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Abstract 

Numerous studies demonstrate that moment-to-moment neural variability is 

behaviorally relevant and beneficial for tasks and behaviors requiring cognitive 

flexibility. However, it remains unclear whether the positive effect of neural 

variability also holds for cognitive persistence. Moreover, different brain variability 

measures have been used in previous studies, yet comparisons between them are 

lacking. In the current study, we examined the association between resting-state 

BOLD signal variability and two metacontrol policies (i.e., persistence vs. flexibility). 

Brain variability was estimated from resting-state fMRI (rsfMRI) data using two 

different approaches (i.e., Standard Deviation (SD), and Mean Square Successive 

Difference (MSSD)) and metacontrol biases were assessed by three metacontrol-

sensitive tasks. Results showed that brain variability measured by SD and MSSD was 

highly positively related. Critically, higher variability measured by MSSD in the 

attention network, parietal and frontal network, frontal and ACC network, parietal and 

motor network, and higher variability measured by SD in the parietal and motor 

network, parietal and frontal network were associated with reduced persistence (or 

greater flexibility) of metacontrol (i.e., larger Stroop effect or worse RAT 

performance). These results show that the beneficial effect of brain signal variability 

on cognitive control depends on the metacontrol states involved. Our study highlights 

the importance of temporal variability of rsfMRI activity in understanding the neural 

underpinnings of cognitive control. 
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Introduction 

Neural activity is highly variable from moment to moment at every level of neural 

organization. Traditionally, variability of this kind is considered to be “noise” that 

tends to mask, overshadow, or even distort the neural signals that are assumed to 

represent the relevant neural processing. Accordingly, functional magnetic resonance 

imaging (fMRI) research typically focuses on mean activity within a voxel or brain 

region, but considers variance in blood oxygen level-dependent (BOLD) signal as to-

be-neglected “noise”1. The same logic applies to other neuroscientific and behavioral 

measurements indicative of human cognitive functioning2.  

However, accumulating evidence suggests that intra-individual variability 

might be functional and beneficial for cognitive performance3–8, so that a better 

understanding of its functional role might strongly improve the diagnosis and 

treatment of mental disorders such as ADHD9–12. For example, higher BOLD signal 

variability is associated with younger age, higher accuracy, faster and more stable 

responses across a number of cognitive tasks spanning perception, attention, working 

memory, response inhibition and task switching4,6,7,13–16. BOLD signal variability 

might reflect intrinsic properties of network organization8, cardiovascular and 

cerebrovascular factors17, and/or general non-cognitive factors18. Notably, previous 

work suggests that more pronounced brain variability might allow the brain to explore 

among different functional network configurations, which in turn supports cognitive 

flexibility – the ability to explore variable opportunities and flexibly adapt to 

changing circumstances5,16,19.   
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The present study was motivated by the idea that individual differences in 

cortical variability might be systematically related to individual cognitive-control 

styles, to what Hommel (2015) has called “metacontrol”20. This term refers to the 

control of cognitive functioning to deal with a fundamental dilemma of human 

cognition21–23: the fact that we sometimes need to be “cognitively conservative” by 

sticking with our present mindset and our present goal, but to be flexible and more 

open to alternative goals on other occasions. Hence, people need both cognitive 

persistence and cognitive flexibility: while cognitive flexibility helps them to switch 

between alternative opportunities, intentional agents also need cognitive persistence to 

avoid distractions and to stick with the current goal as long as pursuing it is 

worthwhile20,24–26.  

As Hommel’s Metacontrol State Model (MSM) suggests, cognitive control 

emerges from the interplay of two counteracting forces or systems, one promoting 

cognitive persistence and the other promoting cognitive flexibility20. A metacontrol 

bias towards persistence is characterized by a strong top-down influence from the 

current goal and restricting processing to task-relevant information. In contrast, a 

metacontrol bias towards flexibility is characterized by a stronger bottom-up influence 

and openness to alternative goals and opportunities20. Truly adaptive control requires 

humans to find a balance between persistence and flexibility, an ability called 

metacontrol. Interestingly, there are systematic individual differences with respect to 

the metacontrol default: while some people tend to have a persistence bias, so that 

they perform better than others on tasks that require persistence but less well than 
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others on tasks that require flexibility, other individuals tend to have a flexibility bias, 

resulting in the opposite performance profile26. The basic idea driving the present 

study was that such individual biases in metacontrol might be related to individual 

differences in brain variability, that is, in the individual level of the BOLD signal 

variability of people’s brains. 

We assessed our key hypothesis by testing whether an indicator of the 

individual degree of brain variability, our noise measure, is statistically correlated to 

behavior in tasks that have been shown to be diagnostic for individual biases towards 

metacontrol persistence or flexibility. “Noise” is defined as variability that results 

from random or unpredictable fluctuations and disturbances27. We used resting-state 

fMRI (rsfMRI) measures as indicators of the individual variability level. RsfMRI is a 

spontaneous low frequency (< 0.1Hz) BOLD signal within the brain in the absence of 

external stimulation. Noise (at an optimal level) in rsfMRI is thought to drive the 

network dynamics28,29 and enables the exploration of the brain among various 

functional configurations representing its dynamic repertoire19. It thus seems possible 

that cortical noise is systematically related to metacontrol. 

Various temporal variability estimation approaches for rsfMRI data have been 

introduced and used in previous studies4,7,30,31. The simplest and most prominent 

measure of variability is the standard deviation (SD), which reflects the distributional 

width of a BOLD signal time series. The SD of a BOLD signal is related to age and 

cognitive performance in both younger and older adults4,7. However, SD 

overestimates the true dispersion when the (mean) signal varies because the 
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calculation of SD is based on the difference between single data points and the overall 

mean32. To circumvent this problem, some researchers have suggested an alternative 

measure – the mean squared successive difference (MSSD)30,33,34. The MSSD 

captures the BOLD signal difference between successive time points and thus can 

adapt to changing expected (mean) signals. Although the advantages and 

disadvantages of different measures have been discussed in the literature7,30,33, it is 

unknown whether different parameters that can be estimated on the basis of rsfMRI 

data reveal differences in their predictability to cognitive control. Given that we had 

no a-priori reason to favor one measure over another, we considered both of them, 

assuming that a systematic comparison would lay the grounds for choosing proper 

measurement approaches in future studies. Therefore, the present study employed two 

different brain variability measures and tested which of them, if any, would best 

predict performance in metacontrol-sensitive tasks.  

