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Abstract
1.	 Carbon isotope analysis (δ13C) of Daphnia resting-eggs (ephippia) in sedimen-

tary records can be used to reconstruct past carbon transfers in pelagic food 
webs in lakes. However, there may be seasonal variability of cladoceran δ13C and 
ephippia production that could affect their use as palaeoecological indicators 
of pelagic carbon transfers. This is particularly likely in stratified lakes where 
availability of different pelagic carbon sources is seasonal. In addition, there are 
currently no studies on spatial variability of ephippia δ13C in deep areas of lakes 
and its implications for sampling strategies in paleolimnological studies.

2.	 Four French lakes were sampled for over a year to evaluate seasonal variation 
of the carbon sources consumed by Daphnia using analyses of the Daphnia 
carbon isotope signature (δ13CDaphnia) and suspended organic matter signature 
(δ13Cseston). Daphnia ephippia were also collected from surface sediments at 
maximum depth in the four lakes. Ephippia signatures (δ13Cephippia) were com-
pared to the δ13CDaphnia to evaluate ephippia production periods and the implica-
tions for the use of δ13Cephippia in trophic functioning studies. In addition, spatial 
variability of δ13CDaphnia among the four lakes and the variability of δ13Cephippia in 
the deep area of one lake were assessed to determine the relevance of a single 
sampling point in the context of paleolimnological studies.

3.	 A similar pattern was observed in all four lakes: δ13CDaphnia was close to δ13Cseston 
during the summer stratification period, but δ13CDaphnia became much lower than 
δ13Cseston after the autumnal turnover. Ephippia seem to be produced either 
during the summer stratification period or after autumnal turnover depending 
on the lake. No spatial variability was observed among the sampling points in 
δ13CDaphnia in the four lakes, and δ13Cephippia seems to be spatially randomly dis-
tributed in the deep zone of the studied lake.

4.	 In the four lakes, summer δ13CDaphnia values were never below −40‰, reflecting 
mainly the consumption of phytoplankton, which in turn uses varying amounts 
of CO2 from respiration (depending on the lake). After autumnal turnover, the 
δ13CDaphnia values reached values far below −40‰, reflecting the transfer of a 
non-negligible part of C-CH4 for three of the lakes. Seasonal stratification and 
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1  |  INTRODUC TION

Stable isotope analysis of carbon is a method that has been widely 
used in recent decades for studying food webs and carbon path-
ways in aquatic ecosystems, especially in lakes (Frossard et al., 2014; 
Fry, 2006; Grey et al., 2001; Taipale et al., 2007). This approach is 
built on the principle that the isotopic carbon signature of an organ-
ism (δ13C) closely reflects the isotopic signature of its diet (DeNiro 
& Epstein, 1978). Delta 13C analysis of different trophic components 
of lake food webs thus allows the significance of the different car-
bon pathways to be assessed. Two carbon pathways that commonly 
occur in lakes are the fixation of CO2 by autochthonous and alloch-
thonous photosynthetic organisms and oxidation of biogenic CH4 
by methane-oxidising bacteria (MOB). Numerous studies have re-
ported the δ13C value of phytoplankton in lakes to range from −25‰ 
to −40‰ (France, 1995; Masclaux et al., 2013; Peterson & Fry, 1987; 
Vuorio et al., 2006; Wang et al., 2013) depending on CO2 origin and 
fractionation mechanisms (Bade et al., 2004, 2006; Gu et al., 2006). 
Other studies have reported that the δ13C of terrestrial derived 
materials from catchment is similar to the δ13C value of C3 plants, 
ranging from −25‰ to −29‰ (France,  1995; Grey et al.,  2001; 
O’Leary, 1988; Peterson & Fry, 1987). In contrast, biogenic methane 
is highly depleted in 13C, resulting in δ13C values ranging from −80‰ 
to −50‰ (Jedrysek, 2005). Fractionation by MOB further reduces 
the signature (Templeton et al., 2006), making the biogenic CH4 sig-
nature highly characteristic and distinct from the signature resulting 
from CO2 fixation by phytoplankton or catchment vegetation.

Stable isotope analysis is therefore a widely used tool in pa-
leolimnological studies to investigate past changes in the trophic 
functioning of lakes. Delta 13C signatures of chitinous invertebrate 
remains retrieved from lake sediments are increasingly used to re-
construct past changes in carbon sources and pathways in food 
webs. Some studies have focused on benthic invertebrate remains, 
particularly chironomid larvae remains, to reconstruct these past 

changes in carbon pathways (Belle et al., 2014, 2017; Belle, Millet, 
et al.,  2016; Frossard et al.,  2014; van Hardenbroek et al.,  2010). 
Other recent studies have suggested that additional information can 
be obtained from analyses of the isotopic signatures of zooplank-
ton remains (Frossard et al., 2014; Schilder, Bastviken, et al., 2015; 
Schilder, Tellenbach, et al.,  2015; van Hardenbroek et al.,  2013, 
2014; Wooller et al., 2012). One of the most commonly used types 
of zooplankton remains are ephippia, the resting-eggs produced by 
Daphnia and other cladocerans. Daphnia often dominate zooplank-
ton communities in lakes (Lampert & Kinne, 2011), so their chitin-
ous ephippia are therefore found abundantly in most sedimentary 
records and they remain well preserved with time (Szeroczyńska & 
Sarmaja-Korjonen, 2007). Moreover, the carbon isotopic signature 
of Daphnia resting eggs reflects the signature of Daphnia at the time 
of egg production (Perga,  2011; Schilder, Bastviken, et al.,  2015a; 
Schilder, Tellenbach, et al.,  2015). As a result, δ13C analysis of 
Daphnia ephippia is a valuable tool for reconstructing past carbon 
pathways in pelagic food webs in lakes.

Daphnia is a filter-feeding cladoceran whose diet is mainly 
based on phytoplankton and detritus (Lampert & Kinne,  2011; 
Perga et al., 2008). In some lakes, a significant part of the carbon 
consumed by Daphnia (and zooplankton in general) may come from 
methane (CH4) via the consumption of MOB (Bastviken et al., 2003; 
Kankaala, Taipale, et al., 2006; Taipale et al., 2007, 2008, 2009) and 
can be transferred to ephippia (Schilder, Bastviken, et al.,  2015; 
van Hardenbroek et al.,  2013). Trends of ephippia δ13C in sedi-
mentary records can then be interpreted as the result of changes 
in the contribution of different carbon sources in the Daphnia diet 
or changes of phytoplankton δ13C (van Hardenbroek et al., 2014), 
and to some extent interpreted as a proxy for methane transfers 
in pelagic food webs (Morlock et al., 2017; Rinta et al., 2016; van 
Hardenbroek et al.,  2013; Wooller et al.,  2012). However, few 
studies have questioned the implications of seasonal variability of 
cladoceran δ13C and the implications of the timing of the period 

turnover mechanisms seem to influence the availability of carbon sources in the 
pelagic compartment of the four lakes.

