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Abstract

Biological systems, ranging from cellular processes to population dynamics, are inherently
complex and nonlinear. The challenge of understanding such systems has driven the evolution
of biomathematics, where mathematical modelling and computational approaches serve as
indispensable tools. This review critically examines the interplay between mathematics and
biology, highlighting how models not only describe biological behaviour but also provide
predictive insights into disease dynamics, ecological interactions, and molecular processes.
Differential equations, stochastic models, agent-based simulations, and network theory form
the foundation of mathematical frameworks that capture biological complexity. Computational
methods, including numerical simulations, machine learning algorithms, and high-
performance computing, extend the reach of these models, enabling the study of multiscale
phenomena that span genes, cells, and ecosystems. The paper explores classical applications—
such as the Lotka—Volterra model in ecology and the SIR model in epidemiology—while also
addressing contemporary frontiers, including systems biology, cancer modelling, and
computational neuroscience. Ethical implications, model limitations, and the importance of
interdisciplinary collaboration are critically evaluated. By synthesising current literature, this
review emphasises that biomathematics is not merely a technical enterprise but a
transformative paradigm for advancing biological understanding. The study concludes with
perspectives on integrating data-driven methods with theoretical models to address unresolved
challenges in life sciences.

Keywords: Biomathematics, Mathematical modelling, Computational biology, Systems
biology, Disease modelling, Population dynamics

1. Introduction

The study of life has always been associated with complexity. From the behaviour of
molecules inside a cell to the interactions of populations in ecosystems, biological processes
exhibit dynamics that are nonlinear, stochastic, and multiscale. Traditional biology, while rich
in observation and experimentation, has often struggled to capture the full extent of this
complexity in a predictive and quantitative manner. It is here that mathematics has increasingly
assumed a pivotal role. Over the last century, the emergence of biomathematics has
transformed the way we understand biological systems. By constructing models that abstract
the essential features of a system and by employing computational tools to simulate their
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behaviour, scientists are now able to ask—and answer—questions that were previously
inaccessible through empirical methods alone (Britton, 2019).

Mathematical modelling in biology is not entirely new. As early as the 18th century,
Daniel Bernoulli applied mathematical ideas to understand the spread of smallpox, laying the
foundation for epidemiological modelling. Later, the pioneering work of Lotka and Volterra in
the 1920s formalised predator—prey interactions in ecological systems through coupled
differential equations (Volterra, 1926). Similarly, Hodgkin and Huxley’s 1952 model of
neuronal action potentials demonstrated how systems of nonlinear differential equations could
successfully capture physiological processes (Hodgkin & Huxley, 1952). These examples
illustrate a key principle of biomathematics: while biological reality is immensely complicated,
carefully chosen abstractions enable us to describe and predict essential dynamics.

The growth of computational power has magnified the role of mathematics in biology.
Whereas earlier models were limited by analytical tractability, modern computational
approaches allow us to simulate highly complex systems involving thousands of variables and
interactions. Computational biology and bioinformatics, for instance, have revolutionised
genomics by enabling the analysis of vast datasets generated through sequencing technologies.
Systems biology integrates mathematical modelling with high-throughput experimental data to
reveal network-level behaviours of cells, while agent-based modelling allows the exploration
of emergent phenomena in populations of interacting individuals (Kitano, 2002). Thus,
biomathematics today is not confined to equations on paper but is deeply intertwined with
computational methods that make large-scale simulations possible.

A crucial strength of mathematical models is their ability to serve as predictive tools.
Epidemiological models, such as the SIR (Susceptible—Infected—Recovered) framework, have
been instrumental in predicting disease outbreaks, assessing intervention strategies, and
guiding public health policy (Hethcote, 2000). During the COVID-19 pandemic, models based
on extensions of the SIR framework provided critical insights into the spread of the virus and
the potential impact of measures such as lockdowns, vaccination, and social distancing
(Ferguson et al., 2020). In ecology, models continue to guide conservation strategies, predicting
the outcomes of species interactions, habitat loss, and climate change. In molecular biology,
computational models of protein folding and gene regulatory networks are helping researchers
to unravel mechanisms of disease and to design targeted therapies. These examples
demonstrate that biomathematics is not merely descriptive but profoundly practical, with real-
world applications that shape health, environment, and technology.

At the same time, mathematical modelling in biology presents inherent challenges.
Unlike physical systems, which are often governed by universal laws, biological systems are
characterised by heterogeneity, context-dependence, and evolutionary change. A model that
works well in one species or under certain environmental conditions may fail in another.
Moreover, biological data are frequently noisy, incomplete, or difficult to measure. These
factors complicate the process of model validation and highlight the need for computational
strategies that can incorporate uncertainty and variability (Oden et al., 2017). As a result,
biomathematics is as much about critical evaluation of models as it is about their construction.

Another dimension of biomathematics is its inherently interdisciplinary character. The
development of successful models requires not only mathematical skill but also deep biological
insight. Misunderstandings between disciplines can lead to oversimplified or unrealistic
models, while effective collaborations yield frameworks that advance both fields. Increasingly,
biomathematics is recognised as a bridge discipline that brings together mathematicians,
computer scientists, biologists, and clinicians to address pressing problems in health and life
sciences. Universities and research institutes worldwide are establishing dedicated programmes
in mathematical biology, reflecting the growing recognition of its importance (Murray, 2002).
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In this review paper, we undertake a critical exploration of mathematical modelling and
computational approaches in biological systems. Our aim is not merely to summarise existing
literature but to examine the conceptual foundations, evaluate the strengths and limitations of
current methods, and identify promising directions for future research. The discussion is
organised into thematic sections. We begin with an overview of classical and modern
mathematical models in biology, including deterministic, stochastic, and agent-based
approaches. We then turn to computational strategies, from numerical simulations to machine
learning, that extend the analytical reach of these models. The paper further explores
applications across diverse domains: disease modelling, ecological interactions, systems
biology, computational neuroscience, and cancer dynamics. Challenges—ranging from data
limitations to ethical concerns—are critically examined, and future directions, including the
integration of artificial intelligence and personalised medicine, are considered.

