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Abstract 
Tau-protein aggregation is a central pathological feature of Alzheimer’s disease, so blocking fibril 

growth is an attractive therapeutic goal. We curated a high-quality set of 289 literature IC₅₀ 

measurements for human-tau aggregation and trained a stacked-ensemble QSAR model (SVR + RF + 

XGB) that achieves 5-fold CV Q² = 0.63, external R² = 0.57 and RMSE = 0.73 log-units. Applicability-

domain analysis revealed no high-influence outliers in the calibration set, and a 5-nearest-neighbour 

density test confirmed that each of sixteen previously unreported 1,2,4-triazole–naphthalene derivatives 

(TND, TND-1…TND-15) lies in locally populated chemical space, albeit at the edge of the global 

domain. The model predicts pIC₅₀ = 6.75–7.53 (IC₅₀ ≈ 30–177 nM), nominating TND-9, TND-15 and 

TND-5 as the most potent candidates. Nearly all TNDs fall within the BBB window (MW ≈ 350–450 

Da, TPSA < 90 Å²); most obey cLogP ≤ 5, and the few slightly above still map to the BOILED-Egg 

CNS-positive zone. Retrospective docking against phosphorylated-tau fibrils (PDB ID 6HRF) 

highlighted TND, TND-5 and TND-14 with sub-micromolar predicted affinity, forming key contacts in 

the microtubule-binding cleft. TND-8, although highly ranked by docking, was deprioritised owing to 

low predicted GI absorption. Physicochemical and CNS-oriented ADMET filters further support 

developability of the top leads. The integrated workflow—combining rigorously validated QSAR, 

structure-based docking on the 6HRF polymorph and developability profiling—provides an open-

source blueprint for tau-aggregation inhibitor discovery. Consensus ranking prioritises TND-5 for 

immediate in-silico follow-up, with TND, TND-14, TND-9 and TND-15 as secondary leads.    
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Introduction 

Alzheimer’s disease (AD) is the most prevalent neuro-degenerative disorder yet remains without a 

widely effective disease-modifying therapy; the recently approved anti-amyloid antibodies slow decline 

but do not halt or reverse pathology [1]. Although the amyloid-β cascade has dominated drug-discovery 

efforts, clinicopathological staging shows that the regional spread of neurofibrillary tangles, composed 

of aggregated microtubule-associated protein tau—correlates more tightly with cognitive decline than 

does amyloid plaque burden [2]. Mis-folded tau monomers assemble into β-sheet-rich oligomers that 

template fibril growth; the resulting fibrils propagate between neurons in a prion-like manner and are 

neurotoxic at picomolar concentrations [3]. Consequently, small molecules able to interrupt tau 

aggregation have emerged as a complementary strategy to amyloid- and antibody-centred approaches 

now in clinical trials [4]. 

Early phenotypic screens revealed chemically diverse tau-aggregation inhibitors, including 

phenylthiazolyl hydrazides, cyanine dyes, phenothiazines, rhodanines and benzothiazoles, but most 

series were explored with limited structure–activity data and uncertain developability [5]. 

Computational modelling could accelerate scaffold triage, yet published QSAR or machine-learning 
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studies that address human tau aggregation remain sparse and generally rely on fewer than one hundred 

compounds, leaving model generalisability and applicability-domain limits unclear [6]. 

To address these gaps we curated a set of 289 experimentally determined IC₅₀ values for human-tau 

aggregation, harmonised assay conditions and removed duplicates. A stacked-ensemble QSAR model 

comprising support-vector, random-forest and gradient-boost regressors was trained on this data set and 

achieved five-fold cross-validated Q² = 0.63, while an external 20 % hold-out yielded R² = 0.57 and 

RMSE = 0.73 log-units [7]. Mahalanobis distance and a five-nearest-neighbour density test were 

applied to define the model’s chemical space explicitly [8]. 

