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Propiedades basicas

Definicién
Sea a,b € R.
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i)a>bs a—b>0.
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Propiedades basicas Definiciones y axiomas

Propiedades

Definicién

Sea a,b € R.

i)a>bs a—b>0.
i)a<bs a—-b<o.

i) a<bsa<b 6 a=b.

Ley de tricotomia: Si a, b € R, entonces se cumple una y sélo una de las
relaciones
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Propiedades basicas Definiciones y axiomas

Propiedades

Definicién

Sea a,b € R.

i)a>bs a—b>0.
i)a<bs a—-b<o.

i) a<bsa<b 6 a=b.

Ley de tricotomia: Si a, b € R, entonces se cumple una y sélo una de las
relaciones

a<b, a=>b

O~

a> b.
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a € R.

i) Siia> 0 se dice que a es
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Propiedades

Sea a € R.

i) Sia> 0 se dice que a es positivo.
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a e R.
i) Sia> 0 se dice que a es positivo.

i) Sia<0 se dice que a es
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a e R.
i) Sia> 0 se dice que a es positivo.

i) Si a <0 se dice que a es negativo.
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a e R.
i) Sia> 0 se dice que a es positivo.

i) Si a <0 se dice que a es negativo.

iii) Sira >0 se dice que a es
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a e R.
i) Sia> 0 se dice que a es positivo.

i) Si a <0 se dice que a es negativo.

iii) Si a > 0 se dice que a es no negativo.
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a e R.
i) Sia> 0 se dice que a es positivo.

i) Si a< 0 sedice que a es negativo.

)
iii) Si a > 0 se dice que a es no negativo.
)

iv) Sia <0 se dice que a es
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a e R.
i) Sia> 0 se dice que a es positivo.

i) Si a< 0 sedice que a es negativo.

)
iii) Si a > 0 se dice que a es no negativo.
)

[\

Si a <0 se dice que a es no positivo.
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a € R.

i) Sia> 0 se dice que a es positivo.

i) Si a< 0 sedice que a es negativo.

)
iii) Si a > 0 se dice que a es no negativo.
)

[\

Si a <0 se dice que a es no positivo.

Asumiremos también lo siguiente: si a > 0y b > 0, entonces
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a € R.

i) Sia> 0 se dice que a es positivo.

i) Si a< 0 sedice que a es negativo.

)
iii) Si a > 0 se dice que a es no negativo.
)

[\

Si a <0 se dice que a es no positivo.

Asumiremos también lo siguiente: si a > 0y b > 0, entonces
i) a+b>0.
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Propiedades basicas Definiciones y axiomas

Propiedades

Sea a € R.

i) Sia> 0 se dice que a es positivo.

i) Si a< 0 sedice que a es negativo.

)
iii) Si a > 0 se dice que a es no negativo.
)

[\

Si a <0 se dice que a es no positivo.

Asumiremos también lo siguiente: si a > 0y b > 0, entonces
i) a+b>0.
i) ab> 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

a<0yb<0=ab>0.

Demostracio
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Propiedades basicas Definiciones y axiomas
Propiedades

a<0yb<0=ab>0.

Demostracion

a< 0= —a>0 (por la ley de tricotomia)
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Propiedades basicas Definiciones y axiomas
Propiedades

a<0yb<0=ab>0.

Demostracion

a< 0= —a>0 (por la ley de tricotomia)
b< 0= —b>0 (por la ley de tricotomia)
Luego por el axioma ii)

(—a)(—=b) > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

a<0yb<0=ab>0.

Demostracion

a< 0= —a>0 (por la ley de tricotomia)
b< 0= —b>0 (por la ley de tricotomia)
Luego por el axioma ii)

(—a)(—=b) > 0.

Pero
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Propiedades basicas Definiciones y axiomas
Propiedades

a<0yb<0=ab>0.

Demostracion

a< 0= —a>0 (por la ley de tricotomia)
b< 0= —b>0 (por la ley de tricotomia)
Luego por el axioma ii)

(—a)(—b) > 0.

Pero

(—a)(—b) = ab.
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Propiedades basicas Definiciones y axiomas
Propiedades

a<0yb<0=ab>0.

Demostracion

a< 0= —a>0 (por la ley de tricotomia)
b< 0= —b>0 (por la ley de tricotomia)
Luego por el axioma ii)

(—a)(—b) > 0.

Pero

(—a)(—b) = ab.

Por lo tanto ab > 0. O
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Propiedades b: Definiciones y axiomas

Propiedades

Si no se cumple a < b, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Si no se cumple a < b, entonces a > b.

Demostracion

Si no se cumple que a < b, entonces no se cumple que
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Propiedades basicas Definiciones y axiomas
Propiedades

Si no se cumple a < b, entonces a > b.

Demostracion

Si no se cumple que a < b, entonces no se cumple que a < b é a = b.
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Propiedades basicas Definiciones y axiomas
Propiedades

Si no se cumple a < b, entonces a > b.

Demostracion

Si no se cumple que a < b, entonces no se cumple que a < b é a = b.
Luego, por la ley de tricotomia se cumple que a > b. O
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Propiedades b: Definiciones y axiomas

Propiedades

Sia<byb<a, entonces
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Propiedades b: Definiciones y axiomas

Propiedades

Sia<byb<a, entonces a = b.

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas
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Propiedades
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb< a, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb< a, entonces
(a<b 6 a=b) y (b<a é b=a)

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb< a, entonces
(a<b 6 a=b) y (b<a é b=a)
Tenemos asi las siguientes posibilidades
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb< a, entonces

(a<b 6 a=b) y (b<a é b=a)
Tenemos asi las siguientes posibilidades
(a<b y b<a) o
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb< a, entonces

(a<b 6 a=b) y (b<a é b=a)
Tenemos asi las siguientes posibilidades
(a<b y b<a) o (a<byb=a) o
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb< a, entonces

(a<b 6 a=b) y (b<a é b=a)
Tenemos asi las siguientes posibilidades
(a<b y b<a) o (a<byb=a) o
(a=b y b<a) o
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb< a, entonces

(a<b 6 a=b) y (b<a é b=a)
Tenemos asi las siguientes posibilidades
(a<b y b<a) o (a<byb=a) o
(a=b y b<a) o (a=b y b=a)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb<a, entonces

(a<b 6 a=b) y (b<a é b=a)

Tenemos asi las siguientes posibilidades

(a<b y b<a) o (a<byb=a) o

(a=b y b<a) o (a=b y b=a)

Por la ley de tricotomia, las tres primeras son imposibles, por lo tanto
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb< a, entonces a = b.

Demostracion

Sia<byb<a, entonces

(a<b 6 a=b) y (b<a é b=a)

Tenemos asi las siguientes posibilidades

(a<b y b<a) o (a<byb=a) o

(a=b y b<a) o (a=b y b=a)

Por la ley de tricotomia, las tres primeras son imposibles, por lo tanto a = b. O
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Propiedades b: Definiciones y axiomas

Propiedades

Sia>0yb>0, entonces
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Propiedades b: Definiciones y axiomas

Propiedades

Sia>0yb>0, entonces a+ b > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces a+ b > 0.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces a+ b > 0.

Demostracion
Si b >0, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces a+ b > 0.

Demostracion
Sib>0, entonces i) b >0 6ii) b=0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces a+ b > 0.

Demostracion

Sib>0, entonces i) b >0 6ii) b=0.
Si i) ocurre, tenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces a+ b > 0.

Demostracion

Si b >0, entonces i) b> 0 6 ii) b=0.
Si i) ocurre, tenemos que a+ b > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces a+ b > 0.

Demostracion

Si b >0, entonces i) b> 0 6 ii) b=0.
Si i) ocurre, tenemos que a+ b > 0.
Si i) ocurre, tenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces a+ b > 0.

Demostracion

Sib>0, entonces i) b >0 6ii) b=0.
Si i) ocurre, tenemos que a+ b > 0.
Si i) ocurre, tenemos que a+b=a+0=a > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces a+ b > 0.

Demostracion

Sib>0, entonces i) b >0 6ii) b=0.

Si i) ocurre, tenemos que a+ b > 0.

Si ii) ocurre, tenemos que a+ b=a+0=a> 0.

