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A B S T R A C T

Cognitive control requires a balance between persistence and flexibility. We studied inter- and intraindividual
differences in the metacontrol bias towards persistence or flexibility in cognitive search tasks from various
cognitive domains that require continuous switching between persistence and flexibility. For each task, clus-
tering and switching scores were derived to assess persistence and flexibility, respectively, as well as a total
performance score to reflect general performance. We compared two, not mutually exclusive accounts according
to which the balance between clustering and switching scores is affected by (1) individual, trait-like metacontrol
biases towards persistence or flexibility and/or (2) the metacontrol adaptivity to bias states according to
changing situational demands. We found that clustering and switching scores failed to generalize across tasks.
However, clustering and switching were inversely related and predicted the total performance scores in most of
the tasks, which in turn partially generalized across tasks and task domains. We conclude that metacontrol-biases
towards persistence or flexibility can be adapted easily to specific task demands and individual resources,
possibly overwriting individual metacontrol trait biases. Moreover, we suggest that total performance scores
might serve to measure metacontrol adaptivity in future studies if task-restrictions and resources are known and/
or well balanced.

1. Introduction

Intentional agents would be ill-advised to rely too much on cogni-
tive persistence (needed to reach longer-term goals); they also need
some degree of flexibility to register, and switch to, alternative op-
portunities (Goschke, 2003). For example, while increased top-down
control benefits performance on tasks that require cognitive persistence
(e.g., Fischer & Hommel, 2012) performance on tasks that require more
cognitive flexibility might suffer from increased top-down control (e.g.,
Bocanegra & Hommel, 2014; Stock, Steenbergen, Colzato & Beste,
2016; Zink, Stock, Colzato, & Beste, 2018). Research provides evidence
for intraindividual variability in cognitive control, as humans can adjust
their bias towards persistence or flexibility (Dreisbach & Goschke,
2004; Hommel & Colzato, 2017; Zink et al., 2018). Various factors that
promote particular biases have been identified, including mood
(Dreisbach & Goschke, 2004), meditation-induced states (Colzato,
Ozturk, & Hommel, 2012; Colzato, Sellaro, Samara, & Hommel, 2015;

Colzato, Szapora, Lippelt, & Hommel, 2017; Colzato, van der Wel,
Sellaro, & Hommel, 2016), and reward (Hefer & Dreisbach, 2016,
2017). Neuroscientific evidence suggests that such metacontrol biases
(to use the terminology suggested by Hommel & Colzato, 2017) are
regulated through the interplay of frontal and striatal dopaminergic
pathways (Cools & D’Esposito, 2011; Cools, 2015) and/or the interplay
between dopaminergic D1-receptors and D2-receptors (Durstewitz &
Seamans, 2008).

Humans do not only show intraindividual variability in their me-
tacontrol state bias, but they also differ systematically in their individual
metacontrol default or trait bias: Differences in both genetic setup (in
genes relevant for dopaminergic processing) and cultural background
have shown to be associated with particular biases towards persistence
or flexibility (Hommel, Colzato, Scorolli, Borghi, & van den
Wildenberg, 2011; for a review, see Hommel & Colzato, 2017).

The persistence/flexibility tradeoff is thus likely to emerge from
some interplay between inter- and intraindividual (i.e., trait and state)
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metacontrol biases, and it was this interplay that we aimed to in-
vestigate in the present study. We tracked inter- and intraindividual
differences across a range of tasks that arguably require the continuous
adjustment of metacontrol biases. Particularly, we considered six tasks
that require a cognitive search in which the persistence/flexibility
tradeoff should be made. Three of these tasks were fluent response
production tasks (often termed fluency tasks) which are fairly unrest-
ricted in terms of external stimuli and instructions. Participants pro-
duced words (word production task; WPT; Troyer, Moscovitch, &
Winocur, 1997), designs (five point task; 5PT; Regard, Strauss, &
Knapp, 1982), or ideas (e.g., uses for an everyday object; Alternative
Uses Task; AUT; Guilford, 1967) in response to one single cue stimulus.
While general performance on these fluent production tasks can be
measured in terms of a total performance score (the total amount of re-
sponses), the balance between persistence and flexibility in these tasks
might be reflected by measures of clustering and switching, respec-
tively. For example, in the phonemic version of the WPT people tend to
respond in clusters of words that are phonemically similar (e.g., fact,
factor, and face) and participants with a metacontrol bias towards
persistence might be inclined to cluster more than those with a bias
more towards flexibility (e.g., Troyer et al., 1997).

The three other tasks were arguably more restricted by instructions
or stimuli. Despite terminological differences, all these tasks have been
used to assess aspects of cognitive persistence and flexibility. We in-
cluded the verbal search task (VST) introduced by Hills, Todd, and
Goldstone (2008, 2010), used to measure the exploration/exploitation
tradeoff in cognitive search, but in which pre-defined letter sets restrict
the patch of words participants can search from. We included a multi-
armed bandit task (MAB) thought to assess the exploration/exploitation
tradeoff (e.g., Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Jepma,
Beek, Wagenmakers, van Gerven, & Nieuwenhuis, 2010; Jepma &
Nieuwenhuis, 2011). In this task, individuals engage in exploitation of
high-value slot machines or in exploration between four machines
when payoff changes over time. Finally, we included the Remote As-
sociates Test (RAT; Mednick, 1962), which was designed to focus more
on convergent thinking, and thus qualifies as a rather persistence-heavy
search task (e.g., Colzato et al., 2017; Fischer & Hommel, 2012;
Guilford, 1950, 1967). However, performance on this task benefits from
switching between problems, indicating that a persistence/flexibility
tradeoff should be realized (Lu, Akinola, & Mason, 2017).

Considering the probable interplay between inter- and in-
traindividual differences in controlling the persistence/flexibility tra-
deoff, one could think of two different, but not necessarily mutually
exclusive, ways that individual differences in metacontrol bias express
themselves in cross-task correlations. One possibility is that perfor-
mance in cognitive search tasks is strongly affected by an individual
trait bias: Individuals with a strong persistence bias would be more
likely than others to exploit or cluster, while individuals with a strong
flexibility bias would be more likely than others to explore or switch
(Fig. 1). Indeed, clustering and switching in verbal search has been
reported to be related to clustering and switching behavior in a visual

search task (Hills et al., 2008, 2010), suggesting that these tasks share
enough similarity to be sensitive to possible trait biases. To reveal such
possible trait biases, we analyzed indicators of persistence (clustering,
exploitation) and of flexibility (switching, exploration) separately, so
that possible cross-task correlations could indicate trait biases towards
persistence or flexibility.

