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Abstract

■ The present fMRI study tested the assumption that a single
pairing of a stimulus and a logically unrelated response is suffi-
cient for binding the corresponding stimulus and response codes
into an event representation (event file) that is automatically
retrieved upon processing of at least one of its components. In
particular, we investigated whether repeating a face or a house
stimulus and/or a left or a right manual response induces the
automatic retrieval of the response or stimulus that it previously
accompanied. ROI analyses of fusiform face area, parahippocampal

place area, and right and left motor cortex revealed that repeat-
ing one component of a previously encountered stimulus-
response episode leads to the suppression of cortical areas
processing the other components, suggesting that these com-
ponents were indeed automatically retrieved and conflicted
with ongoing processing. The particular pattern obtained is
consistent with predictions from diffusion models of decision
making, which suggest a crucial role of local competition in
response selection. ■

INTRODUCTION

The primate brain represents external events in a distributed
fashion. This is true for perceived events, as evident from
the parallel coding of the shape, color, orientation, and
other visual features in dedicated neural maps in the visual
cortex (e.g., DeYoe & Van Essen, 1988). And it is true for
intentionally produced events, as evident from the distrib-
uted representation of action characteristics, such as the
direction, distance, and force of intentional actions, in dedi-
cated frontal areas (see Hommel & Elsner, 2009). The ob-
servation that cortical representations are distributed raises
the question how the brain organizes and integrates the dif-
ferent sorts of neural activity representing a given event—
an issue that has become to be known as the binding prob-
lem (Treisman, 1996).

Considering the binding problem has sparked interest
in fast-acting, event-to-event integration phenomena and
mechanisms. A particularly influential phenomenon has
been demonstrated by Kahneman, Treisman, and Gibbs
(1992) in visual perception. Human subjects were presented
with an actually task-irrelevant preview display (S1) and a
subsequent visual target stimulus (S2), such as a letter in a
randomly chosen location. Responses to the target were
facilitatedwhen the eventual target letter already appeared

as part of the preview display, but performance was partic-
ularly good if the location of this letter was repeated as
well. This suggests that letter shape was integrated with
the corresponding location code. Repeating the letter
may have reactivated this shape-location binding, which
might have sped up feature processing or binding pro-
cesses. Other studies have confirmed the demonstration
of particularly good performance with the repetition of
complete feature conjunctions (for a review, see Hommel,
2004). However, complete feature repetitions (e.g., same
letter shape and same location of the letter) commonly do
not yield better performance than “complete” alternations
(e.g., different letter shape and different location of the let-
ter; Hommel, 1998), suggesting that it is partial repetitions
(e.g., different letter shape and same location of the letter
or same letter shape and different location of the letter)
that are the culprit. Repeating one feature may tend to re-
activate all feature bindings that include this feature, which
create feature conflict in all cases where some but not all
features are repeated (Hommel, 2004; Hommel, Müsseler,
Aschersleben, & Prinz, 2001).
A recent fMRI study by Keizer, Nieuwenhuis, et al. (2008)

has looked into the neural consequences of feature bind-
ing. Subjects were presented with preview displays (S1)
and targets (S2) that both consisted of two blended pic-
tures showing a face and a house. Either the face or the
house moved in one of two possible directions, and sub-
jects were to respond to the direction of S2 irrespective
of which object moved. Of particular interest were the
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conditions where S1 showed amoving house and S2 a mov-
ing face: If the direction of motion in these two displays
was the same (i.e., if the motion feature was repeated),
the parahippocampal place area (PPA) was activated more
than if the motion differed. Repeating the motion feature
thus induced the retrieval of the previous binding that in-
cluded this motion, which under these circumstances also
included a house. In other words, repeating a feature re-
activates the neural code of this feature, which spreads ac-
tivation to the codes it is still bound to.
Although the binding of visual features has attracted by