The significance of this review lies in situating biomathematics as both a theoretical and
applied discipline. By synthesising insights across mathematical, computational, and biological
dimensions, the paper seeks to show that biomathematics is not an auxiliary tool for biology
but a paradigm that reshapes our very understanding of life processes. The review further
highlights the importance of critical reflection: while models are powerful, they are only as
good as the assumptions that underlie them. Awareness of these assumptions is essential for
responsibly applying biomathematics to fields where human health, environmental
sustainability, and ethical considerations are at stake.

In short, mathematical modelling and computational approaches are transforming
biology from a primarily observational science into a predictive and quantitative discipline.
They provide a framework for addressing some of the most urgent challenges of our time, from
managing pandemics to conserving biodiversity and designing therapies for complex diseases.
As this review will show, the future of biology is inseparable from mathematics, and the growth
of biomathematics reflects not only the expansion of knowledge but also the forging of new
ways of thinking about life itself.

2. Mathematical Modelling in Biology

Mathematical models are formal representations of biological processes, constructed
with the aim of simplifying complex reality while retaining essential features. In biology, where
systems often involve thousands of interacting components, models provide clarity by
identifying key mechanisms and predicting outcomes under various conditions. Different
classes of models—deterministic, stochastic, agent-based, and network-based—offer unique
perspectives, each suited to particular kinds of questions. This section critically examines these
approaches, tracing their historical evolution, conceptual foundations, and practical
applications.

2.1 Deterministic Models

Deterministic models, typically formulated as systems of differential equations, have
long been the cornerstone of biomathematics. Their defining feature is predictability: given
initial conditions, the outcome is fully determined.
2.2 Ordinary Differential Equations (ODEs)

The simplest and most widely used deterministic models are ordinary differential
equations. ODEs describe how a variable changes with time, making them suitable for
processes such as population growth, disease transmission, or enzyme kinetics.
® Exponential and Logistic Growth: Early models of population growth assumed

L . dN . . :
exponential increase, described by e N, where N is population size and r the growth

: . . . i dN
rate. This oversimplification was later refined into the logistic growth model, e
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N(1-2 , which incorporates carrying capacity K (Murray, 2002). Logistic growth
X p Irying capacity y g g

remains a central concept in ecology, capturing the limits imposed by finite resources.

® Epidemiological Models: The SIR (Susceptible—Infected—Recovered) model, formulated
by Kermack and McKendrick (1927), revolutionised public health by formalising disease
transmission as a set of coupled ODEs. The model predicts thresholds such as the basic
reproduction number (ROR 0) and provides a framework for evaluating vaccination
strategies (Hethcote, 2000).

® Cellular and Physiological Models: Hodgkin and Huxley’s (1952) model of neuronal
action potentials, based on nonlinear ODEs, exemplifies how mathematics can capture
physiological processes at the cellular level. This model laid the foundation for
computational neuroscience and remains influential in contemporary studies of excitable
membranes.

2.3 Partial Differential Equations (PDEs)
While ODEs describe systems with homogeneous populations, partial differential

equations extend the framework to account for spatial structure.

® Reaction—Diffusion Systems: Turing’s (1952) theory of morphogenesis demonstrated
how simple reaction—diffusion equations can explain pattern formation in biological
systems, such as stripes on zebras or spots on leopards. These models show how spatial
heterogeneity can emerge from uniform initial conditions through instabilities in diffusion
and reaction rates.

® Spatial Ecology and Epidemiology: PDEs are used to model wave-like spread of invasive
species or infectious diseases. For example, the spread of rabies in fox populations has
been effectively described by reaction—diffusion equations, linking biological dispersal
with epidemiological processes (Murray, 2002).

2.4 Strengths and Limitations

Deterministic models offer elegance and tractability, enabling precise predictions under

well-defined conditions. However, their simplicity is also a weakness. Biological systems are

rarely deterministic in reality; they are influenced by random fluctuations, environmental

variability, and individual heterogeneity. Deterministic models may oversimplify dynamics,

missing rare events or stochastic effects that can alter outcomes significantly.

2.5 Stochastic Models

Stochastic models incorporate randomness explicitly, recognising that biological processes

often involve chance events. They are particularly valuable in systems where population sizes

are small, events are rare, or uncertainty is intrinsic.

2.6 Stochastic Differential Equations (SDEs)

SDEs extend ODE frameworks by adding noise terms. For example, in population dynamics,

stochastic models can capture fluctuations in birth and death events that deterministic models

smooth over. Such models are crucial for understanding extinction probabilities, especially in

endangered species with small population sizes (Allen, 2010).

2.7 Markov Chains and Branching Processes

Markov models describe systems where future states depend only on the current state. They

are widely used in genetics (e.g., modelling allele frequencies under genetic drift) and

epidemiology (e.g., modelling disease progression across compartments). Branching

processes, a type of stochastic model, are applied in cancer research to simulate how mutations

accumulate in cell lineages (Durrett, 2015).