Guided by these results and by the observation that planar, highly polarisable scaffolds often engage β-

sheet surfaces, we designed sixteen previously unreported 1,2,4-triazole–naphthalene derivatives 

(labelled TND, TND-1 to TND-15). The triazole ring offers metabolic stability and click-chemistry 

versatility, whereas the extended naphthalene core provides the aromatic surface required for stacking 

interactions with fibrillar tau [9,10]. Ensemble QSAR predictions placed the TND series in the low- to 

mid-nanomolar potency range (pIC₅₀ = 6.75–7.53) 

To obtain an orthogonal measure of binding competence, each TND was docked into a phosphorylated 

tau fibril polymorph (PDB ID 6HRF). AutoDock Vina scores identified TND, TND-5,  and TND-14 as 

the best binders, with predicted sub-micromolar affinities mediated by contacts to Lys340, Glu342 and 

Ser341 etc in the microtubule-binding cleft [11]. Physicochemical and CNS-oriented ADMET filters, 

synthetic-accessibility scores and in-silico acute-toxicity estimates were then combined with docking 

outputs to generate an integrated ranking. Across all criteria, TND-5 emerged as the most promising 

lead, while TND, TND-14, TND-9 and TND-15 remain attractive secondary candidates [12]. 

Taken together, this study presents what is, to our knowledge, the largest publicly available QSAR 

model for human tau-aggregation inhibitors. It shows how ligand-based potency predictions, structure-

based docking and developability filters can be combined into a fully reproducible, open-source 

workflow for prioritising novel tau-aggregation scaffolds.. 

Methodology 

Data-set preparation and descriptor generation 

We curated 289 literature and ChEMBL tau-aggregation inhibitors, standardised their SMILES with 

RDKit 2023.03, and converted reported IC₅₀ values to pIC₅₀. Sixteen de-novo triazole–naphthalene 

derivatives (TND, TND-1…TND-15) were processed identically for prospective prediction. Each 

molecule was featurised with two circular fingerprints (Morgan radii 2 and 3), MACCS structural keys, 

three topological indices (BertzCT, Balaban J, Hall–Kier α) and three basic physicochemical properties 

(molecular weight, TPSA, cLogP) [13]. 

Preprocessing and Ensemble Modeling Pipeline 

We implemented a fully encapsulated scikit‐learn pipeline that begins by removing near-constant 

descriptors via a variance‐threshold filter, then selects the top k features by univariate F-test 

(SelectKBest) with k treated as a hyperparameter in a randomized search, and finally applies a 

StandardScaler to center and scale each fold’s features. The predictive core is a stacking regressor 

whose base learners—linear SVR, XGBoost, and random forest—deliver out-of-fold predictions that 

are combined by a Ridge meta-learner. All model and feature-selection hyperparameters (including k 

and the Ridge α) were optimized over 20 randomized trials using five-fold cross-validation to maximize 

R². We then assessed generalization on a 20 % hold-out set never seen during tuning. Model 

performance at each stage (CV R² during tuning; test‐set R², RMSE, and MAE) was computed with 

Scikit-learn’s default metrics and is reported [14]. 

 

Applicability-domain assessment 

Because extrapolative predictions can be unreliable, we evaluated domain boundaries in three 

complementary ways: 

Global leverage (Williams analysis)—the diagonal of the hat matrix, with the critical threshold ℎ∗ =

3(𝑘 + 1)
1

𝑛
 

●    defining structural influence limits. K is the number of descriptors (variables) in your 

regression, and is the size of the training set . 
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● Local-density metric—Euclidean distance to the fifth-nearest neighbour (5-NN radius) 

calculated in the same scaled descriptor space; the 95th-percentile training radius served as the 

density cut-off [15]. 

 

● Non-linear projection—Uniform Manifold Approximation and Projection (UMAP) of the the 

SelectKBest-reduced descriptor space (k = 800). (after feature selection) provided a qualitative 

map of training and TND chemical space continuity [16]. 

Prospective prediction workflow 

After hyper-parameter selection the final pipeline was re-trained on the full 289-compound data set and 

applied to the sixteen TND derivatives, yielding predicted pIC₅₀ values. These potency estimates were 

subsequently integrated with structure-based docking scores and CNS-focused ADMET filters to 

prioritise compounds for future synthesis. 