Another possibility is that cross-task correlations are limited to total
performance scores, possibly reflecting the degree to which people
adapt their metacontrol state bias to match situational demands. For
instance, in the WPT, if a participant has a large vocabulary, a good
strategy could be to mostly exploit/cluster, as this person can produce
more words within one semantic or phonemic cluster, and thus has to
explore/switch to other clusters of words only occasionally (Fig. 2,
panel A; Unsworth, Spillers, & Brewer, 2011). In contrast, for a parti-
cipant with a small vocabulary, the opposite strategy could be more
suitable. If so, we might find significant cross-task correlations for
clustering and switching for vocabulary-dependent tasks at most, but no
generalization beyond those, suggesting no strong evidence that the
balance between clustering and switching solely depends on the me-
tacontrol trait bias across different types of tasks. However, individuals
might differ with respect to the degree to which they take their resource
limitations (such as the size of their vocabulary) into account and adapt
their metacontrol bias to match task demands (Fig. 2, panel B). We
suggest that this ability, which we will refer to as adaptivity, would be
reflected in generalizability of total performance rather than of the
clustering/exploitation and switching/exploration score, as total per-
formance might depend on how much individuals adapt the balance
between clustering and switching accordingly to match the situational
demands. Interestingly, generalizability over fluent response produc-
tion tasks in different domains of cognitive functioning has been studied
mainly in terms of total performance scores which have been found to
generalize over tasks (e.g., Ardila, Rosselli, & Bateman, 1994; Unsworth
et al., 2011; Vannorsdall, Maroof, Gordon, & Schretlen, 2012;
Whiteside et al., 2016; but see Schmidt et al., 2017). This suggests that
there is intraindividual stability in overall performance regardless of
domain, or, according to our reasoning, an indication of the degree of
metacontrol bias adaptivity. To test whether interindividual differences
related to metacontrol reflect the individual degree of adaptivity, rather
than (or in addition to) stable interindividual differences in trait biases,
we thus analyzed not only clustering and switching scores but also total
performance.

Related to the idea that clustering and switching are adaptively
balanced to increase total performance, we also tested to which degree
the total performance scores are predicted by clustering and switching
scores. We additionally explored whether two non-invasive alleged
proxy-measures of individual dopamine levels would be statistically
related to clustering, switching, and total performance scores, which we
report in the Supplementary material.

To summarize, according to the trait-bias account, one would expect
that clustering and switching scores would correlate across tasks in
different domains. However, according to the adaptivity account, one

Fig. 1. Differences in genetic setup and cultural influences might induce trait biases in metacontrol. Those individuals with a flexible metacontrol bias should be
more likely to explore alternatives and switch between them while those with a persistent bias should be more prone to exploit and cluster.
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would expect that total performance scores would correlate across tasks
and domains but clustering and switching scores correlate only across
tasks within domains or not at all.

2. Methods

2.1. Participants

We collected data from 160 participants at the Leiden University
Institute of Psychology. Of the tested sample, 31 participants were ex-
cluded before analysis. Post-hoc exclusion reasons were recent drugs
use (e.g., dopaminergic, cholinergic, anxiolytic, or illicit drugs; n= 12),
a history of psychiatric disorders (n= 8), dyslexia (n= 6), non-nativity
(n= 1), serious color blindness (n= 1), and other neurological issues
(e.g., unspecified neurological disorders or serious concussions; n= 3).
The final sample (N= 129, 87 females, Mage = 21.43, SDage = 2.37)
consisted of native Dutch speakers in self-reported excellent mental and
physical health. Due to additional missing data because of mostly
technical problems and the fact that only half of all participants per-
formed the multi-armed bandit task and the verbal search task, sample
sizes vary over analyses (Supplementary material). All participants
signed informed consent for the study, which was approved by the local
psychology research ethics committee (Leiden University, Institute of
Psychology). Participants received study credit or a monetary reward
(13 EUR).

2.2. Instruments

2.2.1. Word production task
The word production task (WPT) required participants to respond

with as many words as they could think of, starting with L, B, or S in
one minute per letter (also known as verbal fluency; Troyer et al., 1997).
Consecutive words were considered part of a cluster when they started

with the same two letters, rhymed, differed only by a vowel sound, or
were homonyms (Troyer et al., 1997). Participants were asked not to
respond with proper words or variants of the same word (such as fat
and fatter).

2.2.2. Alternative Uses Task
In the AUT (Guilford, 1967) participants named as many uses for

everyday objects (pen and towel) as they could think of within five
minutes. Consecutive uses were considered part of a cluster when they
were related according to shape and/or a specific use, e.g., a cluster of
uses of a pen could be a miniature lighthouse and a miniature lamp post
(Gilhooly, Fioratou, Anthony, & Wynn, 2007).

2.2.3. Five-point design production task
In the five-point task (5PT), participants created as many designs as

possible in two minutes by connecting five dots by single lines (also
known as design fluency; Fig. 3; Regard et al., 1982; Tucha,
Aschenbrenner, Koerts, & Lange, 2012). Consecutive designs were
considered part of a cluster according to three possible strategies
(Gardner, 2008; Vik & Ruff, 1988): a rotational strategy (the design or
part of it is rotated), a quantitative strategy (single lines were system-
atically added or subtracted), and a blended strategy (the strategies
combined; Gardner, 2008). Participants were asked not to repeat de-
signs and to use only single, straight lines that connected two dots.

In the WPT, AUT and 5PT the total performance score was the total
number of responses. Clustering was the average number of words,
designs, or ideas in a cluster, starting to count from the second con-
secutive response in each cluster relative to the total number of re-
sponses in multi-response clusters only. For example, in the word pro-
duction task, a phonemic cluster in the series ‘film, far, fat, fabulous,
fork’ would start with far, end with fabulous, and cluster size would be 2
(based on Troyer et al., 1997). Switching was the number of times
participants switched between single responses or clusters of responses.

Fig. 2. A. The same task can require different individuals to adapt their metacontrol state to different metacontrol biases. In the word production task, individuals
with a large vocabulary (left) might switch less between phonemic clusters of words, as they are able to produce more words within one cluster, suggesting a
persistence bias, while for individuals with a small vocabulary (right) the opposite might be true. B. Moreover, differences in the way individuals adapt to situational
demands (considering task demands and individual resources) can lead some individuals to change the balance between clustering/switching from task to task
(potentially high adaptivity) while others stay near their default balance, dictated by their metacontrol trait bias (potentially low adaptivity).
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Total performance, clustering, and switching scores were standardized
in each task. Errors and perseverations were included in each fluent
production task as they still reflected the use or the lack of clustering
strategies. Moreover, earlier work shows that perseverations are not
related to clustering or switching, suggesting that individual differences
in errors are not related to clustering and switching either (Unsworth
et al., 2011).

2.2.4. Verbal search task
The verbal search task (VST) measures exploration/exploitation

strategies in verbal search and was used to show that search processes
are generalizable over different modalities (Hills et al., 2008, 2010).
Participants were instructed to find Dutch words of at least four letters
using only letters from a 6-letter set presented on the computer screen.
Each letter could be used once per word and words could not be plurals
or proper names. Participants could continue to the next letter set when
they felt they had exploited the current set but had to wait 15 s between
sets to resemble travel time in exploration. They were told to use as
much time as necessary, but to not stick around too long or too short in
each set. Participants were shown a maximum of 14 letter sets, pre-
sented in random order, from which they were to find a maximum of 30
correct words. Feedback was presented for 800 ms in each trial on
whether the word was correct, and the total amount of correct words
was displayed continuously. We regarded the number of switches be-
tween lettersets as a measure of switching behavior and the average
number of words per set was our measure of clustering. We recorded
the time participants searched each set and the total time required to
find 30 words was the total performance score. Before the VST parti-
cipants performed a visual search in either a clumpy or diffuse en-
vironment. To correct for possible priming influences of this difference
the scores in verbal search were all standardized per condition prior to
analyses. We multiplied all standardized total performance scores in the
VST with -1, such that a higher score indicated better performance,
similar to the total performance scores in other tasks.