Como tanto para el caso i) como para el caso ii) a+ b > 0, la demostracion estd
terminada. O
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Propiedades b: Definiciones y axiomas

Propiedades

Sia>0yb>0, entonces
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Propiedades b: Definiciones y axiomas

Propiedades

Sia>0yb>0, entonces ab > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion

Sia > 0, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion
Sia>0, entonces i) a>0 6 ii) a=0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion

Sia>0, entonces i) a>0 6 ii) a=0.
Si i) ocurre, tenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion

Sia>0, entonces i) a>0 6 ii) a=0.
Si i) ocurre, tenemos que ab > 0 y por lo tanto
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion

Sia>0, entonces i) a>0 6 ii) a=0.
Si i) ocurre, tenemos que ab > 0 y por lo tanto ab > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion

Sia>0, entonces i) a>0 6 ii) a=0.
Si i) ocurre, tenemos que ab > 0 y por lo tanto ab > 0.
Si ii) ocurre, tenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion

Sia>0, entonces i) a>0 6 ii) a=0.
Si i) ocurre, tenemos que ab > 0 y por lo tanto ab > 0.
Si ii) ocurre, tenemos que ab = 0b = 0 y por lo tanto
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion

Sia>0, entonces i) a>0 6 ii) a=0.
Si i) ocurre, tenemos que ab > 0 y por lo tanto ab > 0.
Si ii) ocurre, tenemos que ab = 0b = 0 y por lo tanto ab > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia>0yb>0, entonces ab > 0.

Demostracion

Sia>0, entonces i) a>0 6 ii) a=0.

Si i) ocurre, tenemos que ab > 0 y por lo tanto ab > 0.

Si ii) ocurre, tenemos que ab = 0b = 0 y por lo tanto ab > 0.

Como tanto para el caso i) como para el caso ii) ab > 0, la demostracién estd
terminada. O
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Propiedades b: Definiciones y axiomas

Propiedades

Sia<byb<c, entonces
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Propiedades b: Definiciones y axiomas

Propiedades

Sia<byb<c, entonces a < c.
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Propiedades basicas Definiciones y axiomas

Propiedades

Sia<byb<c, entonces a < c.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion

Sia<byb<c, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion
Sia<byb<c, entoncesb—a>0yc—b>0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion

Sia<byb<c, entoncesb—a>0yc—b>0.
Luego
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion

Sia<byb<c, entoncesb—a>0yc—b>0.
Luego

0<(b—a)+(c—b)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion

Sia<byb<c, entoncesb—a>0yc—b>0.
Luego

0<(b—a)+(c—b)=(c—a)+(b—b)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion

Sia<byb<c, entoncesb—a>0yc—b>0.
Luego

0<(b—a)+(c—b)=(c—a)+(b—b)=(c—a)+0
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion

Sia<byb<c, entoncesb—a>0yc—b>0.
Luego

0<(b—a)+(c—b)=(c—a)+(b—b)=(c—a)+0=c—a.

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion

Sia<byb<c, entoncesb—a>0yc—b>0.
Luego

0<(b—a)+(c—b)=(c—a)+(b—b)=(c—a)+0=c—a.

Por lo tanto
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byb<c, entonces a < c.

Demostracion

Sia<byb<c, entoncesb—a>0yc—b>0.
Luego

0<(b—a)+(c—b)=(c—a)+(b—b)=(c—a)+0=c—a.

Por lo tanto a < c. O
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia< byc<d, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion
Sia<byc<d, entoncesb—a>0yd—c>0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

0<(b—a)+(d—c)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

O<(b—a)+(d—c)=(b+d)—(a+ ).
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

O<(b—a)+(d—c)=(b+d)—(a+ ).

Por lo tanto
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

O<(b—a)+(d—c)=(b+d)—(a+c).
Por lo tanto a+ c < b+ d.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

O<(b—a)+(d—c)=(b+d)—(a+ ).

Por lo tanto a+ c < b+ d.
De manera similar, sia < by c < d, entoncesa+ c < b+ d.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

O<(b—a)+(d—c)=(b+d)—(a+ ).

Por lo tanto a+ c < b+ d.
De manera similar, sia < by c < d, entoncesa+ c < b+ d.
Por tltimo, sia= b y c = d, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracién
Sia<byc<d, entoncesb—a>0yd—c>0.
Luego
O<(b—a)+(d—c)=(b+d)—(a+c).

Por lo tanto a+ c < b+ d.

De manera similar, sia < by c < d, entoncesa+ c < b+ d.
Por tltimo, sia=b yc=d, entoncesb—a=0yd—c=0.
Luego
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracién
Sia<byc<d, entoncesb—a>0yd—c>0.
Luego
O<(b—a)+(d—c)=(b+d)—(a+c).

Por lo tanto a+ c < b+ d.
De manera similar, sia < by c < d, entoncesa+ c < b+ d.
Por tltimo, sia=b yc=d, entoncesb—a=0yd—c=0.
Luego

0=(b—a)+(d—c)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

O<(b—a)+(d—c)=(b+d)—(a+ ).

Por lo tanto a+ c < b+ d.
De manera similar, sia < by c < d, entoncesa+ c < b+ d.
Por tltimo, sia=b yc=d, entoncesb—a=0yd—c=0.
Luego

0=(b—-a)+(d—c)=(b+d)—(a+c).
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

O<(b—a)+(d—c)=(b+d)—(a+ ).

Por lo tanto a+ c < b+ d.
De manera similar, sia < by c < d, entoncesa+ c < b+ d.
Por tltimo, sia=b yc=d, entoncesb—a=0yd—c=0.
Luego

0=(b—-a)+(d—c)=(b+d)—(a+c).

Por lo tanto
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<byc<d, entonces a+ c < b+ d y la igualdad se alcanza si y solo si
a=byc=d.

Demostracion

Sia<byc<d, entoncesb—a>0yd—c>0.
Luego

O<(b—a)+(d—c)=(b+d)—(a+ ).

Por lo tanto a+ c < b+ d.
De manera similar, sia < by c < d, entoncesa+ c < b+ d.
Por tltimo, sia=b yc=d, entoncesb—a=0yd—c=0.
Luego

0=(b—-a)+(d—c)=(b+d)—(a+c).

Por lo tanto a+ ¢ = b+ d. Esto finaliza la demostracion. O

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion

Si x < y, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion

Six <y, entonces y — x > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion

Six <y, entonces y — x > 0.
Luego
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion

Six <y, entonces y — x > 0.
Luego
(y+2)—(x+2)
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion

Six <y, entonces y — x > 0.
Luego
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion

Six <y, entonces y — x > 0.
Luego
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion

Six <y, entonces y — x > 0.
Luego

Por lo tanto
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Propiedades basicas Definiciones y axiomas
Propiedades

Six <y, entonces x + z < y + z para cualquier z € R.

Demostracion

Six <y, entonces y — x > 0.
Luego

Por lo tantoy +z > x+z. O
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Propiedades b: Definiciones y axiomas

Propiedades

Six<0yy >0, entonces xy < 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Six<0yy >0, entonces xy < 0.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Six<0yy >0, entonces xy < 0.

Demostracion

Si x < 0, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Six<0yy >0, entonces xy < 0.

Demostracion

Si x < 0, entonces —x > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Six<0yy >0, entonces xy < 0.

Si x < 0, entonces —x > 0.
Luego
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Propiedades basicas Definiciones y axiomas
Propiedades

Six<0yy >0, entonces xy < 0.

Si x < 0, entonces —x > 0.
Luego

—(xy)=(-x)y >0
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Propiedades basicas Definiciones y axiomas
Propiedades

Six<0yy >0, entonces xy < 0.

Demostracion

Si x < 0, entonces —x > 0.
Luego
—(xy) =(=x)y >0

y asi,
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Propiedades basicas Definiciones y axiomas
Propiedades

Six<0yy >0, entonces xy < 0.

Si x < 0, entonces —x > 0.
Luego

—(xy)=(=x)y >0
y asi,

xy = —[=(xy)] <0.
O
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Propiedades basicas ones y axiomas

Propiedades

Si a > 0, entonces % > 0.
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Propiedades basicas Definiciones y axiomas

Si a > 0, entonces % > 0.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Si a > 0, entonces % > 0.