We used two tasks in which high performance requires cognitive persistence 

(i.e., the Stroop task and the Remote Associates Task (RAT)), and a task in which high 

performance depends on cognitive flexibility (i.e., the Alternate Uses Task (AUT)). 

Given that metacontrol biases cannot (yet) be assessed directly, we followed the 

previous experimental logic of comparing individual differences in tasks that rely 

(more) on persistence with tasks that rely (more) on flexibility26. Persistence is 

assumed to lead to a strong focus on the present goal and information strictly related 

to that goal, which suggests that a high degree of persistence would lead to better 

performance in tasks that require a strong focus on some stimuli and neglect of others. 
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The Stroop task35 is an excellent example for such a task. In the classical Stroop task, 

participants are to respond to the color of colored words while ignoring the word 

meaning (e.g., responding “green” to the word “RED” written in green ink35–37). To be 

successful in this task, one has to process task-relevant information (i.e., color “green”) 

and ignore task-irrelevant information (i.e., word “RED”). Individuals usually respond 

slower in incongruent trials (in which the color of the word and meaning are different) 

than in congruent trials (in which the color of the word and meaning are same), which 

is known as the Stroop effect. A smaller Stroop effect can be taken to indicate a better 

ability in reducing cognitive conflict, which is supposed to benefit from a metacontrol 

bias towards persistence (e.g., Dreisbach & Goschke, 2004, who applied this logic to 

similar tasks38). In comparison, a larger Stroop effect implies a stronger impact from 

task-irrelevant information, which indicates a metacontrol bias towards flexibility. As 

some researchers argue that reaction time (RT) difference scores are sometimes 

unreliable in individual differences research39, we also considered intra-individual 

variability (IIV) of Stroop performance, which can be taken to reflect the stability of 

metacontrol over time. More trial-to-trial variability which was potentially induced by 

more frequent strategy readjustments, would indicate lesser stability of metacontrol 

states, i.e., higher flexibility. Conversely, less trial-to-trial variability in Stroop 

performance would indicate more persistence.  

A second persistence-heavy task we considered was the Remote Associates 

Task (RAT). RAT is typically used to measure convergent thinking, which is one 

aspect or component of human creativity40. It requires participants to find a single 
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solution under highly constrained search conditions: they are presented with three 

words and are requested to specify the one word that can be combined with either of 

them (e.g., “Market”, “Glue”, and “Man”, with the solution “Super”). While this task 

does require a certain degree of flexibility (in repeatedly searching through memory 

and considering novel possible targets), its reliance on persistence is much stronger 

than in tasks testing divergent thinking26,41. Accordingly, participants with comparably 

better performance in the RAT would be considered to have a stronger bias towards 

persistence than participants with worse performance42.  

As a flexibility-heavy task, we employed the Alternate Uses Task (AUT)43,44. 

This task is traditionally used to assess divergent thinking, another component of 

human of creativity, requiring to generate new ideas and to overcome more familiar, 

but currently misleading ideas43,44. As an example, a participant might be presented 

with the label or picture of a brick and asked to report all kinds of uses that a brick 

might have, including very uncommon ones. The AUT does need some degree of 

persistence (in keeping the original concept active to check it for possible uses) but it 

relies much more on flexibility26,41. Accordingly, participants with comparably better 

performance in the AUT would be considered to have a stronger bias towards 

flexibility than participants with worse performance42. 

In sum, the present study explored whether and how resting-state BOLD signal 

variability is associated with inter-individual differences in metacontrol biases 

towards persistence or flexibility. We examined different indicators of brain variability 

and three different tasks drawing on cognitive persistence or flexibility. Our main 



9 
 

question was whether two indicators are significantly related to performance in the 

three behavioral tasks and whether these associations would differ between tasks 

tapping into persistence biases and tasks tapping into flexibility biases. We were also 

interested in possible differences between the two indicators in the way they are 

associated with such behavioral differences but had no specific hypothesis regarding 

such differences. 

 

Results 

Behavioral findings 

The analysis of the Stroop data (n = 32) yielded a standard Stroop effect, with longer 

mean RTs in incongruent trials (1100 ms, SD = 317 ms) than in congruent trials (797 

ms, SD = 234 ms), t(31) = 4.34, p < 0.001, d = 1.09) (see Figure 2a). Performance 

accuracy and speed were not significantly correlated (congruent trials: r=0.181, p = 

0.323; incongruent trials: r=0.260, p = 0.151), which rules out a speed–accuracy 

trade-off. Intra-individual variability of Stroop performance (RT-CV) was 0.315 ± 

0.062 ms. In the RAT, participants solved 6.22 items correctly on average (SD = 4.09). 

In the AUT, inter-rater reliability was assessed by intraclass correlation coefficients 

(ICC), which were moderate for flexibility scores (ICC shoe = 0.571, ICC stone = 0.650) 

and for fluency scores (ICC shoe = 0.705, ICC stone = 0.665). The averaged AUT 

flexibility scores from both raters were 7.50 ± 2.04, and the averaged AUT fluency 

scores were 9.78 ± 2.26. Histograms displaying the distribution of above-mentioned 

variables are provided in the supplementary Figure S3. 
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In order to test whether metacontrol-bias parameters extracted from various 

tasks and different measures were related, we applied an inter-correlation analysis 

between the size of Stroop effect, RT-CV of Stroop task, RAT scores, AUT flexibility 

scores, and AUT fluency scores. As displayed in Figure 2b, the size of Stroop effect 

was significantly positively correlated with RT-CV (r = 0.403, p = 0.022). A highly 

positive correlation was also found between AUT flexibility scores and AUT fluency 

scores (r = 0.709, p < 0.001). Correlations between other measures were not 

significant. These results may indicate that participants are biased towards persistence 

or flexibility to a different extent, depending on the task demands. 

 

Resting-state independent components findings 

The spatial maps at the threshold of Z > 1.0 and time courses of our selected ICs are 

shown in Figure 3. IC1 and IC4 mainly reflect activities in bilateral precuneus, 

superior and inferior parietal regions, within the parietal cortex. IC2 includes bilateral 

inferior prefrontal gyrus, middle temporal gyrus, and angular gyrus. Bilateral inferior 

parietal regions, postcentral and precentral areas are involved in IC3, which was 

defined as a parietal and motor network. IC5 reflects the left-sided executive control 
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network, including the left prefrontal and parietal cortex, while IC7 represents the 

right executive control network45. IC6 mainly includes the bilateral middle part of 

orbital frontal gyrus and precuneus which was defined as the frontal and parietal 

network. IC8 represents activity in the anterior cingulate cortex, the prefrontal cortex, 

and the bilateral insular, which were denoted as the attention network46. IC9 mainly 

reflects activity in the prefrontal cortex and extends to the anterior cingulate cortex. 
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To assess whether brain variability correlated between different measures, we 

tested the Pearson correlations between brain variability measured by SD and MSSD. 