2.2.5. Multi-armed bandit task
Participants played four slot machines to gain as many points as

possible (Daw et al., 2006). The slot machines were displayed in each
corner of a computer screen, and participants chose an arm by pressing
the Q, W, S, or A. Over 200 trials, mean payoff of each arm gradually
changed such that participants should continuously re-adjust their ex-
ploration/exploitation strategy to track the highest paying arm (Daw
et al., 2006; Jepma & Nieuwenhuis, 2011; Jepma et al., 2010). Reward
was displayed for 800 ms in each play, and total reward was displayed
continuously. There was no time limit, but on average the task lasted
for approximately 5 min. We proposed that participants clustered when
they played the same arm for two or more consecutive trials and cal-
culated cluster size as the average size of clusters (starting to count from
the second consecutive play) relative to the total number of clusters.

Switching was the number of switches between arms, counting only
exploratory switches (i.e., in the series of plays arm1-arm1-arm1-arm2-
arm1 the last switch from arm2 back to arm1 is not exploratory). As
participants played one of two different versions of this task, containing
different, but comparable, random walks for pay-out per arm, all scores
were standardized per version prior to analyses (Jepma et al., 2010).

2.2.6. Remote Associates Test
A 22-item, Dutch, pen-and-paper version of the RAT was used

(Akbari Chermahini, Hickendorff, & Hommel, 2012; Mednick, 1962).
This task is mostly used to test convergent thinking, however, recent
work shows that switching between items helps to solve them quicker
suggesting a necessary tradeoff between persistence and flexibility (Lu
et al., 2017). Each item consists of three seemingly unrelated words that
the participant is required to connect, by thinking of a fourth word that
can be combined with each of the three stimulus words (e.g., in English,
the words dew/comb/bee should all be combined with the word honey).
The participant was required to solve as many items as possible within
5 min. The final score was the number of correctly solved items. No
clustering or switching scores were available for our pen-and-paper
version of the RAT. However, the final score might be insightful still,
especially regarding the adaptivity account.

2.3. Analyses

To address our first aim, we analyzed whether clustering and
switching measures generalized over tasks and thus positively corre-
lated between the WPT, 5PT, AUT, VST, and the MAB. For our second
aim, we analyzed whether total performance scores correlated between
all tasks and followed up with an exploratory factor analysis to gain
more insight into this correlational structure in a sample with complete
scores on all tasks. For our third aim, we tested whether clustering and
switching could be interpreted to reflect two ends of a balance between
which the balance can be adapted to perform well in terms of total
performance. To do so, we statistically predicted total performance
from cluster size and switching within each task in a multiple regression
analysis to study whether clustering and switching indeed predicted
total performance together. We also tested whether clustering and
switching within each task were inversely related by finding partial
correlations corrected for total performance.

All analyses that address dopamine as a possible neuromodulator of
clustering, switching, and total performance, as well as related results
can be found in the Supplementary material. For completeness we also
report post-hoc calculated power analyses for the correlational and
regression analyses in the Supplementary material.

Considering the exploratory nature of our study all hypotheses were
tested two-sided and alpha was set at .05 for every hypothesis test.
When assumptions for parametric tests were violated we followed up
with non-parametric or robust testing. Unless stated otherwise, this did

Fig. 3. Ten consecutive designs in the five-point task (Regard et al., 1982). The first eight designs form a cluster according to a blended strategy of a quantitative
strategy (first five designs) continuing into a rotational strategy (fifth through eighth design; Gardner, 2008).
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not change interpretation and the discussed results are parametric test
results.

3. Results and discussion

Interrater reliability for cluster size and switching scores in the
WPT, 5PT and AUT was based on a random sample of data that was
scored by a second rater. Both raters were trained psychologists.
According to type 2 intraclass correlation coefficients of consistency
(ICC2) reliability in the WPT ranged from good (between .60 and .74;
Cicchetti & Sparrow, 1981) to excellent (between .75 and 1.00). Re-
liability of the switching scores was slightly higher (ranging from .86
for L to .97 for B) than those for cluster size (ranging from .66 for L to
.92 for B). Interrater reliability in the 5PT was good for both switching
(ICC2 = .79) and cluster size (ICC2 = .71). In the AUT, interrater re-
liability for switching was excellent (ICC2towel = .97 and ICC2pen

= .98), and good for cluster size (ICC2towel = .62 and ICC2pen = .85).

3.1. Generalizability of clustering and switching between tasks

In light of our first aim we tested the generalizability of clustering
and switching scores by studying zero-order correlations. Clustering
scores did not correlate between any two tasks (Table 1), and switching
positively correlated only between AUT and 5PT (Holm-corrected for
multiple comparisons; rspearman = .344, CI95% = [.18,.49], p < .001;
Table 2). This counters expectations based on the trait-bias account, but
might support the adaptivity account, as the absence of correlations
between clustering as well as switching scores indicates that partici-
pants are biased towards clustering or switching to a different extent
depending on the task, and hence adapt to the task demands. We should
take into account that some pairwise correlations were calculated in
smaller samples, which might have led to type-II errors. Nonetheless, if
the correlations in these smaller subsamples would have been sig-
nificant our conclusions would remain the same.

3.2. Generalization of total performance scores over tasks

While the absence of cross-task correlations between clustering and
switching scores indicates that these scores do not reflect a metacontrol
trait bias, putative support for the adaptivity account would be pro-
vided if total performance scores would generalize over tasks, as this
might reflect the ability of individuals to adapt their metacontrol state
to the specific task demands. Although total performance was not re-
lated across all tasks (Table 3), the unrestricted fluent production tasks
(WPT, AUT, and 5PT) were significantly and positively correlated to
each other. Moreover, performance in the WPT was related to perfor-
mance in the VST. These correlations were based upon pairwise dele-
tion, such that each coefficient was based on a different sample. Again,
in the smaller subsamples we have to be aware of possible type-II er-
rors. However, if correlations in these subsamples would have been
significant this would offer more support for our conclusions. We fol-
lowed up with an exploratory factor analysis in the subsample of par-
ticipants (n= 63) that had complete data on all tasks. Assumption
checks showed sufficient correlational structure to be able to find fac-
tors (Bartlett’s χ2(15) = 41.439, p < .001), no sign of multicollinearity

(determinant = .459), and adequate sampling (Kaiser-Meyer-
Olkin = .72 overall, with values ranging from .64 to .79). Our data was
not multivariate normally distributed, therefore we used principal axis
factoring.