5.	 This study shows that the timing of ephippia production affects the information 
provided by δ13Cephippia due to seasonal differences in the mechanisms (stratifi-
cation, autumnal turnover) that determine which carbon sources are available 
in the pelagic compartment. Therefore, using δ13Cephippia to study past pelagic 
transfers of carbon in stratified lakes may entail uncertainty if used alone and 
requires multi-proxy studies. Finally, δ13Cephippia appear to be homogeneously 
distributed in the deepest area of a medium-sized, single basin. A single core 
retrieved from the deepest part of the lake should therefore provide a repre-
sentative sample of the ephippia produced in a lake.

K E Y W O R D S
carbon cycle, Cladocera, methane, pelagic food web, stable carbon isotope
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when ephippia are produced for their use as paleoecological indi-
cators of pelagic carbon transfers (Morlock et al., 2017; Schilder 
et al., 2017; van Hardenbroek et al., 2018). These questions seem 
crucial to consider, particularly for stratified lakes where methane 
availability is seasonal (Taipale et al., 2008, 2009) and fluctuations 
of Daphnia δ13C may be substantial (Morlock et al., 2017; Perga & 
Gerdeaux, 2006; Smyntek et al., 2012) as a result of variation in 
both phytoplankton δ13C and the availability of different carbon 
sources. In addition, there are currently no studies of the spatial 
variability of ephippia δ13C in deep areas of lakes or on the implica-
tions of this variability for sampling strategies in paleolimnological 
studies.

This study aims to assess the seasonal and spatial variability of 
the carbon sources consumed by Daphnia to improve our under-
standing of the information provided by the δ13C of Daphnia and 
their ephippia in neo- and paleolimnological approaches. For this 
purpose, we first sampled four French lakes for more than a year to 
study the seasonal variability of Daphnia signatures (δ13CDaphnia) and 
signatures of suspended organic matter (δ13Cseston) to evaluate the 
carbon sources consumed by Daphnia. Sediment was also sampled 
at the deepest point of each lake to collect ephippia and measure 
their δ13C signatures, allowing us to evaluate their period of maximal 
production during the year. Seasonal variations in the carbon isoto-
pic signature of Daphnia are expected due to the seasonal availability 
of the different carbon sources for pelagic consumers in stratified 
lakes (Morlock et al., 2017; Taipale et al., 2008, 2009). As a result of 
the point-in-time nature of ephippia production by Daphnia (Conde-
Porcuna et al., 2014), the ephippia δ13C may then potentially reflect 
the δ13C values of the carbon sources consumed by the Daphnia 
source population over a limited time period. The implication of the 
timing of ephippia production by Daphnia during the year on the 
information provided by their δ13C was then assessed. In a second 
step, we studied the spatial variability of δ13CDaphnia in the four lakes 
as well as the variability of δ13Cephippia in the deep zone of one of the 
four lakes to determine the relevance of a single sampling point in 
the context of paleolimnological studies.

2  |  MATERIAL AND METHODS

2.1  |  Study sites

Four lakes (Figure 1) that covered different morphological proper-
ties (water depth and area), elevations (Table 1), and catchment area 
characteristics (land cover and geological substratum) were chosen 
for this study. Lakes Remoray and Bonlieu are in the Jura Mountains 
in eastern France (Figure 1). The bedrock in this region is composed 
of carbonate. Lake Remoray is a medium-sized dimictic lake with an 
area of 95 ha, and the water depth reaches 28 m. Forests (46.7%) 
and agricultural areas (42.5%) dominate the catchment basin of this 
lake. The rest of the catchment is divided into 5.5‰ peat bogs, 2.6% 
wetlands, and 2.7% urban areas (Corine Land Cover, 2006). Lake 
Bonlieu is a smaller lake (22 ha) with a maximum depth of 10 m and 

a catchment area covered by forests (96.9%) and wetlands (3.1%; 
CLC, 2006).

Lakes Longemer and Retournemer are located in the Vosges 
Mountains in north-eastern France (Figure  1). The bedrock in this 
region is mostly sandstone and granite. Lake Longemer is a medium-
sized lake with an area of 76 ha, and the water depth reaches 30 m. 
The catchment area of the lake is mainly covered by forests (91.8%). A 
total of 6.3% of the catchment is covered by urban areas and 1.8% is 
covered by agricultural land (CLC, 2006). Lake Retournemer is a small 
lake of 5.25 ha with a maximum depth of 11.5 m. The catchment area 
of this lake is almost exclusively forested (96%; CLC, 2006).

2.2  |  Sample collection

Eight to 12 field campaigns were carried out from March 2018 to 
August 2019. For each field campaign, vertical profiles of tempera-
ture, and dissolved oxygen ([O2]) and chlorophyll a concentrations 
([Chla]) were performed along the whole water column using a multi-
sensor probe (EXO1 probe, YSI, Yellow Springs USA) at the point of 
maximum depth (Zmax; Figure 1). Lake transparency was measured 
using a Secchi disk at Zmax and the depth of the euphotic zone was 
determined as 2.5 × the Secchi transparency.

For sampling of seston and Daphnia, multiple sampling points 
were made for each lake. Three sampling points were defined for 
lakes Remoray and Longemer (Figure 1), all located in the profundal 
zone; one point was located at Zmax of each lake. For lakes Bonlieu 
and Retournemer, which are smaller, two sampling points were de-
fined (Figure 1), also located in the deep areas of the lakes, one of 
which was located at Zmax. A vertically integrated sample of zoo-
plankton was taken across the euphotic zone at each sampling point 
with a 200-μm mesh plankton net. The samples were frozen after 
each field campaign and stored at −20°C. Seston were also collected 
across the euphotic zone at each sampling point with a 5-L integrat-
ing water sampler (IWS, Hydro-bios Apparatebau).

In lakes Bonlieu, Retournemer, and Longemer, a surface sediment 
sample was collected at the deepest point using a 90-mm-diameter 
gravity corer (UWITECH, Mondsee Austria) to collect Daphnia 
ephippia. Only the first 2 cm were sampled to collect only recent 
ephippia, and two cores were performed to obtain enough ephippia 
for isotope analysis. In Lake Remoray, 30 sediment samples were 
collected in the deep area following the same method to study the 
spatial variability of δ13Cephippia. A random strategy was used to gen-
erate the coordinates of the 30 sampling points.