Figure 3 
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Results showed that SD and MSSD of BOLD signals were highly positively 

correlated for all ICs (see Table 1 for details), suggesting that these two approaches 

are consistent in assessing the temporal variability of rsfMRI data. 

Resting-state BOLD variability and individual difference in metacontrol policies 

The analysis of the SD measure revealed that the SD of all selected components was 

positively correlated with the size of the Stroop effect. A pattern of positive 

correlations was also obtained between MSSD of all components and the size of 

Stroop effect. A close to significance positive correlation was found between MSSD 

of IC8 (i.e., attention network) and the size of Stroop effect (r = 0.468, p uncorrected = 

0.007, p corrected = 0.062) (Figure 4; see Table 2 for details). We performed a 

supplementary analysis in which we include two participants who were excluded due 

to the extreme value in the Stroop effect. Results showed that the association between 

MSSD of IC8 and Stroop effect size is not significant (see the supplementary Figure 

S4 for an updated scatterplot). No significant correlations were found between RT-CV 

of Stroop task and brain variability as measured by SD, or MSSD. 

 

Regarding RAT performance, the SD of all ICs revealed negative correlations. 
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SD of IC3 (i.e., parietal and motor network) and IC6 (i.e., parietal and frontal network) 

was significantly negatively correlated with RAT performance (IC3: r = -0.505, p 

uncorrected = 0.003, p corrected < 0.05; IC6: r = -0.508, p uncorrected = 0.003, p corrected < 0.05) 

(see Figure 5a and 5b). A similar pattern of negative correlations was displayed 

between MSSD of all components and RAT scores. Most significant negative 

correlations were found between MSSD of IC6 (i.e., parietal and frontal network), 

IC9 (i.e., frontal and ACC network) and RAT performance (IC6: r = -0.543, p uncorrected 

= 0.001, p corrected < 0.05; IC9: r = -0.510, p uncorrected = 0.003, p corrected < 0.05) (see 

Figure 5c and 5d). We found a close to significant negative correlation between 

MSSD of IC3 and RAT scores (r = -0.470, p uncorrected = 0.007, p corrected = 0.059) (see 

Figure 5e). These results were replicated in the supplementary analysis in which two 

excluded participants were included (see supplementary Figure S5 for details). 

AUT flexibility and fluency scores were not significantly related to brain 

variability. 
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Resting-state BOLD signal variability and metacontrol in the extended dataset 

With 69 participants, we obtained 11 ICs which reflect activities in control-related 

brain networks (see the supplementary Figure S7 for details). The temporal variability 

measured by SD and MSSD was highly positively correlated (see supplementary 

Table S1). SD and MSSD of all selected ICs revealed negative correlations with the 

RAT score. We found a significant negative correlation between the MSSD of frontal 

motor regions (i.e., new IC3, see Figure S7 for details) and the RAT score (r = -0.350, 

p uncorrected = 0.003, p corrected < 0.05) (see Figure S8 and Table S2). No significant 

association was detected between brain variability of other ICs and RAT scores. AUT 

flexibility scores and AUT fluency scores were not significantly correlated with SD or 

MSSD of selected ICs. 

 

Discussion 

The present study explored the relationship between the individual’s resting-state 

BOLD signal variability and individual differences in metacontrol biases towards 

persistence or flexibility. Two BOLD signal variability measures were compared. We 

found that resting-state BOLD signal variability measured by SD and MSSD was 

highly positively correlated. Notably, our results suggest that higher levels of resting-

state BOLD variability measured by MSSD in the attention network, parietal and 

frontal network, frontal and ACC network, parietal and motor network, and variability 

measured by SD in the parietal and motor network, parietal and frontal network were 

associated with lesser persistence (or more flexibility) (denoted by larger Stroop effect 

or worse RAT performance) than lower levels of brain variability in these networks.  
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Correlations between two brain variability measures suggest that resting-state 

BOLD signal variability estimated by SD and MSSD is highly correlated. The high 

correlation between the SD measure and MSSD measure is consistent with findings 

from Garrett and colleagues7. Although SD as a measure of brain variability has been 

criticized for its dependence on shifts in the mean and MSSD was recommended to 

prevent this problem, our findings where MSSD and SD show highly consistent 

results suggest that SD is an appropriate variability measure in resting-state fMRI data 

where (mean) signals are relatively constant. We found that brain signal variability 

measured by SD and MSSD in a range of resting-state networks was positively 

associated with metacontrol biases towards flexibility but negatively associated with 

metacontrol biases towards persistence. Our findings extend previous knowledge of 

the relationship between brain variability and human behavior in two ways:  

First, resting-state BOLD signal variability is meaningful and can tentatively 

be taken as a neural marker of metacontrol biases towards persistence or flexibility. 

Previous investigations have identified the on-task brain variability, which varies 

between cognitive demands6, attentional states15, task conditions47, and perceptual 

input48. We suggest that off-task variability can also be used as a trait-like neural 

marker of the individual metacontrol bias and, thus, as a predictor of individual 

cognitive control performance.  

Second, although numerous studies demonstrate general positive effects of 

higher brain variability on cognitive performance4–7,13,48,49, our results suggest that the 

beneficial effect of brain variability may depend on cognitive demands and 
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metacontrol states involved. Our findings are in line with the previous task-based 

fMRI study suggesting that higher brain signal variability levels are beneficial for task 

switching but detrimental for distractor inhibition16. Hence, brain variability should 

not be considered as a general performance booster, but as a factor that can be 

beneficial for some tasks but impair performance in others. How might signal 

variability in the brain translate into metacontrol biases towards persistence or 

flexibility? Researchers have proposed that dopamine (DA) and inter-individual 

differences in DA levels and/or the dynamics of these levels over time are promising 

candidates for linking characteristics of neural processing, like differences in neural 

variability, to behavior5,50–52 and some evidence suggests that dopaminergic (or 

catecholamine system activity) is associated with metacontrol53–56. 