2.8 Gillespie Algorithm and Chemical Kinetics

In biochemical systems, stochastic modelling is indispensable. The Gillespie algorithm

simulates chemical reactions at the molecular level, where discrete reaction events occur
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probabilistically. This approach captures variability in gene expression, explaining why

genetically identical cells in identical environments can exhibit different behaviours (Gillespie,

1977).

2.9 Critical Perspective

Stochastic models enhance realism by acknowledging uncertainty, but they come at a cost.

They are computationally intensive and often yield probabilistic rather than exact predictions,

making them harder to interpret. Moreover, stochasticity can obscure causal mechanisms,

complicating the search for underlying biological principles.

2.10 Agent-Based Models

Agent-based models (ABMs) represent systems as collections of individual “agents” that

interact according to simple rules. Unlike equation-based approaches, ABMs capture

heterogeneity and emergent behaviour.

2.11 Applications in Biology

® Epidemiology: ABMs simulate how diseases spread in populations where individuals
differ in age, mobility, or behaviour. During the COVID-19 pandemic, agent-based
simulations provided fine-grained insights into how social distancing policies could
influence transmission.

® Ecology: ABMs have been used to study predator—prey interactions, animal movement,
and resource competition. By incorporating individual decision-making, they capture
behaviours not easily modelled by equations.

® Cell Biology: At the microscopic scale, ABMs simulate interactions among cells in tissues,
such as tumour growth or immune responses. These models reveal emergent phenomena
like cancer invasion patterns or immune system coordination (Railsback & Grimm, 2019).

2.12 Critical Perspective

The strength of ABMs lies in their flexibility and ability to model complex, heterogeneous

systems. However, they require extensive data to parameterise agent rules, and their complexity

can make results difficult to generalise. Critics argue that ABMs risk becoming “black boxes,”

where outcomes depend heavily on assumptions rather than fundamental principles.

2.13 Network Models

Many biological systems can be represented as networks—mnodes connected by edges that

represent interactions.

® Genetic and Protein Networks: Network models reveal regulatory relationships among
genes or interactions among proteins. Graph theory provides tools to identify hubs, motifs,
and pathways critical for system stability (Barabasi & Oltvai, 2004).

® Neural Networks: At multiple scales, from individual neurons to brain regions, network
theory has been applied to understand connectivity and information processing in the
nervous system.

® Ecological Networks: Food webs exemplify ecological networks, where species are nodes
and trophic interactions are edges. Network stability analysis helps predict the impact of
species loss or invasions.

Network approaches provide structural insights but often lack dynamics unless combined with

differential equations or agent-based rules.

2.14 Critical Reflections

The diversity of modelling approaches reflects the diversity of biology itself. Deterministic

models offer clarity but risk oversimplification; stochastic models capture randomness but are

computationally demanding; agent-based models highlight heterogeneity but can be difficult

to generalise; and network models provide structural understanding but require dynamic

integration. The challenge for biomathematics is to select or combine methods appropriately

for the question at hand. Increasingly, hybrid models—integrating deterministic and stochastic
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components, or combining network theory with agent-based rules—are emerging as powerful
tools (Oden et al., 2017).

The critical lesson is that no single model suffices for all biological systems. Models are
lenses, not mirrors: they illuminate aspects of reality while inevitably obscuring others. The
strength of biomathematics lies in its pluralism, where multiple modelling approaches
complement one another to provide a richer, more nuanced understanding of life.

3. Computational Approaches in Biology
While mathematical models provide the conceptual framework for describing biological

systems, it is computational approaches that make these models tractable in practice. Many

biological systems are too complex to solve analytically; nonlinearities, high dimensionality,

and stochasticity often preclude closed-form solutions. Computational methods—ranging from

numerical simulations to machine learning algorithms—enable researchers to explore these

systems, generate predictions, and test hypotheses against empirical data. This section critically

reviews the major computational strategies used in biomathematics, highlighting their

strengths, limitations, and applications.

3.1 Numerical Simulation Methods

3.1.1 Discretisation of Differential Equations

Most classical models in biology are formulated as systems of ordinary or partial differential

equations. Analytical solutions exist only for a small subset of these equations. Numerical

methods such as Euler’s method, Runge—Kutta algorithms, and finite element methods are

widely employed to approximate solutions.

® ODE Solvers: Population models, enzyme kinetics, and epidemiological dynamics are
commonly solved using Runge—Kutta methods due to their balance between accuracy and
efficiency (Murray, 2002).

® PDE Solvers: Reaction—diffusion systems in morphogenesis and spatial ecology often rely
on finite difference or finite element methods. These allow exploration of spatiotemporal
patterns such as Turing stripes and waves of infection.

3.1.2 Strengths and Limitations

Numerical simulations are straightforward and versatile, allowing exploration of systems too

complex for exact solutions. However, they are sensitive to discretisation choices and can

accumulate errors. Moreover, simulations often provide results for specific parameter sets

without necessarily yielding general insights into system behaviour.

3.2 High-Performance Computing and Multiscale Modelling

Many biological problems involve multiple scales, from molecular interactions within cells to

population dynamics in ecosystems. Computational approaches that integrate across these

scales are essential.

® Molecular Dynamics (MD) Simulations: At the atomic level, MD simulations track the
motion of molecules over time using Newton’s laws of motion. These simulations have
advanced our understanding of protein folding, ligand binding, and biomolecular stability
(Karplus & McCammon, 2002).