Demostracion

Como
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Propiedades basicas Definiciones y axiomas
Propiedades

Si a > 0, entonces % > 0.

Demostracion

Como
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Propiedades basicas Definiciones y axiomas
Propiedades

Si a > 0, entonces % > 0.

Demostracion

Como

Entonces, debido a que a > 0,
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Propiedades basicas Definiciones y axiomas
Propiedades

Si a > 0, entonces % > 0.

Demostracion

Como

Entonces, debido a que a > 0, % > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Si a > 0, entonces % > 0.

Demostracion
Como )
a > =1>0
a
Entonces, debido a que a > 0, % > 0.0

Es claro también que si a < 0, entonces % < 0.
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Propiedades b: Definiciones y axiomas

Propiedades

Sia> b >0, entonces % <

1
T
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces % <

1
T

Demostracio
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces %g

Demostracion

Notemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces %g

Demostracion

Notemos que

S| =
| =
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces %g

Demostracion

Notemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces %g

Demostracion

Notemos que
1 1 a-—b 1
e w0 (5)- )
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Propiedades basicas

Definiciones y axiomas
Propiedades

Sia>b>0,

entonces % §

Demostracion

Notemos que

Como
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Propiedades basicas

Definiciones y axiomas
Propiedades

Sia>b>0,

entonces % §

Demostracion

Notemos que

Como

a>0 y b>0=
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces %g

Demostracion

|

Notemos que

Como
a>0 y b>0=ab>0=
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Propiedades basicas Definiciones y axiomas
Propiedades

1 1
35 %

Sia> b >0, entonces

Notemos que
1 1 a—-b»b 1
- — == =(a— — ). 1
b a ab (2 b)(ab) (1)
Como |
a>0 y b>0éab>0:>%>0 2)
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Propiedades basicas Definiciones y axiomas
Propiedades

1 1
35 %

Sia> b >0, entonces

Demostracion

Notemos que
1 1 a—-b»b 1
- — == =(a— — ). 1
b a ab (2 b)(ab) (1)
Como |
a>0 y b>0éab>0:>%>0 2)
y
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces % <

1
T

Demostracion

Notemos que
1 1 a-—b 1
e w0 (5)- )
Como |
a>0 y b>0éab>0:>%>0 2)
y
a>b=a—b>0. 3)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces % <

1
T

Demostracion

Notemos que

tl,‘i:aa_bb:("’_b)(alb) (1)

1
a>0 y b>0éab>0:>%>0 2)

Como

y
a>b=a—b>0. 3)

Utilizando (2) y (3) en (1) obtenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces %g

1
T

Demostracion

|

Notemos que

tl,‘i:aa_bb:("’_b)(alb) (1)

1
a>0 y b>0éab>0:>%>0 2)

Como

y
a>b=a—b>0. 3)

Utilizando (2) y (3) en (1) obtenemos que

QJ\l—‘

>0

c~\l—‘

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades basicas Definiciones y axiomas
Propiedades

Sia>b>0, entonces I < 1.

Demostracion

|

Notemos que

tl,‘i:aa_bb:("’_b)(alb) (1)

Como |
a>0 y b>0éab>0:>%>0 2)

y
a>b=a—b>0. 3)

Utilizando (2) y (3) en (1) obtenemos que

QJ\l—‘

>0

c~\l—‘

y asi,
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia> b >0, entonces %g

1
8
Demostracion

Notemos que
1 1 a-—b 1
e w0 (5)- )

1
a>0 y b>0éab>0:>%>0 2)

Como

y
a>b=a—b>0. 3)

Utilizando (2) y (3) en (1) obtenemos que

>0

c~\l—‘
QJ\I—‘

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades b: Definiciones y axiomas

Propiedades

Sia<by\>0, entonces A\a < \b.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\>0, entonces A\a < A\b.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\>0, entonces A\a < A\b.

Demostracion

Notemos que

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Num



Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\>0, entonces A\a < A\b.

Demostracion

Notemos que
Ab—Xa=\(b—a). (4)
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Propiedades basicas

Definiciones y axiomas
Propiedades

Sia<by\>0, entonces A\a < A\b.

Demostracion

Notemos que

Ab—Xa=\(b—a).

Ahora, como A >0 y

(4)
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Propiedades basicas

Definiciones y axiomas
Propiedades

Sia<by\>0, entonces A\a < A\b.

Demostracion

Notemos que

Ab—Xa=\(b—a).

Ahora, como A >0 y

a<b=b—aa>0

(4)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\>0, entonces A\a < A\b.

Demostracion

Notemos que
Ab—Xa=\(b—a).

Ahora, como A >0 y
a<b=b—aa>0

se sigue de (4) que

(4)

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\>0, entonces A\a < A\b.

Demostracion

Notemos que
Ab—Xa=\(b—a).

Ahora, como A >0 y
a<b=b—aa>0

se sigue de (4) que
Ab—Xa >0,

(4)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\>0, entonces A\a < A\b.

Demostracion

Notemos que
Ab—Xa=\(b—a).

Ahora, como A >0 y
a<b=b—aa>0

se sigue de (4) que

esto es

(4)
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Propiedades b: Definiciones y axiomas

Propiedades

Sia<by\<O0, entonces A\a > \b.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\<O0, entonces A\a > A\b.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\<O0, entonces A\a > A\b.

Demostracion

Notemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\<O0, entonces A\a > A\b.

Demostracion

Notemos que
Ab—Xa=\(b—a). (5)
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Propiedades basicas

Definiciones y axiomas
Propiedades

Sia<by\<O0, entonces A\a > A\b.

Demostracion

Notemos que

Ab—Xa=\(b—a).

Ahora, como A <0 y
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Definiciones y axiomas
Propiedades

Sia<by\<O0, entonces A\a > A\b.

Demostracion

Notemos que

Ab—Xa=\(b—a).

Ahora, como A <0 y

a<b=b—aa>0
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\<O0, entonces A\a > A\b.

Demostracion

Notemos que
Ab—Xa=\(b—a).

Ahora, como A <0 y
a<b=b—aa>0

se sigue de (5) que

()
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\<O0, entonces A\a > A\b.

Demostracion

Notemos que
Ab—Xa=\(b—a).

Ahora, como A <0 y
a<b=b—aa>0

se sigue de (5) que
Ab—Xa <0,
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Propiedades basicas Definiciones y axiomas
Propiedades

Sia<by\<O0, entonces A\a > A\b.

Demostracion

Notemos que
Ab—Xa=\(b—a).

Ahora, como A <0 y
a<b=b—aa>0

se sigue de (5) que

esto es
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Propiedades b: Definiciones y axiomas

Propiedades

Si x # 0, entonces x> > 0.
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Propiedades basicas Definiciones y axiomas

Si x # 0, entonces x> > 0.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x # 0, entonces x> > 0.

Demostracion

Como x # 0, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x # 0, entonces x> > 0.

Demostracion

Como x # 0, entonces x > 0 6 x < 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x # 0, entonces x> > 0.

Demostracion

Como x # 0, entonces x > 0 6 x < 0.
Tenemos asi dos casos
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x # 0, entonces x> > 0.

Demostracion

Como x # 0, entonces x > 0 6 x < 0.
Tenemos asi dos casos

i) Si x>0, entonces

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades basicas Definiciones y axiomas
Propiedades

Si x # 0, entonces x> > 0.

Demostracion

Como x # 0, entonces x > 0 6 x < 0.
Tenemos asi dos casos

i) Six >0, entonces x> = xx > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x # 0, entonces x> > 0.

Demostracion

Como x # 0, entonces x > 0 6 x < 0.
Tenemos asi dos casos

i) Six >0, entonces x> = xx > 0.

i) Six <0, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x # 0, entonces x> > 0.

Demostracion

Como x # 0, entonces x > 0 6 x < 0.
Tenemos asi dos casos

i) Six >0, entonces x> = xx > 0.

ii) Six <0, entonces x> = xx > 0.
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Propiedades basicas Definiciones y axiomas

Propiedades

Si x # 0, entonces x> > 0.

Demostracion

Como x # 0, entonces x > 0 6 x < 0.
Tenemos asi dos casos
i) Six >0, entonces x> = xx > 0.

ii) Six <0, entonces x> = xx > 0.