A parallel analysis, the scree plot, and Kaiser’s rule all suggested a
two-factor solution (Table 4). Mean communality was low at .35,
especially RAT and 5PT showed low communality, suggesting that only
a small part of the variance in these tasks is related to the same un-
derlying factors compared to the rest of the tasks. Combined with
moderate factor loadings and small sample size (which may have
caused a type-II error in the χ2-test) these results should only be in-
terpreted with care. However, the residual matrix showed that only
6.67% of all off-diagonal residuals was larger than |0.05|. Moreover, we
repeated the analysis with a maximum likelihood factoring method to
establish that another type of factoring method confirmed the currently
discussed findings (Supplementary material). While the two-factor so-
lution (χ2(4) = 1.02, RMSEA = 0, 90% CI: [0, .069], TLI = 1) indicated
that variance in the tasks is caused by two different underlying factors,
the correlation between factors was of medium size (r= .413) in-
dicating that there was overlap in variance, such that this finding still
offers support for our adaptivity account. However, the fact that the
tasks loaded onto two separate factors suggests that these scores of
overall performance are not sufficient to reflect the adaptivity of the
persistence/flexibility tradeoff. This might be due to the nature of the
tasks: The tasks that loaded on factor one (AUT, MAB, and 5PT) are
characterized by the search for non-verbal concepts while the tasks that
load on the second factor require more verbal resources, specifically,
they require a search for words based on phonemics. This division
might also explain why the RAT shows only weak factor loadings on
both factors, while the task does require a search for words, this search
is not based on phonemics but semantics (e.g., Mednick, 1962; Smith,
Huber, & Vul, 2013).

3.2.1. Interim discussion
Our first two aims were to test whether clustering and switching

generalized over tasks, which would be suggested by the trait-bias ac-
count, and whether total performance generalized over tasks, which
could be supportive of the adaptivity account. From our findings we can
conclude that clustering and switching do not reflect a metacontrol trait
bias. Instead, the results speak more in favor of the adaptivity account,
as total performance is at least partly task-independent. However, the
lack of a relationship between some tasks and the two-factor ex-
ploratory factor analysis solution might indicate that a valid measure of
adaptivity requires the consideration of either a broader range of tasks
or a more specific range of tasks. As adaptivity should reflect individual
variability that is independent of resources and situations, a hetero-
geneous sample of variables might be necessary to find this shared
variance. However, it is thus important to balance the types of tasks
very well, such that tasks cannot group together based only on shared
variance that is unrelated to adaptivity per se. On the other hand, a
more specific set of similar tasks might help measure adaptivity. In our
results, the WPT, AUT, and 5PT are all fairly unrestricted tasks when it
comes to instruction and task structure, in which participants fluently
produce responses at their own tempo. The similarity in low task re-
strictions might allow participants to adapt the tradeoff between

Table 1
Spearman’s Rho correlations (95% CI) between cluster size scores from all tasks (Holm-corrected for multiple comparisons).

AUT 5PT VST MAB

WPT .092 (−.082, .260) (n = 129) −.006 (−.180, .168) (n = 127) .034 (−.214, .278) (n = 64) −.118 (−.352, .130) (n = 65)
AUT .042 (−.133, .215) (n = 127) .235 (−.012, .454) (n = 64) −.034 (−.275, .212) (n = 65)
5PT .174 (−.075, .402) (n = 64) .097 (−.155, .336) (n = 63)
VST .084 (−.168, .325) (n = 63)

Note. WPT = word production task, AUT = Alternative Uses Task, 5PT = five point task, RAT = Remote Associates Test, VST = verbal search task, MAB = multi-
armed bandit task. No correlations obtained statistical significance (p < .05).
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persistence and flexibility according to their own resources to a similar
extent. While the three tasks differ in the type of responses required
(which is reflected in the EFA solution) they did share variance as ex-
pressed in significantly positive zero-order correlations and a positive
correlation between the two factors in EFA. Moreover, of the three tasks
that have more task restrictions, only the VST, which allows for at least
some fluent production of responses according to the participant’s
verbal resources, correlates with fluent WPT.

3.3. Clustering and switching within tasks

Next, we tested whether clustering and switching together predicted
total performance in all tasks (except the RAT, as clustering and
switching measures were not available). In the WPT both clustering and
switching were important predictors of total performance (F(2,
126) = 160.6, p < .001, R2 = .72, f2 = 2.55, Table 5). Both more
clustering and more switching were related to better performance in
terms of amount of words produced. Moreover, when corrected for the
total score (as people who more rapidly produce words can both cluster
and switch more), a negative partial correlation (rpartial = −.657,
p < .001) between clustering and switching suggests that those who
cluster more switch less and vice versa, a very intuitive association
between the two. This indicates that participants indeed tradeoff clus-
tering and switching to produce as many words as possible, biasing
their search to be more persistent or flexible to produce more responses.
Interestingly, switching was more strongly related to performance than
clustering (t(126) = 2.38, p= .019), suggesting that this task benefits
most from flexible cognitive control.

In the 5PT clustering and switching both positively predicted total
performance as well (F(2, 124) = 59.6, p < .001, R2 = .49, f2 = 0.96,
Table 5), again indicating that both clustering and switching are im-
portant for the fluent production of responses. As in the WPT, clustering
and switching in the 5PT were inversely related when corrected for the
total score (rpartial = −.713, p < .001), suggesting that clustering and
switching could be considered two ends of a tradeoff. Unlike in the
WPT, however, in the 5PT clustering and switching were equally im-
portant to produce as many designs as possible, as their correlation
coefficients with performance did not differ significantly (t
(124) = 0.86, p= .391).

In the AUT we again found that both clustering and switching po-
sitively predicted the total score (F(2, 126) = 2493.0, p < .001,
R2 = .98, f2 = 39.65, Table 5), while being inversely related to each
other when corrected for the total score (rpartial = −.637, p < .001).

Similar to the WPT, total performance in the AUT seemed to benefit
more from flexible than persistent processing, as the correlation coef-
ficient between switching and performance was larger than that be-
tween clustering and performance (t(123)= 15.72, p < .001).

In the verbal search task only the regression coefficient of switching

Table 2
Spearman’s Rho correlations (95% CI) between switching scores from all tasks (Holm-corrected for multiple comparisons).

AUT 5PT VST MAB

WPT .140 (−.033, .306) (n = 129) .030 (−.145, .203) (n = 127) −.298 (−.507, −.057) (n = 64) −.184 (−.409, .063) (n = 65)
AUT .344*** (.180, .489) (n = 127) −.173 (−.402, .076) (n = 64) −.081 (−.319, .166) (n = 65)
5PT −.257 (−.473, −.011) (n = 64) .078 (−.173, .319) (n = 63)
VST −.008 (−.255, .241) (n = 63)

Note. WPT = word production task, AUT = Alternative Uses Task, 5PT = five point task, RAT = Remote Associates Test, VST = verbal search task, MAB = multi-
armed bandit task. *p < .05, **p < .01, ***p < .001.

Table 3
Spearman’s Rho correlations (95% CI) total performance scores from all tasks (Holm-corrected for multiple comparisons).