® Multiscale Modelling: Complex phenomena such as cancer progression require linking
molecular events with tissue-level dynamics. Hybrid models combine cellular automata,
ODEs, and agent-based rules to represent processes at different levels simultaneously
(Oden et al., 2017).

® High-Performance Computing (HPC): Such models demand immense computational
resources. Supercomputers and parallel computing frameworks enable simulations that
would otherwise be impossible, such as simulating whole-cell models involving thousands
of coupled reactions (Karr et al., 2012).

3.3 Critical Perspective
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HPC and multiscale modelling allow unprecedented insights but raise issues of accessibility.
Only well-funded research centres can routinely deploy such computational power, limiting
inclusivity. Moreover, complex models may become opaque, with so many parameters that
distinguishing genuine biological mechanisms from artefacts becomes difficult.
3.4 Bioinformatics and Data-Driven Approaches
The genomic revolution has transformed biology into a data-rich science. Computational
biology and bioinformatics leverage algorithms and statistical techniques to extract meaning
from vast datasets.
3.5 Sequence Analysis
Algorithms for sequence alignment (e.g., BLAST, Smith—Waterman) allow comparison of
DNA, RNA, and protein sequences, enabling discovery of evolutionary relationships and
functional motifs (Altschul et al., 1990).
3.6 Systems Biology and Omics Integration
High-throughput technologies generate large-scale data on gene expression, proteins, and
metabolites. Computational pipelines integrate these datasets into networks, identifying
pathways underlying diseases or adaptive responses (Kitano, 2002).
3.7 Structural Bioinformatics
Predicting protein structures from amino acid sequences is a longstanding challenge. Recent
advances, particularly deep learning models such as AlphaFold, have revolutionised structural
prediction, offering near-experimental accuracy (Jumper et al., 2021).
3.8 Critical Reflection
While bioinformatics has revolutionised biology, data-driven models risk correlation without
causation. Large datasets may uncover associations that lack mechanistic explanation. The
integration of data-driven approaches with mechanistic mathematical models remains a central
challenge in biomathematics.
3.9 Machine Learning and Artificial Intelligence
Machine learning (ML) has emerged as a transformative tool for biomathematics. Unlike
traditional models that rely on explicitly defined equations, ML systems learn patterns directly
from data.
3.10 Applications
® Disease Diagnosis and Prognosis: ML algorithms classify medical images, predict
disease outcomes, and personalise treatment strategies (Esteva et al., 2019).
® Epidemiology: ML predicts disease spread using real-time mobility and demographic
data, complementing classical compartmental models.
® Drug Discovery: ML accelerates identification of promising compounds by predicting
binding affinities and toxicities from large chemical libraries.
® Synthetic Biology: Neural networks aid in designing gene circuits with desired
behaviours.
3.11 Critical Evaluation
The promise of ML lies in its ability to capture complex, nonlinear patterns. However,
these models often function as “black boxes,” offering little interpretability. For scientific
understanding, mechanistic insight is as important as predictive accuracy. Thus, ML is best
viewed as complementary to traditional models rather than a replacement. Hybrid
approaches—combining mechanistic modelling with ML—are gaining attention as powerful
tools (Raissi et al., 2019).
3.12 Computational Neuroscience
A specialised field within biomathematics, computational neuroscience uses modelling
and simulation to study brain function. From Hodgkin and Huxley’s equations to modern large-
scale simulations of neural circuits, computation has advanced our understanding of how
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neurons encode information, how networks give rise to cognition, and how dysfunction leads

to disease. Projects like the Human Brain Project exemplify the scale of current efforts, linking

experimental data with computational frameworks (Markram, 2006).

3.13 Evolutionary and Ecological Simulations

Computational approaches have also transformed evolutionary biology and ecology.

® Genetic Algorithms and Evolutionary Computation: Inspired by Darwinian evolution,
these algorithms simulate processes of selection, mutation, and recombination to solve
optimisation problems. In biology, they are used to model adaptive dynamics and
evolutionary strategies (Mitchell, 1998).

® Individual-Based and Ecosystem Models: Simulations of ecosystems incorporating
thousands of interacting species allow exploration of biodiversity patterns, resilience, and
tipping points under climate change scenarios.

3.14 Critical Perspective

These simulations generate insights into large-scale dynamics but depend heavily on

assumptions about interaction rules. Small changes in parameters can produce vastly different

outcomes, raising questions about predictive reliability.

3.15 Challenges in Computational Approaches

Despite remarkable progress, computational biomathematics faces several challenges:

® Data Quality: Biological data are often noisy, incomplete, and heterogeneous. Poor-
quality input limits the reliability of computational outputs.

® Model Validation: Simulations may reproduce observed patterns without necessarily
reflecting underlying mechanisms. Validation against independent experimental data
remains crucial.

® Accessibility: Advanced computational methods demand resources and expertise often
unavailable in low-resource settings.

® Ethical Concerns: Applications in personalised medicine, genomics, and neuroscience
raise ethical questions about data privacy and fairness.

3.16 Critical Reflection

Computational approaches are not just technical tools; they reshape the epistemology of

biology. By enabling large-scale simulations and data integration, they transform biology into

a predictive science. Yet, they also raise new challenges of interpretation, accessibility, and

ethics. The most promising path forward lies in integrative approaches—where mechanistic

models provide interpretability, data-driven methods provide breadth, and computation

provides scalability.

