
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Please cite this article in press as: Zmigrod S et al. Transcranial direct current stimulation (tdcs) over the right dorsolateral prefrontal cortex affects stim-

ulus conflict but not response conflict. neuroscience (2016), http://dx.doi.org/10.1016/j.neuroscience.2016.02.046

NSC 16936 No. of Pages 6

27 February 2016
Neuroscience xxx (2016) xxx–xxx
TRANSCRANIAL DIRECT CURRENT STIMULATION (tDCS) OVER THE
RIGHT DORSOLATERAL PREFRONTAL CORTEX AFFECTS STIMULUS
CONFLICT BUT NOT RESPONSE CONFLICT
16

17

18

19

20

21
S. ZMIGROD, a* L. ZMIGROD b AND B. HOMMEL a

a Leiden University Institute for Psychological Research &

Leiden Institute for Brain and Cognition, Leiden University,

Leiden, The Netherlands

bDepartment of Psychology, University of Cambridge,

Cambridge, United Kingdom
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
Abstract—When the human brain encounters a conflict,

performance is often impaired. Two tasks that are widely

used to induce and measure conflict-related interference

are the Eriksen flanker task, whereby the visual target stim-

ulus is flanked by congruent or incongruent distractors, and

the Simon task, where the location of the required spatial

response is either congruent or incongruent with the

location of the target stimulus. Interestingly, both tasks

share the characteristic of inducing response conflict but

only the flanker task induces stimulus conflict. We used a

non-invasive brain stimulation technique to explore the role

of the right dorsolateral prefrontal cortex (DLPFC) in dealing

with conflict in the Eriksen flanker and Simon tasks. In dif-

ferent sessions, participants received anodal, cathodal, or

sham transcranial direct current stimulation (tDCS) (2 mA,

20 min) on the right DLPFC while performing these tasks.

The results indicate that cathodal tDCS over the right DLPFC

increased the flanker interference effect while having no

impact on the Simon effect. This finding provides empirical

support for the role of the right DLPFC in stimulus–stimulus

rather than stimulus–response conflict, which suggests the

existence of multiple, domain-specific control mechanisms

underlying conflict resolution. In addition, methodologi-

cally, the study also demonstrates the way in which brain

stimulation techniques can reveal subtle yet important dif-

ferences between experimental paradigms that are often

assumed to tap into a single process. � 2016 Published by

Elsevier Ltd. on behalf of IBRO.

Key words: brain stimulation, tDCS, Eriksen flanker effect,

Simon effect, DLPFC, cognitive control.

INTRODUCTION

A robust finding from experimental psychology is that

when the human brain encounters a conflict, the
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efficiency of its performance suffers noticeably. Various

experimental conflict paradigms have provided ample

evidence demonstrating that irrelevant, incongruent

information affects individuals’ response time and

accuracy. This is evident in the flanker task introduced

by Eriksen and Eriksen (1974), which shows slow and

less accurate response to central visual target stimuli

when these are flanked by stimuli that are incongruent

with the target. Systematic experimentation has revealed

two sources of conflict in this task, one related to the

incongruence between the flankers and the target and

one related to the incongruence between the response

signaled by the flankers and the response signaled by

the target (Wendt et al., 2007). Hence, the flanker effect

reflects stimulus conflict and response conflict. Another

extensively studied paradigm is the Simon task (Simon

and Small, 1969), where responses to a non-spatial stim-

ulus feature are slower and more error-prone when the

location of the response is spatially incongruent to the

location of the stimulus. Given the non-spatial nature of

the relevant stimulus feature, this effect does not rely on

stimulus conflict but on response conflict only (Hommel,

2011; Kornblum, 1992).