Tenemos asi que en cualquier caso, x> > 0. O

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez

Desigualdades Numéricas



Propiedades basicas

Notemos que si x € R, entonces x? > 0.
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Propiedades basicas Definiciones y axiomas

Propiedades

Notemos que si x € R, entonces x? > 0.

Luego si x,y € R, entonces
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Propiedades basicas Definiciones y axiomas

Propiedades

Notemos que si x € R, entonces x? > 0.

Luego si x, y € R, entonces x? + y? > 0.
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Propiedades basicas Definiciones y axiomas

Propiedades

Notemos que si x € R, entonces x? > 0.
Luego si x,y € R, entonces x? + y? > 0.

En general si a3, az,...,a, € R, entonces
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Propiedades basicas Definiciones y axiomas

Propiedades

Notemos que si x € R, entonces x? > 0.
Luego si x,y € R, entonces x? + y? > 0.

En general si aj,ay,...,a, € R, entonces a2 + a3 +--- + a2 > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Notemos que si x € R, entonces x? > 0.
Luego si x,y € R, entonces x? + y? > 0.

En general si aj,ay,...,a, € R, entonces a2 + a3 +--- + a2 > 0.

Demostrar que para cualesquiera x,y € R, x> + y? > 2xy.
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Propiedades basicas Definiciones y axiomas
Propiedades

Notemos que si x € R, entonces x? > 0.
Luego si x,y € R, entonces x? + y? > 0.

En general si aj,a,...,a, € R, entonces a3 + a3 + - -+ + a> > 0.

Demostrar que para cualesquiera x,y € R, x> + y? > 2xy.

Demostracion

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades basicas Definiciones y axiomas

Propiedades
Notemos que si x € R, entonces x? > 0.
Luego si x,y € R, entonces x? + y? > 0.
En general si aj,a,...,a, € R, entonces a3 + a3 + - -+ + a> > 0.

Demostrar que para cualesquiera x,y € R, x> + y? > 2xy.

Demostracion

Se sigue del hecho de que

X2+ y?—2xy =
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Propiedades basicas Definiciones y axiomas

Propiedades
Notemos que si x € R, entonces x? > 0.
Luego si x,y € R, entonces x? + y? > 0.
En general si aj,a,...,a, € R, entonces a3 + a3 + - -+ + a> > 0.

Demostrar que para cualesquiera x,y € R, x> + y? > 2xy.

Demostracion

Se sigue del hecho de que

X2+ y?—2xy = (x — y)?
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Propiedades basicas Definiciones y axiomas

Propiedades
Notemos que si x € R, entonces x? > 0.
Luego si x,y € R, entonces x? + y? > 0.
En general si aj,a,...,a, € R, entonces a3 + a3 + - -+ + a> > 0.

Demostrar que para cualesquiera x,y € R, x> + y? > 2xy.

Demostracion

Se sigue del hecho de que

X2 4y?—2xy = (x —y)> > 0.

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion

Notemos que a*> < b? si y solo si
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion

Notemos que a*> < b? si y solo si

0<b’—2a°=
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion

Notemos que a*> < b? si y solo si

0 < b®—a%>=(b+a)(b- a). (6)
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion

Notemos que a*> < b? si y solo si
0 < b®—a%>=(b+a)(b- a). (6)

Como a> 0y b > 0, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion

Notemos que a*> < b? si y solo si
0 < b®—a%>=(b+a)(b- a). (6)

Como a> 0y b >0, entonces b+ a > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion

Notemos que a*> < b? si y solo si
0 < b®—a%>=(b+a)(b- a). (6)

Como a> 0y b >0, entonces b+ a > 0. Asi, de (6) se sigue que
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion

Notemos que a*> < b? si y solo si
0 < b®—a%>=(b+a)(b- a). (6)

Como a>0yb >0, entonces b+ a > 0. Asi, de (6) se sigue que b—a >0, es
decir,
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que sia >0, b > 0 y a®> < b?, entonces a < b.

Demostracion

Notemos que a*> < b? si y solo si
0 < b®—a%>=(b+a)(b- a). (6)

Como a>0yb >0, entonces b+ a > 0. Asi, de (6) se sigue que b—a >0, es
decir, a< b. O
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que x*> — 6x + 10 > 1 para cualquier x € R.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que x> — 6x + 10 > 1 para cualquier x € R.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que x> — 6x + 10 > 1 para cualquier x € R.

Demostracion

Como x* — 6x + 10 =
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que x> — 6x + 10 > 1 para cualquier x € R.

Demostracion

Como x> —6x+10=(x—3)?+1 y
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que x> — 6x + 10 > 1 para cualquier x € R.

Demostracion
Como x> —6x+10=(x—-3)?+1 y (x—3)2>0,
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que x> — 6x + 10 > 1 para cualquier x € R.

Demostracion

Como x> —6x+10=(x—3)2+1 y (x —3)? >0, tenemos que

x2—6x+10=(x—3)>+1>1,
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que x> — 6x + 10 > 1 para cualquier x € R.

Demostracion

Como x> —6x+10=(x—3)2+1 y (x —3)? >0, tenemos que

x2—6x+10=(x—3)>+1>1,

que es lo que queriamos demostrar. O
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > /xy para cualesquiera x,y > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > \/xy para cualesquiera x,y > 0.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > \/xy para cualesquiera x,y > 0.

Demostracion

Tenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > \/xy para cualesquiera x,y > 0.

Demostracion

Tenemos que

1
E(X +y) > Vxy &
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > \/xy para cualesquiera x,y > 0.

Demostracion

Tenemos que

1
§(x+y)2w/xy¢>x+y22«/xy<i>
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > \/xy para cualesquiera x,y > 0.

Demostracion

Tenemos que

1
§(x+y)2\/xy®x+y22./xy@x+yf2\/xy20

=
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > \/xy para cualesquiera x,y > 0.

Demostracion

Tenemos que

1
§(x+y)2\/xy®x+y22./xy@x+yf2\/xy20

Sx+y-—2Vx/y>0&
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > \/xy para cualesquiera x,y > 0.

Demostracion

Tenemos que

1
§(x+y)2\/xy®x+y22./xy@x+yf2\/xy20

Sx+y—2/xy 205 (Vx—y) >0
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que %(X +y) > \/xy para cualesquiera x,y > 0.

Demostracion

Tenemos que

1
§(x+y)2\/xy©x+y22./xy@x+yf2\/xy20
Sx+y-2/x/7=0 (Vx—y)’ >0

Como (/x — ﬁ)z > 0 es cierta, 3(x +y) > \/Xy es también cierta y tenemos
asi la desigualdad deseada. O
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Propiedades b: Definiciones y axiomas

Propiedades

Si x > 0, demostrar que x + )l( > 2.
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x >0, demostrar que x + 1 > 2.

Demostraci
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x >0, demostrar que x + 1 > 2.

Demostracion

Tenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x >0, demostrar que x + 1 > 2.

Demostracion

Tenemos que

1
X+—-—2>2&
X
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x >0, demostrar que x + 1 > 2.

Demostracion

Tenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x >0, demostrar que x + 1 > 2.

Demostracion

Tenemos que

1 x2+1
X X

>2a x4+ 1> 2x
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x >0, demostrar que x + 1 > 2.

Demostracion

Tenemos que

x2+1
X
&x2-—2x+1>0s

1
X+—-—2>2& >2& x2+1>2x
X
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x >0, demostrar que x + 1 > 2.

Demostracion

Tenemos que

x> +1
X
&x?-2x+1>0& (x—1)°>0.

1
X+—-—2>2& >2& x2+1>2x
X
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Propiedades basicas Definiciones y axiomas
Propiedades

Si x >0, demostrar que x + 1 > 2.

Demostracion

Tenemos que

x> +1
X
&x?-2x+1>0& (x—1)°>0.

1
X+—-—2>2& >2& x2+1>2x
X

Como esta ultima desigualdad es cierta, x + % > 2 es cierta. O
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que

X2y =X 2x -yt =22 42>0

para cualesquiera x,y € R y determinar para qué valores de x y y se alcanza la
igualdad.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que

X 2x2y? — x4 2x 4yt —2y2 42> 0

para cualesquiera x,y € R y determinar para qué valores de x y y se alcanza la
igualdad.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que

X 2x2y? — x4 2x 4yt —2y2 42> 0

para cualesquiera x,y € R y determinar para qué valores de x y y se alcanza la
igualdad.

