valor a sacar 8, 10 que 9, 9. Pero
la media cuadratica le da mas valor a sacar 8, 10 que 9, 9, de esta manera un
profesor puede usarla para valorar que sacar un 10 es mas dificil que sacar un 9.
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Las desigualdades de las medias

Notemos que la media aritmética le da el mismo valor a sacar 8, 10 que 9, 9. Pero
la media cuadratica le da mas valor a sacar 8, 10 que 9, 9, de esta manera un
profesor puede usarla para valorar que sacar un 10 es mas dificil que sacar un 9.

En general, la media cuadratica le da mds peso a las notas altas. Sin embargo, las
medias geométricas y armdnicas le dan mds peso a las notas bajas. Por lo que
estos dos ultimos tipos de medias pueden usarse para valorar la constancia.
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Las desigualdades de las medias

Notemos que la media aritmética le da el mismo valor a sacar 8, 10 que 9, 9. Pero
la media cuadratica le da mas valor a sacar 8, 10 que 9, 9, de esta manera un
profesor puede usarla para valorar que sacar un 10 es mas dificil que sacar un 9.

En general, la media cuadratica le da mds peso a las notas altas. Sin embargo, las
medias geométricas y armdnicas le dan mds peso a las notas bajas. Por lo que

estos dos ultimos tipos de medias pueden usarse para valorar la constancia.

En particular, en este ejemplo observamos que
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Las desigualdades de las medias

Notemos que la media aritmética le da el mismo valor a sacar 8, 10 que 9, 9. Pero
la media cuadratica le da mas valor a sacar 8, 10 que 9, 9, de esta manera un
profesor puede usarla para valorar que sacar un 10 es mas dificil que sacar un 9.

En general, la media cuadratica le da mds peso a las notas altas. Sin embargo, las
medias geométricas y armdnicas le dan mds peso a las notas bajas. Por lo que

estos dos ultimos tipos de medias pueden usarse para valorar la constancia.

En particular, en este ejemplo observamos que

m_1 < mp < m < ms.
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Las desigualdades de las medias

Notemos que la media aritmética le da el mismo valor a sacar 8, 10 que 9, 9. Pero
la media cuadratica le da mas valor a sacar 8, 10 que 9, 9, de esta manera un
profesor puede usarla para valorar que sacar un 10 es mas dificil que sacar un 9.

En general, la media cuadratica le da mds peso a las notas altas. Sin embargo, las
medias geométricas y armdnicas le dan mds peso a las notas bajas. Por lo que
estos dos ultimos tipos de medias pueden usarse para valorar la constancia.

En particular, en este ejemplo observamos que
m_1 < mp < m < ms.

Veremos después que estas desigualdades son validas en general, y que las
igualdades se dan si y solo si
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Las desigualdades de las medias

Notemos que la media aritmética le da el mismo valor a sacar 8, 10 que 9, 9. Pero
la media cuadratica le da mas valor a sacar 8, 10 que 9, 9, de esta manera un
profesor puede usarla para valorar que sacar un 10 es mas dificil que sacar un 9.

En general, la media cuadratica le da mds peso a las notas altas. Sin embargo, las
medias geométricas y armdnicas le dan mds peso a las notas bajas. Por lo que
estos dos ultimos tipos de medias pueden usarse para valorar la constancia.

En particular, en este ejemplo observamos que
m_1 < mp < m < ms.

Veremos después que estas desigualdades son validas en general, y que las
igualdades se dan siy solosia; = a, =--- = a,.
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Las desigualdades de las medias

Sea x > 0. Demostrar que

x+1>2v/x.
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Las desigualdades de las medias

Sea x > 0. Demostrar que
x+1>2yx.

Demostracion
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Las desigualdades de las medias

Sea x > 0. Demostrar que
x+1>2yx.

Demostracion

Tenemos por la desigualdad entre la media geométrica y la media aritmética que
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Las desigualdades de las medias

Sea x > 0. Demostrar que
x+1>2yx.

Demostracion

Tenemos por la desigualdad entre la media geométrica y la media aritmética que

s VR
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Las desigualdades de las medias

Sea x > 0. Demostrar que
x+1>2yx.

Demostracion

Tenemos por la desigualdad entre la media geométrica y la media aritmética que

x+1

5 o V(¥)(1) & x+1>2vx.
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Las desigualdades de las medias

Sean x,y > 0. Demostrar que
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Las desigualdades de las medias

Sean x,y > 0. Demostrar que

Demostracion
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Las desigualdades de las medias

Sean x,y > 0. Demostrar que

Demostracion

Tenemos por la desigualdad entre la media arménica y la media aritmética que
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Las desigualdades de las medias

Sean x,y > 0. Demostrar que

Demostracion

X =
4+~
<=
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Las desigualdades de las medias

Sean x,y > 0. Demostrar que

Demostracion

- 2 2 X+y

<=
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Las desigualdades de las medias

Sean x,y > 0. Demostrar que

Demostracion

Tenemos por la desigualdad entre la media arménica y la media aritmética que

= 5
- 2 2 T x4y X Yy x4y

1,1
7+7
<X+y®X Yy S 2 1 1> 4
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Las desigualdades de las medias

Demostrar que para cualesquiera a, b, c > 0, se cumple que

(a°b+ b*c + c®a) (ab® + bc® + ca®) > 9a°b>c>.
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Las desigualdades de las medias

Demostrar que para cualesquiera a, b,c > 0, se cumple que

(a°b+ b*c + c®a) (ab® + bc® + ca®) > 9a°bc.

Demostracion
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Las desigualdades de las medias

Demostrar que para cualesquiera a, b,c > 0, se cumple que

(a°b+ b*c + c®a) (ab® + bc® + ca®) > 9a°bc.

Demostracion

La desigualdad entre las medias aritmética y geométrica nos dice que
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Las desigualdades de las medias

Demostrar que para cualesquiera a, b,c > 0, se cumple que

(a°b+ b*c + c®a) (ab® + bc® + ca®) > 9a°bc.

Demostracion

La desigualdad entre las medias aritmética y geométrica nos dice que

a%b + b%c + c2a

3 > Va3bh3c3 =
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Las desigualdades de las medias

Demostrar que para cualesquiera a, b,c > 0, se cumple que

(a°b+ b*c + c®a) (ab® + bc® + ca®) > 9a°bc.

Demostracion

La desigualdad entre las medias aritmética y geométrica nos dice que

a%b + b%c + c2a

3 > Vadb3c3 = a%b + b’c + c?a > 3abc,
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Las desigualdades de las medias

Demostrar que para cualesquiera a, b,c > 0, se cumple que

(a°b+ b*c + c®a) (ab® + bc® + ca®) > 9a°bc.

Demostracion

La desigualdad entre las medias aritmética y geométrica nos dice que

2b b2 2
% > Vadb3c3 = a%b + b’c + c?a > 3abc,
ab? + bc? + ca?

3 > Valh3cd =

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Las desigualdades de las medias

Demostrar que para cualesquiera a, b,c > 0, se cumple que

(a°b+ b*c + c®a) (ab® + bc® + ca®) > 9a°bc.

Demostracion

La desigualdad entre las medias aritmética y geométrica nos dice que

b 33b = a (C + )
a— erCCa > 3 3C3 2b+b2 C a> 3abC
b bC ca 3 3hHh3,-3 a 2 (C +C abc?

luego
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Las desigualdades de las medias

Demostrar que para cualesquiera a, b,c > 0, se cumple que

(a°b+ b*c + c®a) (ab® + bc® + ca®) > 9a°bc.

Demostracion

La desigualdad entre las medias aritmética y geométrica nos dice que

a%b + b%c + c2a

3 > Vadb3c3 = a%b + b’c + c?a > 3abc,

ab? + bc? + ca?

. > Vadb3c3 = ab? + bc? + ca® > 3abc,

luego

(a°b+ b?c + c?a) (ab® + bc® + ca®) > (3abc) (3abc) = 9a%b>c>.
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Demostracion
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Demostracion

Por la desigualdad entre la media armédnica y la media geométrica,
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Demostracion

Por la desigualdad entre la media armédnica y la media geométrica,
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Demostracion

Por la desigualdad entre la media armédnica y la media geométrica,

2 1

1
<Vxy & —+—2>
+ Y x 'y

X =
<=
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Demostracion

Por la desigualdad entre la media armédnica y la media geométrica,

2 1 1 2
<WVxy & —+-—>—
Rk Y Xy Xy
2
i 1Sw/yz &
y Tz

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Demostracion
Por la desigualdad entre la media armédnica y la media geométrica,

2 L 1,12
RS T y VXY
2 1,12
%+%_ z %4
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Demostracion

Por la desigualdad entre la media armédnica y la media geométrica,

2 _ L 112
> VXY I ey ——
Rk Xy Xy
2 _ o 1,102
= 4> _—
——_— y oz yZ
2
<Vvzx &
I+
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Demostracion

Por la desigualdad entre la media armédnica y la media geométrica,
2 1 1 2
<Vxy & —+—2>—
Rk Xy Xy
2 1 1 2
<Vyz & —+-=2—
% +1 y z %4
2 1 1 2
T ISV & —t-o2—=
L4 z X zx
z X
Luego, sumando obtenemos
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Las desigualdades de las medias