2.3  |  Sample preparation and δ13C analyses

In the laboratory, the zooplankton samples were thawed, and the 
Daphnia spp. were manually sorted under a binocular microscope 
without species differentiation. For each sample, a minimum of 20 
Daphnia were picked up to obtain a minimum dry weight of 0.07 mg 
required for isotope analysis.
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The integrated water samples were prefiltered with a 200-μm 
mesh filter to remove large particles and most of the zooplankton. 
The seston samples were filtered onto pre-combusted GF/F filters 
(Whatman™, 0.7-μm mesh) immediately after sampling.

The sediments were passed through a 120-μm mesh sieve, and 
ephippia were thereafter carefully handpicked under a stereomi-
croscope. The ephippia of Daphnia were selected according to the 
description provided by Vandekerkhove et al. (2004). The number of 
ephippia analysed per sample varied between four and 33 depend-
ing on their abundance in the sediment of each lake.

All the samples were exposed to 10% HCl solution for carbonate 
removal, rinsed three times with demineralised water, and put into 
ultra-clean tin capsules. The samples were then dried at 60°C in an 
oven for 2 days.

The stable isotope analyses of carbon were performed using an 
isotope ratio mass spectrometer interfaced with an elemental anal-
yser (EA-IRMS) at INRA Nancy (Champenoux, France). The isotope 
ratios were expressed in the delta notation with Vienna Pee Dee 
Belemnite as the standard: δ13C (‰)  =  (Rsample/Rstandard − 1) 
× 1,000, where R =  13C/12C. The replication of samples measured 

F I G U R E  1  Location, bathymetry and sampling points of Lake Remoray (a), Lake Bonlieu (b), Lake Longemer (c), and Lake Retournemer (d), 
and location of the lakes in France (e). The isobaths of bathymetry are plotted on a 5-m pitch. Sampling points are represented by grey dots. 
Maps are projected according to WGS84/pseudo-Mercator system
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TA B L E  1  Characteristics of the studied lakes

Lake x (m) y (m) Depth (m) Lake area (ha) Altitude (m) [Chla]mean [Chla]max

Remoray 697,335 5,904,779 28 85 850 2.5 4

Bonlieu 653,804 5,874,864 10 17 790 4.8 25

Longemer 773,800 6,118,688 30 5 735 4.4 15.6

Retournemer 777,412 6,116,424 11 76 780 8.2 58.2

Note: x and y are based on the WGS84 coordinate system. Chlorophyll a concentrations ([Chla]mean and [Chla]max) are expressed in μg/L and are 
calculated based on summer stratification data of [Chla].
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on an internal standard gave analytical errors of ±0.13‰ (n = 11) 
for the Daphnia samples, ±0.06‰ (n = 11) for the seston samples, 
and ±0.10‰ (n = 16) for the ephippia of lakes Bonlieu, Retournemer, 
and Longemer. The analytical error for the study of the spatial vari-
ability in δ13Cephippia in Lake Remoray was ±0.06‰ (n = 7).

2.4  |  Data analyses

Spearman’s correlation method was used for each lake to assess the 
relationship between δ13Cseston and δ13CDaphnia without differentiat-
ing among the different sampling points. The normality of the vari-
ables was tested prior to the analysis using the Shapiro–Wilk test. As 
the data did not fit a normal distribution, Spearman’s non-parametric 
rank correlation test was used, and Spearman’s correlation coeffi-
cient (ρ) and the p-value were calculated.

The δ13C data were then separated into two distinct groups for 
each of the four lakes: data obtained during the summer stratifica-
tion period and data obtained during the winter period. The summer 
stratification period is characterised by total or partial stratification 
of the water column, while the winter period is defined as the period 
when the water column is not stratified, that is the period lasting 
from the complete mixing of the water column in late autumn/early 
winter to the stratification of the water column in spring. These two 
periods were determined based on the temperatures and oxygen 
saturation profiles measured during the monitoring of the four lakes. 
Non-parametric tests were then used to assess the correlations and 
differences between δ13CDaphnia and δ13Cseston according to the sam-
pling seasons.

Non-parametric tests for paired samples were performed to 
compare the δ13C values obtained at the different sampling points 
on each lake. Normality tests of residuals and homoscedasticity tests 
of the variances were previously performed with the Shapiro–Wilk 
test and Bartlett’s test, respectively. As the variables did not satisfy 
the conditions, non-parametric tests were used. Friedman variance 
analysis followed by the associated multiple comparison test was 
used for lakes Remoray and Longemer, which each had three sam-
pling points. For lakes Bonlieu and Retournemer, which had only two 
sampling points each, the Mann–Whitney–Wilcoxon non-parametric 
rank correlation test for paired samples was used.

The spatial distribution of δ13Cephippia was analysed with spatial 
correlograms to detect spatial structures. A spatial correlogram tests 
the null hypothesis of spatial randomness, meaning that the values 
observed at one location do not depend on the values observed 
at different distance classes. Spatial correlograms are plots show-
ing spatial autocorrelation coefficients against distance classes. 
This type of plot allows the examination of the shape of the spatial 
structure of data. The simulated spatial patterns produced by Kraan 
et al. (2009) were used to interpret the spatial correlogram obtained 
in this study. Moran’s index (I; Moran, 1950) was used to quantify 
spatial autocorrelation. Moran’s I was computed for all samples for 
each class interval. The optimal number of class intervals was deter-
mined with the Sturges method (Sturges, 1926; class interval = R/

(1 + 3.322 × log[n]), where R is the range of Euclidean geographic dis-
tances between samples and n is the number of samples). Moran’s I 
varies from −1 to 1, with a value of 0 indicating the absence of spatial 
autocorrelation, a negative value indicating a negative autocorrela-
tion and a positive value indicating a positive spatial autocorrelation. 
The statistical significance of Moran’s I was tested to highlight the 
distance classes that showed significant differences against the ran-
domisation assumption.

The Automap package (Hiemstra et al.,  2009) was used to 
perform automatic ordinary kriging of the spatial variability of 
δ13Cephippia in the deep area of Lake Remoray. Different models were 
tested during automatic variogram fitting, and the best model was 
automatically used for kriging. In this case, the selected model was 
Matern, M. Stein’s parameterisation. This variogram model was used 
to make predictions at the different locations at which ordinary krig-
ing was performed. The results of this spatial interpolation are data 
of predicted values, variances and standard deviations at different 
locations in the deep area of the lake. Kriging maps showing the pre-
dictions and standard deviations were edited with these data.

All statistical analyses and figure creations were performed 
using R 3.5.1 statistical software (R Core Team, 2019).