Demostracion

Recordemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que

X 2x2y? — x4 2x 4yt —2y2 42> 0

para cualesquiera x,y € R y determinar para qué valores de x y y se alcanza la
igualdad.

Demostracion

Recordemos que

(a+b)y>=a>+b>+2ab y (a+b+c)®=a"+b>+c*+2ab+2ac+ 2bc.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que

X 2x2y? — x4 2x 4yt —2y2 42> 0

para cualesquiera x,y € R y determinar para qué valores de x y y se alcanza la
igualdad.

Demostracion

Recordemos que

(a+b)y>=a>+b>+2ab y (a+b+c)®=a"+b>+c*+2ab+2ac+ 2bc.

Asi, completando cuadrados obtenemos
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que

X 2x2y? — x4 2x 4yt —2y2 42> 0

para cualesquiera x,y € R y determinar para qué valores de x y y se alcanza la
igualdad.

Demostracion

Recordemos que
(a+b)y>=a>+b>+2ab y (a+b+c)®=a"+b>+c*+2ab+2ac+ 2bc.
Asi, completando cuadrados obtenemos

X222 - X 2x 4yt —2y2 42
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que

X 2x2y? — x4 2x 4yt —2y2 42> 0

para cualesquiera x,y € R y determinar para qué valores de x y y se alcanza la
igualdad.

Demostracion

Recordemos que
(a+b)y>=a>+b>+2ab y (a+b+c)®=a"+b>+c*+2ab+2ac+ 2bc.
Asi, completando cuadrados obtenemos
x4 2x%y? — X2 fox 4yt —2y% 42
- [(x2)2 = (O (AP 42y — Bl 2y2] + (x*+2x+1)
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostrar que

X 2x2y? — x4 2x 4yt —2y2 42> 0

para cualesquiera x,y € R y determinar para qué valores de x y y se alcanza la
igualdad.

Demostracion

Recordemos que
(a+b)y>=a>+b>+2ab y (a+b+c)®=a"+b>+c*+2ab+2ac+ 2bc.
Asi, completando cuadrados obtenemos
x4 2x%y? — X2 fox 4yt —2y% 42
- [(x2)2 = (O (AP 42y — Bl 2y2] + (x*+2x+1)

— (C+y? = 1)’ 4 (x+ 1)
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

Como (x*+ y? — 1)2 + (x+1)2 > 0, tenemos que
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

Como (x*+ y? — 1)2 + (x+1)2 > 0, tenemos que

X 2x3y2 — x4 2x 4yt —2y2 +2>0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

Como (x*+ y? — 1)2 + (x+1)2 > 0, tenemos que

X 2x3y2 — x4 2x 4yt —2y2 +2>0.

La igualdad se cumple si y solo si
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

|

Como (x* 4+ y? —1)" 4 (x 4+ 1)2 > 0, tenemos que

X 2x3y2 — x4 2x 4yt —2y2 +2>0.

La igualdad se cumple si y solo si

XX +y>—1=0 y x+1=0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

|

Como (x* 4+ y? —1)" 4 (x 4+ 1)2 > 0, tenemos que

X 2x3y2 — x4 2x 4yt —2y2 +2>0.
La igualdad se cumple si y solo si
2., .2 _ _
x“+y " —1=0 y x+1=0.

De la ecuacion x +1 = 0, obtenemos
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

|

Como (x* 4+ y? —1)" 4 (x 4+ 1)2 > 0, tenemos que

X 2x3y2 — x4 2x 4yt —2y2 +2>0.
La igualdad se cumple si y solo si
2., .2 _ _
x“+y " —1=0 y x+1=0.

De la ecuaciéon x +1 = 0, obtenemos x = —1.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

Como (x*+ y? — 1)2 + (x+1)2 > 0, tenemos que
X 2x3y2 — x4 2x 4yt —2y2 +2>0.
La igualdad se cumple si y solo si
2., .2 _ _
x“+y —1=0 y x+1=0.

De la ecuacion x + 1 = 0, obtenemos x = —1. Sustituyendo este valor en la
ecuacion x? + y?> — 1 = 0 obtenemos
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

|

Como (x* 4+ y? —1)" 4 (x 4+ 1)2 > 0, tenemos que
X 2x3y2 — x4 2x 4yt —2y2 +2>0.
La igualdad se cumple si y solo si
2., .2 _ _
x“+y —1=0 y x+1=0.

De la ecuacion x + 1 = 0, obtenemos x = —1. Sustituyendo este valor en la
ecuacion x? + y?> — 1 = 0 obtenemos

(12 +y’-1=0<
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

|

Como (x* 4+ y? —1)" 4 (x 4+ 1)2 > 0, tenemos que
X 2x3y2 — x4 2x 4yt —2y2 +2>0.
La igualdad se cumple si y solo si
2., .2 _ _
x“+y —1=0 y x+1=0.

De la ecuacion x + 1 = 0, obtenemos x = —1. Sustituyendo este valor en la
ecuacion x? + y?> — 1 = 0 obtenemos

(-1’ +y’-1=0&y’=0«
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

|

Como (x* 4+ y? —1)" 4 (x 4+ 1)2 > 0, tenemos que
X 2x3y2 — x4 2x 4yt —2y2 +2>0.
La igualdad se cumple si y solo si
2., .2 _ _
x“+y —1=0 y x+1=0.

De la ecuacion x + 1 = 0, obtenemos x = —1. Sustituyendo este valor en la
ecuacion x? + y?> — 1 = 0 obtenemos

(-1 +y’—1=0&)y’=0&y=0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

|

Como (x* 4+ y? —1)" 4 (x 4+ 1)2 > 0, tenemos que
X 2x3y2 — x4 2x 4yt —2y2 +2>0.
La igualdad se cumple si y solo si
2., .2 _ _
x“+y —1=0 y x+1=0.

De la ecuacion x + 1 = 0, obtenemos x = —1. Sustituyendo este valor en la
ecuacion x? + y?> — 1 = 0 obtenemos

(-1 +y’-1=0ey’=0<y=0.

Por lo tanto los tnicos valores de x y y para los cuales se cumple la igualdad son
x=—-1lyy=0.0
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?hP + abp? < 1.
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
l=a+b
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
l=a+b=a"" 4 p*
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".

Luego
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".

Luego

1— (27" + 2°b7)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".

Luego

il = (aabb + abba) = a%a° + b?b® — 7P — 3Ph?
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".

Luego
1— (a°b®+2a%%) = a%a®+ b7bP — a%b® — a°p°
(a%a® — a?b®) + (b7 — a°b?)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".

Luego

1— (a°b®+2a%%) = a%a®+ b7bP — a%b® — a°p°
(a%a® — a?b®) + (b7 — a°b?)
= (ab — bb) + b? (bb — ab)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".

Luego
1— (a°b®+2a%%) = a%a®+ b7bP — a%b® — a°p°
= (a%a® — a%b®) + (b°b" — 2°b?)
= & (ab — bb) + b? (bb — ab)
= b°(b° —aP) — 2% (b° — a°)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".

Luego
1— (a°b®+2a%%) = a%a®+ b7bP — a%b® — a°p°
= (a%a® — a%b®) + (b°b" — 2°b?)
= 2 (2P — bP) + b7 (b — 2)
b® (b — a°) — 2% (b° — a°)
= (b®— ab) (b — &)
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que

il = 21 b (5 = P 7 = el L
Luego

1— (a°b®+2a%%) = a%a®+ b7bP — a%b® — a°p°
= (a%a® — a%b®) + (b°b" — 2°b?)
= a7 (ab — BY) 4 b7 (B — &)
b® (b — a°) — 2% (b° — a°)
= (b*-2a°) (*-2a°) >0,
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Propiedades basicas Definiciones y axiomas
Propiedades

Sean a y b nidmeros reales positivos tales que a+ b = 1. Demostrar que
a?bb + abp? < 1.

Demostracion

Notemos que
1=a+b=a"t24 bt = a3 + b7b".