AUT 5PT VST MAB RAT

WPT .301** (.135, .451) (n = 129) .412*** (.256, .547) (n = 127) .434** (.211, .614) (n = 64) .032 (−.213, .274) (n = 65) .212 (.039, .372) (n = 127)
AUT .427*** (.273, .560) (n = 127) .108 (−.142, .344) (n = 64) .094 (−.154, .330) (n = 65) .181 (0.007, .344) (n = 127)
5PT .220 (−.027, .442) (n = 64) .204 (−.046, .430) (n = 63) .151 (−.024, .317) (n = 127)
VST −.063 (−.306, .187) (n = 63) .122 (−.128, .357) (n = 64)
MAB .167 (−.084, .398) (n = 63)

Note. WPT = word production task, AUT = Alternative Uses Task, 5PT = five point task, RAT = Remote Associates Test, VST = verbal search task, MAB = multi-
armed bandit task. *p < .05, **p < .01, ***p < .001.

Table 4
Factor loadings and communalities for oblimin-rotated exploratory factor
analysis of total performance scores for all tasks.

Factor 1 Factor 2 h2

AUT .55 .10 .35
MAB .52 −.23 .23
5PT .51 .19 .38
RAT .33 .19 .20
VST −.07 .69 .45
WPT .23 .59 .51

Note. Factor loadings > .40 are in boldface. h2 = communality.
AUT = Alternative Uses Task, MAB = multi-armed bandit task, 5PT = five
point task, RAT = Remote Associates Test, VST = verbal search task,
WPT = word production task.

Table 5
Regression coefficients predicting total performance scores from clustering and
switching per task.

Standardized coefficients

β SE t Low CIβ High CIβ p

WPT
Cluster size 0.67 0.058 11.52 0.55 0.78 < .001
Switching 0.87 0.056 15.65 0.76 0.98 < .001

5PT
Cluster size 0.67 0.075 8.94 0.52 0.82 < .001
Switching 0.75 0.075 9.99 0.60 0.90 < .001

AUT
Cluster size 0.17 0.018 9.37 0.14 0.21 < .001
Switching 0.96 0.015 65.83 0.93 0.99 < .001

VST
Cluster size −0.18 0.146 −1.23 −0.47 0.11 .224
Switching −0.64 0.146 −4.38 −0.93 −0.35 < .001

Note. SE= standard error, CI = 95% confidence interval bound, WPT = word
production task, 5PT = five point task, AUT = Alternative Uses Task, and
VST = verbal search task.
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was significant and negative, indicating that those who switch more
need less time to find 30 words (F(2, 61) = 12.3, p < .001, R2 = .29,
f2 = 0.40, Table 5), in turn suggesting that only switching is beneficial
for total performance on this task. This finding might deviate from the
first three tasks because of the task constraints in the search for words:
As participants have to find words consisting only of the presented
letters it might be beneficial to switch well before depleting the letter
set. Out of 14 possible letter sets, on average the participants used only
7.78 (mode = 6, median = 7) letter sets, indicating that switching sets
was the most efficient manner to find 30 words as fast as possible. Si-
milar to the WPT, 5PT and AUT clustering and switching were inversely
related when corrected for total performance (rpartial = −.670,
p < .001), moreover, switching was more strongly related to perfor-
mance than clustering (t(61) = 3.70, p < .001).

The assumption of normally distributed errors was violated in the
MAB and follow-up analyses showed very unstable results such that we
could not reliably interpret results in the MAB.

3.3.1. Interim discussion
The results regarding the third aim, the question whether and how

clustering and switching predicted total performance in each task, show
that in similar, unrestricted tasks that require the fluent production of
responses through cognitive search, both clustering and switching
predicted higher total performance, while they were inversely related.
These negative correlations suggest that clustering and switching in-
deed represent two ends of one dimension to be balanced on, but in-
dividuals might still prefer either clustering or switching for fluent
production. However, the type of task seems to influence, and in fact
constrain, the extent to which participants should choose to adapt their
bias to persistent or flexible processing as shown by the different pat-
terns of prediction. For example, as might be the case in the VST, task
constraints might require all participants to adapt their metacontrol
bias to the task constraints and switch more, disregarding their re-
sources. This again offers support for the adaptivity account. Moreover,
the contributions of clustering and switching to total performance show
differences in the suitability of tasks to measure interindividual differ-
ences in cognitive control. For example, as switching was a better
predictor of performance than clustering, the AUT seems well-suited to
study interindividual differences in flexible cognitive control. On the
other hand, to study interindividual differences in the balance between
persistent and flexible control the 5PT might be more suitable as clus-
tering and switching were equally important predictors of total per-
formance.

3.4. General discussion

Our results suggest that the clustering and switching task scores that
we have studied here are not reflective of individual metacontrol trait
biases. Instead, the results suggest that these cognitive search tasks
might be used as a starting point to study the adaptivity of a meta-
control state bias: to reflect to what extent individuals adapt their
metacontrol bias to perform as optimal as possible considering the task
restrictions and their task-related resources.

To prevent task restrictions and task-related resources from masking
domain- and task-independent metacontrol biases and adaptivity, it is
necessary to use either a well-balanced heterogeneous set of tasks or a
more homogeneous set of tasks as well as to include measures of task-
related resources (such as vocabulary). A heterogeneous set of tasks
should be well-balanced in terms of task restrictions and requirement of
resources, as adaptivity is expected to be domain- and task-in-
dependent. If tasks are not balanced in terms of either task restrictions
or necessary resources, tasks might group together based on variance
that is dependent on domain or tasks. Our results, however, suggest that
tasks that are similar in terms of task restrictions—specifically, tasks
that are fairly unrestricted such as the fluent production tasks in this
study— allow participants to respond from their preferred metacontrol

state bias. A more homogenous set of tasks to measure adaptivity as
reflected by total performance should still consist of tasks that require a
heterogeneous set of resources to prevent tasks from grouping together
based on resource-related variance. Another possibility is that different
behavioral measures might better reflect persistence or flexibility in
cognitive control. For example, future research could study stopping
rules in addition to or instead of clustering and switching (e.g.,
Harbison, Davelaar, & Dougherty, 2007). How participants terminate
(exploitative) sampling from clusters might offer insight into their
persistence in search (without any time restriction) and their reasons to
stop sampling and switch to other clusters.

Importantly, however, metacontrol should be studied within a
wider framework which, in addition to well-chosen behavioral tasks
and measures aimed at studying the persistence/flexibility tradeoff,
includes measures of neural mechanisms that might be related to me-
tacontrol. While we aimed to do so in the current study, by including
the dopamine proxies, the results did not allow us to draw substantive
conclusions on the possible role of dopamine in metacontrol adaptivity
(see also Supplementary material). Moreover, besides studying the role
of dopamine or other neuromodulators (Avery & Krichmar, 2017; Doya,
2008; Goschke & Bolte, 2014) using more direct measures, recent in-
sights have suggested other neural mechanisms of interest in cognitive
control. For example, inter- and intraindividual differences in theta
frequency network architectures might be related to the adaptivity of
metacontrol (Zink et al., 2018).