According to the computational model proposed by Durstewitz and Seamans57, 

D2-dominated state related to a low energy barrier among activity states would allow 

easier and faster transition between different cortical network states16. This D2-

dominated state facilitates switching among representations at the behavioral level 

and supports metacontrol biases towards flexibility26,57. Conversely, D1-dominated 

states are associated with a high energy barrier leading to more stable brain activity 

patterns and a more difficult transition between different network states16,57.  

At the same time, this D1-dominated state boosts the robustness of items in 

working memory and promotes metacontrol biases towards persistence26,57. Evidence 

from simulation research suggests that dynamics of the brain's intrinsic properties 

may help keep the system in a state where different subnetworks compete with each 
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other28. Such an active resting-state (at an optimal level) can be sensitive to external 

signals, which can trigger brain activity during different tasks, thus supporting 

behavioral exploring and switching. In contrast, sensitivity to external stimuli makes 

people more likely to be distracted by task-irrelevant stimuli.  

We found that resting-state BOLD variability of parietal and motor network 

(IC3), parietal and frontal network (IC6), attention network (IC8), frontal and ACC 

network (IC9) was positively associated with metacontrol biases towards flexibility 

but negatively associated with metacontrol biases towards persistence. Previous work 

suggests that distractor inhibition and task switching rely on a shared frontoparietal 

network, and brain activity varies depending on the exact cognitive processing 

involved58. As a control network, the frontoparietal network plays a crucial role in 

task adaptation, implementation and flexible modulation of cognitive control59. 

Moreover, the frontoparietal network is a globally functional hub that flexibly 

interacts with other brain networks. Higher variability in frontal and parietal regions 

may indicate more dynamic connectivity between brain networks with the 

frontoparietal network as the hub, and thus supports the flexibility of metacontrol, but 

hamper persistence of metacontrol60,61. The attention network which mainly includes 

ACC, prefrontal cortex and insular has been shown to be involved in sustained focus 

on task-relevant information and conflict resolution62,63. A variable attention network 

may reveal flexible attention resources allocation, which is beneficial for flexibility 

but detrimental for persistence. 

Whereas the analyses of the Stroop and the RAT data provide a rather 
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consistent picture, this is not the case with respect to the AUT findings. On the one 

hand, previous studies have rarely found RAT performance to be an exact mirror 

image of AUT performance; rather, various manipulations affected either only one of 

the two tasks or at least one of the more than the other64,65. This suggests that both 

tasks are likely to capture aspects of metacontrol persistence and flexibility, but they 

can hardly be viewed as a direct measure of the respective metacontrol states. It is 

also likely that they differ in sensitivity, presumably depending on the experimental 

setting. Hence, it does not seem to be odd per se that only one of the two creativity 

tasks showed systematic effects. On the other hand, however, it is also possible that 

our particular assessment of divergent thinking was suboptimal. Due to the time limit 

in Qualtrics, our AUT task only allowed up to 6 responses within a short time duration 

for each item. This might have created ceiling effects, so that especially the fluency 

and flexibility scores were likely to be less sensitive to interindividual differences 

than the standard versions of the AUT. This must have reduced the variability of the 

data, which in turn could have worked against finding significant correlations. 

Accordingly, we are reluctant to draw strong conclusions from the absence of 

correlations related to the AUT. 

Another potential limitation of our explorative study is the sample size, which 

in turn resulted from our use of already collected data. Larger sample sizes would be 

beneficial for probing brain-behavior relationships. Accordingly, we consider the 

outcomes of the present study as preliminary and in need of replication, but at the 

same time encouraging for further studies on the relationship between brain variability 
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and metacontrol policies. 

To conclude, we aimed to explore the relationship between resting-state BOLD 

signal variability and metacontrol policies and compared two previously used brain 

variability estimation metrics. We demonstrated that temporal brain variability during 

resting-state is associated with metacontrol biases towards persistence or flexibility, 

highlighting the importance of temporal variability of brain activity in understanding 

the neural underpinnings of cognitive control. Moreover, we found that BOLD signal 

variability is antagonistically related to metacontrol biases towards persistence or 

flexibility, suggesting that the beneficial effect of brain variability on cognitive control 

may depend on the metacontrol modes involved. At last, the SD and MSSD indices of 

rsfMRI brain variability provide consistent pictures for predicting behavioral 

cognitive control.  

 

Materials and Methods 

Participants  

Our sample consisted of thirty-two right-handed adults (21 females; age 18 – 35 years; 

M = 23.81, SD = 3.53). The raw dataset, which has been reported in a previous study66, 

included 40 university students reporting no history of psychiatric or neurological 

disorders. Six participants were excluded because of missing data for the Stroop task, 

RAT or AUT, or resting-state fMRI scanning; two participants were excluded because 

of extremely large or small Stroop effect size (i.e., exceeding group mean ± 2 standard 

deviations). The mean framewise displacement (FD) of all remaining participants was 
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smaller than 0.5 mm. The present study was approved by the Psychology Research 

Ethics Committee of Leiden University. The original study was approved by the 

Internal Review Board of the Erasmus Research Institute of Management, and all 

participants provided written informed consent for their participation. The current 

study and original study were conducted in accordance with the Declaration of 

Helsinki. 

Behavioral assessment 

Color-word matching Stroop task  

An adapted version of the Stroop task35 was used. In this task, two rows of letters 

appeared on screen, and participants were instructed to decide as quickly as possible 

whether the color of the top row letters correspond to the color name written at the 

bottom row by pressing one of two buttons (see Figure 1). In congruent trials, the top 

row consisted of a color word (“RED,” “GREEN,” “BLUE,” or “YELLOW”) printed 

in a color that matches its semantic meaning (e.g., “RED” presented in red ink), and 

the bottom row consisted of a color word printed in white ink. For incongruent trials, 

the color word in the top row printed in a color that mismatches its semantic meaning 

(e.g., “RED” presented in green ink). The bottom row letters were identical to the 

congruent condition. Participants performed 72 trials in the MRI scanner, containing 

36 congruent trials and 36 incongruent trials. In half of the trials, the color of top row 

word corresponded to bottom color word (corresponding trials), while the color of top 

row word not corresponded to bottom word in the other half (not corresponding trials).  
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Each trial started with a fixation period of 2000 – 4000ms, followed by the 

stimuli presented for a maximum time of 3000ms. Afterwards feedback appeared for 

1000ms. To prevent participants from focusing on the bottom word and not attending 

the word in the top row, the top-row word was presented 100ms before the bottom 

word. If no response was given within 3000ms from the onset of the stimulus 

presentation, an incorrect response was registered. 