Demostracion

l+l+l+l+l+%2i+
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Las desigualdades de las medias

Demostracion

Desigualdades Numéricas
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Las desigualdades de las medias

Demostracion

Desigualdades Numéricas
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

X4y 422> x\y2+ 2+ yVx2 + 22
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy 4+ 22> x\y2+ 22+ y/x2+ 22,

Demostracion
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy 4+ 22> x\y2+ 22+ y/x2+ 22,

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy 4+ 22> x\y2+ 22+ y/x2+ 22,

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

24 (y2 4 22
—()/2 ) > Vx2(y?+22) =
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy 4+ 22> x\y2+ 22+ y/x2+ 22,

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

X2+ (y? +2°)

> > /x2(y2+22) = x\/y? + 22
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy 4+ 22> x\y2+ 22+ y/x2+ 22,

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

X2+ (y? +2°)

5 > VX2(y2+2%) =x\/y2 + 22
2 2 2
+ (2 +z
}/(2—) > y2(X2+22):
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy 4+ 22> x\y2+ 22+ y/x2+ 22,

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

X2+ (y? +2°)

> > /x2(y2+22) = x\/y? + 22
v 4+ (3 +2%)
— =~ y2(x2+22) = yvx2 + 22
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy 4+ 22> x\y2+ 22+ y/x2+ 22,

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

X2+ (y? +2°)

> > /x2(y2+22) = x\/y? + 22
v 4+ (3 +2%)
— =~ y2(x2+22) = yvx2 + 22

Luego, sumando obtenemos
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy 4+ 22> x\y2+ 22+ y/x2+ 22,

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

2 2., 2
x+(y2+z) > V(2 +22) =x\/y2 + 22

2 2, 2
yrerz) +(>;+z) y2(x2+22) = yvx2 + 22

Luego, sumando obtenemos

X2+y2+22

Y

x\/y2+z2—|—y\/><2 + 22,
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy

yz  zx
+ -+ —2x+y+z
z X y
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy
z

Demostracion

yz  zx
+ -+ —2x+y+z
X y
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy

yz  zx
+ -+ —2x+y+z
z X y

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

Xy

yz  zx
+ -+ —2x+y+z
z X y

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

Xy | yz
== = /(D) E) e
2 z X
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

X Z zX
Y sty
z X y

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

Xy | yz
Tty > (ﬁ)(ﬁ)@ﬁ+ﬁzzy’
2 z X z X
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

X Z zX
Y sty
z X y

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

il (2)(2) 0 Z+L 52,
2 z X X

z
2y zX
55 06)-
2 - z y
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

X Z zX
Y sty
z X y

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,

il (2)(2) 0 Z+L 52,
X

2 - z X z
%‘i‘zyl xy\ [ zx Xy  zx
a s S EE )
2 z y z y
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

X Z zX
Y sty
z X y

Demostracion

Por la desigualdad entre la media geométrica y la aritmética tenemos,
Xy 4 ¥z
Tty > (ﬁ)(ﬁ)@ﬁ+ﬁzzy’
2 z X z X
Z+= X zx X zx
=y > (y)<>@y+>zx7
2 z y z y
¥z 4 oz
Yo (E) ) &
2 - X y
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

X Z zX
Y sty
z X y

Demostracion

N
|
\

Por la desigualdad entre la media geométrica y la aritmética tenemos,

Xy 4 ¥z

EE L @) (B o2 Es,
2 z X z X

Z+= X zx X zx

— = (y)<>©y+>2x,
2 z y z y

yz zx

pA=S _l’_ &5

=2 5 (VZ)(Z>@)’+>22
2 X y X y
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Las desigualdades de las medias

Demostrar que para x,y,z > 0,

X Z zX
Y sty
z X y

Demostracion

N
|
\

Por la desigualdad entre la media geométrica y la aritmética tenemos,
Xy 4 Yz %
=< (Z)(E)eZ+L22,
2 z X z X
Z+= X zx X zx
=y > (y)<>@y+>zx7
2 z y z y
yz zx
pA=S _l’_ &5
=2 5 (VZ)(Z>@)’+>22
2 X y X y
Sumando obtenemos
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Las desigualdades de las medias

Demostracion

2 0¥

Z+2§22x+2y+2z©
z X y
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Las desigualdades de las medias

Demostracion

oY L ¥
X

V4

+2 X > ox 42y + 2z & y+£+32x+y+z.
x |y

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.
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Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion
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Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion

Siy=x (1 — x3), entonces

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Num



Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion

Siy=x (1 — x3), entonces

y3:x3(1—x3) (1—x3) (1—x3)(:>
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Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion

Siy=x (1 — x3), entonces

y3:x3(1—x3) (1—x3) (1—x3)(:>3y3:3x3(1—x3) (1—x3) (1—x3)7
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Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion

Siy=x (1 — x3), entonces
y3:x3(1—x3) (1—x3) (1—x3) & 3y° =3x3 (1—x3) (1—x3) (1—x3)7

donde
3x3 + (1—x3) + (1—X3) + (1—x3) =
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Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion

Siy=x (1 — x3), entonces
y3:x3(1—x3) (1—x3) (1—x3) & 3y° =3x3 (1—x3) (1—x3) (1—x3)7

donde
3x3 + (1—x3) + (1—X3) + (1—x3) = 3.
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Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion

Siy=x (1 — x3), entonces
y3:x3(1—x3) (1—x3) (1—x3) & 3y° =3x3 (1—x3) (1—x3) (1—x3)7

donde
3x3 + (1—x3) + (1—X3) + (1—x3) = 3.

Luego por la desigualdad entre la media geométrica y la media aritmética,
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Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion

Siy=x (1 — x3), entonces
y3:x3(1—x3) (1—x3) (1—x3) & 3y° =3x3 (1—x3) (1—x3) (1—x3)7

donde
3x3 + (1—x3) + (1—X3) + (1—x3) = 3.

Luego por la desigualdad entre la media geométrica y la media aritmética,

- 334+3(1-x3)

V33 = B (1) (1) y =
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Las desigualdades de las medias

Encontrar el valor maximo de x (1 — x3) para 0 < x < 1.

Demostracion

Siy=x (1 — x3), entonces

y3:x3(1—x3) (1—x3) (1—x3)(:>3y3:3x3(1—x3) (1—x3) (1—x3)7

donde
3x3 + (1—x3) + (1—X3) + (1—x3) = 3.

Luego por la desigualdad entre la media geométrica y la media aritmética,

W:V3X3(1*X3)(1fx3)(17x3)gwf 3

De donde

4 4
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Las desigualdades de las medias

Demostracio

34
i< () &
' =\3
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Las desigualdades de las medias

3\* 1/3\*
i< () eyi<Z(2) =
r<(3) =r<3(3)
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Las desigualdades de las medias

Demostracion

3 4 1/3 4 33
S« (= o ys < _ o
A <4> y = 3 (4> 44
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Las desigualdades de las medias

Demostracion

3\* 1/3\* 33 3
S< (= S<Z(Z) == < =
¥ —<4> R —3(4> Y= n
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Las desigualdades de las medias

Demostracion

3\* 1/3\* 3 3 3
3< — =S 3<— = = — & < = =
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Las desigualdades de las medias

Demostracion

3\* 1/3\* 3 3 3 3
3< — @}3<— = = — & < = =

Ademads, el valor maximo se alcanza cuando
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Las desigualdades de las medias

Demostracion

3\* 1/3\* 33 3 3 3
S< (= 3<- (=] == < =—= :
3y_<4> ﬁy_3(4> Y= /4 (43) 4V4

Ademads, el valor maximo se alcanza cuando

I=1-x3s
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Las desigualdades de las medias

Demostracion
3\* 1/3\* 3 3 3 3
3 3< - == 3 < — (= = — & < = —— =
g —<4> g —3(4> wTVS YR T aw)  ava

Ademads, el valor maximo se alcanza cuando

I=1-xsili=1a
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Las desigualdades de las medias

Demostracion

4 4 3
1
3y3§<§> syi< (3> 3 —ey< - 5 3 _ 3

4 3

Ademads, el valor maximo se alcanza cuando

3=1-xsi4ld=1cx3=

N
K3
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Las desigualdades de las medias

Demostracion

4 4 3
1

Ademads, el valor maximo se alcanza cuando

3=1-xsi4ld=1cx3=
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Las desigualdades de las medias

Sean p y q dos niimeros reales positivos tales que p + g = 1. Demostrar que

¢ Cudndo se obtiene la igualdad?
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Las desigualdades de las medias

Sean p y q dos nimeros reales positivos tales que p + q = 1. Demostrar que

1\? 1\*> 2
(p+> +(q+) > =,
p q 2

¢ Cudndo se obtiene la igualdad?

Demostracion
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Las desigualdades de las medias

Sean p y q dos nimeros reales positivos tales que p + q = 1. Demostrar que

1\? 1\*> 2
(p+> +(q+) > =,
p q 2

¢ Cudndo se obtiene la igualdad?

Demostracion

Usando la desigualdad entre la media aritmética y la media cuadratica, tenemos
que
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Las desigualdades de las medias

Sean p y q dos nimeros reales positivos tales que p + q = 1. Demostrar que

1\? 1\*> 2
(p+> +(q+) > =,
p q 2

¢ Cudndo se obtiene la igualdad?