3  |  RESULTS

3.1  |  Physico-chemical monitoring

3.1.1  |  Thermal regimes

Clear summer stratification was observed in the four lakes. Even 
though reverse winter stratification is not apparent in Figure 2 due 
to the lack of monitoring data, all four lakes were frozen in winter. 
Based on the temperature and oxygen concentration profiles, the 
waters of lakes Bonlieu and Retournemer mixed at the end of au-
tumn in November, whereas the water columns of lakes Remoray 
and Longemer started to mix in early December. The water columns 
of the four lakes mixed again at the beginning of spring when the 
surface waters warmed up in April. This mixing pattern is typical of 
dimictic lakes. The maximum surface water temperatures measured 
were 23.3°C for Lake Remoray in July 2018, 20°C in June 2018 for 
Lake Bonlieu, 21.4°C in August 2018 for Lake Longemer, and 19.2°C 
in June 2018 for Lake Retournemer. The bottom temperatures var-
ied from 4 to 5.6°C in Lake Remoray, 4.8 to 5.9°C in Lake Bonlieu, 4.2 
to 4.8°C in Lake Longemer, and 4.3 to 6.4°C in Lake Retournemer.

3.1.2  |  Seasonal variations of the dissolved oxygen 
concentration

Strong seasonal variations in the O2 saturation of the water col-
umn were observed (Figure  3). In the four lakes, the deep waters 
were O2-depleted during the summer stratification period, with 
varying thicknesses of the anoxic layers (Figure 3). The hypolimnetic 
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waters were then re-oxygenated owing to the autumnal turnover. 
For Lake Remoray, complete anoxia was observed in deep waters 
as early as July. This anoxic layer spread throughout the summer 
season. The oxygen saturation dropped under 10% below 16.5  m 
depth at the end of the summer stratification period. Constraining 

oxygen conditions were also observed at Lake Bonlieu, where the 
deepest layers became anoxic as early as May. In late summer, O2 
saturation in Lake Bonlieu had dropped under 10% below a depth 
of 9 m. Lake Longemer had the least developed anoxic layer among 
the four lakes. Oxygen saturation at the end of the stratification 

F I G U R E  2  Heatmap of water temperature measured on Zmax location in water column of (a) Lake Remoray, (b) Lake Bonlieu, (c) Lake 
Longemer, and (d) Lake Retournemer over the monitoring period in 2018–2019. The dotted lines indicate the monitoring dates. White dots 
refer to the depth of the euphotic zone (Secchi depth × 2.5)
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period was below 10% at depths below 23 m. Lake Retournemer was 
the lake with the most oxygen depleted conditions. Indeed, during 
the summer period, the hypoxic layer extended to more than half of 
the water column, with the oxygen saturation dropping below 10% 
under 4.5 m in August.

The water columns of lakes Remoray and Longemer appeared 
to be mixed very late in autumn (Figure  3a,c). Indeed, during 
the last 2018 campaigns for these two lakes, conducted in early 
December and late November, the water columns were barely be-
ginning to mix. Mixing was therefore achieved for these two lakes 
in December. The absence of other surveys during the 2018–2019 
winter season makes the interpolation plot imprecise during this 
period, and the stretching of the stratification period to January in 
these two lakes as shown in Figure 2 is an artefact of the plotting 
method.

3.1.3  |  Seasonality of chlorophyll a 
concentrations and trophic status

The chlorophyll a concentrations ([Chla]) measured with the multi-
sensor probe appeared to be heterogeneous among the lakes 
(Figure  4). In all four lakes, phytoplankton blooms were observed 
in spring, and in lakes Remoray and Bonlieu a second phytoplank-
ton bloom occurring during autumn. However, the autumnal bloom 
at Lake Remoray came later (December 2019) than that of Lake 
Bonlieu (October 2019) and was considerably smaller. Considering 
the results of [Chla]mean and [Chla]maximum (Table 1), Lakes Remoray, 
Bonlieu, and Longemer can be categorised as mesotrophic, while 

Lake Retournemer can be categorised as eutrophic according to the 
OECD lake trophic classification (1982).

3.2  |  Spatial variability in carbon stable 
isotope signatures

3.2.1  |  Spatial variability of δ13CDaphnia and δ13Cseston

We did not observe any variability in δ13CDaphnia among the differ-
ent sampling points in any of the four studied lakes (Friedman test: 
p-value = 0.529 and 0.311 for lakes Remoray and Longemer, respec-
tively; Wilcoxon test: p-value = 0.625 and 0.218 for lakes Bonlieu and 
Retournemer, respectively). Very weak or no spatial variability in the 
measured δ13Cseston values was observed (depending on the lake). The 
Friedman test indicated significant differences in δ13Cseston among the 
three sampling points in Lake Remoray (p-value = 0.030). Nevertheless, 
when paired comparisons were performed using the friedmanmc mul-
tiple comparison test and the p-values were adjusted accordingly, 
there was no significant difference. The Friedman test performed for 
Lake Longemer indicated no significant differences in δ13Cseston among 
the three sampling points (p-value = 0.606). Wilcoxon’s test for paired 
samples, when performed on the measured δ13Cseston in Lake Bonlieu, 
suggested that significant differences in δ13Cseston existed between 
the two sampling points (p-value = 0.013). However, the deviation was 
small, and the mean δ13Cseston was 0.73‰ lower at the Zmax point 
than at the other point. Finally, in Lake Retournemer, no significant 
differences in δ13Cseston were found between the two sampling points 
(p-value = 0.468) according to Wilcoxon’s test.

F I G U R E  4  Heatmap of chlorophyll a concentrations ([Chla]; μg/L) measured on Zmax location in water column of (a) Lake Remoray, (b) Lake 
Bonlieu, (c) Lake Longemer, and (d) Lake Retournemer over the monitoring period in 2018–2019. The dotted lines indicate the monitoring 
dates
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3.2.2  |  Spatial variability of δ13Cephippia

The δ13Cephippia in the 30 surface sediment samples of Lake Remoray 
ranged from −38.6‰ to −34.9‰ and averaged −37.1 ± 0.8‰. A 
very weak spatial gradient was observed on the prediction map of 
the kriging model (Figure 5). This small gradient must be placed in 
the context of the large standard error associated with the kriging 
model (0.9‰), reflecting a rather random distribution of δ13Cephippia 
values in space and low spatial autocorrelation. Moran’s correlogram 
showed fluctuating Moran’s I values for different distance classes, 
ranging from −0.44‰ to 0.16‰ (Figure 6), and weak or no spatial au-
tocorrelation for the different distance classes. However, for points 
with distances greater than 500 m, the Moran’s I values were more 
negative than those obtained for pairs of points with shorter dis-
tances. This observation confirmed the very low gradient observed 
on the kriging prediction map (Kraan et al.,  2009). Nevertheless, 

the p-values associated with the indices did not reveal significant 
autocorrelation for each distance class (p-value > 0.05), indicating a 
random spatial distribution of the δ13Cephippia values observed in the 
deep area of Lake Remoray.