Luego

1— (a°b®+2a%%) = a%a®+ b7bP — a%b® — a°p°
= (a%a® — a%b®) + (b°b" — 2°b?)
= a7 (ab — BY) 4 b7 (B — &)
b® (b — a°) — 2% (b° — a°)
= (b*-2a°) (*-2a°) >0,

ya que ambos factores son no negativos o ambos son no positivos.
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Propiedades b: Definiciones y axiomas

Propiedades

Demostracion

En efecto:
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

En efecto:
Si a < b, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

En efecto:
Sia < b, entonces b? > a y b? > a?,
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

En efecto:
Sia < b, entonces b? > a® y b? > a2, esto es
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

En efecto:
Sia < b, entonces b® > aP y b? > a2 estoes b® —a® >0 y b?—a? > 0.
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

En efecto:
Sia < b, entonces b® > aP y b? > a2 estoes b® —a® >0 y b?—a? > 0.

Andlogamente, si a > b, entonces
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Propiedades basicas Definiciones y axiomas
Propiedades

Demostracion

En efecto:
Sia < b, entonces b? > aP y b? > a2 estoes b® —a® >0 y b?*—a? >0
Andlogamente, si a > b, entonces b®* —a® <0 y b? — 27 <0.0O
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion

ax’+bx+c=0 &
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion

b
ax’+bx+c=0 < X2+;X+§=0<=>
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion

b b
ax’+bx+c=0 < ><2—l—fx—|—£20(:)X2—&-7x:—E
a a a a

=

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Num



La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion

b b
ax’+bx+c=0 < ><2—l—fx—|—£20(:)X2—&-7x:—E
a a a a

b2 b ¢

= X2+éx+————
a 422 432 2
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion

b b
ax’+bx+c=0 < ><2—l—fx—|—£20(:)X2—&-7x:—E
a a a a
o ey b PP e b > b —dac
X=Xt —=——= x+—| =
a 432 432 g 2a 432
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion

ax’+bx+c=0 & X2+9X+£=0<=>X2+9X=—£
a a a a
=2 X2+bx+b2—b2—c(:>(x+b>2—b2_4ac
a 422 432 2 2a 432
o x+2-1 Caudils N
2a 432
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion

b b
ax’+bx+c=0 < ><2—l—fx—|—£20(:)X2—&-7x:—E
a a a a
o ey b PP e b > b —dac
X+ X+ —=——- x+—] =
a 432 432 g 2a 432
b b2 — 4ac b b%2 — 4ac
& ey /T e = Y
X+2a 432 x 2a 2a
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La funcién cuadratica

Sean a, b, c € R con a # 0. Encontrar los valores de x para los cuales
ax?>+ bx+c=0.

Demostracion

b b
ax’+bx+c=0 < ><2—l—fx—|—£20(:)X2—&-7x:—E
a a a a
o ey b PP e b > b —dac
X+ X+ —=——- x+—] =
a 432 432 g 2a 432
b2 — 4ac b b%2 — 4ac
& — =4 =——=
X+2 432 2a 2a
—b++/b?—4ac
= X = 22 .
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La funcién cuadratica

Demostrar que si a > 0, la cuadrdtica ax®> + 2bx + ¢ tiene un minimo en x = —g
3 2
y el valor minimo es ¢ — %.
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La funcién cuadratica

Demostrar que si a > 0, la cuadratica ax® + 2bx + ¢ tiene un minimo en x = —13’
. 2
y el valor minimo es ¢ — %.

Demostracion
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La funcién cuadratica

Demostrar que si a > 0, la cuadratica ax? + 2bx + ¢ tiene un minimo en x = —
b

7 °

[Nl

y el valor minimo es ¢ —

Demostracion
Completando cuadrados obtenemos

ax®> +2bx+c =
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La funcién cuadratica

Demostrar que si a > 0, la cuadratica ax? + 2bx + ¢ tiene un minimo en x = —
b

7 °

[Nl

y el valor minimo es ¢ —

Demostracion
Completando cuadrados obtenemos

b
ax®> +2bx+c = a<x2+2ax)+c

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La funcién cuadratica

Demostrar que si a > 0, la cuadratica ax? + 2bx + ¢ tiene un minimo en x = —
b

7 °

[Nl

y el valor minimo es ¢ —

Demostracion
Completando cuadrados obtenemos

b
ax®> +2bx+c = a<x2+2ax)+c

5 b b? b?
= a(xX"+2—x+ 5| +c——
a a a
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La funcién cuadratica

Demostrar que si a > 0, la cuadratica ax? + 2bx + ¢ tiene un minimo en x = —
b

7 °

[Nl

y el valor minimo es ¢ —

Demostracion
Completando cuadrados obtenemos

b
ax’>+2bx+c = a<x2+2ax)+c
b2 b2
= 3<X2+2x—|— 2)+c—
g
b\? b2
= a(x—i—a) +c——
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La funcién cuadratica

Demostrar que si a > 0, la cuadratica ax? + 2bx + ¢ tiene un minimo en x = —
b

7 °

[Nl

y el valor minimo es ¢ —

Demostracion
Completando cuadrados obtenemos

b
ax>+2bx+c = a<x2+2x) +c
a
2 2
. 2 b b
= a(xX"+2—x+ 5| +c——
a
b\? b?
. (x n ) 2
a
2 L. s L
Como (X + g) > 0 y como el valor minimo de esta (tltima expresion es cero,
. . 2
cuando x = fg, tenemos que el valor minimo de la cuadratica es ¢ — %. O
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La funcién cuadratica

Demostrar que si a < 0, la cuadrdtica ax® + 2bx + c tiene un maximo en x = —§

. 2
y el valor maximo es ¢ — %.
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La funcién cuadratica

Demostrar que si a < 0, la cuadratica ax® + 2bx + ¢ tiene un maximo en x = —2
G D 2
y el valor maximo es ¢ — %.

Demostracion
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La funcién cuadratica

Demostrar que si a < 0, la cuadratica ax® + 2bx + ¢ tiene un maximo en x = —2

. 2
y el valor maximo es ¢ — %.

Demostracion
Igual que antes, completando cuadrados obtenemos
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La funcién cuadratica

Demostrar que si a < 0, la cuadratica ax® + 2bx + ¢ tiene un maximo en x = —2

. 2
y el valor maximo es ¢ — %.

Demostracion
Igual que antes, completando cuadrados obtenemos

b\? b2
ax2+2bx+c—a<x+a> +cfj.
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La funcién cuadratica

Demostrar que si a < 0, la cuadratica ax® + 2bx + ¢ tiene un maximo en x = —2
bz

y el valor maximo es ¢ —

a

Demostracion

Igual que antes, completando cuadrados obtenemos
2
b b?
ax2+2bx+c—a<x+> +cfj.
a

Comoa< 0y (x+ 2)2 > 0 tenemos que
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La funcién cuadratica

Demostrar que si a < 0, la cuadratica ax® + 2bx + ¢ tiene un maximo en x = —2
bz

y el valor maximo es ¢ —

a

Demostracion

Igual que antes, completando cuadrados obtenemos
2
b b?
ax2+2bx+c—a<x+> +cfj.
a

Comoa< 0y (x+ 2)2 > 0 tenemos que

2
a<x+b> <0
a
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La funcién cuadratica

Demostrar que si a < 0, la cuadratica ax® + 2bx + ¢ tiene un maximo en x = —2

I 2
y el valor maximo es ¢ — %.

Demostracion

Igual que antes, completando cuadrados obtenemos
b\° b?
ax2+2bx+c—a<x+> +c— —.
a a
b 2
Como a <0y (x+ 2)" >0 tenemos que
b\ 2
a (X + > <0
a

y el valor mas grande de esta tiltima expresion es cero, luego la cuadratica siempre
; 2
es menor o igual a ¢ — % y toma este valor en
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La funcién cuadratica

Demostrar que si a < 0, la cuadratica ax® + 2bx + ¢ tiene un maximo en x = —2

I 2
y el valor maximo es ¢ — %.

Demostracion

Igual que antes, completando cuadrados obtenemos

b\? b2
ax2+2bx+c—a<x+> +c— —.
a a

Comoa< 0y (x+ 2)2 > 0 tenemos que
b 2
a(x+> <0
a

y el valor mas grande de esta tiltima expresion es cero, luego la cuadratica siempre

. 2
es menor o igual a ¢ — % y toma este valor en x = —g. ]
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es mdximo cuando
M= =&l
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que

X+y=2a&y=2a—x.
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que

X+y=2a&y=2a—x.