far the most attention and research activities, integration
phenomena have also been obtained for nonvisual fea-
tures. For instance, repeating auditory features like pitch
or loudness have been shown to induce the retrieval of
previous auditory (e.g., pitch-loudness), audiovisual, and
audiotactile bindings (Zmigrod & Hommel, 2009; Zmigrod,
Spapé, & Hommel, 2009). Other studies have provided evi-
dence for the integration of stimulus and response features.
For instance, complete repetitions or alternations of visual
features and precued responses carried out in their pres-
ence have been observed to yield better performance than
partial repetitions, that is, stimulus-feature repetitions
paired with response alternations or stimulus-feature alter-
nations paired with response repetitions (Hommel, 1998).
Along the same lines, repeating stimuli that were just paired
with a particular response induce the tendency to repeat
the response as well (Hommel, 2007). All these observa-
tions suggest that even arbitrary single pairings of stimulus
features and responses lead to the spontaneous binding of
their corresponding neural codes into what Hommel
(1998) called “event files” and that these files are reactivated
whenever one or more of their ingredients are reactivated
through stimulus and/or response repetitions.

Aim of the Study

The aim of the present study was twofold. First, we wanted
to study the neural underpinnings of event files by apply-

ing the general logic underlying the fMRI investigation of
Keizer, Nieuwenhuis, et al. (2008). As in other studies of
stimulus-response binding, we presented subjects with
two stimulus-response combinations in a row, S1/R1 and
S2/R2. R1 consisted of a left or right keypress and S1 of a
picture of a house or a face. The visual stimuli were chosen
to activate discriminable cortical areas, namely, the PPA
and the fusiform face area (FFA), respectively. R1 was pre-
cued in each trial so that S1 and R1 were uncorrelated and
logically independent of each other. The precued R1 was
to be carried out as soon as any S1 would appear, that is,
irrespective of whether S1 was a face or a house. Neverthe-
less, on the basis of previous findings, we expected that
perceiving S1 and executing R1 in close temporal succes-
sion would lead to a binding between the neural represen-
tations of their features. After subjects had carried out R1,
they were presented with S2, another face or house. This
second target stimulus required a particular response, a
left keypress in response to a house and a right keypress
in response to a face. The question was whether perfor-
mance on R2 would be affected by the stimulus and/or re-
sponse repetition (or alternation), that is, by whether S1
and S2 or R1 and R2 were the same.

Behaviorally, we expected the often-observed interaction
between stimulus and response repetition, with better per-
formance if stimulus and response repeat or alternate as
compared with partial repetitions of only the stimulus or
only the response (e.g., Keizer, Colzato, & Hommel,
2008; Hommel, 1998). With respect to neuroimaging, the
predictions are more complicated to derive than that in
the study of Keizer, Nieuwenhuis, et al. (2008) on visual in-
tegration. Consider Figure 1, a graphic of our theoretical as-
sumptions, and assume that S2 consists of the picture of a
house that requires a left-hand keypress as R2. Figure 1A
shows an alternation of stimulus and response. The combi-
nation of face and right-hand keypress is assumed to induce
a binding between the neural codes representing the face
and the keypress, as indicated by the oval. However, given
that neither the stimulus nor the response are repeated, the

Figure 1. Schematic drawing
of event files (indicated by the
oval) in context of (A) complete
alternation of stimulus and
response, (B) response repetition,
and (C) stimulus repetition
(dotted oval indicates effects of
stimulus and response repetition;
L = left-hand response;
R = right-hand response).
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binding is not reactivated through the processing of S2 and
R2. Things are different if the response is repeated, as as-
sumed in Figure 1B. Here, the combination of house and
left-hand keypress is preceded by the combination of face
and left-hand keypress, which again is assumed to induce a
corresponding binding. Reactivating the left-hand keypress
response in the course of processing S2 and R2 reactivates
the just-created binding, which brings into play the thereby
reactivated face code. This is likely to induce stimulus un-
certainty and code conflict, resulting in performance costs,
such as delayed RT and/or more errors.1 The same holds
true when the stimulus is repeated as in Figure 1C. The
combination of house and a right-hand response that is fol-
lowed by a house that affords a left-hand response creates
conflict because the repetition of the house stimulus reac-
tivates the associated right-hand response. What this sce-
nario means for the prediction of neuroimaging results
depends on another theoretical issue constituting the sec-
ond aim of our study.