Demostracion

Usando la desigualdad entre la media aritmética y la media cuadratica, tenemos
que

2 2
1 1
Prptaty _ (p+3) +(9+3)
2 - 2

o equivalentemente
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Las desigualdades de las medias

Sean p y q dos nimeros reales positivos tales que p + q = 1. Demostrar que

1\? 1\*> 2
(p+> +(q+) > =,
p q 2

¢ Cudndo se obtiene la igualdad?

Demostracion

Usando la desigualdad entre la media aritmética y la media cuadratica, tenemos
que

2 2
1 1 1 1
p+5+q+5< (p+p) +(q+q>
2 - 2
o equivalentemente

2 2 2
1 1 1 1
(p+;+q+5> <(P+E) +(q+5)
4 - 2 ’
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Las desigualdades de las medias

Demostracion

esto es
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Las desigualdades de las medias

Demostracion

esto es
1 1 1\? 1\? 1\?
slpt=-+tg+-) <|\p+—-| +{ag+-] .
2 p q p q

Usando ahora que p + q = 1, se obtiene

;<1+;+:’>2§(p+;>2+<q+;>2- ()
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Las desigualdades de las medias

Demostracion

esto es ) ) )
1 1 1 1 1
slpt=-+tg+-) <|\p+—-| +{ag+-] .
2 p q p q
Usando ahora que p + q = 1, se obtiene
2 2 2
1 1 1 1 1
<1++> S(p+> +<q+> : (3)
2 P q p q
Utilizando ahora la desigualdad entre la media aritmética y la media armédnica
(junto con el hecho de que p + q = 1) tenemos que
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Las desigualdades de las medias

Demostracion

esto es ) ) )
1 1 1 1 1
slpt=-+tg+-) <|\p+—-| +{ag+-] .
2 p q P q
Usando ahora que p + q = 1, se obtiene
2 2 2
1 1 1 1 1
<1++> S(p+> +<q+> : (3)
2 P q p q

Utilizando ahora la desigualdad entre la media aritmética y la media armédnica
(junto con el hecho de que p + q = 1) tenemos que

2<m:>
+ 2= 2

i
q
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Las desigualdades de las medias

Demostracion

esto es ) ) )
1 1 1 1 1
slpt=-+tg+-) <|\p+—-| +{ag+-] .
2 p q p q
Usando ahora que p + q = 1, se obtiene
2 2 2
1 1 1 1 1
<1++> S(p+> +<q+> : (3)
2 P q p q
Utilizando ahora la desigualdad entre la media aritmética y la media armédnica
(junto con el hecho de que p + q = 1) tenemos que

1 1
,_'_,
<p+q:> 2 < £2_49

2 p+qg— 2

=
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Las desigualdades de las medias

Demostracion

esto es ) ) )
1 1 1 1 1
slpt=-+tg+-) <|\p+—-| +{ag+-] .
2 p q p q
Usando ahora que p + q = 1, se obtiene
2 2 2
1 1 1 1 1
<1++> S(p+> +<q+> : (3)
2 P q p q
Utilizando ahora la desigualdad entre la media aritmética y la media armédnica
(junto con el hecho de que p + q = 1) tenemos que

1 1
7_|_7
<Pte, 2 _pre_ 1,1, 14

< < > —=
= 2 p+q 2 P g ptgq
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Las desigualdades de las medias

Demostracion

esto es
1 1 1\? 1\? 1\?
slpt=-+tg+-) <|\p+—-| +{ag+-] .
2 p q p q

Usando ahora que p + q = 1, se obtiene

2 2 2
1 1 1 1 1
<1++> S(p+> +<q+> : (3)
2 P q p q
Utilizando ahora la desigualdad entre la media aritmética y la media armédnica
(junto con el hecho de que p + q = 1) tenemos que
1,1
= _|_ =
<p+q:> 2 <P ":>1+12i:4.
2 p+q 2 P q p+tgq

Sustituyendo esta informacion en (3) se obtiene
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Las desigualdades de las medias

25 1 1 1 1)\° 1\? 1\?
—=-1+42§—(1+—+—) §<p+—) +<q+—) :
2 2( ) 2 P q p q

que es lo que queriamos demostrar.
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Las desigualdades de las medias

Demostracion

25 1 1 1 1)\° 1\? 1\?
—=-1+42§—(1+—+—) §<p+—) +<q+—) :
2 2( ) 2 P q p q

que es lo que queriamos demostrar. Para que se alcance la igualdad debe
cumplirse que p = q = % por la igualdad en la desigualdad entre la media
aritmética y la media arménica). O
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La desigualdad del reacomodo

Teorema

Sean ay, ap,...,an, b1, by, ..., b, € R tales que
a<aps<---<a y by < by <--- < by
Para cada permutacién (ay, a, ..., a,) de (a1, az,...,a,), se tiene que

aiby + abo +---+a,b, > a'1b1+a/2b2+~-+aﬁ,b,,
> apby +an_1by+ -+ aib,.

(4)
()
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La desigualdad del reacomodo

Teorema

Sean ay, ap,...,an, b1, by, ..., b, € R tales que
a<aps<---<a y by < by <--- < by
Para cada permutacién (ay, a, ..., a,) de (a1, az,...,a,), se tiene que

aiby + abo +---+a,b, > a'lbl +a/2b2+~-+aﬁ,b,,
Z anb1+an—1b2+"'+albn~

La igualdad en (4) es cierta si y sdlo si

(4)
()
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La desigualdad del reacomodo

Teorema

Sean ay, ap,...,an, b1, by, ..., b, € R tales que

a<a<---<a, y by < b, <--- < by

Para cada permutacién (ay, a, ..., a,) de (a1, az,...,a,), se tiene que

aiby + abo +---+a,b, > a'1b1+a/2b2+~-+aﬁ,b,,

> apbi+an_1by+ -+ aib,.

La igualdad en (4) es cierta si y sélo si (a},a5,...,a,) = (a1, az,..
igualdad en (5) es cierta si y sdlo si

.,an) yla
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La desigualdad del reacomodo

Teorema

Sean ay, ap,...,an, b1, by, ..., b, € R tales que
a<aps<---<a y by < by <--- < by
Para cada permutacién (ay, a, ..., a,) de (a1, az,...,a,), se tiene que

aiby + abo +---+a,b, > a'lbl +a/2b2 + .- +aﬁ,b,,
Z anbl I an—1b2 qEeee qp albn~

La igualdad en (4) es cierta si y sélo si (a},a5,...,a,) = (a1,az,...,a,) yla
igualdad en (5) es cierta si 'y sélo si (a},ay,...,a,) = (an,an—1,---,a1)-

(4)
()
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La desigualdad del reacomodo

Teorema

Sean ay, ap,...,an, b1, by, ..., b, € R tales que

a<a<---<a, y by < b, <--- < by

Para cada permutacién (a;, a5, ..., a’.) de (a1, as,...,a,), se tiene que
1592 ’»9n ) ) )

aiby + abo +---+a,b, > a'1b1+a/2b2+~-+aﬁ,b,, (4)
> apby +ap_1by+ .-+ a1b,. (5)
La igualdad en (4) es cierta si y sélo si (a},a5,...,a,) = (a1,az,...,a,) yla
igualdad en (5) es cierta si 'y sélo si (a},ay,...,a,) = (an,an—1,---,a1)-

A la desigualdad (4) se le llama la desigualdad del reacomodo.
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La desigualdad del reacomodo

Demostracio
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La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.

Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.

Sean
S=aibi+aby+---+arb + - +ashs+ -+ anby

y

S ' =aiby+asbo+---+asb,+ - +abs+ -+ apb,.

Notemos que
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La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.

Sean
S=aibi+aby+---+arb + - +ashs+ -+ anby

y

S ' =aiby+asbo+---+asb,+ - +abs+ -+ apb,.

Notemos que

S-S =ab, + asbs — ash, — a,bs =
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La desigualdad del reacomodo

Demostracion
Supongamos que by < by < --- < b,.

Sean
S=aibi+aby+---+arb + - +ashs+ -+ anby

y
S ' =aiby +aby+ - +ash, + -+ a,bs + -+ + apby.

Notemos que

S—S" =a,b, + asbs — ashb, — a,bs = (bs — b,) (as — a,) .
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La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.
Sean
S=abi+ab+---+ab +-+ashs+ -+ anb,

y
S ' =aiby +aby+ - +ash, + -+ a,bs + -+ + apby.

Notemos que
S—S" =a,b, + asbs — ashb, — a,bs = (bs — b,) (as — a,) .

Comos >r, bs— b, >0 y asi
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La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.
Sean
S=abi+ab+---+ab +-+ashs+ -+ anb,

y
s’

Notemos que

arby +axbo +---+asby + -+ arbs + - - -+ apby.

S—S" =a,b, + asbs — ashb, — a,bs = (bs — b,) (as — a,) .

Comos>r, bs—b, >0yasiS—S" >0siysdlo si
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La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.
Sean
S=abi+ab+---+ab +-+ashs+ -+ anb,

y
S ' =aiby +aby+ - +ash, + -+ a,bs + -+ + apby.