4. Applications in Biological Systems

Mathematical modelling and computational approaches in biology are not merely abstract
exercises; they serve practical purposes by illuminating the mechanisms of life and guiding
interventions in medicine, ecology, and biotechnology. By translating biological questions into
mathematical language and simulating outcomes computationally, researchers can generate
predictions, test hypotheses, and design strategies for solving real-world problems. The
following subsections illustrate some of the most significant applications of biomathematics
across biological systems.
4.1 Epidemiology and Infectious Disease Modelling

One of the most impactful applications of mathematical modelling is in epidemiology.
Disease transmission involves complex interactions between hosts, pathogens, and
environments, making it ideal for quantitative approaches.
4.2 Classical Compartmental Models
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The SIR (Susceptible—Infected—Recovered) model, introduced by Kermack and McKendrick
(1927), divides populations into compartments connected by rates of infection and recovery.
This framework provides critical epidemiological parameters such as the basic reproduction
number (ROR_0), which determines whether a disease will spread or die out (Hethcote, 2000).
Extensions of the SIR model incorporate additional compartments—SEIR (Susceptible—
Exposed-Infected—Recovered), SIRD (Susceptible—Infected—Recovered—Deceased), and age-
structured models—to capture incubation periods, mortality, or demographic heterogeneity.
4.3 Applications in Modern Pandemics
During the COVID-19 pandemic, compartmental models were central to public health
decision-making. Ferguson et al. (2020) used age-structured SEIR models to predict the impact
of lockdowns and social distancing, influencing global policies. Computational tools allowed
real-time forecasting of infection curves, hospitalisation needs, and vaccine rollout strategies.
4.4 Critical Perspective
While these models guide public health, they also face limitations. Simplified
assumptions about homogeneous mixing may fail in heterogeneous populations. Moreover,
predictions are highly sensitive to parameter estimation, which is difficult in the early stages
of outbreaks. Nevertheless, epidemiological modelling remains indispensable in pandemic
preparedness and response.
4.5 Ecology and Population Dynamics
Ecological systems, involving species interactions and environmental pressures, have
long been a focus of mathematical biology.
4.6 Predator-Prey and Competition Models
Lotka—Volterra equations remain foundational, capturing oscillatory dynamics between
predators and prey. Extensions of these models include functional responses (e.g., Holling type
I, 11, and IIT) that reflect more realistic consumption rates, as well as competition models that
simulate interspecific rivalry for resources (Murray, 2002).
4.7 Spatial and Landscape Ecology
Partial differential equations and agent-based models extend ecological modelling to
spatial contexts. For instance, reaction—diffusion models explain the spread of invasive species,
while landscape-scale simulations assess the impact of habitat fragmentation on biodiversity.
4.8 Conservation Biology
Mathematical models aid in assessing extinction risks, population viability, and optimal
harvesting strategies. Stochastic models, in particular, help evaluate the effects of demographic
fluctuations and environmental uncertainty on endangered species.
4.9 Critical Perspective
Ecological models often simplify complex ecosystems into a few interacting species,
raising questions about realism. Yet, even simplified models provide insights into emergent
behaviours—such as oscillations, tipping points, and resilience—that are invaluable for
conservation and environmental policy.
4.10 Genetics and Evolutionary Biology
Genetics and evolutionary biology represent domains where mathematical and
computational approaches have reshaped understanding.
4.10.1 Population Genetics
Mathematical models such as the Hardy—Weinberg equilibrium, Wright—Fisher model,
and Moran process describe allele frequency dynamics under forces of mutation, selection,
migration, and drift (Ewens, 2004). These frameworks allow predictions about genetic
diversity and evolutionary trajectories.

4.10.2 Phylogenetics and Computational Genomics
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Computational methods reconstruct evolutionary relationships among species by
analysing DNA and protein sequences. Algorithms for phylogenetic tree construction (e.g.,
maximum likelihood, Bayesian inference) are now central to evolutionary biology. Advances
in high-throughput sequencing have made computational pipelines indispensable for handling
genomic “big data.”

4.10.3 Systems Genetics

Network-based approaches model gene regulatory interactions, identifying how
mutations propagate through systems to produce phenotypic effects. Computational genomics
has facilitated genome-wide association studies (GWAS), linking genetic variants with
complex traits and diseases.

4.10.4 Critical Reflection

While powerful, genetic models often assume independence of loci or constant
population sizes, oversimplifying evolutionary processes. Moreover, bioinformatics analyses
risk producing spurious associations without mechanistic grounding. Integration of
mathematical rigour with empirical genomics remains a continuing challenge.
4.11 Cancer Modelling

Cancer is fundamentally a disease of uncontrolled growth and evolutionary adaptation,
making it a natural subject for mathematical and computational modelling.
4.11.1 Tumour Growth Models

Deterministic models describe tumour cell proliferation using exponential, logistic, or
Gompertzian equations. These models capture growth curves but lack mechanistic detail. More
advanced PDEs and agent-based models account for spatial structure, angiogenesis, and
nutrient diffusion (Byrne, 2010).

4.11.2 Cancer Evolution and Therapy Resistance

Stochastic models and evolutionary game theory simulate the emergence of resistant
clones under therapy. These approaches guide strategies for adaptive therapy, which seeks to
manage rather than eradicate tumours to delay resistance.

4.11.3 Computational Oncology

High-throughput molecular data allow integration of genomics with mathematical
models, yielding personalised predictions of tumour progression and treatment outcomes.
Machine learning algorithms predict patient-specific drug responses, bridging modelling with
precision medicine (Altrock et al., 2015).