3.3  |  Seasonal variability in carbon stable 
isotope signatures

3.3.1  |  Seasonal variability of δ13Cseston and 
δ13CDaphnia

Daphnia and seston δ13C showed strong seasonal variation in the four 
lakes. The δ13Cseston may vary up to 10 ‰ during the seasonal cycle 
depending on the lakes (Figure 7) with values ranging from −30‰ to 
−41‰ for lakes Remoray, Bonlieu, and Retournemer (Figure 7a,b,d). 

F I G U R E  5  (a) Map of Lake Remoray showing δ13Cephippia spatial data predicted by the kriging model. (b) Map of the standard error of 
predicted values of δ13Cephippia calculated by the kriging model. For both maps, lake is represented by the solid outline, the deep zone of the 
lake is represented by the dashed line, and each sampling point is marked by a cross
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Lake Longemer presented the least 13C-depleted δ13Cseston values 
among the four lakes studied during the whole sampling period, with 
value ranging from −27.6‰ to −36.4‰. The δ13CDaphnia measured 
in the four lakes also varied considerably during the annual survey, 
with a marked decrease of up to more than 10‰ between summer 
stratification and winter periods (Figure 7). The Daphnia sampled in 
winter are particularly 13C-depleted in lakes Remoray, Bonlieu, and 
Retournemer, with minimum δ13CDaphnia values lower than or equal 
to −42‰ (Figure 7a,b,d). Lake Longemer had the least 13C-depleted 
Daphnia samples among the four lakes studied during the whole 
sampling period, especially in winter with minimal δ13CDaphnia value 
of only −39.1‰ (Figure 7c).

3.3.2  |  Relationship between δ13Cseston and 
δ13CDaphnia

When considering the δ13C data of all sampling points and dates, 
Spearman’s correlation showed significant positive correlations 
between δ13Cseston and δ13CDaphnia in Lake Remoray (ρ  =  0.37, p-
value  =  0.039, n  =  33), Lake Bonlieu (ρ  =  0.64, p-value  =  0.002, 
n = 20), Lake Longemer (ρ = 0.53, p-value = 0.011, n = 22) and Lake 
Retournemer (ρ = 0.6, p-value = 0.026, n = 14). Despite these strong 
correlations, the mean difference between δ13Cseston and δ13CDaphnia 
(Δ13Cses-daph = δ13Cseston − δ13CDaphnia) strongly varied with the sea-
son. The δ13CDaphnia values were close to the δ13Cseston values during 
the summer stratification period, with signatures enriched in 13C, 
whereas after the autumnal turnover, the δ13CDaphnia values moved 
away from the δ13Cseston values to reach much lower values. During 
the summer stratification period, the Δ13Cses-daph values were, on 
average, 1‰ for Lake Remoray, −0.4‰ for Lake Bonlieu, −0.2‰ for 
Lake Longemer, and 1.7‰ for Lake Retournemer, whereas in win-
ter, these values reached 5.6‰ for Lake Remoray, 4.9‰ for Lake 
Bonlieu, 2.6‰ for Lake Longemer, and 11.3‰ for Lake Retournemer.

The limited availability of winter data prevented us from assess-
ing the correlations between δ13Cdaphnia and δ13Cseston according to 
the sampling season (i.e., the summer stratification period and winter 
period) for each lake individually. Consequently, these analyses were 
performed on the whole dataset without differentiation among the 
lakes (Figure 8). A positive correlation was observed between δ13C-

daphnia and δ13Cseston during summer (Spearman’s correlation test, 
ρ = 0.78, p-value < 0.001, n = 70). In winter, we also found a signifi-
cant positive correlation between δ13Cdaphnia and δ13Cseston (Spearman, 
ρ = 0.59, p-value = 0.017, n = 16) but with a lower correlation coeffi-
cient than that found for the summer period. Furthermore, in summer, 
the pairs of values were distributed along a 1:1 line, in contrast to the 
winter values, in which the δ13CDaphnia values were clearly lower than 
the δ13Cseston values (Figure  8). Indeed, according to the Wilcoxon 
test for paired samples, the summer signatures of Daphnia were not 
significantly different from the signatures of seston (p-value = 0.154, 
n = 70), as opposed to the winter values, for which the Wilcoxon test 
for paired samples indicated that the signatures of seston were signifi-
cantly different from the those of Daphnia (p-value < 0.001, n = 16).

3.3.3  |  Production period and δ13Cephippia

In the recent sediments collected in Lake Remoray, the δ13Cephippia 
values ranged from −38.6‰ and − 34.9‰ and averaged 
−37.1 ± 0.8‰. For the three other lakes, the δ13C values of ephippia 
(δ13Cephippia) collected at the surface sediment of the deepest points 
were − 46.0‰ for Lake Bonlieu, −36.8‰ for Lake Retournemer, 
and − 32.9‰ for Lake Longemer.

As δ13Cephippia reflects the δ13CDaphnia value at the time the ephip-
pia were produced (Morlock et al.,  2017; Perga,  2011; Schilder, 
Bastviken, et al.,  2015), we can deduce the most likely period of 
ephippia production for each lake based on the δ13CDaphnia measured 
during monitoring. Ephippia sampled on Lake Remoray seemed to 
be produced between August and November at the end of the strat-
ification period. Ephippia collected on Lake Retournemer seemed to 
be produced before the autumnal turnover, between September and 
October. Ephippia sampled on Lake Longemer seemed to be pro-
duced at the late end of the stratification period, around December. 
In contrast to the other lakes studied, ephippia from Lake Bonlieu 
seemed to be produced from late autumn to early winter (after the 
autumnal turnover).

4  |  DISCUSSION

Based on the physico-chemical monitoring and surveys of the 
δ13C values of Daphnia and seston conducted in the four lakes, we 
identified two distinct periods characterised by contrasting pe-
lagic trophic functioning. During the summer stratification period, 
the δ13CDaphnia values were close to the δ13Cseston values. During 
winter, after the autumnal turnover, δ13CDaphnia moved away from 
δ13Cseston to become more negative. More 13C-enriched δ13CDaphnia 
values were always observed during the summer stratification pe-
riod, while more 13C-depleted values were always observed during 
the winter period.