Notemos que
S—S" =a,b, + asbs — ashb, — a,bs = (bs — b,) (as — a,) .

Comos>r, bs—b, >0yasiS—S >0siysdlosias—a, >0, 0
equivalentemente,
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La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.
Sean
S=abi+ab+---+ab +-+ashs+ -+ anb,

y
s’

arby +axbo +---+asby + -+ arbs + - - -+ apby.

Notemos que
S—S" =a,b, + asbs — ashb, — a,bs = (bs — b,) (as — a,) .

Comos>r, bs—b, >0yasiS—S >0siysdlosias—a, >0, 0
equivalentemente, S > S’ si y sélo si

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.
Sean
S=abi+ab+---+ab +-+ashs+ -+ anb,

y
S ' =aiby +aby+ - +ash, + -+ a,bs + -+ + apby.

Notemos que
S—S" =a,b, + asbs — ashb, — a,bs = (bs — b,) (as — a,) .

Comos>r, bs—b, >0yasiS—S >0siysdlosias—a, >0, 0
equivalentemente, S > S’ si y sélo si as > a,.
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La desigualdad del reacomodo

Demostracion

Supongamos que by < by < --- < b,.

Sean
S=aibi+aby+---+arb + - +ashs+ -+ anby

y
S ' =aiby +aby+ - +ash, + -+ a,bs + -+ + apby.

Notemos que
S—S" =a,b, + asbs — ashb, — a,bs = (bs — b,) (as — a,) .

Comos>r, bs—b, >0yasiS—S >0siysdlosias—a, >0, o0
equivalentemente, S > S’ si y sélo si as > a,. Repitiendo este proceso tenemos
que la suma S es la mayor cuando a; < a < --- < a,. O
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La desigualdad del reacomodo

Corolario

Para cada permutacion (ay, aj, ..., a,) de (a1, az,...,a,), se tiene que

2 / / !
al+ a3+ +a;>aial + axay + -+ apal,
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La desigualdad del reacomodo

Corolario

Para cada permutacién (a;, a5, ..., a’.) de (a1, as,...,a,), se tiene que
1792 ’»9n ) ) )

2 2 2 / / /
ajtas+---+a,>aa; +aa+ -+ apa,

Demostracion

Se sigue de (4) tomando b; = a;, i=1,...,n. O
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La desigualdad del reacomodo

Corolario

Sean ay, az, ...,a, > 0. Para cada permutacion (a}, ab,...,a.,) de (a1, az,...,ap),
se tiene que
/ /
a) a a
42442 >0
a  a an
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La desigualdad del reacomodo
Corolario

Sean ay, ap,

.,an > 0. Para cada permutacion (a}, a,
se tiene que

/
..,a,) de (a1, az,...,ap),
/ / /
a a a
AL LB>p
a1 ar dn
Demostracion
No existe pérdida de generalidad en suponer que a; < ap < --- < a,. Entonces
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La desigualdad del reacomodo
Corolario

Sean ay, ap,

.,an > 0. Para cada permutacion (a}, a,
se tiene que

..,a,) de (a1, az,...,ap),
/ / /
a a a
AL LB>p
a  a an
Demostracion
No existe pérdida de generalidad en suponer que a; < ap < --- < a,. Entonces
1 1 1
Sl <<=
dn dn—1 al
Luego de (5),
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La desigualdad del reacomodo

Corolario

Sean ay, az,...,a, > 0. Para cada permutacion (&, a,

/
..,a,) de (a1, az,...,ap),
se tiene que
/ / /
a a a
AL LB>p

n

+
a1 ar

Demostracion

No existe pérdida de generalidad en suponer que a; < ap < --- < a,. Entonces

1 1 1
=€ Lo € —,

an an—1 T a

Luego de (5),
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La desigualdad del reacomodo

Corolario

Sean ay, az,...,a, > 0. Para cada permutacion (&, a,

/
..,a,) de (a1, az,...,ap),
se tiene que
/ / /
a a a
AL LB>p

n

+
a1 ar

Demostracion

No existe pérdida de generalidad en suponer que a; < ap < --- < a,. Entonces

1 1 1
=€ Lo € —,

an an—1 T a

Luego de (5),
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La desigualdad del reacomodo

Media arménica, geométrica y aritmética

Teorema

Sixy,...,x, >0, entonces

n - X1 +Xo+ -+ X,

y las igualdades se dan si y sélo si x; = xo = - - - = Xxp.
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La desigualdad del reacomodo

Demostracion

Se demostré ya (usando la desigualdad del reacomodo) que si (a1, a},...,al,) es
una permutacion de (a1, as, ..., a,) donde a; > 0 para todo i =1,...,n, entonces

ai a an
— = .. — >n 6
a’1+a§+ +a;,_ ()
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La desigualdad del reacomodo

Demostracion

|

Se demostré ya (usando la desigualdad del reacomodo) que si (a1, a},...,al,) es
una permutacion de (a1, as, ..., a,) donde a; > 0 para todo i =1,...,n, entonces

ai a an
— = .. — >n 6
a’1+a§+ —&-;7_ ()

Sea mg = y/x1x - - - X, y consideremos (ay, ap, ..., a,) = (%, ST %)
0 0
Por (6) tenemos que
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La desigualdad del reacomodo

Demostracion

Se demostré ya (usando la desigualdad del reacomodo) que si (a1, a},...,al,) es
una permutacion de (a1, as, ..., a,) donde a; > 0 para todo i =1,...,n, entonces
ai an a
Sttt 20 (6)
iy a,

Sea mg = y/x1x - - - X, y consideremos (ay, ap, ..., a,) = (%, ST %)
0 0
Por (6) tenemos que

ai a
n< —++ —+4---+4
ar as dn a1 X2 X3 Xn X1

luego

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La desigualdad del reacomodo

Demostracion

Se demostré ya (usando la desigualdad del reacomodo) que si (a1, a},...,al,) es
una permutacion de (a1, as, ..., a,) donde a; > 0 para todo i =1,...,n, entonces

ai an dp
= = — > n. 6
gttty (6)

Sea mg = y/x1x - - - X, y consideremos (ay, ap, ..., a,) = (%, %, cey M)
Por (6) tenemos que

ai a
n< —++ —+4---+4
ar as dn a1 X2 X3 Xn X1

luego
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La desigualdad del reacomodo

Demostracion

De nuevo por (6),

a a
n< 2+ 244

dp a1 dn—1

luego
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La desigualdad del reacomodo

Demostracion

De nuevo por (6),

ai an dp X1 X2 Xn
n< =+ =+ 4 == +=4--+=,
an a dn—1 mo mo mo

luego

X]_+X2+"’+Xn
m0§ o

n
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La desigualdad del reacomodo

Demostracion

De nuevo por (6),

an X1 X2 Xn

a ap
n< —+ —+4---+
an a dn—1 mo mo mg

luego

X]_+X2+"’+Xn
m0§ o
n

Las igualdades ocurren si y sélo si
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La desigualdad del reacomodo

Demostracion

De nuevo por (6),

ai an dp X1 X2 Xn
NS =+ =+ + .
dn dl dn—1 mo mo mo

luego

X]_+X2+"’+Xn
m0§ o

n
Las igualdades ocurren si y sélo si ay = a, = -+ - = a,, es decir, si y solo si
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La desigualdad del reacomodo

Demostracion

De nuevo por (6),

a ap an X1 X2 Xn
n< —+ —+4---+ = —dF = qrocoqr =
dn dl dn—1 mo mo mo
luego
X]_+X2+"’+Xn
mo < o
n
Las igualdades ocurren si y sélo si ay = a, = -+ - = a,, es decir, si y solo si
X1 X1X2 1 X1X2 *+* Xn
mo m3 mg

si y solo si
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La desigualdad del reacomodo

De nuevo por (6),

ai an dp X1 X2 Xn
dn dl dn—1 mo mo mo

luego

X]_+X2+"’+Xn
m0§ o

n
Las igualdades ocurren si y sélo si ay = a, = -+ - = a,, es decir, si y solo si

XL X1x2 -1 _ X1Xo Xy
mo m3 mg

siysolosimy=x3 =X =:--=Xx,. 0
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La desigualdad del reacomodo

Desigualdad de Tchebyshev

Teorema
Siaz<a<---<a,yb <b,<---< b, entonces

aiby + axby + -+ anb, 31+32+~'~+3n.b1+b2+~'~+b,~,
n n n ’
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La desigualdad del reacomodo

Demostracion

Aplicando varias veces la desigualdad del reacomodo obtenemos
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La desigualdad del reacomodo

Demostracion

Aplicando varias veces la desigualdad del reacomodo obtenemos
aiby + axby +---+ apb, = a1b1 + axby + - - - + apb,
aib +aby+ -+ anby, > arby + axbs + -+ - + anhr
aiby +axby + -+ apb, > a1bs + axby + -+ + a,bo

aiby +aghy + - -+ apb, > a1b, + axby + - - - + apbp_1,

al sumar todas las expresiones, obtenemos
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La desigualdad del reacomodo