Por lo tanto
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que

X+y=2a&y=2a—x.

Por lo tanto
2

)

xy =x(2a—x)=—x*4+2ax=—(x—a) +a
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que

X+y=2a&y=2a—x.

Por lo tanto

xy = x(2a — x) = —x*> 4+ 2ax = —(x — a)® + &°,

es maximo cuando x = a y entonces
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que

X+y=2a&y=2a—x.

Por lo tanto
xy = x(2a — x) = —x*> 4+ 2ax = —(x — a)® + &°,

es maximo cuando x = a y entonces y = x = a. O

Interpretacién geométrica:
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que

X+y=2a&y=2a—x.

Por lo tanto
xy = x(2a — x) = —x*> 4+ 2ax = —(x — a)® + &°,

es maximo cuando x = a y entonces y = x = a. O

Interpretacién geométrica:
"De los rectangulos de perimetro fijo, el de mayor area es el cuadrado”.
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que
X+y=2a&y=2a—x.

Por lo tanto
xy = x(2a — x) = —x*> 4+ 2ax = —(x — a)® + &°,

es maximo cuando x = a y entonces y = x = a. O

Interpretacién geométrica:
"De los rectangulos de perimetro fijo, el de mayor area es el cuadrado”.Ya que si
x, ¥ son los lados del rectangulo, el perimetro es
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que
X+y=2a&y=2a—x.

Por lo tanto
xy = x(2a — x) = —x*> 4+ 2ax = —(x — a)® + &°,

es maximo cuando x = a y entonces y = x = a. O

Interpretacién geométrica:
"De los rectangulos de perimetro fijo, el de mayor area es el cuadrado”.Ya que si
x, y son los lados del rectdngulo, el perimetro es 2(x + y) = 4a, y su &rea es
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que
X+y=2a&y=2a—x.

Por lo tanto
xy = x(2a — x) = —x*> 4+ 2ax = —(x — a)® + &°,

es maximo cuando x = a y entonces y = x = a. O

Interpretacién geométrica:

"De los rectangulos de perimetro fijo, el de mayor area es el cuadrado”.Ya que si
x, y son los lados del rectingulo, el perimetro es 2(x + y) = 4a, y su area es xy,
que es maxima cuando
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La funcién cuadratica

Sean x,y > 0. Demostrar que si x + y = 2a, el producto xy es maximo cuando
xX=y=a.

Demostracion

Notemos que
X+y=2a&y=2a—x.

Por lo tanto
xy = x(2a — x) = —x*> 4+ 2ax = —(x — a)® + &°,

es maximo cuando x = a y entonces y = x = a. O

Interpretacién geométrica:

"De los rectangulos de perimetro fijo, el de mayor area es el cuadrado”.Ya que si
x, y son los lados del rectingulo, el perimetro es 2(x + y) = 4a, y su area es xy,
que es maxima cuando x =y = a.
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion

Notemos que
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion

Notemos que

5 a
Xy=a"&y=—.
X
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion

Notemos que

2
5 a

Xy=a"&y=—.
X

Por lo tanto
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion

Notemos que

Por lo tanto
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion

Notemos que

Por lo tanto
2

2
a a
—= = — 2
XFy=x+— (\f \/;> + 2a,

luego x + y es minimo cuando
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion

Notemos que

Por lo tanto
2

2
a a
—= = — 2
XFy=x+— (\f \/;> + 2a,

luego x + y es minimo cuando
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion

Notemos que

Por lo tanto
2

2
a a
—= = — 2
XFy=x+— (\f \/;> + 2a,

luego x + y es minimo cuando
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La funcién cuadratica

Sean x,y > 0. Demostrar que si xy = a°, la suma x + y es minima cuando
X=y=a.

Demostracion

Notemos que

Por lo tanto
2

2
a a
—= = — 2
XFy=x+— (\f \/;> + 2a,

luego x + y es minimo cuando

En consecuencia y = x = a. O
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La funcién cuadratica

Interpretacién geométrica:
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La funcién cuadratica

Interpretacién geométrica:

"De los rectangulos de drea fija, el cuadrado es el de menor perimetro”.

Ingrid Quilan' Ortega, Aroldo Pérez Pérez Desigualdades Num



La funcién cuadratica

Demostrar que la cuadratica ax®> + bx + c es positiva cuando a > 0 y el
discriminante A = b?> — 4ac < 0.
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La funcién cuadratica

Demostrar que la cuadratica ax®> + bx + c es positiva cuando a > 0 y el
discriminante A = b?> — 4ac < 0.

Demostracion
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La funcién cuadratica

Demostrar que la cuadratica ax®> + bx + c es positiva cuando a > 0 y el
discriminante A = b?> — 4ac < 0.

Demostracion

Notemos que
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La funcién cuadratica

Demostrar que la cuadratica ax®> + bx + c es positiva cuando a > 0 y el
discriminante A = b?> — 4ac < 0.

Demostracion

Notemos que

b
ax?+bx+c = a(x2+x>+c
a
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La funcién cuadratica

Demostrar que la cuadratica ax®> + bx + c es positiva cuando a > 0 y el
discriminante A = b?> — 4ac < 0.

Demostracion

Notemos que

2 2 b > b b? b?
ax“+bx+c = a|(x"+—-x|+c=alx"+-x+-—]+c——
a a 432 43
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La funcién cuadratica

Demostrar que la cuadratica ax®> + bx + c es positiva cuando a > 0 y el
discriminante A = b?> — 4ac < 0.

Demostracion

Notemos que

2 2 b > b b? b?
ax“+bx+c = a X+;X +c=a x+;x+— +c— —

432 4a
+b 2—|—c i
= a|x+ — - —
2a 4a
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La funcién cuadratica

Demostrar que la cuadratica ax®> + bx + c es positiva cuando a > 0 y el
discriminante A = b?> — 4ac < 0.

Demostracion

Notemos que

2 2 b > b b? b?
ax“+bx+c = a|(x"+—-x|+c=alx"+-x+-—]+c——
a a 432 43

= a ><+£ 2—|—C—b—2—a x+£ 2+M
B 2a 4a 2a 4a

De lo cual, observamos que
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La funcién cuadratica

Demostrar que la cuadratica ax®> + bx + c es positiva cuando a > 0 y el
discriminante A = b?> — 4ac < 0.

Demostracion

Notemos que

2 (2 b) (2 b b2) b2
ax“+bx+c = a|(x"+—-x|+c=alx"+-x+-—]+c——
a a a 4a

= a ><+£ 2—|—C—b—2—a x+£ 2+M
B 2a 4a 2a 4a

De lo cual, observamos que

ax* 4+ bx+c>0 s a>0 y A=b>—4ac<0.
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La funcién cuadratica

Demostrar que, dados a, b,c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La funcién cuadratica

Demostrar que, dados a, b, c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Demostracion
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La funcién cuadratica

Demostrar que, dados a, b, c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Demostracion

Recordemos que a, b y ¢ son las medidas de los lados de un triangulo si y solo si
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La funcién cuadratica

Demostrar que, dados a, b, c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Demostracion

Recordemos que a, b y ¢ son las medidas de los lados de un triangulo si y solo si

a+b>c, a+c>b, y b+ c > a.
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La funcién cuadratica

Demostrar que, dados a, b, c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Demostracion

Recordemos que a, b y ¢ son las medidas de los lados de un triangulo si y solo si

a+b>c, a+c>b, y b+ c > a.

Q = pa’ +qb°—pgc® =
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La funcién cuadratica

Demostrar que, dados a, b, c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Demostracion

Recordemos que a, b y ¢ son las medidas de los lados de un triangulo si y solo si

a+b>c, a+c>b, y b+ c > a.

Q = pa’+qb® — pgc® = pa® + (1 - p)b* — p(1 - p)c?

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La funcién cuadratica

Demostrar que, dados a, b, c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Demostracion

Recordemos que a, b y ¢ son las medidas de los lados de un triangulo si y solo si

a+b>c, a+c>b, y b+ c > a.

Q = pa’+qb® — pgc® = pa® + (1 - p)b* — p(1 - p)c?
= pP+ (- b — ) p+ b
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La funcién cuadratica

Demostrar que, dados a, b, c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Demostracion

Recordemos que a, b y ¢ son las medidas de los lados de un triangulo si y solo si

a+b>c, a+c>b, y b+ c > a.