Intentional and automatic activations of stimulus and
response codes are likely to affect decision making. Mod-
els of human decision making fall into two categories or
families (Bogacz, 2007). Models of both families assume
that stimulus evidence in favor of members of the current
response set is accumulated over time and that the re-
sponse with the strongest evidence in its favor is being se-
lected according to particular criteria and thresholds.
However, models differ with respect to the way they con-
sider criteria and thresholds to affect the decision process.
Race models assume that the evidence counters involved
are independent, as indicated in Figure 2A. Given that the
two possible responses in our design are mapped onto
faces and houses, we can consider two evidence counters
that accumulate face- and house-related (stimulus and/or
response) evidence, respectively. Now let us assume that
stimuli and responses alternate, as in the scenario shown
in Figure 1A. The presentation of S2 (the picture of a
house) leads to a continuous increase of the activation
of the “house counter” and the neural networks underly-
ing it, until a particular threshold is reached (T1 in our
example) and the associated response is executed. Now
consider a repetition of the stimulus, as indicated in Fig-
ure 1B. If we assume that the activation of responses co-
varies with their evidence counters, processing the house
picture will continuously increase the representation of
the left-hand response. This response is still bound to the
face (as a consequence of having processed the respective
S1/R1 combination) so that activating the response will re-
activate all members of the binding including the face code.
If decisionmaking requires someminimal lead of the most-
activated evidence counter to its strongest competitor, as
most models assume, this implies an increase of the effec-
tive threshold (as indicated by threshold T2) in Figure 2.
More time and evidence is needed to reach that higher
threshold, which explains RT costs.2

According to this independent-counter or race model,
one would expect brain activation profiles that follow the

logic of Keizer, Nieuwenhuis, et al. (2008). That is, repeat-
ing the response should lead to a higher activation of the
brain area that codes for the stimulus that accompanied
this response in the previous part of the trial. With respect
to our scenarios in Figure 1, we would expect the com-
bination of stimulus alternation and response repetition
(Figure 1B) to induce a stronger activation of the FFA as
compared with the corresponding “complete” alternation
trial (Figure 1A). Along the same lines, combining stimulus
alternation (house as S1 and face as S2) with a repetition
of the right response should induce a stronger activation
of the PPA because repeating the response should reacti-
vate the binding of the right hand and the house picture
created upon S1/R1 processing. The same binding logic can

Figure 2. Schematic drawing of the predictions of (A) race models in
which information for the face and house counter is accumulated
independently and (B) diffusion models in which both counters are
linked by means of inhibitory connections. In the example, the house
represents the currently presented, relevant stimulus, and the face
represents the supposedly retrieved stimulus. Subjects are assumed to
respond if the activation of the relevant stimulus counter reaches a
certain functional threshold, which depends on the degree to which
activation of the relevant stimulus counter exceeds the activation of the
counter of the competing, irrelevant stimulus code. That is, the
functional response threshold is lower in the absence of conflict (T1)
than that in the presence of conflict (T2). Accordingly, responses are
faster in the absence of conflict (Rc−) than that in the presence of
conflict (Rc+). Note that, according to race models, activation of the
irrelevant stimulus counter increases and decreases to baseline
whereas, and according to diffusion models, activation of the irrelevant
counter first increases and is then suppressed below baseline.
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be applied to predicting the effect of stimulus repetition.
Assume that S2 and R2 consist of the picture of a house
and a left-hand keypress, as before, and further assume that
R1 is a right-hand keypress, as in Figure 1A and C. If S1 and
S2 are different (as in Figure 1A), there is no code overlap
between the combinations of S1 and R1 on the one hand
and of S2 and R2 on the other, and thus no code conflict.
If the stimulus is repeated (see Figure 1C), however, reacti-
vating the stimulus code will reactivate the just-created
binding and thus bring into play the other response—with
time-costly response conflict as a result. In terms of activa-
tion, stimulus repetition should induce a higher activation
of brain areas coding for the previous and now competing
response. For our scenario, this would mean that areas re-
lated to the right-hand response should be activated more
strongly if the stimulus is repeated (as in Figure 1C) than if it
alternates (Figure 1A).
However, other decision-makingmodels (characterized