Demostracion

Aplicando varias veces la desigualdad del reacomodo obtenemos

aiby + axby +---+ apb, = a1b1 + axby + - - - + apb,
arby +acby + -+ apb, > a1by + azbz + - - + apby
aiby +axby + -+ apb, > a1bs + axby + -+ + a,bo

aiby +aghy + - -+ apb, > a1b, + axby + - - - + apbp_1,
al sumar todas las expresiones, obtenemos

n(aiby +axby +---+aphy) > (a1+ax+--+an) (b1 + b+ -+ by),
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La desigualdad del reacomodo

Demostracion

Aplicando varias veces la desigualdad del reacomodo obtenemos

aiby + axby +---+ apb, = a1b1 + axby + - - - + apb,
arby +acby + -+ apb, > a1by + azbz + - - + apby
aiby +axby + -+ apb, > a1bs + axby + -+ + a,bo

aiby +aghy + - -+ apb, > a1b, + axby + - - - + apbp_1,
al sumar todas las expresiones, obtenemos

n(aiby +axby +---+aphy) > (a1+ax+--+an) (b1 + b+ -+ by),

de lo cual, la desigualdad de Tchebyshev se sigue multiplicando por # O
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La desigualdad del reacomodo

Desigualdad media cuadratica-media aritmética

Corolario

Sixy,...,x, >0, entonces

\/xf+x22—|—~-~—|—x,2, >X1—|—X2—|—~--+X,,.
n n
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La desigualdad del reacomodo

Desigualdad media cuadratica-media aritmética

Corolario

Sixy,...,x, >0, entonces

\/Xf+x22+~-~—|—x,2, >x1—|—x2—|—~--+x,,.
n n

Demostracion

b, |
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La desigualdad del reacomodo

Desigualdad media cuadratica-media aritmética

Corolario

Sixy,...,x, >0, entonces

\/Xf+x22+~-~—|—x,2, >x1—|—x2—|—~--+x,,.
n n

Demostracion

Por la desigualdad de Tchebyshev con a; = b; = x;, i =1...,n, tenemos que
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La desigualdad del reacomodo

Desigualdad media cuadratica-media aritmética

Corolario

Sixy,...,x, >0, entonces

\/xf+x22+~-~—|—x,2, >x1+x2—|—~--+x,,.
n n

Demostracion

Por la desigualdad de Tchebyshev con a; = b; = x;, i =1...,n, tenemos que

A+t <X1+X2+~~-+Xn>2
n - n
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La desigualdad del reacomodo

Desigualdad media cuadratica-media aritmética

Corolario

Sixy,...,x, >0, entonces

\/xf+x22+~-~—|—x,2, >x1+x2—|—~--+x,,.
n n

Demostracion

Por la desigualdad de Tchebyshev con a; = b; = x;, i =1...,n, tenemos que

n

>

<X1+X2+"'+Xn>2
n .

Luego, tomando raiz cuadrada, se sigue que

\/xf+x22+~-~—|—x,2, >x1—|—x2+~--+x,,.

n n
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La desigualdad del reacomodo

Sean x1,Xo, ..., Xn, Y1, Y2, - - -, ¥Yn € R tales que
X< <X Yy yN<y2<- Sy
Si(z1, 2, ..,2,) €s una permutacion de (y1,ys, ..., Yn), demostrar que

(X1—y1)2+~~+(x,,—y,,)2§(X1—21)2+'~-+(X,,—Z,,)2.
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La desigualdad del reacomodo

Demostracion

Desarrollando los binomios, tenemos que la desigualdad anterior es equivalente a
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La desigualdad del reacomodo

Demostracion

Desarrollando los binomios, tenemos que la desigualdad anterior es equivalente a

n n n n n n
le_z - 2ZXI}/i 4 Zylg < lez - QZX:'Z/ + Zziza
pa im1 =1 =1 =1 im1
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La desigualdad del reacomodo

Demostracion

Desarrollando los binomios, tenemos que la desigualdad anterior es equivalente a

n n n n n n
le_z - 2ZXI}/i 4 Zylg < lez - QZX:'Z/ + Zziza
pa im1 =1 =1 =1 im1

pero como Y i, y? =" | z?, la desigualdad que tenemos que demostrar es
equivalente a probar que
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La desigualdad del reacomodo

Demostracion

Desarrollando los binomios, tenemos que la desigualdad anterior es equivalente a

n n n n n n
le_z - 2ZXI}/i 4 Zylg < lez - QZX:'Z/ + Zziza
pa im1 =1 =1 =1 im1

pero como Y i, y? =" | z?, la desigualdad que tenemos que demostrar es

equivalente a probar que
n n
Z Xizi < Z XiYi,
i=1 i=1
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La desigualdad del reacomodo

Demostracion

Desarrollando los binomios, tenemos que la desigualdad anterior es equivalente a

n n n n n n
le_z - 2ZXI}/i 4 Zylg < lez - QZX:'Z/ + Zziza
pa im1 =1 =1 =1 im1

pero como Y i, y? =" | z?, la desigualdad que tenemos que demostrar es

equivalente a probar que
n n
Z Xizi < Z XiYi,
i=1 i=1

la cual es la desigualdad del reacomodo. O
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que a* + b3 + ¢ > a°b + b?c + c?a.
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que a* + b3 + ¢ > a°b + b?c + c?a.

Demostracion
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que a* + b3 + ¢ > a°b + b?c + c?a.

Demostracion

Como la expresion es simétrica en a, b y ¢ podemos suponer sin perder
generalidad que a < b < c. Entonces, debido a que a, b,c > 0, se tiene que
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que a* + b3 + ¢ > a°b + b?c + c?a.

Demostracion

Como la expresion es simétrica en a, b y ¢ podemos suponer sin perder
generalidad que a < b < c. Entonces, debido a que a, b,c > 0, se tiene que
a®> < b? < ?. Luego, por la desigualdad del reacomodo
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que a* + b3 + ¢ > a°b + b?c + c?a.

Demostracion

Como la expresion es simétrica en a, b y ¢ podemos suponer sin perder
generalidad que a < b < c. Entonces, debido a que a, b,c > 0, se tiene que
a®> < b? < ?. Luego, por la desigualdad del reacomodo

a4+ b + & = a%(a) + b?(b) + c?(c) > a*b+ b*c + ?a.
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La desigualdad del reacomodo

Sean a, b, c > 0 con abc = 1. Demostrar que

2+ b> 4+ + (ab)® + (bc)® + (ca)® > 2 (b + b*c + c?a) .
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La desigualdad del reacomodo

Demostracion

Podemos suponer que ¢ < b < a. Por el ejercicio anterior tenemos
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La desigualdad del reacomodo

Demostracion
Podemos suponer que ¢ < b < a. Por el ejercicio anterior tenemos

a3+ b3+ 3 > a%b + bPc + a.

Como ¢ < b < a, entonces
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La desigualdad del reacomodo
Demostracion
Podemos suponer que ¢ < b < a. Por el ejercicio anterior tenemos
B+ b+ 3> a’h+ b’c + c?a.

Comoc<b< a, entonceslSlglydebidoaqueabc>0,
a b c 9 =%
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La desigualdad del reacomodo

Demostracion

Podemos suponer que ¢ < b < a. Por el ejercicio anterior tenemos

a3+ b3+ 3 > a%b + bPc + a.

(7)

i <1 ydebidoaqueabc>0 % <L<L

Como ¢ < b < a, entonces % <

También, debido a que abc = 1, se cumple que
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La desigualdad del reacomodo

Demostracion

Podemos suponer que ¢ < b < a. Por el ejercicio anterior tenemos

a3+ b3+ 3 > a%b + bPc + a.

(7)

i <1 ydebidoaqueabc>0 % <L<L

Como ¢ < b < a, entonces % <

También, debido a que abc = 1, se cumple que bc = %, ca= ,13 y ab= % Luego,

usando la desigualdad del reacomodo, se obtiene
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La desigualdad del reacomodo

Demostracion

Podemos suponer que ¢ < b < a. Por el ejercicio anterior tenemos
a®+ b+ 2 > a?b + bPc + ?a. (7)

Comoc<b< a, entonces% < % < % y debido a que a, b,c > 0, 3—12 < # < ?12
También, deb/:do a que abc = 1, se cumple que bc = %, ca= % y ab= % Luego,
usando la desigualdad del reacomodo, se obtiene

1+1+1>11+11+11
a3 b3 3 a2c b2a c?b

= a’b+ b*c+ ca. (8)

(ab)® + (bc)® + (ca)®

Sumando las desigualdades (7) y (8) se obtiene,
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La desigualdad del reacomodo

Demostracion
Podemos suponer que ¢ < b < a. Por el ejercicio anterior tenemos

a3+ b3+ 3 > a%b + bPc + a.

Comoc < b< a3, entonces%S%S%ydebidoaquea,b,c>0, ﬁgp

1 1

También, debido a que abc =1, se cumple que bc = 7, ca= ¢ y ab= _.

usando la desigualdad del reacomodo, se obtiene

1 1 1 11 11 11
Ztpta’zct e

= a°b+ b%c+ c?a.