Moreover, metacontrol and its adaptivity might emerge from or be
related to interactions between multiple other cognitive processes or
systems, such as working memory capacity and processing speed
(Miyake & Shah, 1999; Unsworth et al., 2011). Placing the study of
metacontrol in a broader framework of cognitive processes might offer
insight into how intra- and interindividual differences in adaptivity
come about. For example, Unsworth et al. (2011) showed how com-
ponent processes of working memory performance and processing
speed as well as vocabulary account for interindividual differences in
performance on verbal fluent production tasks like the WPT. Related,
Miyake & Shah (1999) summarize that many theories of working
memory suggest that cognitive control emerges from interactions be-
tween knowledge and working memory or between subprocesses of the
cognitive system. In their discussion, they recognize the importance of
acknowledging domain-specific effects when studying cognitive con-
trol.

Summarizing, we suggest that metacontrol adaptivity might be an
important process which should be taken into account when studying
suggested domain-independent biases in tradeoffs in cognitive control
(Hills, Todd, & Jones, 2015; Hills, Todd, Lazer, Redish, & Couzin,
2015). Individual differences in metacontrol adaptivity might explain
the absence of zero-order correlations between clustering and switching
tendencies in different tasks from different cognitive domains (as in the
current study), the absence of a single latent factor to describe ex-
ploration/exploitation tendencies in recent research (Von Helversen,
Mata, Samanez-Larkin, & Wilke, 2018), as well as the absence of zero-
order correlations between different tasks that tap into executive
functioning (as discussed in Miyake & Shah, 1999). To find a suitable
measure of metacontrol adaptivity research should take place in broad
framework that considers task restrictions, individual task-related re-
sources, neurocognitive influences and the interaction between dif-
ferent cognitive processes.

Related to the exploratory nature of our study, we were faced with
numerous limitations, such as an unbalanced set of tasks and a small
sample size for some of the tasks. Future similar studies should consider
using an improved balance in the set of tasks in order to study the
domain- and task-restrictions independently from the variability that
we assume to reflect adaptivity. Moreover, a larger sample size and a
larger number of tasks would be particularly beneficial for inferring
latent factors in exploratory factor analysis. Indeed, the fit measures
that we found indicate that the model might have suffered from small
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sample size. However, recent research shows similar conclusions in a
well-powered study (Von Helversen et al., 2018). Although some of our
non-significant results in Tables 1–3 in particular could have suffered
from small sample sizes and type-II error, our conclusions would not
change if these results would have been significant. Therefore, even in
light of some small sample sizes, we consider our observations en-
couraging for further investigating and understanding individual dif-
ferences in dealing with task demands adaptively.

Finally, it is important to note that the unrestricted fluent produc-
tion tasks we considered in the present study were particularly suited to
reveal adaptivity of metacontrol and these tasks may thus not have
been particularly sensitive to reveal stable metacontrol biases.
Accordingly, we do not take the present findings as evidence suggesting
that such metacontrol preferences do not exist but, rather, we suggest
that these findings indicate that they can be overcome to match situa-
tional demands.

4. Conclusions

We aimed to study cognitive metacontrol according to two ap-
proaches. We expected that our results would offer support for a me-
tacontrol trait-bias account and/or a metacontrol adaptivity account.
From the trait-bias account we expected clustering and switching ten-
dencies to generalize over different types of cognitive search tasks.
However, our data offers more support for the adaptivity account, as
only total performance generalized (partly) over tasks, suggesting that
participants adapt their balance between clustering and switching (or
the metacontrol bias towards persistence or flexibility) from task to
task, possibly according to task demands and individual resources.
Finding good indicators of persistence and flexibility then requires the
use of carefully chosen sets of tasks within a research framework that
includes neurocognitive measures as well as measures of related cog-
nitive processes from which metacontrol and metacontrol adaptivity
might emerge or with which it might interact.

Importantly, we suggest that the degree to which people can engage
in adaptive metacontrol adjustments varies substantially, and these
individual differences seem rather consistent across a wide range of
tasks in terms of overall performance. To summarize, our findings
provide a starting point from where to study interindividual differences
in metacontrol bias adaptivity.

Acknowledgements

We would like to thank our BSc students for collecting our data and
all participants for taking part in our study. We would also like to thank
Christian Beste and Thomas Hills for their valuable comments on a
previous version of this manuscript. In addition, we thank Marieke
Jepma for supplying us with her version of the multi-armed bandit task.
Finally, we thank the European Research Council (ERC Advanced, #
694722) for funding our research.

Appendix A. Supplementary material

Supplementary material to this article can be found online at
https://doi.org/10.1016/j.cognition.2018.10.001.

Aggregated data for this article can be found online at https://hdl.
handle.net/10411/G369QS.

References

Akbari Chermahini, S., Hickendorff, M., & Hommel, B. (2012). Development and validity
of a Dutch version of the Remote Associates Task: An item-response theory approach.
Thinking Skills and Creativity, 7(3), 177–186. https://doi.org/10.1016/j.tsc.2012.02.
003.

Ardila, A., Rosselli, M., & Bateman, J. R. (1994). Factorial structure of cognitive activity
using a neuropsychological test battery. Behavioural Neurology, 7(2), 49–58. https://
doi.org/10.3233/BEN-1994-7202.

Avery, M. C., & Krichmar, J. L. (2017). Neuromodulatory systems and their interactions:
A review of models, theories, and experiments. Frontiers in Neural Circuits, 11(108),
1–18. https://doi.org/10.3389/fncir.2017.00108.

Bocanegra, B. R., & Hommel, B. (2014). When cognitive control is not adaptive.
Psychological Science, 25(6), 1249–1255. https://doi.org/10.1177/
0956797614528522.

Cicchetti, D. V., & Sparrow, S. A. (1981). Developing criteria for establishing interrater
reliability of specific items - applications to assessment of adaptive-behavior.
American Journal of Mental Deficiency, 86(2), 127–137.

Colzato, L. S., Ozturk, A., & Hommel, B. (2012). Meditate to create: The impact of fo-
cused-attention and open-monitoring training on convergent and divergent thinking.
Frontiers in Psychology, 3(116), 1–5. https://doi.org/10.3389/fpsyg.2012.00116.

Colzato, L. S., Sellaro, R., Samara, I., & Hommel, B. (2015). Meditation-induced cognitive-
control states regulate response-conflict adaptation: Evidence from trial-to-trial ad-
justments in the Simon task. Consciousness and Cognition, 35, 110–114. https://doi.
org/10.1016/j.concog.2015.04.012.

Colzato, L. S., Szapora, A., Lippelt, D., & Hommel, B. (2017). Prior meditation practice
modulates performance and strategy use in convergent- and divergent-thinking
problems. Mindfulness, 7(1), 152–159. https://doi.org/10.1007/s12671-014-0352-9.

Colzato, L. S., van der Wel, P., Sellaro, R., & Hommel, B. (2016). A single bout of med-
itation biases cognitive control but not attentional focusing: Evidence from the
global-local task. Consciousness and Cognition, 39, 1–7. https://doi.org/10.1016/j.
concog.2015.11.003.