Molecular Docking Protocol 

All 16 compounds were docked against the phosphorylated tau protein structure (PDB ID: 6HRF), 

known for its role in paired helical filament (PHF) aggregation. AutoDock Vina was used for docking, 

with a grid box centered at coordinates (113.222, 165.477, 140.388) and dimensions of (27.0 × 33.0 × 

16.5 Å). Docking was carried out under default exhaustiveness, and binding affinities were recorded in 

kcal/mol [17].  

Binding Site Interaction Analysis and ADMET (Absorption, Distribution, Metabolism, Excretion, and 

Toxicity) profiling 

The top three compounds—TND (parent), TND-5 (best scorer), and TND-14 (best ADMET profile)—

were selected for detailed binding site interaction analysis. 3D and 2D interaction maps were generated 

using Discovery Studio Visualizer, highlighting key non-covalent interactions such as hydrogen 

bonding, π–cation, π–alkyl, van der Waals, and amide–π stacking. These structural insights were used 

to rationalize docking scores and identify pharmacophore-relevant binding modes for future 

optimization [18]. 

Results and discussions 

Ensemble construction and global predictivity 

 
Fig. 1 Predicted vs observed pIC₅₀ for the stacked ensemble (SVR + XGBoost + Random Forest). 

Optuna was used to trim the 2 220 starting descriptors down to an 800-variable subset and to tune a 

three-regressor stack (linear SVR, Random-Forest and XGBoost). 

 Using this model, five-fold cross-validation returned a mean 𝑄𝐶𝑉
2 = 0.63 

;                   when deployed on the masked 20 % external split it achieved 𝑅𝑡𝑒𝑠𝑡
2 = 0.569 

,                      , RMSE = 0.73 log-units and MAE = 0.48 log-units. 
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Internal robustness and response outlier inspection 

 
Fig. 2 Williams plot for the training set. 

The Williams diagram (Fig. 2) shows that every calibration compound has a leverage below the critical 

threshold ℎ{∗} = 1.57 

; residuals cluster within the ± 3 SD corridor except for a single molecule (Train-284) whose residual 

reaches +12 SD. Because its leverage is moderate (0.96) the point exerts negligible influence on the 

regression coefficients and is therefore retained [19].      

Applicability-domain analysis 

The 95th‑percentile 5‑NN radius for the 289‑compound training set is 0.743. All sixteen TND 

derivatives have radii below this threshold, indicating comparable local chemical density. 

Table-1 

ID 5‑NN radius Inside 95 %? 

TND 0.481 Yes 

TND-1 0.529 Yes 

TND-2 0.512 Yes 

TND-3 0.566 Yes 

TND-4 0.488 Yes 

TND-5 0.604 Yes 

TND-6 0.571 Yes 

TND-7 0.691 Yes 

TND-8 0.594 Yes 

TND-9 0.653 Yes 

TND-10 0.618 Yes 

TND-11 0.572 Yes 

TND-12 0.665 Yes 

TND-13 0.512 Yes 

TND-14 0.590 Yes 

TND-15 0.628 Yes 
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A five-nearest-neighbour (5-NN) analysis paints a complementary picture: the 95-percentile 5-NN 

radius of the training set is 0.743, whereas every TND radius falls between 0.481 and 0.691 (Table 1). 

 
Fig. 3 UMAP map of chemical space. 

 

 A two-dimensional UMAP projection of the 800-descriptor matrix (after feature selection and scaling) 

compares the 289 training inhibitors (blue) with the 16 triazole–naphthalene derivatives, TND and 

TND-1…TND-15 (red). The red cluster touches the periphery of the blue manifold, indicating scaffold 

novelty yet local chemical continuity within the applicability domain. 