3 3 3 & i
(ab)® + (bc)” + (ca) 2. T 2a T 2p

Sumando las desigualdades (7) y (8) se obtiene,

a® + b* + c* + (ab)® + (bc)® + (ca)® > 2 (a®b + bc + c?a) .
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que

Demostracion
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que

Demostracion

Podemos suponer, sin perder generalidad que ¢ < b < a. Entonces
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que

Demostracion

Podemos suponer, sin perder generalidad que ¢ < b < a. Entonces

IN

o=
IA
Ol

Q|
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que

Demostracion

Podemos suponer, sin perder generalidad que ¢ < b < a. Entonces

<<

[
ol

o=

Luego, usando la desigualdad del reacomodo con
(31732733) = (blv b2a b3) = (év %7 %) y («3/1,‘9/2»3/3) = (%7% %) tenemos
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que

Demostracion

Podemos suponer, sin perder generalidad que ¢ < b < a. Entonces

<<

[
Ol

o=

Luego, usando la desigualdad del reacomodo con
(a1, a2,a3) = (b1, bo, b3) = (3,1, 1) y (al,ab,a5) = (£,1,1), tenemos

1 1 1 1 1 1
>
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La desigualdad del reacomodo

Sean a, b, c > 0. Demostrar que

Demostracion

Podemos suponer, sin perder generalidad que ¢ < b < a. Entonces

<<

[
Ol

o=

Luego, usando la desigualdad del reacomodo con

(a1, a2,a3) = (b1, bo, b3) = (3,1, 1) y (al,ab,a5) = (£,1,1), tenemos

1 1 1 _1 1 1 a+tbtc

> =
32er2 c2_ab+bc+ac abc
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La desigualdad del reacomodo

Sean a, b, c las longitudes de los lados de un triangulo. Demostrar que

a*(b+c—a)+b*(a+c—b)+c*(at+b—c)<3abc. 9)
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La desigualdad del reacomodo

Sean a, b, c las longitudes de los lados de un triangulo. Demostrar que

a*(b+c—a)+b*(a+c—b)+c*(at+b—c)<3abc. 9)

Demostracion
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La desigualdad del reacomodo

Sean a, b, c las longitudes de los lados de un triangulo. Demostrar que

a*(b+c—a)+b*(a+c—b)+c*(at+b—c)<3abc. 9)

Demostracion
Como a, b y c son las longitudes de los lados de un tridngulo, tenemos que
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La desigualdad del reacomodo

Sean a, b, c las longitudes de los lados de un triangulo. Demostrar que

a*(b+c—a)+b*(a+c—b)+c*(at+b—c)<3abc. 9)

Demostracion
Como a, b y c son las longitudes de los lados de un tridngulo, tenemos que

a+b—c>0, a+c—b>0 y b+c—a>0.
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La desigualdad del reacomodo

Sean a, b, c las longitudes de los lados de un triangulo. Demostrar que

a*(b+c—a)+b*(a+c—b)+c*(at+b—c)<3abc. 9)

Demostracion

Como a, b y c son las longitudes de los lados de un tridngulo, tenemos que
a+b—c>0, a+c—b>0 y b+c—a>0.

Notando ahora que la expresion (9) es simétrica en a, b y ¢, podemos suponer sin
perder generalidad que ¢ < b < a. Veremos que en este caso,
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La desigualdad del reacomodo

Sean a, b, c las longitudes de los lados de un triangulo. Demostrar que

a*(b+c—a)+b*(a+c—b)+c*(at+b—c)<3abc. 9)

Demostracion

Como a, b y c son las longitudes de los lados de un tridngulo, tenemos que
a+b—c>0, a+c—b>0 y b+c—a>0.

Notando ahora que la expresion (9) es simétrica en a, b y ¢, podemos suponer sin
perder generalidad que ¢ < b < a. Veremos que en este caso,

a(lb+c—a)<blat+c—b)<cla+b-c).
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La desigualdad del reacomodo

Sean a, b, c las longitudes de los lados de un triangulo. Demostrar que

a*(b+c—a)+b*(a+c—b)+c*(at+b—c)<3abc. 9)

Demostracion

Como a, b y c son las longitudes de los lados de un tridngulo, tenemos que
a+b—c>0, a+c—b>0 y b+c—a>0.

Notando ahora que la expresion (9) es simétrica en a, b y ¢, podemos suponer sin
perder generalidad que ¢ < b < a. Veremos que en este caso,

a(lb+c—a)<blat+c—b)<cla+b-c).

En efecto, la primera desigualdad se sigue de lo siguiente
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La desigualdad del reacomodo

Demostracion

alb+c—a)<blatc—b) & ab+ac—a®><ab+bc—b?
54
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La desigualdad del reacomodo

Demostracion

alb+c—a)<blatc—b) & ab+ac—a®><ab+bc—b?
& ac—bc < a? — b2
=
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La desigualdad del reacomodo

Demostracion

alb+c—a)<blatc—b) & ab+ac—a®><ab+bc—b?
& ac—bc < a? — b2
=
-~

(a—b)c<(a+b)(a—Db)
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La desigualdad del reacomodo

Demostracion

ab+ac — a®> < ab+ bc — b?
ac — bc < a® — b?
(a—b)c<(a+b)(a—Db)
(a+b)(a—b)—(a—b)c>0

a(b+c—a)<bla+c—0b)

toe o
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La desigualdad del reacomodo

Demostracion

ab+ac — a®> < ab+ bc — b?
ac — bc < a® — b?
(a—b)c<(a+b)(a—Db)
(a+b)(a—b)—(a—b)c>0
(a—b)(a+b—c)>0.
—_— ———

>0 >0

a(b+c—a)<bla+c—0b)

toe o
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La desigualdad del reacomodo

Demostracion

ab+ac — a®> < ab+ bc — b?
ac — bc < a® — b?
(a—b)c<(a+b)(a—Db)
(a+b)(a—b)—(a—b)c>0
(a—b)(a+b—c)>0.
—_— ———

>0 >0

a(b+c—a)<bla+c—0b)

toe o

La segunda desigualdad se demuestra en forma analoga.
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La desigualdad del reacomodo

Demostracion

Usando ahora la desigualdad (5), tenemos
a*(b+c—a)+b*(c+a—b)+c*(at+b—c) < ba(b+c—a)+cb(c+a—b)+ac(at+b—c)
y

a*(b+c—a)+b*(c+a—b)+c*(a+b—c) < ca(b+c—a)+ab(c+a—b)+bc(a+b—c).

Por lo tanto
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La desigualdad del reacomodo

Demostracion

Usando ahora la desigualdad (5), tenemos
a*(b+c—a)+b*(c+a—b)+c*(at+b—c) < ba(b+c—a)+cb(c+a—b)+ac(at+b—c)
y
a*(b+c—a)+b*(c+a—b)+c*(a+b—c) < ca(b+c—a)+ab(c+a—b)+bc(a+b—c).
Por lo tanto

2[a*(b+c—a)+ b*(c+a—b)+c?(a+b—c)] < 6abc

o equivalentemente

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La desigualdad del reacomodo

Demostracion

Usando ahora la desigualdad (5), tenemos
a*(b+c—a)+b*(c+a—b)+c*(a+b—c) < ba(b+c—a)+cb(c+a—b)+ac(a+b—c)
y
a*(b+c—a)+b*(c+a—b)+c*(a+b—c) < ca(b+c—a)+ab(c+a—b)+bc(a+b—c).
Por lo tanto

2[a*(b+c—a)+ b*(c+a—b)+c?(a+b—c)] < 6abc
o equivalentemente

a*(b+c—a)+b*(c+a—b)+c*(a+b—c) < 3abc.
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La desigualdad del reacomodo

Desigualdad de Nesbitt

Dados a, b, c > 0, demostrar que

a n b o c
b+c a+c a+b

)

y que la igualdad se alcanza si y solo sia= b = c.
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La desigualdad del reacomodo

Desigualdad de Nesbitt

Dados a, b, c > 0, demostrar que

a . b o c
b+c a+c a+b

>

N W

)

y que la igualdad se alcanza si y solo sia= b = c.

Demostracion
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La desigualdad del reacomodo

Desigualdad de Nesbitt

Dados a, b, c > 0, demostrar que

a . b o c
b+c a+c a+b

>

)

N W

y que la igualdad se alcanza si y solo sia= b = c.

Demostracion

Como la expresion es simétrica en a, b y ¢, podemos suponer sin perder
generalidad que a < b < c. Luego
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La desigualdad del reacomodo

Desigualdad de Nesbitt

Dados a, b, c > 0, demostrar que

a . b o c
b+c a+c a+b

>

N W

)

y que la igualdad se alcanza si y solo sia= b = c.

Demostracion

Como la expresion es simétrica en a, b y ¢, podemos suponer sin perder
generalidad que a < b < c. Luego

a+b<a+c<b+c
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La desigualdad del reacomodo

Desigualdad de Nesbitt

Dados a, b, c > 0, demostrar que

a . b o c
b+c a+c a+b

>

N W

)

y que la igualdad se alcanza si y solo sia= b = c.

Demostracion

Como la expresion es simétrica en a, b y ¢, podemos suponer sin perder
generalidad que a < b < c. Luego

a+b<a+c<b+c y
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La desigualdad del reacomodo

Desigualdad de Nesbitt

Dados a, b, c > 0, demostrar que

a . b o c
b+c a+c a+b

3
>7u
-2

y que la igualdad se alcanza si y solo sia= b = c.