We calculated two parameters from the Stroop task as estimations of 

metacontrol biases: First, the size of Stroop effect (mean RT for incongruent trials 

minus mean RT for congruent trials). As we mentioned before, a smaller Stroop effect 

indicates bias towards persistence, while a larger Stroop effect indicates bias towards 

flexibility. Note that in our word-matching version of the Stroop task, the size of the 

Stroop effect may depend on the type of answer (yes or no), i.e., on the color-word 

correspondence67. Specifically, in non-corresponding trials (when the answer was 

‘NO’), the conflict generated by the Stroop effect may facilitate a ‘no response’, 

which may work against the Stroop effect. Hence, a standard Stroop effect may only 

occur with correspondence (when the answer was ‘YES’). Therefore, we calculated 

the Stroop effect by subtracting the mean RT for corresponding congruent trials from 
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the mean RT for corresponding incongruent trials. As RT difference scores are 

sometimes unreliable in assessing individual differences39, we also calculated the 

intra-individual variability (IIV) of Stroop RT as a second metacontrol measure. The 

IIV of Stroop RT was estimated by the RT coefficient of variation across all trials (RT-

CV: SD divided by mean). Greater RT-CV would reflect lesser stability of metacontrol 

states in the Stroop task, i.e., a bias towards flexibility. In contrast, smaller RT-CV 

would be taken as a bias towards metacontrol persistence. The mean accuracy across 

all trials was 0.90 (SD = 0.07) (see the supplementary Figure S1 for the histogram). 

The Stroop effect and RT-CV were calculated on correct trials only. The response 

latency in each trial ranged from 344ms to 2995ms. 

Remote Associates Task (RAT)  

In each trial of this task, participants were to find a single word that can be combined 

with each of the three presented stimulus words (e.g., cottage, swiss, cake = 

“cheese”)40. Participants had to complete 17 trials within 5 minutes. This task was 

completed via Qualtrics outside the scanner. To complete the RAT, participants were 

assumed to engage in convergent thinking, which was assumed to rely on a 

persistence bias68. 

Alternate Uses Task (AUT) 

Participants were presented with two everyday objects (i.e., shoe, stone) and asked to 

name as many possible uses (up to 6 uses) for each object as they can. This task was 

completed via the Qualtrics outside the scanner and participants had 3 minutes for 

both objects together. Performance on AUT was scored by two independent raters 
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from four dimensions: flexibility (number of ideas in different categories), fluency 

(number of uses one can think of), originality (uniqueness of responses), and 

elaboration (the level of details in responses). As flexibility and fluency require 

switching between different ideas and considering multiple solutions44, we used 

flexibility scores and fluency scores which were averaged between two raters as 

metacontrol biases measures. Higher scores indicated more tendency towards 

flexibility, while lower scores indicated more tendency towards persistence44.  

MRI data acquisition 

MRI scanning was performed on a 3T Siemens Verio MRI system. Resting-state 

functional data were acquired by a T2*-weighted gradient-echo, echo-planar pulse 

sequence in descending interleaved order (repetition time (TR) = 2030ms, echo time 

(TE) = 30ms, flip angle = 75°, slice thickness = 3.0 mm, in-plane resolution = 3.0 × 

3.0 mm, 64 × 64 voxels per slice). In addition to functional imaging, a T1-weighted 

image was acquired at the resolution of 1.0 × 0.5 × 0.5 mm for anatomical reference 

(192 sagittal slices, TR = 1900ms, TE = 2.26ms, flip angle = 9°). 

Resting-state functional data preprocessing 

Data preprocessing was performed using DPASF (http://rfmri.org/DPARSF), a Matlab 

toolbox for resting-state fMRI data processing & analysis69,70. The first 10 volumes 

were discarded, and then slice-time correction and realignment were performed. Head 

motion was assessed by frame-wise displacement (FD)71. All participants’ mean FD 

were smaller than 0.5 mm. Individual T1-weighted images were co-registered to the 

mean functional image and then segmented into gray matter, white matter (WM), and 
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cerebrospinal fluid (CSF). Transformations from individual native space to MNI space 

were computed with the DARTEL tool72, and then the functional images were 

normalized to MNI space with warped parameters. Lastly, all functional images were 

smoothed with a 6 mm full width at half maximum (FWHM) Gaussian kernel. 

Group independent component analysis  

As previous studies note that brain signal variability is region-specific16,47, we only 

selected control-related networks (i.e., independent components) which were obtained 

from the independent component analysis (ICA). ICA was performed using the GIFT 

Toolbox (https://www.nitrc.org/projects/gift) to identify temporally coherent networks 

which are spatially distinct. Following the processing protocol used in the previous 

study73, pre-processed functional images were firstly intensity-normalized. 

Subsequently, each participant’s data were reduced to 70 principal components. Then, 

group-level decomposition was performed using the Infomax algorithm74, which 

resulted in 25 spatially independent components (ICs) and associated time courses. To 

improve the reliability of IC-decomposition, the Infomax ICA algorithm was repeated 

20 times using the ICASSO toolbox75. Afterward, the obtained 25 ICs were visually 

inspected to exclude noise components. We then compared all non-noise components’ 

spatial topology to the pre-defined resting-state network templates45,46. The ICs 

reflecting activities in the executive control network, attention network, prefrontal, 

and parietal regions were identified and used for further analyses. Participant-specific 

spatial maps and time courses were then estimated using the dual regression back-

reconstruction method76. We did not further scale the components due to the 

https://www.nitrc.org/projects/gift
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preprocessing step of intensity normalization, which returns back-reconstructed maps 

in units of percent signal change. Spatial maps for excluded components are shown in 

the supplementary Figure S2. 

Resting-state BOLD signal variability calculation 

We estimated resting-state BOLD signal variability using component-wise within-

participant measures. For each component and each participant, BOLD variability was 

calculated. Here, we used two brain signal variability measures listed below.  

First, we calculated the standard deviation (SD) of BOLD signals for each 

component and each participant. 

As a second measure, we estimated the variability of time courses in selected 

ICs via mean squared successive difference (MSSD)30,31. As a non-biased estimation 

to SD, MSSD reflects moment-to-moment BOLD signal variability that is less 

sensitive to low-frequency drift77 and independent from shifts in the mean7. For each 

IC and each participant, we subtracted BOLD signals in time point t from time point t 

+ 1, and then squared the average of all subtractions across the entire time series. 