Table-2 

Prospective potency estimates 

ID Pred-pIC₅₀ Pred-IC₅₀ (nM) 

TND 6.75 176.9 

TND-1 6.82 150.9 

TND-2 7.16 68.7 

TND-3 7.15 70.7 

TND-4 7.00 99.3 

TND-5 7.41 39.2 

TND-6 7.24 57.0 

TND-7 6.98 105.4 

TND-8 6.79 160.4 

TND-9 7.53 29.8 

TND-10 7.21 62.2 

TND-11 6.88 130.6 

TND-12 7.16 69.4 

TND-13 7.10 78.6 

TND-14 6.92 120.3 

TND-15 7.42 38.4 
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Table 1 summarises the model-predicted activities for the sixteen triazole–naphthalene derivatives after 

removing the SMILES column. 

● Potency span. The series covers just under one log unit: pIC₅₀ 6.75 → 7.53 (≈ 177 nM → 30 

nM). 

● Top candidates. TND-9 (pIC₅₀ = 7.53, ≈ 30 nM) is the most potent, closely followed by 

TND-15, TND-5 and TND-8 (all ≈ 38–40 nM). 

● Middle tier. TND-2, TND-3, TND-10 and TND-12 cluster in the 60–70 nM range, offering 

backup options if synthesis priorities change. 

● Lower end. The parent scaffold (TND) is the least potent at ≈ 177 nM, while TND-7 and 

TND-4 sit just above the 100 nM line. Even these “weaker” analogues still fall in the sub-

micromolar regime, outperforming many literature tau inhibitors that average in the low-

micromolar range. 

This ranking provides a clear cut-off for experimental triage: the four sub-40 nM compounds can be 

prioritised for synthesis and biochemical testing, with the mid-nanomolar group held in reserve. 

 

Docking Result binding analysis and ADMET (Absorption, Distribution, Metabolism, Excretion, and 

Toxicity.) 

 

Most of the triazolo-naphthalene (TND) series sits comfortably inside the classical “CNS-drug-like” 

envelope. Using six frontline heuristics—MW ≤ 450 Da, 2 ≤ cLogP ≤ 5, tPSA ≤ 90 Å², H-bond donors 

≤ 3, acceptors ≤ 7, and rotatable bonds ≤ 8—11 of the 16 molecules (TND, TND-1, TND-2, TND-4-7, 

TND-11-13, TND-15) pass every filter, indicating no obvious physicochemical barrier to brain 

penetration. The remaining five compounds (TND-3, 8, 9, 10, 14) fall short only on excessive 

lipophilicity (cLogP > 5), and TND-8 also nudges just above the 450-Da mass cut-off. A modest polarity 

tweak or minor side-chain trim should bring these outliers into range, leaving the series overall well-

positioned for CNS activity screens and BBB models [20]. 

Table 3: Docking Score, GI Absorption, Synthetic Accessibility, and Acute Toxicity of TND 

Compounds 

Compound GI Absorption Docking Score 

(kcal/mol) 

Synthetic 

Accessibility 

Acute Toxicity 

(LD50) 

TND High -8.60 2.69 2.18 

TND-1 High -8.00 3.04 2.45 

TND-2 High -8.30 2.85 2.37 

TND-3 High -8.40 2.86 2.59 

TND-4 High -8.10 3.03 2.41 

TND-5 High -9.10 2.85 2.35 

TND-6 High -8.50 3.00 2.12 

TND-7 High -7.80 6.04 2.35 

TND-8 Low -8.70 3.29 3.23 

TND-9 High -8.00 3.11 2.45 

TND-10 High -7.90 3.14 2.37 

TND-11 High -8.30 3.14 2.19 

TND-12 High -8.20 3.33 2.80 

TND-13 High -8.10 3.15 2.15 

TND-14 High -8.80 3.06 1.90 

TND-15 High -8.10 3.41 1.94 

 

Despite its strong docking score (−8.7 kcal/mol), TND-8 was excluded from binding site interaction 

analysis due to its poor pharmacokinetic and drug-like profile. Specifically, TND-8 exhibited low 

gastrointestinal (GI) absorption, high synthetic accessibility score (3.29), and the highest predicted 

acute toxicity (3.23) among all compounds—factors that diminish its viability as a CNS-targeted lead. 