It has been suggested that when conflict (in

incongruent trials) is detected, a cognitive control

mechanism is engaged so to reduce and deal with the

conflict according to the task’s requirements (Botvinick

et al., 2001). While the flanker task and the Simon task

have often been used to explore conflict-related

cognitive control mechanisms, the fact that they show

comparable behavioral outcomes does not necessarily

imply the same neural mechanisms. Previous imaging

studies have associated conflict resolution with the

dorsolateral prefrontal cortex (DLPFC; Durston et al.,

2003) and specifically in the right hemisphere (Egner,

2008, 2011; Egner and Hirsch, 2005; Kerns et al.,

2004). However, imaging studies provide only correla-

tional evidence for associations between cognitive func-

tions and brain regions, which calls for additional

evidence from studies using methods that allow for causal

inferences. A non-invasive, safe method that allows for

such inferences is transcranial direct current stimulation

(tDCS). By inducing either positive (anodal) or negative

(cathodal) intracranial current flow on a specific brain

region, and thus affecting its excitability, brain functions

can be temporarily and reversibly modulated (Nitsche

and Paulus, 2001). A number of tDCS studies have pro-

vided evidence for a role of the right DLPFC in cognitive

http://dx.doi.org/10.1016/j.neuroscience.2016.02.046
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control mechanisms; for instance, tDCS stimulation over

the right rather than the left DLPFC reduced cognitive

control of stimulus–response binding (Zmigrod et al.,

2014). In addition, modulation of performances in a Go/

NoGo task after stimulation over the right DLPFC was

reported by Beeli et al. (2008). These observations sug-

gest an involvement of the right DLPFC in cognitive con-

trol functions.

The aim of the present study was to examine the role

of the right prefrontal cortex in the cognitive control of

conflict by means of tDCS. We were particularly

interested in testing whether the flanker task and the

Simon task would be equally affected. Comparable

effects on both tasks would indicate a role of the right

DLPFC in dealing with response conflict while a

selective effect on the flanker task would indicate a role

in dealing with stimulus conflict.

EXPERIMENTAL PROCEDURES

Experimental design

A randomized sham-controlled within-subject design

experiment was conducted on healthy volunteers. The

experiment comprised of three sessions of tDCS

(anodal, cathodal, and sham) over the right DLPFC with

the order of the sessions being counterbalanced across

participants. The interval between the different sessions

was at least 48 h, in order to minimize carryover effects.

The study conformed to the ethical standards of the

declaration of Helsinki and was approved by the Ethics

Committee of Leiden University.

Participants

Fourteen Leiden University students (eight women; mean

age = 20 years; age range: 18–24 years) took part in the

experiment for course credits or a financial reward. The

participants were naı̈ve to the experimental procedure

and method as well as to the purpose of the study. All

participants were right handed as assessed by the

Edinburgh Inventory (Oldfield, 1971) with normal or

corrected-to-normal vision. Exclusion criteria included:

history of psychiatric disorders, drug abuse, active medi-

cation, pregnancy, or susceptibility to seizures. Partici-

pants gave their written informed consent to participate

in the study.

Stimuli and procedure
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Eriksen flanker task. An extended version of the

flanker task was adapted from Davelaar (2008). The stim-

uli were composed of seven characters; the middle char-

acter was a right or a left arrow. There were four types of

stimuli: congruent (>>>>>>>, all the characters

are pointing to the same direction); incongruent

(<<<><<<, the flanker characters are pointing to

the one direction and the target middle one is pointing

to the other direction); neutral (===>===); and

no-go (xxx>xxx). The participants were asked to

respond to the middle character of the stimulus with ‘‘z”

or ‘‘/” to the left or right arrow with the index finger in each
Please cite this article in press as: Zmigrod S et al. Transcranial direct current st
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hand respectively, however, they had to withhold their

response when a no-go trial appeared. In each trial, after

a blank fixation of 1000 ms, the stimulus appeared for up

to 2000 ms, and in the case of a missing or incorrect

response a feedback tone was played for 500 ms.

Simon task. The Simon task was performed during a

10-min session in which participants were asked to

discriminate the color of a circular stimulus (blue or

green) which was presented to the left or right of a

central fixation point. Both colors and locations

appeared with equal frequency across the experiment,

and the color and location of the circle varied randomly

throughout. The participants were instructed to respond

to the color of the stimulus regardless of its spatial

location with the index finger of each hand, where the

response keys were ‘‘p” and ‘‘q”. The mapping between

color and response key was counterbalanced across

participants. Each trial began with a fixation point

(lasting 1000 ms) followed by the stimulus (1500 ms),

and in the case of an error or lack of response, a

feedback error tone was played.