(Equation (1): t and t + 1 are two successive time points belonging to the same 

component time course, n is the number of time points in each component).  

𝑀𝑆𝑆𝐷 =  √
∑ (𝑥𝑡 +1− 𝑥𝑡)2𝑛 − 1

𝑡 = 1

𝑛− 1
             (1) 

Statistical analysis 

To examine the relationship between resting-state BOLD signal variability and 

individual differences in metacontrol policies, we correlated the size of Stroop effect, 

Stroop RT-CV, RAT scores, AUT flexibility scores, and AUT fluency scores with 
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brain variability estimated by SD and MSSD, respectively. As nine components were 

included for correlation analysis, Bonferroni correction was used to control for the 

increased risk of a type I error. Note that the theoretical meaning of the 

signs/directions of the correlations varies with task scores: Whereas higher scores in 

the two Stroop measures and the AUT scores imply stronger bias towards flexibility 

(and lower scores stronger bias towards persistence), higher scores in the RAT imply 

stronger bias towards persistence (and lower scores stronger bias towards flexibility). 

Resting-state BOLD signal variability and metacontrol in an extended dataset 

The original study66 from which we obtained data for the current study collected 

behavioral and neural data from four separate samples (two big and two small 

samples). Besides a big sample we reported above (referred to as Sample 1), there 

exists a N = 41 sample which will be referred to as Sample 2. Sample 2 consisted of a 

different population, and neural data was collected in a different scanner than Sample 

1. Participants in Sample 2 only completed creativity tasks, and RAT was tested by 

different items from those in Sample 1 (Detailed information can be found in the 

Supplementary Material). To test the stability of the brain-behavior correlation, we 

replicated the analysis of the association between resting-state brain variability and 

RAT performance, AUT flexibility, and AUT fluency, respectively in an extended 

sample consisting of both Sample 1 and Sample 2 (see the Supplementary Material for 

details). 

Data availability statement 

Data is publicly available in a repository which can be accessed by the following link:  
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https://datarepository.eur.nl/articles/dataset/Individual_differences_in_dis_honesty_ar

e_represented_in_the_brain_s_functional_connectivity_at_rest_/17091323/1 
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Figure legends  

Figure 1: 

Examples for conditions and design of the color-word matching Stroop task. For the 

upper two examples, the correct answer would be “YES,” for the lower two examples, 

the correct answer would be “NO.”  

 

Figure 2: 

Statistics of mean RT in the Stroop task and inter-correlations between behavioral 

assessments. (a) mean reaction time (RT) in (corresponding) incongruent condition 

was larger than RT in (corresponding) congruent condition; (b) inter-correlation 

between the size of Stroop effect, RT-CV of Stroop task, RAT scores, AUT flexibility 

scores and AUT fluency scores.  

Note. * = p < 0.05, *** = p < 0.001 

 

Figure 3: 

Spatial maps (Z-threshold > 1.0, in the left panel) and time series (in the right panel) 

for selected independent components of the mean for all participants. 

 

Figure 4: 

The correlation between the size of Stroop effect and brain variability of the attention 

network (i.e., IC8) was close to significance. The higher the brain variability of IC8 

estimated by MSSD, the larger the size of Stroop effect.  

 

Figure 5: 

RAT performance was significantly (or, in the case of e, close to significantly) 

negatively correlated with brain variability of the parietal and motor network (i.e., 

IC3), parietal and frontal network (i.e., IC6), frontal and ACC network (i.e., IC9). 

Brain variability was calculated using SD in (a), (b); brain variability was measured 

by MSSD in (c) (d) and (e). 
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Tables 

Table 1. Pearson correlations between brain variability measured by SD and MSSD. 

          

ICs 

 
Correlation 

between SD and 

MSSD 

 

  r p   
 

    

IC1  0.742 < .0001  

IC2  0.551 0.0011  

IC3  0.829 < .0001  

IC4  0.731 < .0001  

IC5  0.629 0.0001  

IC6  0.710 < .0001  

IC7  0.623 0.0001  

IC8  0.523 0.0021  

IC9   0.586 0.0004   

     

 

Note. IC = Independent component, SD = standard deviation, MSSD = mean squared 

successive difference.  
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Table 2. Correlations between brain variability measured by SD, MSSD, and metacontrol policies measured by the size of Stroop effect, IIV of Stroop 

performance (RT-CV), RAT scores, AUT flexibility scores, and AUT fluency scores. 
                                            

Brain variability 

measures 
ICs 

 
Size of Stroop effect  RT-CV of Stroop task  RAT scores  AUT flexibility scores  AUT fluency scores 

  r puncorrected pcorrected   r  puncorrected pcorrected   r puncorrected pcorrected   r puncorrected pcorrected   r puncorrected pcorrected 
                      

SD 

IC1  0.117 0.523 1.000  0.030 0.870 1.000  -0.117 0.522 1.000  0.024 0.898 1.000  0.089 0.627 1.000 

IC2  0.260 0.150 1.000  0.003 0.986 1.000  -0.305 0.089 0.805  0.135 0.461 1.000  0.141 0.441 1.000 

IC3  0.379 0.032 0.292  0.123 0.502 1.000  -0.505 0.003 0.029  -0.086 0.639 1.000  -0.054 0.768 1.000 

IC4  0.422 0.016 0.145  0.175 0.337 1.000  -0.146 0.424 1.000  0.027 0.883 1.000  0.014 0.937 1.000 

IC5  0.258 0.154 1.000  -0.009 0.962 1.000  -0.223 0.221 1.000  0.071 0.701 1.000  0.226 0.213 1.000 

IC6  0.319 0.076 0.680  -0.128 0.487 1.000  -0.508 0.003 0.027  -0.187 0.307 1.000  -0.063 0.730 1.000 

IC7  0.116 0.529 1.000  0.000 0.998 1.000  -0.173 0.343 1.000  0.092 0.617 1.000  0.125 0.495 1.000 

IC8  0.339 0.057 0.517  0.215 0.238 1.000  -0.194 0.286 1.000  0.216 0.236 1.000  0.030 0.870 1.000 

IC9  0.334 0.062 0.554  0.286 0.113 1.000  -0.440 0.012 0.105  0.034 0.852 1.000  -0.006 0.974 1.000 
 

                     