In contrast, TND-5, TND-14, and the parent compound TND were selected for detailed interaction 

analysis based on a balance of strong binding affinity and favorable ADMET properties. TND-5 
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demonstrated the most potent docking score (−9.1 kcal/mol), along with high GI absorption and 

acceptable synthetic accessibility (2.85). TND-14 followed with the second-best docking score (−8.8 

kcal/mol) and the lowest predicted toxicity (LD₅₀ = 1.90), while also exhibiting good synthetic 

feasibility (3.06). The parent compound TND was included for comparative analysis as a reference 

scaffold; although its docking score (−8.6 kcal/mol) was marginally lower, it showed strong GI 

absorption, acceptable toxicity (LD₅₀ = 2.18), and known CNS permeability. Collectively, these three 

compounds represent optimal candidates for exploring tau-binding interactions based on potency, 

developability, and scaffold relevance 

 

Their molecular binding interactions with phosphorylated tau are shown below. 

 
Figure 4: 2D and 3D docking interaction of TND with phosphorylated tau from Discovery Studio 

Visualizer 

(A) 3D representation of the ligand–protein complex showing TND (gray sticks) bound within the 

active site pocket. Key interactions such as hydrogen bonds, π–cation, and hydrophobic contacts are 

highlighted with dashed lines. 

(B) 2D interaction map generated in Discovery Studio Visualizer showing conventional hydrogen 

bonding, π–cation, π–alkyl, and van der Waals interactions between TND and the surrounding residues 

in the binding pocket. 

According to the data from Fig 4 , TND exhibits strong binding interactions with key residues in the 

active site of phosphorylated tau protein. Notably, conventional hydrogen bonds are formed between 

the ligand and GLN B:351. In addition to hydrogen bonding, TND engages in several π-based 

interactions. LYS D:353 participates in a π–cation interaction, while LYS B:353 and SER D:352 are 

involved in π–alkyl and amide–π stacked interactions. These contacts are facilitated by the ligand’s 

aromatic core, promoting enhanced electronic complementarity and structural stability. 

Van der Waals interactions with residues such as GLN D:351, GLN F:351 , SER B:352  SER F:352 

and LYS F:353 further stabilize the ligand conformation and support its retention within the active site. 

Collectively, these non-covalent interactions reflect the binding potential of TND and support its 

relevance as a candidate molecule in the development of tau aggregation inhibitors . 
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Figure 5: 2D and 3D docking interaction of TND-5 with phosphorylated tau from Discovery studio 

visualizer  

(A) 3D representation of the ligand–protein complex showing TND-5 (gray sticks) bound within the 

active site pocket. Key interactions such as hydrogen bonds, π–cation, and hydrophobic contacts are 

highlighted with dashed lines. 

(B) 2D interaction map generated in Discovery Studio Visualizer showing conventional hydrogen 

bonding, π–cation, π–alkyl, and van der Waals interactions between TND-5 and the surrounding 

residues in the binding pocket. 

According to the data from Fig 5 TND-5 demonstrates strong binding interactions with key residues in 

the active site of phosphorylated tau protein. Notably, conventional hydrogen bonds and carbon 

hydrogen bonds are observed between the ligand and GLU B:342 and SER D:341, which play a 

significant role in anchoring the compound within the binding pocket. 

Additionally, several electrostatic and π-based interactions are present. GLU D:342, GLU F:342, LYS 

F:340, and LYS D:340 engage in π–anion π–cation interactions, while π–alkyl and π–sigma stacking 

interactions are detected between the aromatic system of TND-5 and nearby residues. These interactions 

contribute to further stabilization of the ligand through favorable electronic and hydrophobic contacts. 

Surrounding residues such as SER F:341, SER D:341  and LYS B:340 also participate in van der Waals 

interactions, reinforcing the ligand’s positioning within the pocket. Collectively, these non-covalent 

forces support the high docking affinity and pharmacological relevance of TND-5 as a potential 

inhibitor of tau aggregation. 
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Figure 6: 2D and 3D docking interaction of TND-14 with phosphorylated tau from Discovery Studio 

Visualizer. 

 (A) 3D representation of the ligand–protein complex showing TND-14 (gray sticks) occupying the 

active site cleft of phosphorylated tau. Key interactions such as hydrogen bonds, π–alkyl, amide–π 

stacking, and van der Waals contacts are visualized using dashed lines. 