4.1  |  Summer δ13Cseston and δ13CDaphnia

4.1.1  |  Controlling factors of the δ13C signature of 
seston during the summer stratification period

During summer stratification, the δ13Cseston values ranged from 
−27.6‰ to −39.8‰ in the four lakes. These observed signatures 
correspond with those expected for phytoplankton according to the 
literature, which usually reports values between −25‰ and − 40‰ 
(France, 1995; Masclaux et al., 2013; Peterson & Fry, 1987; Vuorio 
et al.,  2006; Wang et al.,  2013). Furthermore, our [Chla] results 
reflects significant phytoplankton biomass during spring and sum-
mer. We can thus conclude that in summer, the δ13C of seston 
largely reflected the δ13C of phytoplankton, even though other 
sources undoubtedly contribute to seston, such as allochtho-
nous detritus, which has overlapping δ13C ranging from −25‰ to 
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−29‰ (France, 1995; Grey et al., 2001; O’Leary, 1988; Peterson & 
Fry, 1987) or bacterial biomass, such as MOB, which can be highly 
13C depleted (Templeton et al.,  2006). However, differences were 
apparent among the studied lakes. Lakes Remoray, Bonlieu, and 
Retournemer had lower summer mean δ13Cseston (−36.7‰, −36.4‰, 
and −33‰, respectively) compared to Lake Longemer (−29.7‰). 
Disparities between lakes in the proportion of phytoplankton, bac-
terial biomass, and allochtonous detritus constituting the seston may 
explain in part the differences of δ13Cseston between the four lakes. 
It is also likely that these inter-lake variations in δ13Cseston are the 
result of differences in the isotopic signature of phytoplankton. The 
two main factors influencing the signature of phytoplankton are: (1) 
the intensity of isotopic fractionation performed by phytoplankton, 
which depends on DIC availability and, indirectly, the growth rate of 
the phytoplankton (Bade et al., 2004, 2006; Gu et al., 2006; Laws 
et al., 1995; Lehmann et al., 2004; Smyntek et al., 2012); and (2) the 
dissolved inorganic carbon (DIC) signature. An increase in phyto-
plankton production may lead to an increase in phytoplankton sig-
natures (Gu et al., 2006; Lehmann et al., 2004). Indeed, in the case of 
low DIC availability in the water column, the 13C discrimination per-
formed by phytoplankton is less important, leading to a 13C enrich-
ment of the phytoplankton signature (Farquhar et al.,  1989; Fogel 
et al., 1992). The isotopic signature of phytoplankton is also strongly 
dependent on the relative contributions of atmospheric CO2 disso-
lution, calcium carbonate dissolution (for the Jura lakes), and CO2 
released by respiration to DIC. High respiration rates in the water 
column led to a 13C-depleted DIC signature (Fry, 2006). Due to the 
negligible fractionation process during respiration (Degens,  1969), 
the DIC resulting from respiration has a δ13C value equivalent to the 
degraded organic matter (OM). However, due to the fractionation 

process occurring during photosynthesis, the δ13C of OM is lower 
than the δ13C of the fixed DIC (Raven,  1996). DIC resulting from 
OM respiration has then a δ13C value substantially lower than DIC 
resulting from atmospheric CO2 and carbonate dissolution (DeNiro 
& Epstein,  1978; Keough et al.,  1996). Therefore, the more that 
phytoplankton use respiration-derived CO2 over atmospheric and 
carbonate origin DIC, the more negative its δ13C value will be. The 
particularly low summer δ13C measured in lakes Bonlieu, Remoray, 
and Retournemer could therefore indicate strong respiratory activ-
ity in the epilimnion in summer. The important respiratory activities 
in these three lakes may be supported by high phytoplankton pro-
duction linked to eutrophication and/or significant allochthonous 
inputs (Frossard et al., 2014; Leigh & del Giorgio, 2008). Significantly 
higher δ13Cseston values measured in Lake Longemer compared to the 
other three lakes may indicate the use of less 13C-depleted DIC by 
phytoplankton for photosynthesis and/or a higher proportion of al-
lochthonous detritus in seston, which has a δ13C range close to those 
observed in this lake (−25‰ to −29 ‰; O’Leary, 1988; France, 1995; 
Grey et al., 2001; O’Leary, 1988; Peterson & Fry, 1987).

4.2  |  Origin of carbon consumed by Daphnia 
in summer

Throughout the summer stratification period, the δ13CDaphnia values 
were very close to the δ13Cseston values in all four lakes studied. The 
slight differences found between the signatures of Daphnia and 
seston (averaging 0.4‰ during the summer stratification period) 
are similar to those already reported in the literature (del Giorgio 
& France, 1996; Grey et al., 2000; Masclaux et al., 2014; Morlock 

F I G U R E  7  The δ13C values of Daphnia (δ13CDaphnia) and seston (δ13Cseston) for the different sample locations over the monitoring period of 
(a) Lake Remoray, (b) Lake Bonlieu, (c) Lake Longemer, and (d) Lake Retournemer. The δ13CDaphnia values are represented by full symbols, the 
smoothed curve adjusted by local regressions associated with δ13CDaphnia values is represented by a full line; δ13Cseston values are represented 
by open symbols, the smoothed curve associated is represented by a dashed line; the horizontal dashed red line represents the value of 
δ13Cephippia collected in the deep zone. The grey background symbolises summer stratification periods

F I G U R E  8  Distribution all data of 
δ13CDaphnia as a function of δ13Cseston 
for summer and winter period. Summer 
values are represented by open symbols. 
Winter values are represented by full 
symbols. The dotted line represents 
f(δ13CDaphnia) = 1 × δ13Cseston, all dots 
to the right of this line in the grey area 
have δ13CDaphnia greater than δ13Cseston, 
all dots to the left in the white area have 
δ13CDaphnia lower than δ13Cseston
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et al., 2017; Schilder et al., 2017). At that time of the year, seston 
is mainly composed of phytoplankton, and it is likely that most of 
the carbon assimilated by Daphnia comes from phytoplankton dur-
ing this period, even if we cannot totally exclude other food sources.

In lakes Remoray, Bonlieu, and Retournemer, Daphnia seems 
to consume a non-negligible portion of carbon derived from res-
piration. In contrast, the higher δ13C measured on Lake Longemer 
during the summer stratification period potentially reflects the use 
by Daphnia of a lower proportion of respiration derived carbon and 
a higher proportion of atmospheric carbon fixed by phytoplankton 
and/or catchment vegetation compared to the other three lakes.

4.3  |  Winter shift of the carbon source in the 
Daphnia diet

After water column mixing, the δ13CDaphnia values in lakes Remoray, 
Bonlieu, and Retournemer are substantially lower than the signa-
tures of allochthonous detritus and phytoplankton (−25‰ to −40‰) 
reported in the literature (France, 1995; Grey et al., 2001; Masclaux 
et al., 2013; O’Leary, 1988; Peterson & Fry, 1987; Vuorio et al., 2006; 
Wang et al., 2013). Moreover, the differences between δ13CDaphnia 
and δ13Cseston increased in winter. At this time of year, Daphnia would 
assimilate a carbon source not or only partially sampled in our study.