Q = pa’+qb® — pgc® = pa® + (1 - p)b* — p(1 - p)c?
= pP+ (- b — ) p+ b

Q es una funcion cuadratica de p, por lo que

Ingrid QuilanVan Ortega, Aroldo Pérez Pérez Desigualdades Numéricas



La funcién cuadratica

Demostrar que, dados a, b, c > 0, se puede construir un triangulo con lados de
longitud a, b y ¢ si y solo si pa® + qb®> > pqc? para cualesquiera p, q con
p+qg=1.

Demostracion

Recordemos que a, b y ¢ son las medidas de los lados de un triangulo si y solo si

a+b>c, a+c>b, y b+ c > a.

Q = pa’+qb® — pgc® = pa® + (1 - p)b* — p(1 - p)c?
= pP+ (- b — ) p+ b

Q es una funcion cuadratica de p, por lo que

Q>O<$A:[(a2fb2fcz)2f4b2c2} <0
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La funcién cuadratica

= [a2fb27c272bc] [a2fb2fcz+2bc] <0
=
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La funcién cuadratica

= [a27b27c272bc][a2fb2fc2+2bc]<0
& [P2-(b+c)][?—(b—c)?] <0
<~
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La funcién cuadratica

[a2fb27c272bc] [a2fb2fcz+2bc] <0
(&> —(b+c)?][a>—(b—c)?)] <0
[a+b+c]la—b—c]la—b+c]la+b—¢c] <0

to o0
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La funcién cuadratica

[a2fb27c272bc] [a2fb2fcz+2bc] <0
(&> —(b+c)?][a>—(b—c)?)] <0
[a+b+c]la—b—c]la—b+c]la+b—¢c] <0
[b+c—al[c+a—b][a+b—c]>0.

to o0
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La funcién cuadratica

& [327b27c272bc][a2fb2fc2+2bc]<0
& [P2-(b+c)][?—(b—c)?] <0

& [at+b+c]la—b—c]la—b+c]la+b—c]<0
< [b+c—al[c+a—b][a+b—c]>0.

Ahora [b+c—a][c+a—b][a+b—c] >0,si
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La funcién cuadratica

& [a* = b? = c? —2bc] [a* = b? — P+ 2bc] <0
& [P2-(b+c)][?—(b—c)?] <0

& [at+b+c]la—b—c]la—b+c]la+b—c]<0
< [b+c—al[c+a—b][a+b—c]>0.

Ahora [b+c —a][c+a—b][a+ b—c] >0, si los tres factores son positivos o si
uno es positivo y dos de ellos negativos.
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La funcién cuadratica

& [a* = b? = c? —2bc] [a* = b? — P+ 2bc] <0
& [P2-(b+c)][?—(b—c)?] <0
& [at+b+c]la—b—c]la—b+c]la+b—c]<0
< [b+c—al[c+a—b][a+b—c]>0.

Ahora [b+c —a][c+a—b][a+ b—c] >0, si los tres factores son positivos o si

uno es positivo y dos de ellos negativos. Esto Ultimo es imposible, pues si por
ejemplo,
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La funcién cuadratica

& [a* = b? = c? —2bc] [a* = b? — P+ 2bc] <0
& [P2-(b+c)][?—(b—c)?] <0
& [at+b+c]la—b—c]la—b+c]la+b—c]<0
< [b+c—al[c+a—b][a+b—c]>0.
Ahora [b+c —a][c+a—b][a+ b—c] >0, si los tres factores son positivos o si
uno es positivo y dos de ellos negativos. Esto Ultimo es imposible, pues si por

ejemplo,
b+c—a<0 y c+a—b<0,

tendriamos al sumar estas desigualdades que
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La funcién cuadratica

& [a* = b? = c? —2bc] [a* = b? — P+ 2bc] <0
& [P2-(b+c)][?—(b—c)?] <0
& [at+b+c]la—b—c]la—b+c]la+b—c]<0
< [b+c—al[c+a—b][a+b—c]>0.
Ahora [b+c —a][c+a—b][a+ b—c] >0, si los tres factores son positivos o si
uno es positivo y dos de ellos negativos. Esto Ultimo es imposible, pues si por

ejemplo,
b+c—a<0 y c+a—b<0,

tendriamos al sumar estas desigualdades que ¢ < 0, lo cual es falso.
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La funcién cuadratica

& [a* = b? = c? —2bc] [a* = b? — P+ 2bc] <0
& [P2-(b+c)][?—(b—c)?] <0
& [at+b+c]la—b—c]la—b+c]la+b—c]<0
< [b+c—al[c+a—b][a+b—c]>0.
Ahora [b+c —a][c+a—b][a+ b—c] >0, si los tres factores son positivos o si
uno es positivo y dos de ellos negativos. Esto Ultimo es imposible, pues si por

ejemplo,
b+c—a<0 y c+a—b<0,

tendriamos al sumar estas desigualdades que ¢ < 0, lo cual es falso. Asi los tres
factores son necesariamente positivos. O
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La funcién cuadratica

Demostrar que si a, b,c > 0, entonces no suceden simultaneamente las
desigualdades

1 1
a(l—b)>Z, b(1—c)>Z, c(1-a)>

&l
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La funcién cuadratica

Demostrar que si a, b, c > 0, entonces no suceden simultaineamente las
desigualdades

a(lfb)>%, b(lfc)>%, c(l—a)>

Demostracion
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La funcién cuadratica

Demostrar que si a, b, c > 0, entonces no suceden simultaineamente las
desigualdades

a(lfb)>%, b(lfc)>%, c(l—a)>

Demostracion

Supongamos que ocurren simultdneamente las tres desigualdades, entonces
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La funcién cuadratica

Demostrar que si a, b, c > 0, entonces no suceden simultaineamente las
desigualdades

a(lfb)>%, b(lfc)>%, c(l—a)>

Demostracion

Supongamos que ocurren simultdneamente las tres desigualdades, entonces

1
a<l, b<l, c<1, vy a(l—b)b(l—c)c(l—a)>6—4. (7)
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La funcién cuadratica

Demostrar que si a, b, c > 0, entonces no suceden simultaineamente las
desigualdades

a(lfb)>%, b(lfc)>%, c(l—a)>

Demostracion

Supongamos que ocurren simultdneamente las tres desigualdades, entonces
1
a<l, b<l, c<1, vy a(l—b)b(l—c)c(l—a)>6—4. (7)

Por otro lado, sabemos que x(1 — x) es mdximo cuando
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La funcién cuadratica

Demostrar que si a, b, c > 0, entonces no suceden simultaineamente las
desigualdades

a(lfb)>%, b(lfc)>%, c(l—a)>

Demostracion

Supongamos que ocurren simultdneamente las tres desigualdades, entonces
1
a<l, b<l, c<1, vy a(l—b)b(l—c)c(l—a)>6—4. (7)

Por otro lado, sabemos que x(1 — x) es mdximo cuando x = % en cuyo caso
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La funcién cuadratica

Demostrar que si a, b, c > 0, entonces no suceden simultaineamente las
desigualdades

a(lfb)>%, b(lfc)>%, c(l—a)>

Demostracion

Supongamos que ocurren simultdneamente las tres desigualdades, entonces
1
a<l, b<l, c<1, vy a(l—b)b(l—c)c(l—a)>6—4. (7)

Por otro lado, sabemos que x(1 — x) es mdximo cuando x = % en cuyo caso

x(1—x)= %
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La funcién cuadratica

Demostracion

Por lo tanto x(1 — x) < 3. Luego
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La funcién cuadratica

Demostracion

Por lo tanto x(1 — x) < 3. Luego

1
a(l=b)b(1—c)e(l—a)=a(l—a)b(l —b)c(l—c) < o1
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La funcién cuadratica

Demostracion

Por lo tanto x(1 — x) < 3. Luego

1
a(l=b)b(1—c)e(l—a)=a(l—a)b(l —b)c(l—c) < o1

lo cual contradice (7).
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La funcién cuadratica

Demostracion

Por lo tanto x(1 — x) < 3. Luego

1
a(l=b)b(1—c)e(l—a)=a(l—a)b(l —b)c(l—c) < o1

lo cual contradice (7). Por lo tanto, no pueden suceder simultineamente las tres
desigualdades. O
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