Demostracion

Como la expresion es simétrica en a, b y ¢, podemos suponer sin perder
generalidad que a < b < c. Luego

1 1 1
a+b<a+c<b+c y s Sy
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La desigualdad del reacomodo

Desigualdad de Nesbitt

Dados a, b, c > 0, demostrar que

a . b o c
b+c a+c a+b

3
>7u
-2

y que la igualdad se alcanza si y solo sia= b = c.

Demostracion

Como la expresion es simétrica en a, b y ¢, podemos suponer sin perder
generalidad que a < b < c. Luego

1 1
<

AOSAFES a7 b+c§a+c*a+b'

Usando la desigualdad del reacomodo dos veces, obtenemos
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La desigualdad del reacomodo

Demostracion

a+b+c b+c+a (10)
b+c a+c a+b b+c a+c a+b

a b c c a b

> . 11
b+c+a—|—c+a+b*b+c+a+c+a+b (11)
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La desigualdad del reacomodo

Demostracion

a+b+c b+c+a (10)
b+c a+c a+b b+c a+c a+b

a . b o c . c . a I b
b+c a+c a+b  b+c a+c a+b

Sumando, obtenemos

(11)
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La desigualdad del reacomodo

Demostracion

a+b+c b+c+a (10)
b+c a+c a+b b+c a+c a+b

a . b o c . c . a I b
b+c a+c a+b  b+c a+c a+b

Sumando, obtenemos

b b b
’ a n n c > +c+a+c+a+ —3
b+c a+c a+b b+c a+c a+b

(11)
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La desigualdad del reacomodo

Demostracion

a b c b c a

10
b+c+a+c+a+b_b+c+a+c+a+b (10)
4 b b
a c c a
> . 11
b+c+a—|—c+a+b*b+c+a+c+a+b (11)

Sumando, obtenemos

a b c b+c at+c a+b
> =3
2(b+c+a+c+a+b)_(b+c+a+c+a+b) ’

o equivalentemente
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La desigualdad del reacomodo

Demostracion

a b c b c a

1
b+c+a+c+a+b_b+c+a+c+a+b (10)
4 b b
a c c a
> . 11
b+c+a—|—c+a+b*b+c+a+c+a+b (11)

Sumando, obtenemos

b b b
’ a n n c > +c+a+c+a+ —3
b+c a+c a+b b+c a+c a+b

o equivalentemente

a . b o c
b+c a+c a+b

3
> —.
-2
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La desigualdad del reacomodo

Demostracion

a b c b c a

1
b+c+a+c+a+b_b+c+a+c+a+b (10)
4 b b
a c c a
> . 11
b+c+a—|—c+a+b*b+c+a+c+a+b (11)

Sumando, obtenemos

b b b
’ a n n c > +c+a+c+a+ —3
b+c a+c a+b b+c a+c a+b

o equivalentemente

a . b o c >§
b+c a+c a+b~ 2
Notemos que se dan las igualdades en (10) y (11) si y solo sia= b= c. O
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La desigualdad del reacomodo

Desigualdad de Cauchy-Schwarz

Teorema

Dados x1, X0, ..., Xp, Y1, ¥2,--.,¥n € R, se cumple

(&) < (59) (&)

Si algiin x; # 0, la igualdad se alcanza si y solo si existe A € R tal que y; = Ax; V
i=1,...,n.
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La desigualdad del reacomodo

Desigualdad de Cauchy-Schwarz

Teorema

Dados x1, X, ..., Xn, Y1, Y2, ---,Yn € R, se cumple

(&) < (59) (&)

Si algiin x; # 0, la igualdad se alcanza si y solo si existe A € R tal que y; = Ax; V
i=1,...,n.

Demostracion
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La desigualdad del reacomodo

Desigualdad de Cauchy-Schwarz

Teorema

Dados x1, X, ..., Xn, Y1, Y2, ---,Yn € R, se cumple

(&) < (59) (&)

Si algiin x; # 0, la igualdad se alcanza si y solo si existe A € R tal que y; = Ax; V
i=1,...,n.

Demostracion

Sixiy=x>=...=x,=0o0bieny; =y, = ... =y, =0 el resultado es claro.
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La desigualdad del reacomodo

Desigualdad de Cauchy-Schwarz

Teorema

Dados x1, X, ..., Xn, Y1, Y2, ---,Yn € R, se cumple

(&) < (59) (&)

Si algiin x; # 0, la igualdad se alcanza si y solo si existe A € R tal que y; = Ax; V
i=1,...,n.

Demostracion

Sixip=x>=...=x,=0o0bieny; = y» = ... =y, =0 el resultado es claro. En

caso contrario, sean S = \/>."_ x? y T = \/>_I_, y?; entonces, claramente
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La desigualdad del reacomodo

Desigualdad de Cauchy-Schwarz

Teorema

Dados x1, X, ..., Xn, Y1, Y2, ---,Yn € R, se cumple

(&) < (59) (&)

Si algiin x; # 0, la igualdad se alcanza si y solo si existe A € R tal que y; = Ax; V
i=1,...,n.

Demostracion

Sixip=x>=...=x,=0o0bieny; = y» = ... =y, =0 el resultado es claro. En
caso contrario, sean S = \/>."_ x? y T = \/>_I_, y?; entonces, claramente
S>0yT>0.
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La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (ay, a, . .., a,) de (a1, az,...,an) se
tiene que
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La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (ay, a, . .., a,) de (a1, az,...,an) se
tiene que

2 2 2 / / /
aj+a;+ -+ a, = aa) + aa, + - + apa),.
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La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (af, a, . .., a,,) de (a1, az, . .

tieneque
2 2 2> / / /
ai +a5+---+a;, aiay + axa, + - - + apa,.

Luego, tomando a; = ‘);"l Y anii = ‘};l parai=1,2,...,n, tenemos

.,ap) se
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La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (ay, a, . .., a,) de (a1, az, .. .

tieneque
2 2 2> / / /
ai +a5+---+a;, aiay + axa, + - - + apa,.

Luego, tomando a; = ‘);"l Y anii = ‘};l parai=1,2,...,n, tenemos

n 2 n 2
2 = Z%+Z%:
i=1 i=1

,an) Se
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La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (ay, a, . .
tiene que
2+2+._.+2> /+ /+
al 82 an = a]_al 3232

|xi |yil

Luego, tomando a; = 5 y an; = parai=1,2,..

N
|

n X-2 n }/2 2n )
IS DTS
i=1 i=1 i=1

Y

/
-+ apa,.

.,a)) de (a1, az,...,a,) se

., n, tenemos
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La desigualdad del reacomodo

Demostracion
Recordemos que para cualquier permutacion (ay, a, . .., a,) de (a1, az, .. .
tiene que
2 2 2 / / /
aj+a;+ -+ a, = aa) + aa, + - + apa),.
Luego, tomando a; = ‘);"l Y anii = ‘};l parai=1,2,...,n, tenemos
n 2 n 2 2n
X? yi
2 = g - + g == = E &t
S2 T2 i
i=1 i=1 i=1
2> A1dp41 + @ang2 + - 4 apdzn + anp1a1 + -+ a2pan

,an) Se

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Num




La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (ay, a, . .., a,) de (a1, az, .. .

tieneque
2 2 2> / / /
ai +a5+---+a;, aiay + axa, + - - + apa,.

Luego, tomando a; = ‘);"l Y anii = ‘};l parai=1,2,...,n, tenemos

n 2 n 2 2n
X yi
2 = Y GHHY =) 4
) L~ T :
i=1 i=1 i=1
> aidpy1 t+ azapy2 + -+ apaxy + app1dr + -+ aznan

2\X1)/1| + [xay2| + -+ - + |[Xaynl
ST ’

,an) Se
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La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (ay, a, . .., a,) de (a1, az, .. .

tieneque
2 2 2> / / /
ai +a5+---+a;, aiay + axa, + - - + apa,.

Luego, tomando a; = ‘);"l Y anii = ‘};l parai=1,2,...,n, tenemos

n 2 n 2 2n
X yi
2 = Y GHHY =) 4
) L~ T :
i=1 i=1 i=1
> aidpy1 t+ azapy2 + -+ apaxy + app1dr + -+ aznan

2\X1)/1| + [xay2| + -+ - + |[Xaynl
ST ’

0 equivalentemente

,an) Se
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La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (ay, a, . .., a,) de (a1, az, .. .

tieneque
2 2 2> / / /
ai +a5+---+a;, aiay + axa, + - - + apa,.

Luego, tomando a; = ‘);"l Y anii = ‘};l parai=1,2,...,n, tenemos

n 2 n 2 2n
X yi
2 = Y GHHY =) 4
) L~ T :
i=1 i=1 i=1
> aidpy1 t+ azapy2 + -+ apaxy + app1dr + -+ aznan

2\X1)/1| + [xay2| + -+ - + |[Xaynl
ST ’

0 equivalentemente

,an) Se
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La desigualdad del reacomodo

Demostracion

Recordemos que para cualquier permutacion (ay, a, . .., a,) de (a1, az, .. .

tieneque
2 2 2> / / /
ai +a5+---+a;, aia; + axa, + - - - + apa,

|xi _ vl
s Yénti =7

Luego, tomando a; =

n 2 n 2 2n
X yi
2 = Y GHHY =) 4
) L~ T :
i=1 i=1 i=1
> aidpy1 t+ azapy2 + -+ apaxy + app1dr + -+ aznan

2\X1)/1| + [xay2| + -+ - + |[Xaynl
ST ’

parai=1,2, ..., n, tenemos

0 equivalentemente

=S5T > Z |xiyil > ley,

,an) Se
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La desigualdad del reacomodo

Demostracion

De aqui, el resultado se sigue elevando al cuadrado.
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La desigualdad del reacomodo

Demostracion

De aqui, el resultado se sigue elevando al cuadrado.