Procedure

After reading and signing the informed consent form,

each session started with tDCS stimulation lasting for

5 min, followed by the participants’ completion of the

Erikson flanker task and the Simon task in a

counterbalanced fashion (see Fig. 1). Before each task,

instructions and a practice session were given. The

flanker task contained 16 practice trials followed by 192

experimental trials. In the Simon task, there were eight

training trials and 120 experimental trials. At the end of

the last session, the participants answered a

questionnaire (Adverse Effects Questionnaire (Brunoni

et al., 2011)) regarding their experience during and after

the tDCS sessions.

Transcranial direct current stimulation. tDCS was

delivered by means of a DC Brain Stimulator Plus

(NeuroConn, Ilmenau, Germany) and was applied

through a saline-soaked pair of surface sponge

electrodes (5 � 7 cm). The active electrode was placed

over F4, a location atop the right DLPFC, according to

the international 10–20 system for EEG electrode

placement; the reference electrode was placed over the

contralateral supraorbital area. The stimulation lasted

20 min with a constant current of 2 mA and with a 15-s

fade-in and fade-out. For sham stimulation, the

electrodes were placed at the same position but the

stimulator was automatically turned off after 15 s of

stimulation.

RESULTS

All participants completed the three sessions without

major complaints or discomfort as measured by the

tDCS Adverse Effects Questionnaire (Brunoni et al.,

2011). To compare the effect of the stimulation over the

right DLPFC across the two tasks, mean reaction times

(RTs) of correct responses and percentage of accuracy
imulation (tdcs) over the right dorsolateral prefrontal cortex affects stim-
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Fig. 1. Overall experimental design (A), Eriksen flanker task paradigm (B), and Simon task paradigm (C). Each session started with tDCS

stimulation (anodal, cathodal or sham) after 5 min participants performed the flanker task and the Simon task in a counterbalanced fashion. Before

each task, instructions and a practice session were given. On both tasks an auditory feedback was presented to incorrect responses.

Table 1. Means reaction time in millisecond and percentage of accuracy in flanker task and Simon task as a function of brain stimulation and

congruency. Standard errors are shown in parentheses

Brain stimulation

Anodal Cathodal Sham

Flanker trials Reaction time Congruent 548 (20) 546 (19) 516 (15)

Incongruent 702 (31) 726 (35) 660 (20)

Accuracy Congruent 0.99 (.001) 0.99 (.004) 0.99 (.002)

Incongruent 0.96 (.009) 0.93 (.017) 0.94 (.014)

Simon trials Reaction time Congruent 448 (16) 453 (11) 444 (11)

Incongruent 487 (16) 486 (11) 466 (11)

Accuracy Congruent 0.97 (.008) 0.96 (.010) 0.97 (.008)

Incongruent 0.95 (.012) 0.95 (.009) 0.95 (.008)
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were analyzed per participant for congruent and incongru-

ent trials in each task for each stimulation session.

Repeated measures ANOVAs were performed on flanker

trials and Simon trials, both on RTs and accuracy rate

with stimulation type (anodal, cathodal, or sham) and con-
Please cite this article in press as: Zmigrod S et al. Transcranial direct current st

ulus conflict but not response conflict. neuroscience (2016), http://dx.doi.org/1
gruency (congruent, vs. incongruent) as within-subject

factors (Table 1).

As expected, main effects of congruency were

observed for flanker trials in terms of RTs, F(1,13)
= 102.355, p< .0001, g2

p = .887, and accuracy, F
imulation (tdcs) over the right dorsolateral prefrontal cortex affects stim-
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(1,13) = 26.278, p< .0001, g2
p = .768, replicating the