as “diffusion models” by Ratcliff & McKoon, 2008; Bogacz,
2007; Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006)
assume that evidence counters are not independent but
linked by means of inhibitory connections, as indicated
in Figure 2B. The idea is that more strongly activated coun-
ters do not only have a stronger impact on the eventual
response but that they also inhibit possible competitors
more strongly, the more so the stronger the competitors
are. Not only do diffusion models allow for more dynamic
and efficient decision making, as the currently strongest
competitor can actively increase the difference in activa-
tion with other competitors, they also seem to be more
biologically plausible (Bogacz, 2007). Directly linking com-
peting counters may affect the temporal dynamics of the
relevant counter (the house counter in our scenario) by
allowing for faster increases of activation (which we did
not consider in Figure 2B for the sake of convenience).
More important for our purposes, however, the interde-
pendency between the counters is likely to dramatically
change the situation for competing counters, such as the
face counter in our scenario. As the relevant counter col-
lects more information in its favor, it inhibits competitors
with increasing force so that their activation diminishes
and eventually gives way to a subbaseline state of inhibi-
tion (as indicated by the negative activation of the face
counter in Figure 2B). If this is what happens in the cases
of response repetition (Figure 1B) and stimulus repetition
(Figure 1C) we have discussed, the predictions for brain
activation patterns would change. As BOLD responses in-
tegrate activation across a whole trial, the overall activation
for competing irrelevant codes would be expected to turn
negative. So, where race models predicted surplus activity
that theoretically corresponds to the area under the activa-
tion function for the irrelevant face counter in Figure 2A,
diffusion models would predict negative activation (or in-
hibition) that corresponds to the area under the face-
counter function sketched in Figure 2B.3 This means that
response repetition should lead to reduced activation (as
compared with response alternation) in the area coding

for S1, whereas stimulus repetition should lead to reduced
activation (as compared with stimulus alternation) in the
area coding for R1.

One interesting feature of models of the diffusion “family”
(Bogacz, 2007) is that the role that they allow local compe-
tition (between alternative and thus competing codes or
between retrieved event-file features and task-relevant fea-
tures as in our case) to play in decision making does not
require any further external inhibitory process or system
to prevent incorrect responses. This stands in sharp con-
trast to influential cognitive control models assuming central
inhibition and/or conflict modules in lateral and/or me-
dial frontal cortex or anterior cingulate cortex (Botvinick,
Cohen, & Carter, 2004; Ridderinkhof, Ullsperger, Crone, &
Nieuwenhuis, 2004; Ridderinkhof, van den Wildenberg,
Segalowitz, &Carter, 2004; Botvinick, Braver, Barch, Carter,
& Cohen, 2001). To investigate this issue, we also sought
for evidence for or against the assumption of any cen-
tral “inhibitor” that might be involved in resolving code
conflict.

To summarize, we were interested to test predictions
regarding two theoretical issues. First, we predicted that
the spontaneous binding of S1 and R1 would lead to spe-
cific BOLD responses during the processing of S2 and R2:
Repeating the response (R2= R1) should induce systema-
tic activation changes in brain areas that are coding for the
type of stimulus presented as S1 (FFA or PPA for faces and
houses, respectively), and repeating the stimulus (S2 = S1)
should induce systematic changes in brain areas coding for
R1. Second, we were interested to see whether we could
characterize the decision-making mechanism responsible
for the handling of stimulus-response bindings (event files)
by testing whether stimulus- and response-repetition ef-
fects would induce positive or negative changes in brain
activation. Positive changes (i.e., increases of activation as
compared with nonrepetitions) would be expected from
a racemodel of decisionmaking, whereas negative changes
(i.e., reduced activations as compared with nonrepetitions)
would be predicted from diffusion models.

METHODS

Participants

We recruited 21 healthy volunteers (17 women and 4men;
age = 19–30 years, mean = 23 years) from whom we ob-
tained written consent before the scanning session. The
study was approved by the local ethical committee. All sub-
jects had normal or corrected-to-normal vision and reported
to be right-handed. No subject had a history of neurological,
major medical, or psychiatric disorder.