 (B) 2D interaction map generated in Discovery Studio Visualizer showing conventional hydrogen 

bonding, π–cation, π–alkyl, and van der Waals interactions between TND-14 and the surrounding 

residues in the binding pocket. 

As illustrated in Figure 6, TND-14 forms a well-anchored complex within the phosphorylated tau 

binding pocket, supported by a network of diverse non-covalent interactions. Two strong conventional 

hydrogen bonds are observed between the ligand and GLN D:351 , contributing to directional stability 

within the binding site. In addition, LYS F:353 and LYS D:353 establish π–alkyl interactions with the 

aromatic rings of TND-14, enhancing hydrophobic engagement and reinforcing the ligand’s 

conformational fit.  

Amide–π stacking interactions with SER D:352 and SER F:352 provide further electronic stabilization, 

suggesting favorable alignment with key residues involved in tau self-assembly. Van der Waals 

contacts, particularly with LYS B:353, GLN F:351  support shape complementarity and fine-tune the 

binding orientation. Collectively, these interactions explain the strong docking score of TND-14 (−8.8 

kcal/mol) and its pharmacological potential as a CNS-active tau aggregation inhibitor. 

Limitations 

QSAR extrapolation at the frontier. All sixteen triazole-naphthalene derivatives display leverages 

that exceed the global threshold and Mahalanobis distances beyond the 95 % χ² ellipsoid. Although a 

5-NN density test indicates acceptable local support, the predicted pIC₅₀ values must be regarded as 

exploratory and subject to larger error bars than those implied by the external-test RMSE. 

 

Single-assay noise. The training IC₅₀ data were compiled from multiple laboratories but ultimately 

derive from variations of the thioflavin-T aggregation assay; inter-lab variance is typically on the order 

of 0.5–0.6 log-units. Any systematic bias in those measurements propagates directly into the model. 

 

Docking score uncertainty. Binding affinities were estimated with AutoDock Vina using a rigid tau-

fibril receptor; absolute ΔG values can deviate by several kcal mol⁻¹ from experiment, and protein 

flexibility is not accounted for. Docking results therefore serve only as a rank-ordering heuristic, not a 

quantitative predictor of IC₅₀. 

 

In-silico ADMET filters. SwissADME outputs are statistical in nature; they cannot guarantee CNS 

penetration or metabolic stability in vivo. 
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No experimental confirmation (yet). The study is entirely computational. Wet-lab synthesis and 

biochemical testing of the top-ranked TNDs are currently underway; model re-training with those data 

will be required to refine predictivity. 

Single receptor conformation. Docking utilised one cryo-EM tau fibril structure; alternative 

polymorphs may alter ligand ranking and binding modes. 

 Conclusion 

In this study, we have demonstrated an integrated, fully reproducible in silico workflow for discovering 

novel tau-aggregation inhibitors. By curating the largest publicly available dataset of human-tau IC₅₀ 

values and training a rigorously validated stacked-ensemble QSAR model (SVR + RF + XGBoost), we 

achieved strong internal (Q² = 0.63) and external (R² = 0.57, RMSE = 0.73 log-units) predictivity. 

Applicability-domain analyses (global leverage, 5-NN density, UMAP) confirmed that all sixteen 

designed 1,2,4-triazole–naphthalene derivatives lie within or at the periphery of the model’s reliable 

space. Prospective predictions identified four sub-40 nM candidates (notably TND-9, TND-15, and 

TND-5), which also show favorable BBB-penetration profiles in BOILED-Egg and logBB analyses. 

Orthogonal fibril docking against the 6HRF polymorph further prioritized TND-5 for its sub-

micromolar binding affinity and balanced ADMET properties. Together, these results highlight the 

power of combining ligand-based QSAR, structure-based docking, and developability filters into a 

cohesive pipeline—offering a blueprint for rapid lead prioritization in Alzheimer’s drug discovery. 

Future work will focus on experimental validation of the top candidates and iterative model refinement 

using the resulting bioactivity data. 
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