Pronounced summer hypolimnetic anoxia was observed in lakes 
Remoray, Bonlie,u and Retournemer, reflecting important OM deg-
radation activities. Under such anoxic conditions, a major part of or-
ganic matter degradation is carried out by methanogenic Archaea, 
leading to the production of methane (Capone & Kiene, 1988; Rudd & 
Hamilton, 1978). A large quantity of CH4 can therefore potentially be 
produced in these three lakes. In such stratified lakes, CH4 produced 
in the sediments accumulates in the hypolimnion during summer 
and is released into the water column during the autumnal turnover 
(Utsumi et al.,  1998). When O2 and CH4 become available in the 
water column, CH4 can be oxidised by MOB (Rudd & Hamilton, 1978; 
Bastviken et al.,  2002; Kankaala, Huotari, et al.,  2006; Rudd & 
Hamilton, 1978). The release of this methane results in a high pro-
duction of MOB, which can then oxidise a large proportion of CH4 
(Kankaala et al.,  2007; Schubert et al.,  2012; Utsumi et al.,  1998). 
During this period, the proportion of MOB among the bacteria sus-
pended in the water column is at its maximum, and phytoplankton 
are absent or rare. The diet of the Daphnia was therefore probably 
composed largely of bacteria during this period, among which MOB 
are abundant. This methanogenic carbon (C–CH4) transfer probably 
explains the decrease in δ13CDaphnia observed after the autumnal 
mixing. Indeed, C–CH4 has a highly depleted signature ranging from 
−80‰ to −50‰ (Jedrysek,  2005), and the isotopic fractionation 
that occurs during the oxidation of CH4 by MOB leads to further 
depletion of the signature (Templeton et al.,  2006). Similar signa-
tures ranging between −40‰ and −47‰ reflecting C-CH4 transfers 
have already been reported in winter in several papers studying 
stratified lakes (Harrod & Grey, 2006; Morlock et al., 2017; Taipale 
et al., 2008). Methane can therefore be an important carbon source 

for lake zooplankton, especially in winter after the autumnal turn-
over (Bastviken et al., 2003; Kankaala, Taipale, et al., 2006; Taipale 
et al., 2007; Taipale et al., 2008). Based on these highly 13C-depleted 
values, methanogenic carbon appears to support pelagic food webs 
in lakes Remoray, Bonlieu, and Retournemer.

Winter δ13CDaphnia values measured in Lake Longemer (averaging 
−38.5‰) do not allow us to confidently conclude that methanogenic 
carbon contributed to the pelagic food web in this lake during win-
ter. Even though δ13CDaphnia decreased after the autumnal turnover, 
δ13CDaphnia remained within the range of values already reported for 
phytoplankton in lakes (−25‰ and −40‰; Masclaux et al.,  2013; 
Peterson & Fry, 1987; France, 1995; Peterson & Fry, 1987; Vuorio 
et al., 2006; Wang et al., 2013).

4.4  |  Delta 13Cephippia and implications for the 
use of ephippia in paleolimnological studies

4.4.1  |  Spatial variability of δ13Cephippia

Analysis of the δ13Cephippia values measured at 30 sampling points in 
the profundal zone of Lake Remoray indicated the absence of spa-
tial autocorrelation and that the values were randomly distributed in 
space. Such results were expected considering the observed absence 
of spatial δ13CDaphnia variability during the sampling of Lake Remoray 
and the three other lakes. In addition, ephippia may drift for a year 
or more in the water column (Morlock et al., 2017). Ephippia settling 
at one point thus potentially constitute a representative sample of 
ephippia produced in the whole lake. For these reasons, single sedi-
ment samples collected from the deep zones of the other lakes to 
obtain ephippia should be representative of the whole deep zone.

4.4.2  |  Factors controlling δ13Cephippia

The carbon isotopic signature of Daphnia resting eggs reflects the 
δ13C signature of Daphnia at the time of egg production (Perga, 2011; 
Schilder, Bastviken, et al., 2015; Schilder, Tellenbach, et al., 2015). 
Based on the ephippia and Daphnia signatures recorded during sam-
pling, we were able to approximate the period of maximum produc-
tion of these ephippia in each lake.

Ephippia collected from the sediments of lakes Remoray, 
Longemer, and Retournemer (δ13C = −37.1‰, −32.9‰ and −36.8‰, 
respectively) seemed to be produced at the end of the summer 
stratification period. These signatures therefore mainly reflected 
the consumption of phytoplankton with varying degrees of 13C de-
pletion, probably resulting from the variable intensities of the respi-
ration processes among the lakes in summer. These ephippial δ13C 
values measured in lakes Remoray, Retournemer, and Longemer 
thus reflected the carbon transfers that occurred during the summer 
stratification period, and did not provide information on the origin 
of the carbon transferred in the pelagic food web after the autum-
nal turnover, when methane is more available. In contrast, ephippia 
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from Lake Bonlieu surface sediment appeared to be produced in late 
autumn/early winter (δ13Cephippia = −46‰; after the autumnal turn-
over). As previously discussed, methane-derived carbon probably 
constituted an important part of the Daphnia diet during this period 
in this lake. Consequently, the carbon isotopic signatures of ephippia 
reflected the strong transfer of C-CH4 into the pelagic food web in 
winter.

Two main stressors may control resting egg production by 
Daphnia: (1) reduced photoperiod and (2) limited quantity and/or 
quality of food resources (Kleiven et al.,  1992; Koch et al.,  2009; 
Stross & Hill, 1965). Due to the geographical proximity of the stud-
ied lakes, photoperiod probably does not play a role in determining 
the observed differences in the timing of ephippia production. In 
contrast, the seasonal availability of food resources may cause the 
observed differences in the timing of production in the four studied 
lakes. Indeed, according to the [Chla] data, Lake Bonlieu had a sus-
tained peak in phytoplankton biomass in autumn. In the other lakes, 
phytoplankton production seemed to be limited during this period. 
The stress response that is linked to food availability and induces 
ephippia production may therefore occur later in Lake Bonlieu than 
in the three other lakes.

Both the production period of ephippia and the origin of carbon 
used by Daphnia at the corresponding time seem to condition the 
carbon isotope signature of ephippia and therefore influence the 
information provided in paleolimnological approach. From our data-
set, δ13Cephippia may reflect either the consumption of phytoplankton 
by Daphnia during the summer stratification period or the consump-
tion of methanogenic carbon if Daphnia produce ephippia after the 
autumnal turnover.

4.4.3  |  Implications for the interpretations of the 
δ13C of Daphnia ephippia in paleolimnology

In our study, the measured δ13Cephippia appeared to be homogene-
ously distributed in the deep area in this type of relatively small lake 
with a single basin. A single core retrieved from the deepest part 
of the lake would provide a representative sample of the ephippia 
produced in the lake.