Behavioral Task

The experimental task required two responses in each
trial. First a 500-msec response cue signaled R1: Centrally
presented rows of three left- or right-pointing arrows in-
structed participants to prepare for a button press with
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the left or right hand, respectively (Figure 3). After a blank
screen of 2000- to 5000-msec duration (varied randomly in
steps of 500 msec), a picture of a face or a house was pre-
sented for 1000 msec (S1). This stimulus acted as a go sig-
nal for the response (R1) that was prepared according to
the cue; the identity of this visual stimulus was instructed to
be of no importance whatsoever. After another blank screen
of 2000- to 5000-msec duration, another visual stimulus
(face or house) was presented on the screen for 1000 msec
(S2). To this second target stimulus, participants had to re-
spond with the left hand if it depicted a house and with the
right hand if it depicted a face.Weused eight grayscale front-
view photographs ofmale (four) and female (four) faces and
eight grayscale photographs of houses (Keizer, Colzato,
et al., 2008). All images were adjusted to assure the same
average luminance. The intertrial interval consistedof a vari-
able oversampling interval between 2000 and 5000 msec to
obtain an interpolated temporal resolution of 500 msec.
The experiment was divided into three runs betweenwhich
we stopped and restarted the scanner; each run started
and ended with a blank screen of 30 sec. The experiment
consisted of 280 trials divided into three blocks of about
20 minutes each.

For the sake of clarity, wewill in the following characterize
the experimental conditions by means of a four-character
code. The first two characters indicate the identity of S1
and R1, whereas the second two characters indicate S2
and R2. The lowercase letters “h” and “f” are used to indicate
house and face stimuli, respectively, whereas the uppercase
letters “L” and “R” indicate left- and right-hand responses.

According to this coding, condition fLfR, say, would imply
a stimulus repetition and a response alternation.

Scanning Procedure

Imageswere collectedwith a 3-T Philips AchievaMRI scanner
system (Philips Medical Systems, Best, the Netherlands).
First, high-resolution anatomical imageswere acquired using
a three-dimensional T1-weighted sequence (voxel size =
0.88×0.88×1.2mm3).Whole-brain functional imageswere
collected using a T2*-weighted SENSE parallel EPI sequence
sensitive to BOLD contrast (repetition time = 2211 msec,
echo time = 30 msec, image matrix = 80 × 80, field of
view = 220 mm, flip angle = 80°, voxel size = 2.75 ×
2.75 × 2.75 mm3, 38 axial slices) for the last nine subjects
the TRwas changed to 2200msec because of an update of
the scanner software.

fMRI Data Preprocessing and Main Analysis

The fMRI data were analyzed using SPM5 software (Well-
come Department of Cognitive Neurology, London, UK).
The first four volumes of all EPI series were excluded from
the analysis to allow the magnetization to approach a dy-
namic equilibrium. Data processing started with slice time
correction and realignment of the EPI data sets. A mean
image for all EPI volumes was created, to which individual
volumes were spatially realigned by means of rigid body
transformations. The high resolution structural image
was coregistered with the mean image of the EPI series.

Figure 3. Schematic drawing
of the experimental trial
sequence and the contrasts of
interest (red squares) for (A)
effects of response repetition
and (B) effects of stimulus
repetition.
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Then the structural image was normalized to the Montreal
Neurological Institute template, and the normalization
parameters were applied to the EPI images to ensure an
anatomically informed normalization. During normaliza-
tion, the anatomy image volumes were regridded to 1 ×
1 × 1 mm3. A commonly applied spatial filter of 8-mm
FWHM was used on EPI scans. Low-frequency drifts in the
time domain were removed bymodeling the time series for
each voxel by a set of discrete cosine functions to which a
cutoff of 128 sec was applied. The subject-level statistical
analyses were performed using the general linear model.
For the analysis, we modeled the onset of the right and left
arrow (the two R1 precues) separately, the four conditions
with an onset onS1 (fL, fR, hL, and hR), the eight conditions
with an onset on S2 (response alternation: fLfR and hRhL;
stimulus alternation: hRfR and fLhL; stimulus and response
alternation: hLfR and fRhL; and complete repetition: fRfR
and hLhL), and the errors on S1 and on S2 separately.
Vectors containing the event onsets were convolved with

the canonical hemodynamic response function to form the
main regressors in the designmatrix (the regressionmodel).
Temporal derivatives of the regressors and regressors ac-
counting for variance associated with head motion were
also entered into the model. The statistical parameter es-
timates were computed separately for each voxel for all
columns in the design matrix. Contrast images were con-
structed for each individual to compare the relevant param-
eter estimates for the regressors containing the canonical
hemodynamic response function. Then group-level ran-
dom effects analysis was performed. The resulting statisti-
cal values were thresholded with a level of significance of
p < .05 (uncorrected) to allow for possible overlap in a
conjunction analysis of the contrasts (hRfR–hLfR, fLhL–
fRhL, hRhL–fRhL, and fLfR–hLfR).