MSSD 

IC1  0.325 0.070 0.629  -0.005 0.978 1.000  -0.321 0.074 0.663  -0.108 0.558 1.000  0.031 0.864 1.000 

IC2  0.406 0.021 0.192  -0.023 0.902 1.000  -0.376 0.034 0.306  -0.019 0.918 1.000  0.160 0.380 1.000 

IC3  0.426 0.015 0.135  0.074 0.686 1.000  -0.470 0.007 0.059  -0.141 0.443 1.000  -0.168 0.357 1.000 

IC4  0.315 0.079 0.710  0.024 0.896 1.000  -0.178 0.330 1.000  -0.217 0.233 1.000  0.022 0.907 1.000 

IC5  0.397 0.024 0.220  0.044 0.811 1.000  -0.279 0.122 1.000  0.038 0.837 1.000  0.115 0.531 1.000 

IC6  0.346 0.052 0.470  -0.096 0.603 1.000  -0.543 0.001 0.012  -0.128 0.486 1.000  0.040 0.827 1.000 

IC7  0.344 0.054 0.487  0.016 0.929 1.000  -0.204 0.263 1.000  0.039 0.831 1.000  0.193 0.289 1.000 

IC8  0.468 0.007 0.062  0.233 0.200 1.000  -0.365 0.040 0.358  -0.070 0.702 1.000  -0.084 0.649 1.000 

IC9  0.433 0.013 0.119  0.046 0.801 1.000  -0.510 0.003 0.026  -0.066 0.720 1.000  0.005 0.979 1.000 

                                            

                      

Note. IC = Independent component, SD = standard deviation, MSSD = mean squared successive difference, RT-CV = coefficient of variation in reaction time, RAT = Remote 

Associates Task, AUT = Alternate Uses Task, P corrected = Bonferroni corrected p value. Spearman correlation was used for RAT scores, AUT flexibility scores and AUT 

fluency scores. 
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The distribution of accuracy on the color-word matching Stroop task 

 

Figure S1. The histogram of the accuracy on the Stroop task. The accuracy was 

estimated based on the average of all trials in the Stroop task. 

 

Excluded independent components in the group independent component analysis 

Spatial maps for 16 excluded independent components (ICs) were showed in Figure 

S2. 



 

Figure S2. Spatial maps (Z-threshold > 0.1) for excluded independent components 



The distribution of RT-Stroop effect, RT-CV of Stroop performance, RAT scores, 

AUT fluency scores and AUT flexibility scores 

 

Figure S3. Histograms of the RT-Stroop effect, RT-CV of Stroop performance, RAT 

scores, AUT fluency scores, and AUT flexibility scores. 

 

The relationship between resting-state BOLD signal variability and metacontrol 

when two participants with extreme Stroop effect are included 

Two participants were identified as outliers in the Stroop task. If these participants are 

included, we didn’t find significant correlation between BOLD signal variability and 

Stroop effect or Stroop RT-CV. The Figure S4 displayed an updated scatterplot of the 

relation between MSSD of IC8 and the size of Stroop effect. 



 

Figure S4. The correlation between the size of Stroop effect and brain variability of 

the attention network (i.e., IC8) was not significant. 

 

The association between brain variability and the RAT performance almost 

remains the same (see Figure S5). More specifically, SD of IC3 (i.e., parietal and 

motor network) and IC6 (i.e., parietal and frontal network) was significantly 

negatively correlated with the RAT performance (IC3: r = -0.569, p uncorrected < 0.001, 

p corrected < 0.05; IC6: r = -0.484, p uncorrected = 0.004, p corrected < 0.05) (see Figure S5a 

and S5b). The MSSD of IC3, IC6 and IC9 was significantly negatively correlated 

with the RAT performance (IC3: r = -0.476, p uncorrected = 0.004, p corrected < 0.05; IC6: r 

= -0.515, p uncorrected = 0.002, p corrected < 0.05; IC9: r = -0.522, p uncorrected = 0.002, p 

corrected < 0.05) (see Figure S5c, S5d, and S5e).  



 
Figure S5. RAT performance was significantly negatively correlated with brain 

variability of the parietal and motor network (i.e., IC3), parietal and frontal network 

(i.e., IC6), frontal and ACC network (i.e., IC9). Brain variability was calculated using 

SD in (a) and (b); brain variability was measured by MSSD in (c), (d) and (e). 

AUT flexibility and fluency scores were not significantly related to brain 

variability. 

 

Information about the Sample 2 (i.e., N = 41 sample) 

Participants 

The N=41 sample consisted of a general population from a different city and neural 

data was collected in a different scanner than the Sample 11. Four participants were 

excluded as they did not complete the RAT, AUT or mean FD > 0.5mm. Thirty-seven 

participants were remaining for further analyses (N = 37, 21 females; age 18 - 43 

years, M = 24.76, SD = 5.63). 



Remote Associates Task (RAT)  

Participants were required to complete a Dutch version of RAT2. RAT items in this 

sample were different from those in the Sample 1. Participants had to complete 17 

trials within 5 minutes. This task was completed via Qualtrics outside the scanner.  

Alternate Uses Task (AUT) 

Participants were asked to complete an AUT task which is similar to that reported in 

the main text.  

MRI data acquisition  

The functional magnetic resonance images were collected on a 3T Phillips Achieva 

MRI system. Resting-state functional data were acquired by a T2∗-weighted gradient-

echo, echo-planar pulse sequence in descending interleaved order (TR = 2000ms; TE 

= 27ms; flip angle = 76°; slice thickness = 3.0mm; in-plane resolution = 3.0 × 3.0 mm; 

64 × 64 voxels per slice,). A T1-weighted scan was acquired using 3D fast field echo 

(TR = 82ms; TE = 38ms; flip angle = 8°; FOV = 240 × 188 mm; 220 slices acquired 

using single-shot ascending slice order and a voxel size of 1 × 1 × 1 mm). The 

functional scans were acquired for 8 min. 

Resting-state functional data preprocessing  

The first 6 volumes were discarded to eliminate T1-equilibration artifacts from the 

time-series. Subsequently, preprocessing was performed using the CONN 

preprocessing pipeline in MATLAB. Functional images were motion-corrected using 



realign & unwrap procedure followed by slice-timing correction. Functional images 

were then co-registered to the T1 image. Both the functional and the structural data 

were normalized into standard MNI space. Functional data were then smoothed with a 

Gaussian kernel of 6 mm full width half maximum. 