4.11.4 Critical Perspective

Cancer modelling faces the challenge of immense heterogeneity. No single model can
capture the diversity of tumour microenvironments, mutations, and patient variability.
Nevertheless, even simplified models provide conceptual clarity, enabling researchers to test
hypotheses and design therapeutic strategies.

4.12 Computational Neuroscience

Neuroscience exemplifies the integration of mathematics, computation, and biology.

4.12.1 Neuronal Models

Hodgkin and Huxley’s model of action potentials remains foundational, inspiring
simplified spiking neuron models such as integrate-and-fire. These models enable large-scale
simulations of neuronal networks (Izhikevich, 2003).
4.12.2 Network-Level Models

Graph theory and dynamical systems are applied to brain connectivity, revealing small-
world and scale-free properties of neural networks. Computational approaches simulate how
network architecture underlies cognitive processes and disorders such as epilepsy or
Alzheimer’s disease.
4.12.3 Brain Simulation Projects
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Large-scale initiatives such as the Human Brain Project (Markram, 2006) and the Blue
Brain Project aim to simulate entire brain regions, integrating data from multiple scales. While
ambitious, these projects highlight both the promise and the limitations of computational
neuroscience.

4.12.4 Critical Reflection

Neuroscience models raise questions about levels of abstraction. Should models aim to
replicate detailed biophysics of neurons, or focus on functional abstractions that capture
information processing? Both approaches have value, but the choice depends on research goals.
Computational neuroscience thus exemplifies the pluralism of biomathematics.

4.13 Other Emerging Applications

1. Immunology: Models simulate immune responses to infections and vaccines, aiding in
vaccine design and predicting autoimmune dynamics.

2. Synthetic Biology: Computational tools design gene circuits with predictable
behaviours, accelerating bioengineering.

3. Systems Biology: Integration of omics data with network models reveals emergent
behaviours of metabolic and signalling pathways.

4. Environmental Biology: Models predict impacts of climate change on species
distributions, ecosystem stability, and biodiversity.
4.14 Critical Reflections

The breadth of applications demonstrates that mathematical modelling and computation
are not auxiliary tools but central to modern biology. Their greatest strength lies in providing
predictive power—whether forecasting pandemics, assessing extinction risks, or designing
therapies. Yet, their limitations also reveal recurring themes: simplifications may omit key
processes, parameter uncertainty can undermine predictions, and computational complexity
risks opacity.

The challenge, therefore, is integration: combining diverse modelling approaches,
grounding predictions in data, and maintaining awareness of assumptions. When used
critically, mathematical and computational approaches become transformative, shaping both
scientific understanding and real-world interventions in health, ecology, and biotechnology.

5. Challenges and Limitations
The integration of mathematics and computation into biology has generated powerful
insights and practical tools, yet it also faces significant challenges. Models, by definition, are
abstractions of reality; their strength lies in simplification, but this also introduces limitations.
Computational methods, while offering scale and precision, raise concerns about accessibility,
interpretability, and ethical implications. This section critically examines the central challenges
that confront biomathematics today.
5.1 Data Availability and Quality
Biological modelling is highly dependent on empirical data for parameter estimation,
calibration, and validation. However, biological data often suffer from several limitations:

1. Noise and Variability: Experimental data in biology are rarely precise. Genetic
expression levels, for example, vary widely between cells, even in controlled
environments. Noise can obscure real trends, complicating parameter estimation.

2. Incomplete Datasets: In many cases, only partial data are available. Ecological
surveys may miss rare species, while clinical studies may exclude certain populations.
Such gaps lead to models that either oversimplify or rely on assumptions that may not
hold universally.

3. High Dimensionality: Genomic and proteomic datasets involve thousands of
variables. While computational methods can manage such complexity, overfitting
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becomes a serious risk when models are tuned to idiosyncrasies of specific datasets

rather than general biological principles (Ewens, 2004).

The data problem is thus twofold: scarcity in some areas (e.g., rare diseases, endangered
species) and overabundance in others (e.g., genomics). Both pose obstacles for building robust,
generalisable models.

5.2 Model Validation and Predictive Reliability

Validation is one of the most difficult challenges in biomathematics. Unlike physics,
where models can be tested against universal laws, biology is context-dependent and often
lacks such invariants.

1. Parameter Sensitivity: Many models are highly sensitive to parameter values.
Small errors in parameter estimation can lead to dramatically different predictions,
undermining reliability.

2. Overfitting and Generalisation: Complex models may reproduce observed
data accurately but fail to predict future scenarios. This is especially true for machine
learning models, which may capture correlations without underlying causation (Raissi
et al., 2019).

3. Experimental Constraints: Validating predictions often requires extensive
experimentation, which may be impractical, costly, or ethically restricted. For example,
testing long-term ecological predictions or patient-specific cancer therapies is rarely
feasible in controlled experiments.

The result is a tension between the explanatory power of models and their predictive
reliability. While models are indispensable for exploring hypotheses, they should be interpreted
as guides rather than definitive forecasts.

5.3 Complexity and Interpretability
As biological models grow in scope, complexity becomes a double-edged sword.

1. Parameter Explosion: Multiscale models may involve hundreds or thousands
of parameters, many of which cannot be measured directly. This increases uncertainty
and risks producing models that are mathematically impressive but biologically opaque.

2. Black-Box Models: Machine learning methods, particularly deep learning,
excel at prediction but often lack interpretability. In fields such as medicine, where
decisions impact human lives, opaque models undermine trust and limit clinical
applicability (Jumper et al., 2021).