Eriksen flanker effect. Similar main effects of

congruency were observed for Simon trials in RTs, F
(1,13) = 43.051, p< .0001, g2

p = .768, and accuracy, F
(1,13) = 15.097, p< .005, g2

p = .537, replicating the

Simon effect. Moreover, there was a main effect of

stimulation in the performance of flanker trials in terms

of RTs, F(2,26) = 3.747, p< .05, g2
p = .224. A multiple

comparisons Bonferroni test showed a significant

difference (p= .014) between the performance in

cathodal stimulation (M= 625 ms) and sham stimulation

(M= 588 ms), suggesting a modulating effect during

cathodal stimulation of the right DLPFC in the flanker

task. No significant stimulation effect was found in

accuracy. In addition, there was a close to significant

interaction between stimulation and congruency in the

performance of flanker trials in terms of RTs,

F(2,26) = 3.262, p= .054, g2
p = .201. As revealed by

further analyses, split by congruency, a significant main

effect of stimulation was observed only in the

incongruent trials, F(2,26) = 4.12, p< .05, g2
p = .241.

Multiple comparisons Bonferroni tests showed a

significant difference (p= .012) between cathodal

stimulation and sham (see Fig. 2), suggesting a

stimulation effect during cathodal tDCS over the right

DLPFC on the incongruent trials in the Erikson flanker

task.

In order to assess the effect of brain stimulation on the

interference effects in both tasks, we calculated these

effects by subtracting RT during congruent trials from

those of incongruent trials (RTs of incongruent – RTs of

congruent trials). Repeated measures ANOVAs were

performed on the interference effect with stimulation

type (anodal, cathodal, or sham) and task (Flanker, vs.

Simon) as within-subject factors. As expected, a main

effect of task was observed, F(1,13) = 74.364,

p< .0001, g2
p = .851; the flanker effect was larger than

Simon effect. In addition, there was a main effect of

stimulation, F(2,26) = 4.442, p< .05, g2
p = .255. A

multiple comparisons Bonferroni test showed a

significant difference (p= .33) in the interference effect

between cathodal and sham stimulation. Moreover,

there was a significant interaction between task and
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Fig. 2. Mean reaction time in millisecond with error bars for

congruent trials and incongruent trials in Eriksen flanker and Simon

task as a function of tDCS stimulation (anodal, cathodal, & sham)

over the right DLPFC. *p< .05.
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stimulation: F(2,26) = 3.653, p< .05, g2
p = .219.

Further analyses, split by task, revealed a significant

difference in the flanker task, F(2,26) = 5.267, p< .05,

g2
p = .288, but not in the Simon task, F(2,26) = 1.55,

NS. A multiple comparisons Bonferroni test in flanker

task showed a significant difference (p= .035) between

cathodal and sham stimulation (see Fig. 3). From a

methodological perspective, as suggested by

Nieuwenhuis and colleagues (2011), this interaction

demonstrates that indeed the cathodal stimulation over

the right DLPFC affects only the performance on the flan-

ker task and not the performance on the Simon task.
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DISCUSSION

The aim of this study was to examine the involvement of

the right DLPFC in conflict situations, either in the case of

combined stimulus and response conflict (Eriksen flanker

task) or in the case of response conflict only (Simon task).

The results are clear: while the flanker effect was

mediated by cathodal stimulation over the right DLPFC

(reflected in a larger flanker effect), there was no

stimulation effect on performance in the Simon task

(Fig. 3), which was further confirmed by a significant

interaction between task and stimulation. This suggests

that the right DLPFC is involved in conflict situations

arising mainly from stimulus–stimulus incompatibility

rather than conflict in stimulus–response incompatibility,

to the degree to which DLPFC activity was affected by

our method and montage.

The observation that cathodal simulation over the right

DLPFC increased, rather than decreased, the flanker

interference effect (see Fig. 3) suggests that cathodal

stimulation impaired the efficiency of conflict resolution

induced by stimulus–stimulus incompatibility. Moreover,

it was found that cathodal stimulation affects the

incongruent trials more so than the congruent trials (see

Fig. 2), indicating that to a large extent the cathodal

tDCS was specifically influencing trials requiring

attentional inhibition of task-irrelevant features. Hence,

reducing cortical excitability by means of cathodal

stimulation led to inefficient inhibition of irrelevant

stimuli. The prefrontal cortex has long been implicated

with cognitive control functions (Miller, 2000; Miller and

Cohen, 2001) with different sub-regions involved in dis-

tinct aspects of cognitive control (Ridderinkhof et al.,

2004). In particular, it has been suggested that the

DLPFC plays a key role in inhibitory control over sensory

processing by suppressing irrelevant information, as cap-

tured by the distractibility hypothesis of prefrontal function

(Bartus and Levere, 1977; Knight et al., 1989, 1999).