Percent Signal Change Analysis

For the signal change analysis, we defined ROIs consisting
of the peak voxels of each participant and a surrounding
sphere with a radius of 6 mm. The statistical values of each
subjects contrast were thresholded at p< .001. Two ROIs
were defined in bilateral FFA resulting from the whole-
brain contrast of faces S1 > houses S1 of each participant
(Figure 4). The FFA ROIs were selected on the basis of co-
ordinates reported by previous studies (Haxby et al., 1999;
Kanwisher, McDermott, & Chun, 1997); the average coor-
dinates for left FFA were −42 −53 −20 (SD = 4) and for
right FFA 42−55−21 (SD= 5). Furthermore, we defined
ROIs in bilateral PPA resulting from thewhole-brain contrast
of the house S1 > face S1 of each subject (Figure 4). The
PPA ROIs were also selected on the basis of previous reports
(Epstein, Harris, Stanley, & Kanwisher, 1999; Epstein &
Kanwisher, 1998); the average coordinates for left PPA
were −25 −51 −9 (SD = 4) and for right PPA 27 −49 −11
(SD= 6). In addition, we obtained ROIs in right-handmotor
cortex by means of the whole-brain contrast of left response
S1 > right response S1 and in left-hand motor cortex

with the reverse contrast of each participant (left motor:
−39 −22 67, SD = 7; right motor: 42 −21 63, SD = 7).
For each subject, region, and condition, the mean percent
signal change over a time window of 4–6 sec after stimulus
onset was calculated.

Two types of binding-related effects were tested. One
type of effect was the impact of response repetition versus
alternation on the activation of the previously bound stimu-
lus. The effect of repeating the left response was tested by
subtracting the conditions with complete alternation (fRhL)
from the condition where the (left) response was repeated
(fLhL). This contrast was expected to be associated with
changes in the FFA. The effect of repeating the right re-
sponse was tested by subtracting the conditions with com-
plete alternation (hLfR) from the conditionwhere the (right)
response was repeated (hRfR). This contrast was expected
to be associated with changes in the PPA. These data were
analyzed by means of a 2 × 2 × 2 repeated measures
ANOVA with the factors ROI (FFA vs. PPA), hemisphere
(left vs. right), and S1 (face vs. house).

The other type of effect of interest was the impact of
stimulus repetition versus alternation on the activation of
the previously bound response. The effect of repeating the
house stimulus was tested by subtracting the conditions
with complete alternation (fRhL) from the condition
where the house stimulus was repeated (hRhL). This con-
trast was expected to be associated with changes in the
motor area coding for the right response (Figure 3). Anal-
ogously, the effect of repeating the face stimulus was
tested by subtracting the conditions with complete alter-
nation (hLfR) from the condition where the face stimulus
was repeated (fLfR). This contrast was expected to be as-
sociated with changes in the motor area coding for the left
response. These data were analyzed by means of a 2 × 2
repeated measures ANOVA with the factors hemisphere
(left vs. right) and R1 (left vs. right response).

Figure 4. The localizer and the extracted individual ROIs in bilateral
motor cortex, PPA, and FFA.
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RESULTS

Behavioral Data

RTs and error rates were analyzed by means of repeated
measures ANOVAs with the factors response repetition
(vs. alternation) and picture repetition (vs. alternation).
The RTs (Table 1) revealed a significant main effect of pic-
ture repetition, F(1, 20) = 52.32, p < .001. Most impor-
tantly, there was a significant interaction of picture and
response repetition, F(1, 20) = 61.78, p< .001, indicating
faster RTswhen both features were repeated or alternated.
The error rates also showed a significant interaction of pic-
ture and response repetition, F(1, 20) = 30.93, p < .001.

fMRI Data

First we analyzed the effects of response repetition on
repetition-induced signal changes (during S2/R2 processing)
in the areas coding for the previous S1 (FFA and PPA). The
ANOVA revealed a significant interaction of ROI and S1,
F(1, 20) = 14.53, p < .01, and no main effect of hemi-
sphere, F(1, 20) = 0.06, p = .81. As Figure 5A shows, re-
peating a response reduced the activation in the area that
codes for the stimulus that accompanied that response in
the previous part of the trial, that is, for the previous S1.
This suggests that repeating a response reactivates the
neural codes of the stimulus that this response was pre-
viously bound to, which again leads to the suppression
of these codes in the course of selecting the currently rel-
evant stimulus and response (S2 and R2). The fact that the
signal change is negative (i.e., that response repetition led
to the suppression of the previous stimulus rather than to
stronger activation) suggests that decisions between con-
flicting codes were made according to the logic of a diffu-
sion model of decision making rather than a race model,
which would have predicted an increase of activation.