3. Trade-Off Between Simplicity and Realism: Simple models, like the SIR
epidemic framework, are elegant and intuitive but oversimplify heterogeneity.
Complex models capture more detail but may lose transparency and generalisability.

This “complexity trap” highlights the importance of balancing simplicity, interpretability,
and realism. Models should be tailored to the research question rather than aspiring to capture
every detail of biological reality.

5.4 Interdisciplinary Communication
Biomathematics is inherently interdisciplinary, requiring collaboration between
mathematicians, biologists, computer scientists, and clinicians. However, differences in
disciplinary cultures present challenges:
1. Language Barriers: Mathematical formalism may be inaccessible to biologists,
while biological complexity may overwhelm mathematicians.
2. Priorities and Incentives: Biologists may value descriptive detail, while
mathematicians seek general principles. Aligning these priorities requires careful
negotiation.
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3. Training Gaps: Few researchers are equally fluent in both mathematics and
biology, creating dependence on interdisciplinary teams. Effective collaboration requires
mutual respect and continuous communication.

Without such collaboration, models risk being biologically unrealistic or mathematically
trivial. The interdisciplinary nature of biomathematics is both a strength and a source of
difficulty.

5.5 Ethical and Philosophical Concerns
Mathematical and computational approaches raise ethical questions that extend beyond
technical challenges.

1. Personalised Medicine: Computational models of genomics and cancer promise
personalised therapies. However, they rely on sensitive patient data, raising concerns
about privacy and data security (Altrock et al., 2015).

2. Ecological Modelling: Predictions about species survival or extinction influence
conservation policies. If models are flawed or biased, they may inadvertently justify
harmful decisions.

3. Determinism vs. Contingency: Philosophically, there is debate about whether
mathematical models can ever fully capture biological systems that are historical,
contingent, and adaptive. Over-reliance on models risks reducing life to equations,
neglecting its inherent unpredictability (Oden et al., 2017).

4. Algorithmic Bias: In machine learning applications, biased training data can produce
skewed outcomes, reinforcing existing inequalities in healthcare or public health.

Ethical oversight and philosophical humility are therefore essential in applying
biomathematics responsibly.

5.6 Accessibility and Resource Inequality

Advanced computational approaches require substantial resources—supercomputers,
high-throughput sequencing platforms, and interdisciplinary expertise. Wealthy institutions in
developed countries have disproportionate access to these tools, while researchers in low-
resource settings may struggle. This inequality risks reinforcing global disparities in scientific
capacity and healthcare outcomes. Ensuring equitable access to computational infrastructure
and training is therefore a critical challenge for the future of biomathematics.

5.7 Critical Reflection

The challenges and limitations discussed above highlight the dual nature of
biomathematics. On one hand, mathematical and computational approaches offer
unprecedented explanatory and predictive power. On the other, they are constrained by data
quality, interpretability, and ethical concerns. Rather than undermining the field, these
challenges emphasise the need for critical reflection and responsible application.

Models should be viewed as tools for thought rather than definitive representations of
reality. Their value lies in clarifying mechanisms, generating hypotheses, and guiding
empirical work—mnot in providing exact predictions. Similarly, computational methods should
be used not as ends in themselves but as complements to theoretical and experimental
approaches.

Ultimately, the strength of biomathematics lies in its pluralism—the ability to employ
multiple modelling paradigms, computational strategies, and disciplinary perspectives to
illuminate complex biological phenomena. The challenge is to maintain this pluralism
responsibly, balancing ambition with humility, complexity with clarity, and innovation with
ethics.
6.Future Directions

The trajectory of biomathematics points towards increasing integration of mathematical
theory, computational power, and biological complexity. While the field has already
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transformed our understanding of biological systems, future advances promise to extend its
scope even further, addressing unresolved challenges in medicine, ecology, and biotechnology.
This section considers several directions likely to define the coming decades.

6.1 Artificial Intelligence and Machine Learning Integration

Artificial intelligence (Al) and machine learning (ML) are rapidly becoming central to
biological research. Unlike traditional models, which require explicit equations, Al systems
can detect patterns in large datasets that may not be visible through standard methods. In
genomics, deep learning models such as AlphaFold have already revolutionised protein
structure prediction (Jumper et al., 2021). In epidemiology, ML models that incorporate
mobility, climate, and demographic data complement compartmental models by providing real-
time outbreak forecasts.

The future lies in hybrid approaches that combine mechanistic models with Al. For
example, Al can refine parameter estimates for differential equations or identify hidden
variables in stochastic processes. This synergy would preserve interpretability while harnessing
predictive accuracy. However, ethical concerns—such as algorithmic bias, data privacy, and
lack of transparency—must be carefully addressed to ensure responsible use.

6.2 Multi-Scale and Systems Modelling
Biological phenomena span multiple scales: molecular interactions within cells, tissue
dynamics, organism physiology, and population-level processes. Historically, models have
been constrained to a single scale. The future of biomathematics lies in multi-scale modelling,
where processes at one level are linked to those at others.
® Molecular to Cellular: Models of protein folding can be integrated with cellular metabolic
networks.
® Cellular to Tissue: Tumour growth models that couple cellular mutation rates with tissue-
level angiogenesis provide deeper insights into cancer progression (Byrne, 2010).
® Ecosystem Modelling: Climate change research increasingly requires integration of
individual species dynamics with global environmental models.

Advances in high-performance computing (HPC) and parallelisation will make such
models feasible. Yet challenges remain in balancing scale, complexity, and interpretability.
Future work must ensure that multi-scale models are not only computationally powerful but
also biologically meaningful.