Cools, R. (2015). The cost of dopamine for dynamic cognitive control. Current Opinion in
Behavioral Sciences, 4, 152–159. https://doi.org/10.1016/j.cobeha.2015.05.007.

Cools, R., & D’Esposito, M. (2011). Inverted-U shaped dopamine actions on human
working memory and cognitive control. Biological Psychiatry, 69(12), e113–e125.
https://doi.org/10.1016/j.biopsych.2011.03.028.

Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical
substrates for exploratory decisions in humans. Nature, 441(7095), 876–879. https://
doi.org/10.1038/nature04766.

Doya, K. (2008). Modulators of decision making. Nature Neuroscience, 11(4), 410–416.
https://doi.org/10.1038/nn2077.

Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control:
Reduced perseveration at the cost of increased distractibility. Journal of Experimental
Psychology: Learning Memory and Cognition, 30(2), 343–353. https://doi.org/10.
1037/0278-7393.30.2.343.

Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex do-
pamine function with relevance to Catechol-O-Methyltransferase genotypes and
schizophrenia. Biological Psychiatry, 64(9), 739–749. https://doi.org/10.1016/j.
biopsych.2008.05.015.

Fischer, R., & Hommel, B. (2012). Deep thinking increases task-set shielding and reduces
shifting flexibility in dual-task performance. Cognition, 123(2), 303–307. https://doi.
org/10.1016/j.cognition.2011.11.015.

Gardner, E. G. S. (2008). Strategy use on the Ruff Figural Fluency Test: An investigation of
neuropsychological correlates and strategy exposure. Idaho: State University.

Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking:
Strategies and executive involvement in generating novel uses for familiar objects.
British Journal of Psychology, 98(Pt 4), 611–625. https://doi.org/10.1348/
096317907X173421.

Goschke, T. (2003). Voluntary action and cognitive control from a cognitive neuroscience
perspective. In S. Maasen, W. Prinz, & G. Roth (Eds.). Voluntary action: Brains, minds,
and sociality (pp. 49–85). New York: Oxford University Press.

Goschke, T., & Bolte, A. (2014). Emotional modulation of control dilemmas: The role of
positive affect, reward, and dopamine in cognitive stability and flexibility.
Neuropsychologia, 62, 403–423. https://doi.org/10.1016/j.neuropsychologia.2014.
07.015.

Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.
Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.
Harbison, J. I., Davelaar, E. J., & Dougherty, M. R. (2007). Proceedings of the 30th Annual

Meeting of the Cognitive Science Society (pp. 565–570). .
Hefer, C., & Dreisbach, G. (2016). The motivational modulation of proactive control in a

modified version of the AX-Continuous Performance Task: Evidence from cue-based
and prime-based preparation. Motivation Science, 2(2), 116–134. https://doi.org/10.
1037/mot0000034.

Hefer, C., & Dreisbach, G. (2017). How performance-contingent reward prospect mod-
ulates cognitive control: Increased cue maintenance at the cost of decreased flex-
ibility. Journal of Experimental Psychology: Learning Memory and Cognition, 43(10),
1643–1658. https://doi.org/10.1037/xlm0000397.

Hills, T. T., Todd, P. M., & Goldstone, R. L. (2008). Search in external and internal spaces.
Psychological Science, 19(8), 802–808. https://doi.org/10.1111/j.1467-9280.2008.
02160.x.

Hills, T. T., Todd, P. M., & Goldstone, R. L. (2010). The central executive as a search
process: Priming exploration and exploitation across domains. Journal of Experimental
Psychology: General, 139(4), 590–609. https://doi.org/10.1037/a0020666.

Hills, T. T., Todd, P. M., & Jones, M. N. (2015). Foraging in semantic fields: How we
search through memory. Topics in Cognitive Science, 7(3), 513–534. https://doi.org/
10.1111/tops.12151.

Hills, T. T., Todd, P. M., Lazer, D., Redish, D. A., & Couzin, I. D. Cognitive Search Research
Group. (2015). Exploration versus exploitation in space, mind, and society. Trends in
Cognitive Sciences, 19(1), 46–54. https://doi.org/10.1016/j.tics.2014.10.004.

Hommel, B., & Colzato, L. S. (2017). The social transmission of metacontrol policies:
Mechanisms underlying the interpersonal transfer of persistence and flexibility.
Neuroscience & Biobehavioral Reviews, 81, 43–58. https://doi.org/10.1016/j.
neubiorev.2017.01.009.

Hommel, B., Colzato, L. S., Scorolli, C., Borghi, A. M., & van den Wildenberg, W. P. M.

V.N. Mekern et al. Cognition 182 (2019) 251–259

258

https://doi.org/10.1016/j.cognition.2018.10.001
https://hdl.handle.net/10411/G369QS
https://hdl.handle.net/10411/G369QS
https://doi.org/10.1016/j.tsc.2012.02.003
https://doi.org/10.1016/j.tsc.2012.02.003
https://doi.org/10.3233/BEN-1994-7202
https://doi.org/10.3233/BEN-1994-7202
https://doi.org/10.3389/fncir.2017.00108
https://doi.org/10.1177/0956797614528522
https://doi.org/10.1177/0956797614528522
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0025
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0025
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0025
https://doi.org/10.3389/fpsyg.2012.00116
https://doi.org/10.1016/j.concog.2015.04.012
https://doi.org/10.1016/j.concog.2015.04.012
https://doi.org/10.1007/s12671-014-0352-9
https://doi.org/10.1016/j.concog.2015.11.003
https://doi.org/10.1016/j.concog.2015.11.003
https://doi.org/10.1016/j.cobeha.2015.05.007
https://doi.org/10.1016/j.biopsych.2011.03.028
https://doi.org/10.1038/nature04766
https://doi.org/10.1038/nature04766
https://doi.org/10.1038/nn2077
https://doi.org/10.1037/0278-7393.30.2.343
https://doi.org/10.1037/0278-7393.30.2.343
https://doi.org/10.1016/j.biopsych.2008.05.015
https://doi.org/10.1016/j.biopsych.2008.05.015
https://doi.org/10.1016/j.cognition.2011.11.015
https://doi.org/10.1016/j.cognition.2011.11.015
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0085
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0085
https://doi.org/10.1348/096317907X173421
https://doi.org/10.1348/096317907X173421
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0095
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0095
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0095
https://doi.org/10.1016/j.neuropsychologia.2014.07.015
https://doi.org/10.1016/j.neuropsychologia.2014.07.015
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0105
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0110
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0115
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0115
https://doi.org/10.1037/mot0000034
https://doi.org/10.1037/mot0000034
https://doi.org/10.1037/xlm0000397
https://doi.org/10.1111/j.1467-9280.2008.02160.x
https://doi.org/10.1111/j.1467-9280.2008.02160.x
https://doi.org/10.1037/a0020666
https://doi.org/10.1111/tops.12151
https://doi.org/10.1111/tops.12151
https://doi.org/10.1016/j.tics.2014.10.004
https://doi.org/10.1016/j.neubiorev.2017.01.009
https://doi.org/10.1016/j.neubiorev.2017.01.009


(2011). Religion and action control: Faith-specific modulation of the Simon effect but
not Stop-Signal performance. Cognition, 120(2), 177–185. https://doi.org/10.1016/j.
cognition.2011.04.003.