Next we analyzed the effects of stimulus repetition on
repetition-induced signal changes in motor areas. The
corresponding ANOVA revealed no main effect of hemi-
sphere, F(1, 20) = 0.38, p= .54, but a marginally significant
interaction between hemisphere and R1, F(1, 20) = 3.58,
p = .07, that followed the predicted pattern. As Figure 5B
shows, repeating a stimulus reduced the activation in the
motor areas coding for the previous R1.

In search of a possible “central inhibitor,” we computed
a conjunction on four leniently thresholded contrasts ( p<
.05, uncorrected) for which we observed suppression of
reactivated event-file features (house suppression: hRf R–
hLfR; face suppression: fLhL–fRhL; right response suppres-

sion: hRhL–fRhL; and left response suppression: fLfR–
hLfR). In line with the notion of local competition, we did
not find any overlap in frontal brain areas that could be sub-
strate of a central inhibitor.

Table 1. Mean RTs (in msec) and Mean Error Rates, with SD in Parentheses

Complete Repetition Picture Alternation Response Alternation Complete Alternation

RT 526 (63) 587 (69) 552 (72) 545 (59)

Errors 0.035 (0.038) 0.083 (0.056) 0.069 (0.046) 0.043 (0.037)

Figure 5. (A) Effects of response repetition. Percent signal changes of
ROIs in bilateral PPA (sphere with radius 6 mm around individual peak
voxel of the contrast house S1 > face S1) and bilateral FFA (sphere
with radius 6 mm around individual peak voxel of the contrast S1
face > S1 house) for the contrast reflecting the effect of right response
repetition (hRfR–hLfR) and the effect of left response repetition
( fLhL–fRhL). Error bars depict SEM. (B) Effects of stimulus repetition.
Percent signal changes of ROIs in right and left motor cortex (sphere
with radius 6 mm around individual peak voxel of the contrast left
response S1 > right response S1 and the reverse contrast) for the
contrast reflecting the effect of house stimulus repetition (hRhL–f RhL)
and the effect of face stimulus repetition (fLfR–hLfR). Error bars
depict SEM.
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DISCUSSION

The present study was designed to address two theoretical
questions. First, we askedwhether repeating a response or
a stimulus would induce the retrieval of the stimulus or re-
sponse that it previously accompanied. If it would, this
would support the claim that the co-occurrence of stimu-
lus features and responses is sufficient to trigger the creation
of event files, that is, of episodic traces that bind stimulus
and response information (Hommel, 1998, 2004; cf. Logan,
1988). And indeed repeating at least one component of
these event files seems sufficient to retrieve the whole file
in a pattern-completion fashion so that all components be-
come reactivated.
Our second question was whether the repetition-induced

signal changewould be of a positive or a negative sign, that
is, whether repetition of one component would lead to an
increase in activation or the suppression of other compo-
nents. Although the effect of stimulus repetition only ap-
proached significance level, both response-repetition and
stimulus-repetition effects go in the same direction, sug-
gesting that repetition leads to the suppression of no longer
valid components of the reactivated event file. As we have
argued, this pattern is consistent with the assumption of
diffusionmodels of decisionmaking that competing codes
inhibit each other, which eventually leads to a winner-
takes-all pattern.
At first glance, the current observations seem at odds

with the findings reported by Keizer, Nieuwenhuis, et al.
(2008). As mentioned already, these authors demon-
strated an increase, instead of a decrease, of brain activity
in PPA during S2 when S1 displayed a moving house and
S2 amoving face, and themotion feature was repeated. One
might argue that this fits better with the logic of a racemodel
than that of diffusionmodels. However, in our view, the cru-
cial difference is that the design by Keizer, Nieuwenhuis,
et al. did not involve any kind of stimulus or response con-
flict: Participants did not respond to S1 and responded to
the motion of S2 so that responses were not bound at all
and any reactivation of the motion-associated house fea-
ture could not conflict with current task performance. In
contrast, our task involved responses to S1 and a forced-
choice response to the identity of the S2 picture so that
both reactivated responses and/or stimuli could directly
compete with the relevant S2 and/or R2 codes. Accord-
ingly, we consider the present study but not the study of
Keizer, Nieuwenhuis, et al., a fair test of race and diffusion
models, and conclude that the reactivation of event files in
the presence of response conflict follows the predictions
from diffusion models but not from race models. In the
absence of response conflict, however, race models may
very well do a good job.
Surely, the retrieval and the competition processes we