6.3 Personalised and Precision Medicine
Biomathematics is poised to play a central role in the future of healthcare. With the
advent of genomics and patient-specific data, mathematical and computational models can
tailor treatments to individuals rather than populations.
® Cancer Therapy: Evolutionary game theory and stochastic modelling are already being
applied to adaptive therapy strategies that account for intra-tumour heterogeneity (Altrock
et al., 2015).

® Pharmacokinetics and Pharmacodynamics: Differential equation models can simulate
how drugs are absorbed, distributed, and metabolised in individuals, allowing dosage
optimisation.

® Digital Twins: Emerging approaches envision computational “digital twins” of patients,
which simulate disease progression and therapy outcomes in silico before clinical
intervention.

This future, however, depends on access to high-quality patient data, raising concerns
about privacy, equity, and ethics. Ensuring that personalised medicine does not exacerbate
global health disparities will be a pressing responsibility.

6.4 Sustainability and Global Challenges
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Beyond human health, biomathematics has vital applications in sustainability. Climate
change, biodiversity loss, and resource scarcity require predictive models to guide policy.
® [Ecosystem Resilience: Models that integrate species interactions with environmental
stressors can predict tipping points in ecosystems.

® Agricultural Modelling: Crop growth models, combined with climate projections, help
design sustainable farming strategies.

® Pandemic Preparedness: Mathematical epidemiology will remain central in anticipating
future zoonotic outbreaks and designing intervention strategies.

The future role of biomathematics in sustainability will involve transdisciplinary
collaboration between scientists, policymakers, and local communities. This requires models
that are not only technically rigorous but also socially and politically relevant.

6.5 Education and Interdisciplinary Growth

The growth of biomathematics necessitates educational reform. Training programmes
must bridge mathematics, biology, and computer science, equipping the next generation of
researchers with interdisciplinary fluency. Initiatives such as mathematical biology graduate
programmes, summer schools, and collaborative research centres are already expanding
globally. In the future, fostering inclusive and diverse participation will be essential for
advancing the field.

6.6 Critical Reflection

The future of biomathematics is both promising and complex. On one hand, advances
in Al, multi-scale modelling, and precision medicine offer transformative opportunities. On the
other, challenges of interpretability, ethics, and equity remain pressing. The field must
therefore proceed with both ambition and humility.

Biomathematics is not about replacing traditional biology but about augmenting it—
providing new lenses for seeing patterns, predicting outcomes, and guiding interventions. If
pursued responsibly, it will not only deepen scientific understanding but also contribute to
solving some of humanity’s most urgent problems, from curing diseases to sustaining
ecosystems.
7.Conclusion

The fusion of mathematics and biology has given rise to biomathematics, a discipline
that transforms life sciences from a largely descriptive enterprise into a predictive and
quantitative science. This review has examined how mathematical models—deterministic,
stochastic, agent-based, and network-based—provide structured frameworks for representing
biological systems. It has also discussed how computational approaches, including numerical
simulations, bioinformatics, and machine learning, extend the reach of these models, enabling
the exploration of complex, nonlinear, and multiscale phenomena.

The applications of these tools are vast. In epidemiology, models have shaped public
health responses to infectious diseases, most notably during the COVID-19 pandemic. In
ecology, they guide conservation and biodiversity management. In genetics and genomics,
computational pipelines extract meaning from vast datasets, revealing evolutionary patterns
and linking genetic variation to phenotypic traits. Cancer biology, computational neuroscience,
and immunology further illustrate the ability of models to reveal mechanisms and guide
therapies. Across these domains, mathematical and computational approaches are not auxiliary
but central to contemporary biology.

At the same time, the review has highlighted significant challenges and limitations.
Data in biology are often noisy, incomplete, or unevenly distributed. Model validation remains
difficult, as context-dependent systems resist universal laws. Complex models risk becoming
opaque, while simple models may omit critical details. Interdisciplinary collaboration is
essential but not always easy, requiring mutual understanding between mathematicians,
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biologists, and computer scientists. Ethical issues—ranging from patient data privacy in
precision medicine to the ecological consequences of predictive modelling—further
complicate the landscape.

Looking ahead, future directions include the integration of artificial intelligence with
mechanistic models, the expansion of multi-scale frameworks that connect molecular to
ecological levels, and the rise of personalised medicine supported by digital twins and adaptive
therapy models. Biomathematics also holds promise in addressing sustainability challenges,
such as predicting ecosystem resilience under climate change or designing sustainable
agricultural strategies. Yet progress must be accompanied by critical reflection: AI must be
transparent, multi-scale models must remain interpretable, and precision medicine must avoid
deepening inequalities.

The central lesson is that models are tools for thought rather than mirrors of reality.
Their purpose is not to replicate life in its entirety but to illuminate essential features, test
hypotheses, and guide empirical research. As abstractions, they inevitably involve
simplifications and assumptions. Their strength lies in making the complexity of life tractable
without claiming to eliminate uncertainty.

In conclusion, mathematical modelling and computational approaches represent a
paradigm shift in biology. They offer not only practical tools for solving immediate problems
but also conceptual frameworks that reshape our very understanding of living systems. The
future of biomathematics will be determined by its ability to balance complexity with clarity,
prediction with explanation, and innovation with responsibility. If pursued with critical
awareness and interdisciplinary collaboration, it will continue to unlock new insights into the
dynamics of life and provide pathways for addressing some of the greatest scientific, medical,
and environmental challenges of our time.
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