Tomemos ahora a; = % Y anti = VT parai=1,...,n. Entonces
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La desigualdad del reacomodo

Demostracion

De aqui, el resultado se sigue elevando al cuadrado.

Tomemos ahora a; = % Y anti = VT parai=1,...,n. Entonces

ST = ix,-y,- ~
i=1
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La desigualdad del reacomodo

Demostracion

De aqui, el resultado se sigue elevando al cuadrado.

Tomemos ahora a; = % Y anti = VT parai=1,...,n. Entonces

n
X1 yi X2 Y2 Xn Yn
ST: ,, <:> 7:777:7’...77:7
;” ST T ST S

=

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La desigualdad del reacomodo

Demostracién
De aqui, el resultado se sigue elevando al cuadrado.

Tomemos ahora a; = % Y anti = VT parai=1,...,n. Entonces

n
X1 yi X2 Y2 Xn Yn
ST = iYi & ===, === e T
;Xy S T ST ST
T
& y,-:§x,-, i=1,....n
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La desigualdad del reacomodo

Demostrar que para cualesquiera xi,x2,...,x, € R,

(x1—|—X2+~--—|—x,,)2§n(x12+x22+-~-+x3).
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La desigualdad del reacomodo

Demostrar que para cualesquiera x1,x2,...,X, € R,

(x1—|—X2+~-+X,,)2§n(xf—i—x%—i—---—i—xﬁ).

Demostracion
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La desigualdad del reacomodo

Demostrar que para cualesquiera x1,x2,...,X, € R,

(x1—|—X2+~--+X,,)2§n(x12+X22+--~+X3).

Demostracién
Aplicando la desigualdad de Cauchy-Schwarz a los niimeros xi, xa, . . . , X, del
enunciado y a los nimeros y; = y» = --- = y, = 1 obtenemos

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Num



La desigualdad del reacomodo

Demostrar que para cualesquiera x1,x2,...,X, € R,

(x1—|—X2+~--+X,,)2§n(x12+X22+--~+X3).

Demostracién
Aplicando la desigualdad de Cauchy-Schwarz a los niimeros xi, xa, . . . , X, del
enunciado y a los nimeros y; = y» = --- = y, = 1 obtenemos

(a-ldx- 14 tx-1)<(E+xE++x2) (1P+12 4 +17),

0 equivalentemente
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La desigualdad del reacomodo

Demostrar que para cualesquiera x1,x2,...,X, € R,

(x1—|—X2+~--+X,,)2§n(x12+X22+--~+X3).

Demostracién
Aplicando la desigualdad de Cauchy-Schwarz a los niimeros xi, xa, . . . , X, del
enunciado y a los nimeros y; = y» = --- = y, = 1 obtenemos

(a-ldx- 14 tx-1)<(E+xE++x2) (1P+12 4 +17),
0 equivalentemente

(X1+X2+'~'+Xn)2§n(X12+X22+'~~+X3).
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La desigualdad del reacomodo

Recordemos que

142+ -4+n=
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La desigualdad del reacomodo

Recordemos que

1
1+2+...+HZM
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La desigualdad del reacomodo

Recordemos que

1
1+2+...+HZM
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La desigualdad del reacomodo

Recordemos que

1
1+2+...+HZM

1422+ +n° =
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La desigualdad del reacomodo

Recordemos que

n(n+1
1+2+'-~+n:% (12)
Y 1)(2n +1
14224 g = M@0+ 1) (13)

6
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La desigualdad del reacomodo

Recordemos que

n(n+1
1+2+'--+n:% (12)
Y 1)(2n +1
14224 g = M@0+ 1) (13)

6

Demostrar que para cualquier nimero natural n > 2, se cumple que

14+2vV2+3V3 4+ +n/n< ”("6+ D /eni3.
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La desigualdad del reacomodo

Demostracié
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La desigualdad del reacomodo

Demostracion

Aplicando la desigualdad de Cauchy-Schwarz a los niimeros
x1=1, =2, ..., x,=n y }/1:17)/2:\67

obtenemos

. Ya=+/n
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La desigualdad del reacomodo

Demostracion

Aplicando la desigualdad de Cauchy-Schwarz a los niimeros
x1=1, =2, ..., x,=n y }/1:17)/2:\67»-',%:\/;

obtenemos

2
(1+2ﬁ+3ﬁ+-~-+nﬁ) <1422+ +nm) 142+ +n).
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La desigualdad del reacomodo

Demostracion
Aplicando la desigualdad de Cauchy-Schwarz a los niimeros

X1:17X2:27"-,Xn:n y }/1:17)/2:\67»-',%:\/;
obtenemos
2
(1+2ﬁ+3ﬁ+-~-+nﬁ) <1422+ +nm)(1+2++n).

Usando las férmulas (12) y (13) tenemos
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La desigualdad del reacomodo

Demostracion

Aplicando la desigualdad de Cauchy-Schwarz a los nimeros
xi=1,%=2,...,xo=n y =1 y=V2 ..., ya=+n
obtenemos
(1+2\ﬁ+3x@+-~-+nﬁ)2 <1422+ +nm)(1+2++n).

Usando las férmulas (12) y (13) tenemos

n?(n+1)%(2n+1)
2(6)

(1+2f2+3\/§+---+n\/ﬁ)2g

o equivalentemente

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La desigualdad del reacomodo

Demostracion

n’(n+1)26(2n+1)
62 2

(1+2\/§+3x/§+~-~+n\/ﬁ)2 <

=
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La desigualdad del reacomodo

Demostracion

(1+2v2+3v3+- -+ ,,ﬁ)z n2(n642r 1) 6(2n2—|— 1)

1
S14+2V243V3+---+n/n < %vews.

IN
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La desigualdad del reacomodo

Demostracion

(1+2v2+3v3+- -+ ,,ﬁ)z n2(n642r 1) 6(2n2—|— 1)

1
S14+2V243V3+---+n/n < %vews.

IN

Falta solo ver que no puede darse la igualdad, para lo que usaremos que n > 2.

Ingrid Quilantan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La desigualdad del reacomodo

Demostracion

2 2(n+1)26(2n+1
(1+2f2+3\/§+~-~+nﬁ) < n(n;; it n2+)
n(n+1)
S 142V243V3+---+n/n < e Vén + 3.

Falta solo ver que no puede darse la igualdad, para lo que usaremos que n > 2.
Observemos que si esta se alcanzara, entonces existiria A tal que
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La desigualdad del reacomodo

Demostracion

2 2(n+1)26(2n+1
(1+2f2+3\/§+~-~+nﬁ) < n(n;; it n2+)
n(n+1)
S 142V243V3+---+n/n < e Vén + 3.

Falta solo ver que no puede darse la igualdad, para lo que usaremos que n > 2.
Observemos que si esta se alcanzara, entonces existiria A tal que 1 =X-1y

2=22,
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La desigualdad del reacomodo

Demostracion

2 2(n+1)26(2n+1
(1+2f2+3\/§+~-~+nﬁ) < n(n;; it n2+)
n(n+1)
S 142V243V3+---+n/n < e Vén + 3.

Falta solo ver que no puede darse la igualdad, para lo que usaremos que n > 2.
Observemos que si esta se alcanzara, entonces existiria A tal que 1 =X-1y
2 = \V/2, pero de la primera igualdad deducimos que
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La desigualdad del reacomodo

Demostracion

2 2(n+1)26(2n+1
(1+2f2+3\/§+~-~+nﬁ) < n(n;; it n2+)
n(n+1)
S 142V243V3+---+n/n < e Vén + 3.

Falta solo ver que no puede darse la igualdad, para lo que usaremos que n > 2.
Observemos que si esta se alcanzara, entonces existiria A tal que 1 =X-1y
2 = M2, pero de la primera igualdad deducimos que A =1 y de la segunda que
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La desigualdad del reacomodo

Demostracion

(1+2f2+3\/§+...+nﬁ)2 n2(n642r 1) 6(2n2—|— 1)

1
S14+2V243V3+---+n/n < %vews.

Falta solo ver que no puede darse la igualdad, para lo que usaremos que n > 2.
Observemos que si esta se alcanzara, entonces existiria A tal que 1 =X-1y
2 = M2, pero de la primera igualdad deducimos que A =1 y de la segunda que

A=v2,
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La desigualdad del reacomodo

Demostracion

(1+2f2+3\/§+...+nﬁ)2 n2(n642r 1) 6(2n2—|— 1)

1
S1+2V243V3+---4+n/n < $\/6n+3.

Falta solo ver que no puede darse la igualdad, para lo que usaremos que n > 2.
Observemos que si esta se alcanzara, entonces existiria A tal que 1 =X-1y

2 = M2, pero de la primera igualdad deducimos que A =1 y de la segunda que
A =/2, lo cual es una contradiccion. O
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