have described so far are not the only processes contribut-
ing to both BOLD signals and RTs and the relation between
them. For instance, complete repetitions are likely to be
a special case in that subjects seem to shortcut response

selection and respond in a kind of “if everything stays
the same I can do the same” mode (already reported by
Bertelson, 1965). Likewise, complete alternation of features
makes it possible to “reject” alternative codes at different
feature maps faster if they are bound to each other, a prin-
ciple that has been proposed by Duncan (1996; see Dutzi &
Hommel, 2009). Moreover, there is evidence that repeating
a stimulus or a response (feature) as such can lead to the
reduced activation of the corresponding neural codes (for
an overview, seeHenson&Rugg, 2003), possibly by focusing
or “sharpening” the cortical representation (Wiggs &Martin,
1998). This kind of process might very well have contributed
to the suppression-like effects we have obtained. However,
the theoretical crux of our findings consists in the demon-
stration that suppression was contingent on the repetition
or alternation of the accompanying response or stimulus
(feature), respectively, which we think goes beyond the pre-
viously reported suppression effects and the theoretical
considerations offered to account for them.

Our current findings go beyond previous demonstra-
tions of conflict as shown in classical Stroop or Simon task
paradigms. The conflict present in a Stroop task, in which
participants need to name the color of a word although
the semantic refers to a different color and stems from
automatic reading of printed words that has been estab-
lished during lifetime (MacLeod, 1991; Stroop, 1935). Sim-
ilarly, the Simon effect, namely, reduced reaction times
when responding with the left hand to stimuli on the left
side of the screen even if stimulus location is task irrel-
evant, is based on stimulus-response compatibility pro-
cesses that are highly overlearned or even innate (Simon,
1969). In contrast to these long-term associations, the
bindings we explored here are purely episodic short-term
(i.e., trial-to-trial) effects that are effective instantaneously
(Hommel, 2004).

The result pattern we obtained suggests that retrieved
event-file features and task-relevant features compete at a
local level, whereas we were unable to identify any contri-
bution from central inhibiting systems. This is in line with
predictions of diffusion models (Bogacz, 2007) but incon-
sistent with cognitive control models that assume a central
inhibitor (Botvinick et al., 2001, 2004). Although the ab-
sence of an effect admittedly constitutes an only weak ar-
gument against central inhibition, our study does suggest
that local inhibition may be sufficient to explain effective
control: Repeating one feature of an event file can lead to
the direct, apparently local suppression of retrieved fea-
tures that conflict with task performance.
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Notes

1. One might consider another potential problem with partial
repetitions. If S2 and R2 are related by instructed stimulus-
response rules, a partial repetition implies that S2 or R2 is pre-
ceded by a combination that violates these rules (e.g., if faces
require a right-hand keypress, the combination of a face and a
left-hand keypress implies a rule violation). However, previous
studies suggest that this factor does not play a role. For instance,
R1 RTs are not affected by rule violations (Hommel, 1998), and
interactions between stimulus and response repetitions can be
observed in free-choice tasks, where no stimulus-response rules
are applied (Hommel, 2007).
2. Logically, it is possible that the activation of all competitors
increases continuously so that no decision could ever be made.
However, race models have several ways to account for the fact
that people do reach decisions even if these are somewhat de-
layed. For instance, task-irrelevant information may be weighted
less strongly and/or decay very quickly, as we have assumed in Fig-
ure 2. That is, race models do not necessarily deny that the activa-
tions of evidence counters change dynamically and that different
counters may follow different dynamics, but they assume that the
activation of one given counter is independent of the activation of
the others.
3. Note, however, that the functions drawn in Figure 2 are not
literal derivations from existing models but only serve to illustrate
qualitative differences between the predictions from race and dif-
fusion models.
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