Moreover, our results suggest that the period of production of 
Daphnia ephippia differs from one lake to another depending on the 
availability and/or quality of the food resource. Consequently, the 
production period of ephippia and the origin of the carbon used by 
Daphnia at the corresponding time influenced the carbon isotope 
signature of the ephippia and therefore the information provided by 
the paleolimnological approach. The use of ephippia δ13C values in 
paleolimnological studies to assess carbon transfers in the pelagic 
compartment has to be conducted cautiously in stratified lakes, 
where availability of different pelagic carbon sources varies season-
ally (Taipale et al., 2008, 2009; Utsumi et al., 1998). Due to these 
seasonal mechanisms, the information provided by ephippia δ13C 
depends on their periods of production. Signatures below −40‰ 

leave few doubts about the use of C–CH4 by Daphnia at the time 
of ephippia production, as these values are outside the range of re-
ported values of phytoplankton and particulate organic matter from 
the catchment (−25‰ to −40‰; France,  1995; Grey et al.,  2001; 
Masclaux et al., 2013; O’Leary, 1988; Peterson & Fry, 1987; Vuorio 
et al., 2006; Wang et al., 2013). However, 13C depleted signatures 
above −40‰ are more difficult to interpret, as they can reflect the 
transfer of different 13C depleted carbon sources (i.e. respiration 
and methane derived carbon) in proportions that may vary accord-
ing to the period of ephippia production. Nonetheless, whatever the 
production period of these ephippia, 13C depletion over time may 
reflect a dynamic of dystrophication/accelerated eutrophication 
marked by the intensification of respiratory processes, increasing 
hypoxia, and potential intensification of methanogenesis processes, 
which finally intensifies the incorporation of 13C-depleted carbon 
from respiration and/or methanogenesis by invertebrates (Frossard 
et al., 2014). Delta 13Cephippia may be used to follow the general evo-
lution of trophic functioning in lakes but it may prove to be insuffi-
cient to follow specific carbon pathways. Moreover, potential shifts 
in the production period of ephippia over time induced by modifica-
tions of environmental conditions may lead to the misinterpretation 
of δ13Cephippia trends in sediment records.

Lake sediments offer a wide variety of other markers that can 
be used in association with ephippia δ13C to provide a better under-
standing of the evolution of past carbon transfers in lakes. The sig-
natures of Daphnia exoskeletons retrieved from sedimentary records 
are an example of markers that can also be measured (Perga, 2010). 
Unlike Daphnia ephippia, the isotopic compositions of these exo-
skeletons are assumed to reflect a time-integrated average signature 
of the Daphnia source population (Davidson et al., 2007). As these 
two Daphnia-related remains provide differently time-integrated in-
formation, combined analyses and comparisons of Daphnia ephip-
pia and exoskeleton signatures should thus allow a more accurate 
assessment of these past transfers of carbon in pelagic food webs. 
Other consumer remains can also be used in combination with 
Daphnia ephippia to study past carbon transfers, such as ephippia 
from Ceriodaphnia, another cladoceran (Morlock et al.,  2017), or 
Chironomid cephalic capsules (Belle et al., 2014, 2017; Belle, Millet, 
et al., 2016; Frossard et al., 2014; van Hardenbroek et al., 2010) to 
reconstruct benthic transfers. Ancient DNA analysis of MOB in sed-
imentary records is another method that can be used to improve the 
assessment of the evolution of C-CH4 transfers in food webs when 
coupled with δ13C analysis of consumer remains (Belle et al., 2015; 
Belle, Verneaux, et al., 2016). Finally, some studies have highlighted 
particular polyunsaturated fatty acids in sediments as biomarkers 
of MOB and methanogenic Archaea (Bowman et al.,  1991; Elvert 
et al., 2016; Naeher et al., 2014). Polyunsaturated fatty acid analyses 
of sedimentary records may provide additional information on CH4 
production and transfer dynamics. Analysis of these lipid biomarkers 
directly on consumer remains, such as Daphnia ephippia, may consti-
tute a future challenge in studies of C-CH4 transfers in the pelagic 
compartments of lakes.
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5  |  CONCLUSION

Daphnia δ13C showed strong seasonal variations in lakes Remoray, 
Bonlieu, Retournemer, and Longemer. Throughout the summer 
stratification period, δ13CDaphnia was close to δ13Cseston in the four 
lakes studied. After the water column mixing occurred, the differ-
ences between δ13CDaphnia and δ13Cseston increased, with more highly 
13C-depleted Daphnia signatures. Particularly low δ13CDaphnia values 
in lakes Remoray, Bonlieu, and Retournemer reflected the potential 
transfer of C-CO2 from respiration in the summer stratification pe-
riod and the transfer of a non-negligible part of C-CH4 in pelagic food 
webs in winter due to seasonal stratification mechanisms. Less nega-
tive values were obtained during the sampling of Lake Longemer. 
This result reflects a smaller proportion of C-CO2 from respiration 
transferred during summer stratification and does not allow us to 
confidently conclude that methanogenic carbon contributed to the 
pelagic food web during the winter period. This study does not allow 
us to identify the factors controlling the intensity of these C path-
ways in pelagic food webs, and therefore the differences observed 
between lakes. The importance of these different carbon pathways 
in food webs can be potentially influenced by several factors, such 
as temperature or origin and quantity of organic matter sedimented. 
Indeed, laboratory studies have highlighted that these factors can 
influence the intensity of methanogenic processes (Duc et al., 2010). 
Moreover, as deep oxygen conditions and summer hypolimnetic 
methane storage mechanisms depend largely on thermal stratifi-
cation (Vachon et al.,  2019), the strength of thermal stratification 
could be an important controlling factor of the intensity of these C 
pathways in pelagic food webs. Future large-scale studies involving 
larger numbers of lakes and variables would be necessary to identify 
these control factors.

Ephippia seem to be produced either in the summer stratification 
period or after the autumnal turnover depending on the lake stud-
ied. As CH4 availability in the water column seems seasonal in these 
types of lakes, the information provided by ephippia δ13C signatures 
depends on the production periods of the ephippia. Therefore, using 
δ13Cephippia to study past transfers of specific carbon sources into 
pelagic compartments is problematic in stratified lakes if used alone 
and requires a multi-proxy paleolimnological approach to provide a 
better understanding of their past evolution. This study also showed 
that δ13Cephippia appears to be homogeneously distributed in the 
deep area of a medium-sized lake with a single basin. A single core 
retrieved from the deepest part of the lake thus should provide a 
representative sample of the ephippia produced in the lake.
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