Jepma, M., Beek, E. T. T., Wagenmakers, E. J., van Gerven, J. M. A., & Nieuwenhuis, S.
(2010). The role of the noradrenergic system in the exploration-exploitation tradeoff:
A psychopharmacological study. Frontiers in Human Neuroscience, 4(170), 1–13.
https://doi.org/10.3389/fnhum.2010.00170.

Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration-
exploitation tradeoff: Evidence for the adaptive gain theory. Journal of Cognitive
Neuroscience, 23(7), 1587–1596. https://doi.org/10.1162/jocn.2010.21548.

Lu, J. G., Akinola, M., & Mason, M. F. (2017). “Switching On” creativity: Task switching
can increase creativity by reducing cognitive fixation. Organizational Behavior and
Human Decision Processes, 114(1), 29–41. https://doi.org/10.1016/j.obhdp.2017.01.
005.

Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review,
69(3), 220–232. https://doi.org/10.1037/h0048850.

Miyake, A., & Shah, P. (1999). Toward Unified theories of working memory. In A. Miyake,
& P. Shah (Eds.). Models of working memory. Mechanisms of active maintenance and
executive control (pp. 442–481). New York, NY: Cambridge University Press.

Regard, M., Strauss, E., & Knapp, P. (1982). Children’s production on verbal and non-
verbal fluency tasks. Perceptual and Motor Skills, 55(3), 839–844. https://doi.org/10.
2466/pms.1982.55.3.839.

Schmidt, C. S. M., Schumacher, L. V., Römer, P., Leonhart, R., Beume, L., Martin, M., ...
Kaller, C. P. (2017). Are semantic and phonological fluency based on the same or
distinct sets of cognitive processes? Insights from factor analyses in healthy adults
and stroke patients. Neuropsychologia, 99, 148–155. https://doi.org/10.1016/j.
neuropsychologia.2017.02.019.

Smith, K. A., Huber, D. E., & Vul, E. (2013). Multiply-constrained semantic search in the
Remote Associates Test. Topics in Cognitive Science, 128, 64–75. https://doi.org/10.
1016/j.cognition.2013.03.001.

Stock, A. K., Steenbergen, L., Colzato, L., & Beste, C. (2016). The system neurophysio-
logical basis of non-adaptive cognitive control: Inhibition of implicit learning medi-
ated by right prefrontal regions. Human Brain Mapping, 37(12), 4511–4522. https://
doi.org/10.1002/hbm.23325.

Troyer, A. K., Moscovitch, M., & Winocur, G. (1997). Clustering and switching as two
components of verbal fluency: Evidence from younger and older healthy adults.
Neuropsychology, 11(1), 138–146. https://doi.org/10.1037//0894-4105.11.1.138.

Tucha, L., Aschenbrenner, S., Koerts, J., & Lange, K. W. (2012). The Five point Test:
Reliability, validity and normative data for children and adults. PLoS One, 7(9), 1–11.
https://doi.org/10.1371/journal.pone.0046080.

Unsworth, N., Spillers, G. J., & Brewer, G. A. (2011). Variation in verbal fluency: A latent
variable analysis of clustering, switching, and overall performance. Quarterly Journal
of Experimental Psychology, 64(3), 447–466. https://doi.org/10.1080/17470218.
2010.505292.

Vannorsdall, T. D., Maroof, D. A., Gordon, B., & Schretlen, D. J. (2012). Ideational fluency
as a domain of human cognition. Neuropsychology, 26(3), 400–405. https://doi.org/
10.1037/a0027989.

Vik, P., & Ruff, R. R. (1988). Children’s figural fluency performance: Development of
strategy use. Developmental Neuropsychology, 4(1), 63–74.

Von Helversen, B., Mata, R., Samanez-Larkin, G. R., & Wilke, A. (2018). Foraging, ex-
ploration, or search? On the (lack of) convergent validity between three behavioral
paradigms. Evolutionary Behavioral Sciences, 12(3), 152–162. https://doi.org/10.
1037/ebs0000121.

Whiteside, D. M., Kealey, T., Semla, M., Luu, H., Rice, L., Basso, M. R., & Roper, B. (2016).
Verbal fluency: Language or executive function measure? Applied Neuropsychology.
Adult, 23(1), 29–34. https://doi.org/10.1080/23279095.2015.1004574.

Zink, N., Stock, A. K., Colzato, L., & Beste, C. (2018). Evidence for a neural dual-process
account for adverse effects of cognitive control. Brain Structure and Function. https://
doi.org/10.1007/s00429-018-1694-1 Advanced online publication.

V.N. Mekern et al. Cognition 182 (2019) 251–259

259

https://doi.org/10.1016/j.cognition.2011.04.003
https://doi.org/10.1016/j.cognition.2011.04.003
https://doi.org/10.3389/fnhum.2010.00170
https://doi.org/10.1162/jocn.2010.21548
https://doi.org/10.1016/j.obhdp.2017.01.005
https://doi.org/10.1016/j.obhdp.2017.01.005
https://doi.org/10.1037/h0048850
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0185
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0185
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0185
https://doi.org/10.2466/pms.1982.55.3.839
https://doi.org/10.2466/pms.1982.55.3.839
https://doi.org/10.1016/j.neuropsychologia.2017.02.019
https://doi.org/10.1016/j.neuropsychologia.2017.02.019
https://doi.org/10.1016/j.cognition.2013.03.001
https://doi.org/10.1016/j.cognition.2013.03.001
https://doi.org/10.1002/hbm.23325
https://doi.org/10.1002/hbm.23325
https://doi.org/10.1037//0894-4105.11.1.138
https://doi.org/10.1371/journal.pone.0046080
https://doi.org/10.1080/17470218.2010.505292
https://doi.org/10.1080/17470218.2010.505292
https://doi.org/10.1037/a0027989
https://doi.org/10.1037/a0027989
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0235
http://refhub.elsevier.com/S0010-0277(18)30259-2/h0235
https://doi.org/10.1037/ebs0000121
https://doi.org/10.1037/ebs0000121
https://doi.org/10.1080/23279095.2015.1004574
https://doi.org/10.1007/s00429-018-1694-1
https://doi.org/10.1007/s00429-018-1694-1

	How metacontrol biases and adaptivity impact performance in cognitive search tasks
	Introduction
	Methods
	Participants
	Instruments
	Word production task
	Alternative Uses Task
	Five-point design production task
	Verbal search task
	Multi-armed bandit task
	Remote Associates Test

	Analyses

	Results and discussion
	Generalizability of clustering and switching between tasks
	Generalization of total performance scores over tasks
	Interim discussion

	Clustering and switching within tasks
	Interim discussion

	General discussion

	Conclusions
	Acknowledgements
	Supplementary material
	References