Empirical evidence can be found in numerous methodolo-

gies, including animal studies (Bartus and Levere, 1977),

neurophysiological studies with patients who suffer from

damage to the DLPFC (Knight et al., 1989, 1999;

Yamaguchi and Knight, 1990), as well as in schizophrenic

patients (Freedman et al., 1983) who exhibit altered

DLPFC function (Weinberger et al., 1986, 1992). In a sim-

ilar vein, it can be postulated that the cathodal stimulation

over the DLPFC disrupts the suppression of the irrelevant

information, which contributes to a slower performance in
imulation (tdcs) over the right dorsolateral prefrontal cortex affects stim-
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the incongruent flanker trials. This finding thereby pro-

vides additional support to the distractibility hypothesis

in the context of a healthy population experiencing a

temporary, non-invasive reversible lesion in the form of

tDCS.

In comparison to other brain stimulation studies, this

finding is in line with previous research underscoring the

importance of cathodal stimulation for cognitive

functions. It complements the work of Bellaı̈che et al.

(2013), who found that cathodal, but not anodal or sham,

stimulation over the medial prefrontal cortex in the Erik-

sen flanker task affects the error monitoring system. In

addition, stimulating the right posterior parietal cortex

(PPC) with cathodal rather than anodal tDCS modulates

the flanker effect both in low and high-loaded scenes

(Weiss and Lavidor, 2012). Interestingly, it was found that

that cathodal PPC stimulation facilitated flanker process-

ing, implying that cathodal stimulation over the PPC can

enhance attentional resources. In relation to the present

study, this might indicate the relevance of frontal-

parietal networks, and their responsiveness to cathodal

stimulation, to cognitive control in stimulus–stimulus

incompatibility contexts. Furthermore, Beeli and

colleagues (2008) reported a greater number of false

alarms in a Go/NoGo task after cathodal stimulation over

the right DLPFC, highlighting the importance of cathodal

stimulation in brain stimulation protocols that examine

cognitive control functions. A recent review by Olk and

colleagues (2015) of TMS studies that investigate cogni-

tive control demonstrated that different frontal and parietal

cortical regions are implicated in attentional control and

response selection in the Eriksen flanker and Simon

tasks. This is in accordance with the present tDCS

results, as well as with Keye and colleagues’ (2009)

finding that individual differences in cognitive control are

task-specific rather than representing a domain-general

control mechanism. This provides support to Egner and

colleagues’ (2007, 2008) claim that there are multiple

conflict-specific control mechanisms underlying these

paradigms rather than a unitary, domain-general mecha-
Please cite this article in press as: Zmigrod S et al. Transcranial direct current st

ulus conflict but not response conflict. neuroscience (2016), http://dx.doi.org/1
nism as sometimes assumed (e.g. Botvinick et al.,

2001; Freitas et al., 2007; Niendam et al., 2012;

Verbruggen et al., 2005).

To summarize, the present findings suggest three

conclusions: First, conflict paradigms such as the Eriksen

flanker and Simon tasks are tapping into multiple cognitive

control mechanisms rather than one unitary domain-

general system. Second, the DLPFC seems to play an

important role in resolving stimulus–stimulus conflict,

possibly through suppression of the irrelevant sensory

information. And third, from a more methodological

perspective, cathodal stimulation over the right DLPFC

appears to impede the inhibitory modulation of sensory

processing in healthy participants otherwise observed with

prefrontal patients or people with schizophrenia,

suggesting a useful non-invasive method that creates a

temporary reversible lesion to study prefrontal functions

and brain mechanisms. Continuing investigations along

these lines will facilitate better understandings of the

appropriate conceptual fractionation of these cognitive

control mechanisms as well as their neural underpinnings

and plasticity in response to interventional techniques and

brain stimulation.
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