 

Resting-state BOLD signal variability and metacontrol in the extended dataset 

Participants  

The extended sample was comprised of 69 healthy adults (42 females; age 18 – 43 

years; M = 24.32, SD = 4.78). 32 of them were from the Sample 1 and 37 of them 

were from Sample 2.  

Group independent component analysis 

Preprocessed functional images from all 69 participants were entered into the GIFT 

toolbox for the independent component analysis. We used the same ICA analysis 

method as described in the main paper. 

Resting-state BOLD signal variability calculation 

For each component and each participant, SD and MSSD of the BOLD signal were 

calculated. We then correlated the RAT score with brain variability estimated by SD, 

and MSSD, respectively. Bonferroni correction was used to reduce the chances of 

type I errors. 



Results 

Behavioral findings 

In the RAT, participants solved 5.66 items correctly on average (SD = 3.31). The 

averaged AUT flexibility scores were 7.31 ± 1.82, and averaged AUT fluency scores 

were 9.64 ± 2.21. Consistent with our findings in Sample1, AUT flexibility scores and 

AUT fluency scores were highly positively correlated (r = 0.731, p < 0.001), while 

correlations between RAT scores and two AUT scores were not significant (see Figure 

S6).  

 

Figure S6. Inter-correlation between RAT scores, AUT flexibility scores and AUT 

fluency scores.  

Note. * = p < 0.05, *** = p < 0.001 

Resting-state independent components findings 

11 ICs which reflect the activity in the “executive control network”, the “frontal 

network” and the “parietal network” were chosen for the brain variability calculation. 

The spatial maps at the threshold of Z > 1.0 and time courses of our selected ICs were 

shown in Figure S7. 



 

Figure S7. Spatial maps (Z-threshold > 1.0, in the left panel) and time series (in the 



right panel) for selected independent components of the mean for all participants. 

 

Correlation analyses showed that SD and MSSD of BOLD signals were highly 

positively correlated for all ICs (see Table S1 for details), suggesting that SD- and 

MSSD-measured brain variability are highly consistent in rsfMRI data. 

 

Resting-state BOLD variability and individual differences in metacontrol 

SD and MSSD of all ICs revealed negative correlations with RAT performance. SD of 

all selected components was not significantly related with RAT scores. We found a 

significant negative correlation between the MSSD of IC3 (i.e., frontal motor regions) 

and the RAT score (r = -0.350, puncorrected = 0.003, pcorrected < 0.05) (see Figure S8 and 

Table S2).  

AUT flexibility and fluency scores were not significantly associated with brain 

variability. 

 

 
Figure S8. RAT performance was significantly negatively correlated with brain 

variability of the frontal motor regions (i.e., IC3). Brain variability was measured by 

MSSD. 

 

 

 



Table S1.  Pearson correlations between brain variability measured by SD and MSSD. 

          

ICs 

 
Correlation 

between SD and 

MSSD 

 

  r p   
 

    

IC1  0.735 < .0001  

IC2  0.821 < .0001  

IC3  0.723 < .0001  

IC4  0.664 < .0001  

IC5  0.648 < .0001  

IC6  0.835 < .0001  

IC7  0.789 < .0001  

IC8  0.506 < .0001  

IC9  0.680 < .0001  

IC10  0.857 < .0001  

IC11   0.714 < .0001   

     

Note. IC = Independent component, SD = standard deviation, MSSD = mean squared 

successive difference.  

 

 

Table S2. Correlations between brain variability measured by SD, MSSD, and 

metacontrol policies measured by RAT scores, AUT flexibility scores, and AUT fluency 

scores. 

 

                            

Brain 

variability 

measures 

ICs 

 
RAT scores  AUT flexibility scores  AUT fluency scores 

  r puncorrected pcorrected   r puncorrected pcorrected   r puncorrected pcorrected 
              

SD 

IC1  -0.166 0.173 1.000  0.002 0.987 1.000  -0.100 0.413 1.000 

IC2  -0.163 0.181 1.000  -0.205 0.091 1.000  -0.215 0.076 1.000 

IC3  -0.205 0.090 1.000  -0.138 0.257 1.000  -0.227 0.061 1.000 

IC4  -0.162 0.184 1.000  -0.088 0.471 1.000  -0.121 0.323 1.000 

IC5  -0.004 0.977 1.000  -0.133 0.275 1.000  -0.081 0.507 1.000 

IC6  -0.202 0.096 1.000  -0.146 0.231 1.000  -0.061 0.620 1.000 

IC7  -0.053 0.665 1.000  -0.174 0.152 1.000  -0.136 0.264 1.000 

IC8  -0.002 0.988 1.000  -0.040 0.744 1.000  -0.119 0.331 1.000 

IC9  -0.129 0.292 1.000  -0.101 0.409 1.000  -0.080 0.514 1.000 

IC10  -0.274 0.023 1.000  -0.244 0.044 1.000  -0.262 0.030 1.000 

IC11  -0.165 0.177 1.000  -0.204 0.093 1.000  -0.143 0.242 1.000 
 

             

MSSD 

IC1  -0.268 0.026 1.000  -0.128 0.294 1.000  -0.050 0.681 1.000 

IC2  -0.301 0.012 1.000  -0.260 0.031 1.000  -0.174 0.153 1.000 

IC3  -0.350 0.003 0.033  -0.251 0.037 1.000  -0.150 0.218 1.000 

IC4  -0.151 0.216 1.000  -0.129 0.289 1.000  -0.103 0.399 1.000 

IC5  -0.181 0.136 1.000  -0.196 0.106 1.000  -0.017 0.892 1.000 

IC6  -0.231 0.056 1.000  -0.186 0.126 1.000  -0.077 0.527 1.000 

IC7  -0.149 0.223 1.000  -0.267 0.027 1.000  -0.253 0.036 1.000 

IC8  -0.205 0.091 1.000  -0.201 0.097 1.000  -0.104 0.395 1.000 



IC9  -0.188 0.122 1.000  -0.242 0.045 1.000  -0.099 0.417 1.000 

IC10  -0.267 0.027 1.000  -0.181 0.136 1.000  -0.115 0.348 1.000 

IC11  -0.193 0.113 1.000  -0.222 0.067 1.000  -0.050 0.683 1.000 

                            

              

Note. IC = Independent component, SD = standard deviation, MSSD = mean squared 

successive difference, RAT = Remote Associates Task, AUT = Alternate Uses Task, P corrected 

= Bonferroni corrected p value. Spearman correlation was used for correlation analyses. 
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